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Abstract. Using the theory of random matrix products, we show that
random walks on semisimple Lie groups do not concentrate on proper
algebraic subgroups.

1. introduction

Let k be a local field of characteristic zero, i.e. R, C, a p-adic field. The
goal of this note is the following result:

Theorem 1.1. Let G be a connected semisimple algebraic group over k.
Let µ be a probability measure on G(k) with a finite exponential moment.
Assume that the closed subgroup Gµ generated by the support of µ is Zariski-
dense and not compact in G(k). Then there is a positive constant c =
c(µ) > 0 such that for every integer n > 1, and every proper closed algebraic
subgroup H of G,

µn(H) < e−cn.

Recall that a probability measure µ on G(k) ⊂ GLd(k) is said to have
a finite exponential moment if max{‖g‖ε, ‖g−1‖ε} is µ-integrable for some
ε > 0 and some choice of operator norm on the matrix ring Md(k). This
notion is easily seen to be independent of the linear embedding of G(k).

Here µn denotes the n-th fold convolution product of the probability mea-
sure µ. It is the distribution of the product of n independent G(k)-valued
random variables distributed according to µ.

Using the fact that a proper algebraic subgroup must fix a line in a suit-
able linear representation of G, the proof of the theorem is reduced to the
following proposition in which we take y = x.

Proposition 1.2. (Probability of fixing a line) Assume that the support
of µ generates a subgroup which is not relatively compact in projection to
PGLd(k) and does not preserve any finite union of proper vector subspaces
of kd. Then there is c = c(µ) > 0 such that for every n > 1 and every lines
x, y ∈ P(kd),

µn({g ∈ GLd(k); g(x) = y}) < e−cn.
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This proposition is well-known in the case when the action of the group
generated by the support of µ on kd is proximal, i.e. when it admits elements
with a single eigenvalue of maximal modulus. In that case, it is known that
the probability of the event {g(x) ∈ V } decays exponentially fast, for any
given point x ∈ P(Kd) and proper projective subspace V , with a rate of
decay uniform in x and V (see e.g. [16] or [7, Chap. VI.]). Hence the main
novelty of our proposition is the removal of the proximality assumption.
The cost to pay is that we have to restrict the class of events to the case
when V is a point. In fact, there is some room to allow somewhat larger
subspaces V , and the exact condition {g(x) ∈ V } can be replaced with

{d(g(x), V ) < e−c
′n} for a suitable c′ > 0. A precise statement is formulated

in Proposition 5.1 below.

Using a suitable field embedding, we obtain the following Corollary of
Theorem 1.1.

Corollary 1.3. (Probability of return to a subgroup) Let G be a connected
semisimple algebraic group over an arbitrary field K of characteristic zero,
and Γ 6 G(K) a Zariski-dense subgroup generated by a finite set S. Let µ
be a probability measure on S with µ(s) > 0 for each s ∈ S. Then there is a
positive constant c > 0 such that for every integer n > 1,

µn(H) < e−cn, (1.1)

uniformly for every proper closed algebraic subgroup H of G.

Note the difference in the assumptions in this corollary, compared to
Theorem 1.1: the measure is assumed to be finitely supported, but the
field K is arbitrary and in particular no assumption is made on the group
generated by the support of µ besides Zariski density.

Earlier instances of this corollary were known in a number of cases. For
example if G = SLd and S belongs to SLd(Z), then a result of Goldsheid and
Margulis [13] allows to exhibit proximal elements in associated representa-
tions and (1.1) then follows from the known estimates from random matrix
theory mentioned earlier. Unfortunately the Goldsheid-Margulis result fails
for p-adic fields (see e.g. [19]).

In [1], R. Aoun proved the non-uniform version of Theorem 1.1 (i.e. with
a exponential rate of decay depending on H) when G is a semisimple real
algebraic group. This argument does not give uniformity readily and it does
not extend to other local fields, due to its reliance the Golsheid-Margulis
theorem.

Recently, in their work on the spectral gap for dense subgroups of compact
Lie groups, Benoist and Saxcé [3, Prop. 3.2] showed this result in the case
when K = R and G(R) is compact, again by exhibiting suitable proximal
representations.

Non concentration estimates such as (1.1) are crucial for establishing spec-
tral gaps for the action of a finite set S on various unitary representations
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of 〈S〉. It is one of the ingredients of the Bourgain-Gamburd method (see
e.g. [12, §3]) developed in [9] to exhibit a wide family of Cayley graphs
of SL2(Fp), p prime, with uniform spectral gap (i.e. a family of expander
graphs).

One of our motivations for proving Corollary 1.3 comes from the survey
paper [11], in which we use Corollary 1.3 to give an alternate proof of the
main non concentration estimate needed in the proof of the super-strong ap-
proximation theorem [11, Theorem 1.2] for congruence quotients modulo a
prime. The super-strong approximation theorem asserts that when K = Q,
the Cayley graphs obtained by reducing modulo p a given Zariski dense sub-
group of G(Q) form a family of expanders. This result (and the stronger ver-
sion when quotients modulo an arbitrary square free integer are allowed) was
proved by Salehi-Golsefidy and Varjú [14] following the Bourgain-Gamburd
method and using a ping-pong argument à la Tits instead of Corollary 1.3
for establishing the required non-concentration estimate.

Unsurprisingly Corollary 1.3 can be deduced from the super-strong ap-
proximation theorem (as in [11, Thm 7.2] or [10, Cor 1.1]) by reducing
modulo a suitable prime. However we see Corollary 1.3 as an ingredient
rather than a by-product of the proof of the super-strong approximation
theorem.

Remark. It is interesting to study the dependence in µ of the rate of expo-
nential decay c(µ) is Corollary 1.3. We will show in a subsequent work that
it can be taken to be independent of the generating set S and the field K,
provided µ(s), s ∈ S, is bounded away from zero.

2. Notation

In this note k denotes a local field of characteristic zero, V a finite di-
mensional k-vector space and P(V ) its projective space. Now µ will denote
a probability on GL(V ). It is said to have a finite exponential moment if
there is τ > 0 such that∫

max{||g||, ||g−1||}τdµ(g) < +∞.

Here || · || denotes the operator norm on the endomorphisms of V , which is
induced by a norm on V , namely ||g|| = sup{||gx||;x ∈ V, ||x|| = 1}. This
definition is independent of the norm. In this paper we will only consider
norms on V of the following special type: given a k-basis (e1, . . . , ed) of V and

x =
∑
xiei, we take the `2 norm ||x|| := (

∑
|xi|2)1/2 if k is archimedean

(i.e. k = R or C) and we take the `∞-norm ||x|| := max |xi| if k is non
archimedean.
Sn := Y1 · . . . ·Yn will denote the right random walk on GL(V ) associated

with µ. Namely the Yi’s are i.i.d. random variables distributed according
to µ.
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Gµ denotes the smallest closed subgroup of GL(V ) (for the Hausdorff
topology induced by k) containing the support of µ, i.e. the set of points
g ∈ GL(V ) such that µ(Bx) > 0 for every open set Bx containing x.

We say that Gµ is strongly irreducible if there is no finite union of proper
k-subspaces of V which is invariant under Gµ.

The proximal dimension (also called index ) of Gµ is the smallest rank
p of an endomorphism in the closure of the set { g

||g|| , g ∈ Gµ} inside the

unit sphere {m ∈ End(V ); ||m|| = 1}. Note that the proximal dimension is
always non zero. It is equal to d = dimV if and only if Gµ has compact
image in PGL(V ). We say that Gµ is proximal if its proximal dimension is
1.

Assuming µ has a finite first moment (i.e. E(| log(||g±1||)|) < +∞), we
denote by λ1 > ... > λd the Lyapunov exponents of µ. They are defined by
the formula:

lim
n→+∞

1

n
E(log ||ΛkSn||) = λ1 + . . .+ λk,

where Λkg is the image of g ∈ GL(V ) under the k-th exterior representation
ΛkV . Note that a choice of a basis of V induced a basis of ΛkV and thus
a norm on V (associated to a basis as above) induces a norm on ΛkV ; this
will always be our choice of norm on ΛkV .

According to a fundamental result of Guivarc’h-Raugi [17], we have λ1 =
. . . = λp > λp+1 (see [7, Prop. III.6.2.]). The proof is given there in the case
k = R, but it extends verbatim to any local field.

3. Large deviations

In this section we assume that µ is a probability measure on GL(kd) with
finite exponential moment and that the closed subgroup Gµ generated by its

support acts strongly irreducibly on kd. We now recall the following large
deviations estimate for random matrix products.

Theorem 3.1. (Large deviations) Given ε > 0, there is c1 = c1(ε, µ) > 0
such that for all v ∈ kd \ {0} and all n > 1,

P(| 1
n

log
||Sn · v||
||v||

− λ1| > ε) 6 e−c1n, (3.1)

P(| 1
n

log ||Sn|| − λ1| > ε) 6 e−c1n, (3.2)

In the case when k = R and Gµ acts proximally (i.e. with proximal
dimension p = 1), this estimate was first proved by Le Page [18], using his
spectral gap result for the action on Holder functions on projective space.
His proofs extend without difficulty to the case of an arbitrary local field;
details were worked out by Guimier [15], and more recently Aoun [2] and
Benoist-Quint [5, Theorems 8.1, 9.16]. However these arguments require a
proximality assumption. To deal with the general case, one needs to reduce
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to the proximal case by considering the wedge power representation Λpkd,
which is proximal but no longer strongly irreducible. This was worked out
by Bougerol in [7, Theorems 6.1, 6.2] in the real case.

In this section we detail Bougerol’s argument for Theorem 3.1 (and its
extension to local fields), because it relies on Lemma 3.2 below, a statement
that will be useful in the proof of Propostion 1.2, where a similar difficulty
occurs.

In the next lemma G 6 GL(kd) denotes a closed subgroup acting strongly
irreducibly on kd. Its proximal dimension is defined as the minimal p > 1
such that there are matrices of rank p among the limit points of the matrices
g
||g|| , g ∈ G. If p = d, then G is relatively compact in projection to PGL(kd),

so we assume p < d. The limit points of rank p form a subset of Md(k)
denoted by Π. Let W 6 Λpkd be the span of the lines Im(Λpπ), where π
ranges over Π.

We note that the set ΛΠ of lines of the form Im(Λpπ), π ∈ Π, is a
closed G-invariant subset of P(Λpkd) and that the G-action on it is minimal,
i.e. every orbit is dense in ΛΠ: indeed if π, π′ ∈ Π, there is g ∈ G and
{gn} ∈ G such that gIm(π) * kerπ′, i.e. π′gπ 6= 0 and π′ = lim gn

||gn|| . Hence

Im(Λpπ′) = lim Im(Λpgngπ). Moreover we have:

Lemma 3.2. (Decomposition of Λpkd) Let U0 be the G-invariant subspace⋂
π∈Π ker Λpπ. We have a direct sum decomposition:

Λpkd = W ⊕ U0. (3.3)

The action of G on W is strongly irreducible and proximal, and there is
C1 = C1(G) > 0 such that for all g ∈ G,

C−1
1 ||g||

p 6 ||(Λpg)|W || 6 ||g||p. (3.4)

This lemma is taken from Benoist-Quint [4, Lemma 4.13] with (3.3) in
extra.

Proof. Suppose U 6 Λpkd is a G-invariant subspace. First we prove the
following claim: either U contains W , or it is contained in U0.

For this, assume that for some π ∈ Π, Im(Λpπ) * U . This implies that
U 6 ker Λpπ, because otherwise, picking v ∈ U not in ker Λpπ, we would get
Im(Λpπ) = kΛpπv 6 U , because U is invariant under Λpπ.

Now every other ω ∈ Π will satisfy Im(Λpω) * U , and hence U 6 ker Λpω.
Indeed, pick γ ∈ G such that πγω 6= 0. This is possible, since otherwise
G · Im(ω) ⊂ kerπ, contradicting the irreducibility of G on kd. Now by
minimality of p, the rank of πγω must be equal to p. Since U is preserved
by Λpγ and Λpπ, if Im(Λp)ω were contained in U , so would be Im(Λpπ),
contrary to our hypothesis. It follows that either Im(Λpπ) 6 U for all
π ∈ Π, and U contains W , or U is contained in U0 := ∩ ker Λpπ. The claim
is proved.
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The two alternatives are mutually exclusive, because W is not contained
in U0: indeed if π ∈ Π, as above by irreducibility of G on kd there is γ ∈ G
such that πγπ 6= 0, and by minimality of p this implies that Λpγπ has rank
one, and Im(Λpγπ) * ker Λpπ = ker Λpγπ.

Now we claim that the same is true of every G0-invariant subspace U ,
where G0 is any finite index subgroup of G. Indeed, first note that since G
acts strongly irreducibly so does G0, and then observe that the span W0 of
the images of the elements Λpπ0, where π0 is a rank p element in the closure
of kG0, coincides withW . Indeed pick π ∈ Π such that Im(π) * ker(π), then
Im(πn) = Im(π) and similarly for all gπg−1, g ∈ G. Since W is spanned by
the images of the Λp(gπg−1), this shows that W = W0. It follows that the
first part of the proof applies verbatim with G0 and W0 in place of G and
W . This shows our claim.

Now, note that the Zariski-closure G of G in GLd(k) is a reductive group,
because the action on kd is irreducible. Let G0 be the intersection of G with
the connected component of the identity in G. Since k has characteristic
zero, every linear representation of G0 is completely reducible. In particular
W ∩ U0 has a G0-invariant complement say U1 in W . By the above U1

must be contained in U0 or contain W . This forces W ∩ U0 to be trivial.
This argument uses characteristic zero in a key way, there are examples in
positive characteristic where W ∩ U0 is non trivial.

Similarly we get that the action on W is strongly irreducible: any G0-
invariant proper subspace of W must be contained in U0, hence is trivial.
Its proximal dimension is one of course.

By the same token, we get that W +U0 is all of Λpkd, because otherwise
we would find a G0-invariant complement, which neither contains W nor is
contained in U0. This establishes (3.3).

It remains to prove the lower bound in (3.4). By contradiction, if no such
C1 existed we would find a sequence {gn} ∈ G such that ||(Λpgn)|W ||/||gn||p
tends to 0. Pick a limit π of gn/||gn|| in Md(k). It must have rank p and
(Λpgn)/||gn||p converges to Λpπ. Changing {gn}n into {γgn}n for some suit-
ably chosen γ ∈ G if necessary, we may assume that Im(π) is not contained
in kerπ. Now if v ∈ Im(Λpπ) \ {0}, then Λpπv 6= 0. However v belongs to
W and so (Λpgnv)/||gn||p tends to 0, which is a contradiction. This ends
the proof of the lemma. �

Remark. In positive characteristic the decomposition (3.3) is no longer true.
In fact U0 ∩W may be non trivial, as in the case of adjoint representation
of SLn(k) when n = char(k) (the identity matrix spans U0 and W is the
whole Lie algebra). See the remark at the end of this section for more on
positive characteristic.
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Lemma 3.3. There is a constant C2 = C2(G) > 0 such that given any
v ∈ kd \ {0}, one can find a p-plane P containing v such that

||πW (vP )|| > 1

C2
||vP ||, (3.5)

where vP := ΛpP /∈ U0 and πW denotes the projection onto W in (3.3).
Similarly, given a hyperplane H of kd, one may find a p-plane P inside H
such that (3.5) holds.

Proof. We may assume that ||v|| = 1 without loss of generality. Arguing
by contradiction, we would then obtain a sequence of vectors {vn}n>1 of
norm 1 such that for every p-plane P containing vn, ||πW (vP )|| 6 1

n , where

we set vP to be the norm 1 vector in Λpkd representing P . Taking a limit
we obtain a vector v ∈ kd of norm 1 such that every p-plane containing it
has non trivial intersection with U0. However by irreducibility of G, given
π ∈ Π, we may find g ∈ G such that g(v) /∈ kerπ, hence v /∈ kerπ′, where
π′ = g−1π ∈ Π. Any complement P of kerπ′ containing v will intersect U0

trivially. This ends the proof. The case of the hyperplane is analogous. �

Proof of Theorem 3.1. As already mentioned, in the case when the proximal
dimension of Gµ is one, then the theorem is well-known. See for example [5,
Theorem 8.1(iii)] for a proof. It is also well-known if the proximal dimension
is p = d, because then Gµ is relatively compact in projection to PGL(kd) and

thus ||g||d/|det(g)| is bounded above and below uniformly in g ∈ G. Then
log | det(Sn)| is a sum of i.i.d random variables, and (3.2) follows from the
classical large deviation estimate for i.i.d real random variables. Similarly
(3.1) follows since ||g · v||/(||g|| · ||v||) is bounded uniformly in g ∈ G and
v ∈ kd \ {0}.

Hence we may assume that the proximal dimension is p < d. One needs to
reduce to the proximal case by considering the wedge power representation
Λpkd. Note first that (3.2) follows immediately from (3.4) and the fact
that the action of Gµ on W is strongly irreducible and proximal. To prove
(3.1), we will use Lemma 3.3. From (3.2) and the upper bound ||Sn · v|| 6
||Sn|| · ||v||, it is enough to establish that a similar lower bound holds with
the desired probability. We apply Lemma 3.3 to v and find a p-plane P
containing v with (3.5). We may find vectors v1, . . . , vp−1 in P with ||v1 ∧
. . .∧ vp−1|| = 1, vP = v ∧ v1 ∧ . . .∧ vp−1 and ||vP || = ||v||. We then get that
||Sn||p−1||Sn ·v|| > ||ΛpSn ·vP || > 1

C′ ||Λ
pSn ·πW (vP )|| (where C ′ = C ′(G) > 0

satisfies ∀u ∈ Λpkd, ||u|| > 1
C′ max{||πW (u)||, ||πU0(u)||}). Hence

||Sn · v||
||v||

>
1

C1C2C ′
||ΛpSn · πW (vP )||

||(ΛpSn)|W || · ||πW (vP )||
||Sn||.

Since the action of Gµ on W is proximal and strongly irreducible, the large
deviation estimate holds there uniformly in πW (vP ) and we are now done.

�
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Remark about positive characteristic. In this note we have assumes through-
out that k has characteristic zero, however we believe that Theorem 3.1
continues to hold for local fields of positive characteristic. The proof how-
ever will have to go back to more foundational results in random matrix
products, which are not available to date. In particular, due to the lack of
complete reducibility of reductive groups in characteristic p, one needs to es-
tablish first the basic theorems of Furstenberg (as well as the large deviation
estimate) without the irreducibility assumption, because one just cannot re-
duce to this case in general. For example using the non-vanishing of the first
cohomology group, one can build examples of proximal indecomposable, yet
non irreducible, modules which are non trivial extensions of an irreducible
module by the trivial module: in such cases W can be a proper subspace,
while U0 is trivial. Besides ΛrV is not completely reducible in general, even
if V is.

We have assumed in Theorem 3.1 that the action of Gµ on V is strongly
irreducible. We will need to relax this hypothesis somewhat:

Theorem 3.4. Let µ be a probability measure with finite exponential mo-
ment on GL(V ). Assume that Gµ is completely reducible. Then given ε > 0
there is c1 > 0 such that for all n > 1,

P(| 1
n

log ||Sn|| − λ1| > ε) 6 e−c1n,

Proof. It is enough to consider the case when V is irreducible. Then the
connected component of the identity G of the Zariski closure of Gµ is a
reductive group, hence it acts completely reducibly on V . Let as before G0

denote the intersection of Gµ with G, which is a subgroup of finite index
in G. Consider the n-th return time τn to G0. Then Sτn is a random
product of length n whose increments are distributed according to µ0, the
law of Sτ1 . R. Aoun proved in [2, Lemmas 4.40, 4.42] that µ0 has finite
exponential moment, that E(τ1) < ∞ and λ1(µ0) = E(τ1)λ1(µ), and that
for all ε > 0, the event |τ[ n

E(τ1)
]−n| > ε2n has exponentially small probability.

The estimate (3.4) then follows from (3.2) applied to µ0, because

∣∣ log ||Sτ[ n
E(τ1)

]
|| − log ||Sn||

∣∣ 6 max
k6ε2n

∣∣ k∑
1

log ||Yi||
∣∣

and the right hand side, being a sum of i.i.d variables, is < εn with proba-
bility tending to 1 exponentially fast in n if ε is chosen small enough. �

4. Distance in the Grassmannian and Cartan decomposition

In this section we prove Lemma 4.2 below, which is an extension to Grass-
mannians of what is done in [8, Theorem 4.4] and [5, Lemma 12.2] for the
projective space.
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Recall that k is a local field and V is a finite dimensional k-vector space.
A norm on V associated to a basis (see the paragraph of notation above)
induces by duality a norm on the dual V ∗, namely the norm associated to
the dual basis. Similarly they induce norms on the exterior powers ΛkV and
Λk(V ∗). We now identify V with kd endowed with its canonical basis.

Given subspaces P,Q in V define:

d(P,Q) =
||vP ∧ vQ||
||vP || · ||vQ||

,

where vP = v1 ∧ . . . ∧ vp for some basis v1, . . . vp of P , and similarly for vQ.
Clearly d(P,Q) is independent of the choice of basis used to define vP and
vQ. Note that d(P,Q) = 0 iff P and Q have non trivial intersection. So
d(P,Q) is not a distance, in fact it does not satisfy the triangle inequality,
except on P (V ), that is when P and Q are lines. Indeed it is well-known
(see e.g. [6, Prop. 2.8.18]) that d(x, y) is a distance on the projective space
for x, y ∈ P(V ).

Lemma 4.1. Given two subspaces P,Q 6 V ,

d(P,Q) 6 d(x,Q) = min
y
d(x, y) (4.1)

for every line x in P , where the y’s range over all lines contained in Q.

Proof. The archimedean and non-archimedean cases have to be treated sep-
arately. The inequality ||v ∧ w|| 6 ||v|| · ||w|| holds for all v, w ∈ Λ∗V .
To see the left hand side of (4.1), let v1 ∈ V of norm 1 representing
x, and complete it into a basis of P using vectors v2, . . . , vp such that
||v1 ∧ . . . ∧ vp|| = ||v2 ∧ . . . ∧ vp|| = 1. In the archimedean case one achieves
this by choosing the vi’s in an orthogonal complement of v1 in P . In the non
archimedean case one notes that GLd(Ok) acts transitively on p-planes for
each p, so one can assume that v1 = e1 and P is the span of the first dimP
elements of the canonical basis of kd. Then ||vP ∧ vQ|| 6 ||v1 ∧ vQ|| and
hence d(P,Q) 6 d(x,Q) as desired. The right hand side of (4.1) is similar
and left to the reader.

�

For a matrix g ∈ GL(kd), let g = ua` be its Cartan decomposition, where
u and ` belong to the maximal compact subgroup K (K is the stabilizer
of the norm associated to the canonical basis e1, . . . , ed on kd, i.e. K =
U(d,C), O(d,R) or GLd(Ok)), and where a is diagonal with entries a1, . . . , ad
with |a1| > . . . > |ad|. Fix an integer r between 1 and d. Let V +

g =

u〈e1, . . . , er〉, V −g = `−1〈er+1, . . . , ed〉. Note that (V −g )⊥ = (V ∗tg)
+.

Lemma 4.2. Let V = kd. For every r-dimensional subspaces P 6 V and
R 6 V ∗, every line x ∈ P(V ), and every g = ka` ∈ GL(kd), we have

(i) d(P, V −g ) 6 ||ΛrgvP ||
||Λrg||·||vP || 6 d(P, V −g ) + |ar+1|

|ar| ,

(ii) d(V +
g , R

⊥) 6 ||Λr tgvR||
||Λr tg||·||vR|| 6 d(V +

g , R
⊥) + |ar+1|

|ar| ,
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(iii) d(gx, V +
g ) · d(x, V −g ) 6 |ar+1|

|ar| .

Proof. First note that we may assume that g = a is a diagonal matrix. Then
||Λra|| = |a1 · . . . · ar|. Writing vP = v1 ∧ . . .∧ vr for some basis v1, . . . , vr of
P , decomposing vi = v+

i +v−i with v+
i ∈ 〈e1, . . . er〉, and v−i ∈ 〈er+1, . . . , ed〉,

and expanding the wedge product, we see that:

||v+
1 ∧ . . . ∧ v

+
r || 6

||Λra · vP ||
|a1 · . . . ar|

6 ||v+
1 ∧ . . . ∧ v

+
r ||+

|ar|
|ar+1|

||vP ||.

Since v+
1 ∧ . . . ∧ v+

r ∧ er+1 ∧ . . . ∧ ed = vP ∧ v〈er+1,...,ed〉, we obtain the first
item.

The second item follows from the first by duality since dV (V +
g , R

⊥) =

dV ∗(R, (V
∗
tg)
−). For the third item, write x = x1 +x2 with x1 ∈ 〈e1, . . . , er〉

and x2 ∈ 〈er+1, . . . , ed〉 and note that d(ax, 〈e1, . . . , er〉) 6 ||ax2||
||ax|| , while

d(x, 〈er+1, . . . , ed〉) = ||x1||
||x|| . The inequality is then a simple check (in both

the archimedean and non archimedean cases). �

5. Proof of Proposition 1.2

The proof is a combination of the large deviation estimate of Theorem
3.1 with Lemmas 4.2 and 3.3. As above p denotes the proximal dimension.

Given points x, y in projective space P(V ), we apply Lemma 3.3 and find
a p-plane P in V and a p-plane R in the dual V ∗ such that P contains x
(resp. such that y is contained in R⊥ := ∩f∈R ker f) and

||πW (vP )|| > 1

C2
||vP || (5.1)

(resp. ||πW ′(vR)|| > 1
C2
||vR||). Here πW denotes as before the projection

map associated to the decomposition (3.3) from ΛpV onto W (resp. πW ′
the analogous projection onto the corresponding subspace of ΛpV ∗ which
we denoted by W ′), and C2 > 0 is a constant independent of x, y.

Now we apply Lemma 4.2 with r = p to g = Sn the random product
of length n. By the Guivarc’h-Raugi theorem, we know that λp+1 < λp,

hence according to Theorem 3.4 (note that all ΛkV are completely reducible,
because V is), if 0 < ε < (λp − λp+1)/10 say,

|ap+1|
|ap|

=
||Λp+1Sn||
||ΛpSn||

6 e−4εn

with probability > 1 − ρn for some ρ = ρ(ε) > 0 and for all n > n0(ε).
Similarly using Theorem 3.1, the fact that W is strongly irreducible, and
(5.1), we get that

||ΛpSnvP ||
||ΛpSn|| · ||vP ||

> e−εn
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with probability > 1− ρn. By Lemma 4.2 (i) it follows that

d(x, V −Sn) > e−2εn

for all n larger than some n1 = n1(ε) > 0 independent of x. Similarly using
Lemma 4.2 (ii), we prove that

d(y, V +
Sn

) > e−2εn

with probability > 1− ρn. However by Lemma 4.2 (iii), we have,

d(Snx, V
+
Sn

) · d(x, V −Sn) 6 e−4εn,

with probability > 1− ρn. Hence

d(Snx, V
+
Sn

) 6 e−3εn

. And using Lemma 4.1, we conclude that

d(Snx, y) > d(y, V +
Sn

)− d(Snx, V
+
Sn

) > e−3εn

holds for all n larger than some n2(ε) > 0 and with probability at least
1− ρn1 for some ρ1 = ρ1(ε) < 1. This ends the proof of Proposition 1.2.

We now end by stating a strengthening of Proposition 1.2, whose proof is
entirely similar to the above and is left to the reader.

If Grass(r, d) denotes the Grassmannian of r-planes in kd (for 1 6 r 6
dimV − 1), then the subset G(r, µ) of all V ∈ Grass(r, d) with non trivial
intersection with Im(π) for some π ∈ Π, is a closed (algebraic) subset of
Grass(r, d). It is empty if r = 1 (i.e. for the projective space P(kd)) due
to the irreducibility of Gµ on kd. It is all of Grass(r, d) if r > d − p, by
definition of the proximal dimension p.

We have:

Proposition 5.1. Keep the assumptions of Proposition 1.2. Let 1 6 r 6
d− p. Given ε > 0, there is c = c(µ, ε) > 0 such that, for every open set U
of Grass(r, d) containing G(r, µ), there is n0 = n0(ε, µ,U) > 0 such that for
every n > n0

µn({g ∈ GLd(k); d(g(x), V ) < e−εn}) < e−cn,

for every subspace V ∈ Grass(r, d) \ U and every x ∈ P(kd).

6. Proof of Theorem 1.1 and Corollary 1.3

We keep the notation of Theorem 1.1. Note first that up to passing to
a finite extension of k, we may assume that G is k-split. Theorem 1.1
then follows immediately from the combination of Proposition 1.2 and the
following observation:

Lemma 6.1. There are finitely many non trivial irreducible k-modules of
G, say π1, . . . , πt such that every subgroup of G(k) which is not Zariski dense
must fix a line in one of these modules.
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Proof. Consider the adjoint representation (ρ1, Lie(G)) of G. If Γ 6 G(k)
is not Zariski dense, but is infinite, then it preserves the Lie algebra of its
Zariski-closure, which is a non trivial proper subspace of Lie(G(k)). If it is
finite, then Jordan’s theorem tells us that Γ has a normal abelian subgroup
of index bounded in terms of dimG only. Let ρ2 be any irreducible k-module
of G whose dimension is larger than this bound. Then no finite subgroup
of G will act irreducibly on it. So every non Zariski dense subgroup of G
must preserve a proper subspace of either ρ1 or ρ2. The lemma follows if we
take for the πi’s the collection of irreducible submodules appearing in the
decomposition of the wedge powers of ρ1 and ρ2. �

Now Corollary 1.3 is an easy consequence of Theorem 1.1 via the following
well-known lemma, for which we refer to [20, lemma 4.1.].

Lemma 6.2. If K is a finitely generated field and t ∈ K× an element of
infinite order, then there is an embedding of K into a local field k with
absolute value | · |, for which |t| 6= 1.

Proof of Corollary 1.3. Since Γ is finitely generated, we may assume that K
is a finitely generated extension of Q. There are thus only finitely many roots
of unity which are roots of polynomials of bounded degree with coefficients
in K. Then Γ must contain an element with an eigenvalue t (in some faithful
linear representation of G) which is not a root of unity, since otherwise every
γ ∈ Γ would be killed by the product of a bounded number of cyclotomic
polynomials, contradicting the Zariski-density of Γ. Now apply Lemma 6.2
to obtain the desired local field k. The image in of Γ in G(k) is still Zariski-
dense and is not relatively compact. We may then apply Theorem 1.1 to
get the desired conclusion. �
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[13] I. Y. Gol′dshĕıd and G. A. Margulis. Lyapunov exponents of a product of random
matrices. Uspekhi Mat. Nauk, 44(5(269)):13–60, 1989.
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