
RANDOM WALKS ON LIE GROUPS

E. BREUILLARD

The goal of these notes is to give an introduction to random walks and limit theorems on
Lie groups, mostly amenable Lie groups, with an emphasis on equidistribution problems.
We also state a number of open problems.

In Section 1 we define the basic notions regarding probability measures on groups, con-
vergence in distribution, recurrence, equidistribution, Brownian motions, limit theorems,
etc. Most notably we state and prove the Central Limit Theorem on Lie groups. Oddly
enough, the proof of this fundamental theorem cannot be found in the literature in a
simple and complete form, although it was established almost 45 years ago by Wehn. The
exposition here will I hope make up for that.

In Section 2 we discuss the equidistribution properties of random walks in Lie groups
and survey the existing ratio limit theorems and local limit theorems in this context.
We give several examples including the Itô-Kawada equidistribution theorem for compact
groups and the local limit theorem for random walks by isometries on the plane, of which
we give a full proof thus generalizing an old theorem of Kazhdan.

In Section 3 we study in more detail the case of nilpotent Lie groups, rephrase the
central limit theorem there, discuss the absence of harmonic functions and Guivarc’h’s
theorem on the L1-vanishing of convolution powers, and describe how harmonic analysis
and Kirillov theory come into play to show equidistribution and local limit theorems on
nilpotent Lie groups. We also survey some of the recent work of Alexopoulos on finitely
generated nilpotent groups and convolution powers of continuous densities on nilpotent
Lie groups.

In Section 4 we go back to the classical theory of sums of independent and identically
distributed random variables on Rd and discuss the speed of convergence in the classical
local limit theorem. Although such random walks have been very thoroughly studied in
the past, in particular in the context of renewal theory, we put forward here a new simple
characterization, introduced in [22], of the probability measures for which the speed of
convergence to equidistribution is optimal. We call such measures diophantine because
they are characterized by the property that they cannot be well approximated by measures
supported on arithmetic progressions.

Finally in Section 5 we presents some of the results of [21] and [20] concerning equidistri-
bution of unipotent random walks on homogeneous spaces. Making use of precise uniform
versions of the existing local limit theorems on commutative or nilpotent Lie groups, as
well as Ratner’s classification of invariant measures, we show that centered unipotent ran-
dom walks equidistribute to the homogeneous measure supported on the closed orbit on
which they live, while non-centered random walks may wander back and forth and no
equidistribution can be expected in this case.

For another point of view and an introduction to random walks on Lie groups in a
broader context, we refer the reader to the surveys [51] and [50] and the references therein.

Date: March 2004.

1
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1. Definitions and basic notions

Let G be a separable locally compact group generated by a compact neighborhood
of the identity e ∈ G. We consider G as a measurable space for the σ-algebra of Borel
subsets. We endow G with a left invariant Haar measure dg. Also we will denote by µ
a probability measure on G, that is a non-negative σ-additive measure defined on Borel
subsets such that µ(G) = 1. The support of µ is by definition the smallest closed subset
of G of µ-measure 1. Let us start with a few definitions:

Definition 1.1. A probability measure µ on G is said to be non-degenerate if its support
generates a dense subgroup of G.

Definition 1.2. A probability measure µ on G is said to be aperiodic if its support is
not contained in a (left or right) coset of a proper closed subgroup of G.

Let U be a generating compact neighborhood of the identity. We set:

δU (g) = inf{n ≥ 0, g ∈ Un}
The function δU is sub-additive and gives a way to measure the distance from the

identity e in G.

Definition 1.3. We say that µ has a moment of order α > 0 if
∫
δU (g)αdµ(g) < +∞

It can be easily checked that this definition does not depend on the choice of U . In the
case of connected Lie groups, we can equivalently replace δU (g) by d(e, g) where d is any
left invariant metric on G, since one can easily see that for any such d there is a constant
c > 0 such that c−1d(e, g) ≤ δU (g) ≤ cd(e, g) wheng lies outside U .

The existence of a moment of order 1 implies that the continuous homomorphisms
G→ (R,+) belong to L1(µ).

Definition 1.4. We say that µ is centered if µ has a moment of order 1 and if
∫
χ(g)dµ(g) = 0

for any continuous homomorphism χ : G→ (R,+).

Definition 1.5. We say that µ is symmetric if µ(E) = µ(E−1) for any Borel set E in
G.

Let us note that symmetric measures with a moment of order 1 are centered and that
if µ symmetric, then µ is aperiodic if and only if µ2 is non-degenerate.

We say that a random variable X with values in G is distributed according to µ, or
equivalently that µ is the law of the random variable X if the probability P (X ∈ A) that
X belongs to A equals µ(A) for every Borel subset A in G.

1.1. Random walks and recurrence. In analogy with the theory of sums of real
random variables, we define a random walk on a group G, to be a stochastic process
Sn = X1 · ... · Xn given by the product of n independent and identically distributed
random variables with values in G. The random variables Xi’s are independent and dis-
tributed according to a single probability measure µ on G. Similarly, we speak about a
random walk on a space X , on which G operates, if we apply independently at each step
a transformation from G chosen randomly according to a given probability measure on G.
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We usually assume the measure µ to be non-degenerate. This is no serious assumption,
since we could always restrict G to a smaller closed subgroup. The probability law of Sn

is simply the n-th convolution power of µ, that is µ∗n. The convolution of two measures
is defined by the formula:

∫
fd(µ ∗ ν) =

∫
f(gh)dµ(h)dν(h)

where f is an arbitrary continuous and bounded function on G. Let X be a random
variable with values in G and whose probability law is µ. If Y is another random variable
with law ν this time, then the law of the product XY is precisely the measure µ ∗ ν.

One of the first simple observation that can be made on the behavior of (Sn)n is the
following dichotomy (see [48] for a proof):

• either the walk Sn diverges to infinity almost surely (meaning that for every compact
subset K, Sn /∈ K after some large time), we then say that the random walk is transient.

• or, almost surely, the walk spends an infinite amount of time in each open subset of
G, we then say that the random walk is recurrent.

We also observe that the walk is transient if and only if the potential
∑

n≥0 µ
∗n is a

locally finite measure on G (i.e. a measure that gives finite mass to compact subsets). In
the opposite case, the potential of any open set is infinite.

1.2. Convergence in distribution and unitary representations. The classical the-
orem of Lévy, which asserts the equivalence between the convergence in distribution of a
sequence of probability measures and the point-wise convergence of the Fourier transforms,
or characteristic functions, extends naturally to non-commutative harmonic analysis, with
essentially the same statement, as we will see below.

If G is a locally compact group, the set of irreducible unitary representations of G is

called the unitary dual of G and is denoted by Ĝ. Recall that a unitary representation

π ∈ Ĝ is a continuous action of G on a Hilbert space H by automorphisms preserving the
scalar product. It is said to be irreducible if it has no closed invariant subspace.

If µ is a probability measure defined on Borel subsets of G, and π is a unitary repre-
sentation of G, we can associate naturally to them an operator π(µ) defined for ξ ∈ H
by

π(µ)ξ =

∫

G

π(g)ξµ(dg)

For example, if G = Rd, the unitary representations are of dimension 1 and are given by

the characters πt(x) = ei(t,x), where t ∈ Ĝ ∼= Rd and x ∈ G = Rd. In this case, πt(µ)
is simply a complex number of modulus less or equal to one: this is the classical Fourier
transform, or characteristic function µ̂(t) of µ. Moreover, every unitary representation π of
G gives rise to a Banach algebra homomorphism between the space of (bounded) complex
measures on G and the bounded operators on the Hilbert H of the representation π. In
other words,

π(µ ∗ ν) = π(µ)π(ν)

In order to understand the behavior of the random walk Sn, we are led to study the powers

of the operators π(µ) for π ∈ Ĝ.
With these notations, the desired generalization of Lévy’s convergence criterion can be

stated as follows:

Theorem 1.1. Let G be a locally compact group and Ĝ unitary dual.
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• If µ and ν are two probability measures on G such that π(µ) = π(ν) for all π ∈ Ĝ,
then µ = ν (uniqueness of the Fourier transform).

• If (µn)n is a sequence of probability measures on G which converges in distribution
toward another probability measure ν (that is

∫
fdµn →

∫
fdν for all continuous and

bounded functions f on G), then π(µn) converges strongly to π(ν) (that is π(µn)ξ → π(ν)ξ
for all ξ ∈ H).

• If π(µn) converges weakly to π(ν) (that is (π(µn)ξ, η) → (π(ν)ξ, η) for all ξ, η ∈ H),
then (µn)n converges in distribution to ν.

The proof of this statement (see [43]) is a natural generalization of the classical proof of
Lévy’s theorem by approximation of continuous functions on compact subsets by trigono-
metric polynomials (i.e. by linear combinations of matrix elements (π(g)ξ, η)).

1.3. Equidistribution, local limit theorem.

Definition 1.6. We will say that the random walk associated to a probability measure µ
on G is equidistributed if there exists a locally finite Borel measure m on G such that

(1) lim
n→+∞

∫
fdµn

∫
gdµn

=

∫
fdm∫
gdm

for all compactly supported continuous functions f and g on G with g ≥ 0 non identically
zero.

If the random walk is equidistributed, we also say, equivalently, that the measure µ
satisfies a ratio limit theorem. When we can find an explicit sequence (an)n of positive
real numbers such that

lim
n→+∞

an

∫
fdµn =

∫
fdm

for all compactly supported continuous functions f on G, we say that µ satisfies a local
limit theorem.

In later sections, we will mainly focus on this property of random walks on groups and
study it in several special cases.

1.4. Diffusion processes and the Lévy-Khinchin-Hunt formula. In his 1956 paper
[62], Hunt gave a general formula characterizing the continuous semi-groups of probability
measures on connected Lie groups. As in the classical case where G = Rd these semi-
groups correspond to stochastic processes with independent and stationary increments,
also called Lévy processes. When G = Rd the well-known Lévy-Khinchin theorem char-
acterizes their probability law by giving an explicit formula for the characteristic function
(see [19] and [40]). On a connected Lie group the natural generalization of this idea is
to write down explicitly the action on C2 functions on G of the infinitesimal generator
associated to the semi-group of measures.

1.4.1. Continuous semi-groups of probability measures. Let G be a connected Lie group.
We will work in the Banach space B := C0(G), the space of continuous real valued
functions on G tending to zero at infinity, endowed with the supremum norm ‖f‖ = ‖f‖∞.
By a continuous semi–group of probability measures onG, we mean a family (µt)t>0

of probability measures on G such that:
(i) µt ∗ µs = µt+s for all s, t > 0.
(ii) µt ⇒ δe when t→ 0 (i.e.

∫
fdµt → f(e) for all functions f ∈ C0(G)).

We let Ttf(g) =
∫
f(gh)dµt(h). Then the (Tt)t>0 form a semi-group of operators on the

space B = C0(G). Each Tt is a contraction, i.e. ‖Ttf‖ ≤ ‖f‖ for any f ∈ B. When t→ 0,
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Ttf converges uniformly toward f for all f ∈ B. Moreover, we define the infinitesimal
generator L of Tt by the formula

Lf(g) = lim
t→0

1

t
(Ttf(g) − f(g))

L is an unbounded operator in B with domain Dom(L) defined as the set of elements
f ∈ B such that the above limit holds in B, that is uniformly in g ∈ G. The domain
Dom(L) is a dense subspace in B and actually the theorem below shows that it contains
C2

c (G) (i.e. the space of C2 functions with compact support on G). It is easy to see that L
determines the semi-group (Tt)t>0. Also Dom(L) is invariant under Tt. For background
and basic properties on semi-groups of operators on Banach spaces, see Davies [31].

A stochastic process with independent and stationary increments, or Lévy process,
on G is a stochastic process (Xt,P,Ω) such that :

(i) for all s, t 0 < s < t < +∞ the law of X−1
s Xt depends only on t− s.

(ii) for all t1, ..., tk such that 0 < t1 < ... < tk the random variables X−1
ti
Xti+1

are
independent.

(iii) when t→ 0, Xt converges in law to e.
The Lévy processes are in bijective correspondence with the continuous semi-groups of

probability measures on G. More precisely, let (Xt,P,Ω) be a Lévy process, and let µt be
the probability law of Xt, then the (µt)t>0 form a continuous semi-group of probability
measures on G. And vice versa, if (µt)t is any such semi-group, then one can construct
a probability space (P,Ω) and a Lévy process (Xt) defined on (P,Ω) such that µt is the
probability law of Xt. Moreover, one can always find a càdlàg version of this process (i.e.
such that sample paths are almost surely right continuous with limits on the left at every
t > 0).

We fix a basis X1, ..., Xd of the vector space of the Lie algebra g of G and a rela-
tively compact neighborhood U0 of the identity in G on which the logarithm is a well
defined diffeomorphism. This allows to parametrize elements g ∈ U0 by their coordinates
(xi(g))i=1,...,d determined by the equation

g = exp(
∑

xi(g)Xi)

We extend each coordinate function xi(g) smoothly to the whole ofG with the requirement
that xi(g) = 1 if g lies outside some compact set containing U0. We define the function
φ on G to be φ(g) =

∑
xi(g)

2. The elements of the Lie algebra g of G can be seen as
elements of the universal enveloping algebra of g, which is identified with the algebra of
left-invariant differential operators on G. In particular, for a differentiable function f on
G and for X ∈ g, we set

Xf(g) =
d

dt |t=0
f(geXt)

Then we have:

Theorem 1.2. (Hunt [62]) Let (µt)t>0 be a continuous semi-group of probability measures
on G and (Tt) be the associated semi-group of operators on B = C0(G). Then the domain
of the infinitesimal generator L of (Tt) contains C2

c (compactly supported C2 functions on
G) where it admits the following form:
(2)

Lf(g) =
∑

i

biXif(g)+
1

2

∑

i,j

aijXiXjf(g)+

∫

G

{
f(gh) − f(g) −

∑

i

Xif(g)xi(h)

}
dη(h)

φ(h)



6 E. BREUILLARD

where (bi) and (aij) are real numbers such that the matrix (aij) is positive semi-definite
and dη is a finite positive measure on G such that η({e}) = 0. Moreover, the second order

differential operator
∑

i,j aijXiXj and the measure dη(g)
φ(g) are independent of the choices

of the basis (Xi) and the function φ(g). Finally, the semi-group (µt)t is determined in a
unique way by the operator L restricted to C2

c (G).
Conversely, every operator L defined on C2

c (G) by the formula (2) is the infinitesimal
generator of a continuous semi-group of probability measures on G.

Let us remark that the operator Id − L maps Dom(L) onto B = C0(G) and that the
inverse map, defined on B, is a contraction. To see these two facts, set for f ∈ B

Rf =

∫ ∞

0

e−tTtfdt

Since the Tt’s are contractions, the integral gives a well defined element of B, and R is a
linear operator on B which is also a contraction, i.e. ‖Rf‖ ≤ ‖f‖ for any f ∈ B. Now
Rf belongs to Dom(L) since one checks directly that

lim
s→0

1

s
(TsRf −Rf) = Rf − f

where the limit holds in B. It follows that (Id − L)R = Id on B. Similarly, since
d
dtTtf = TtLf we obtain R(Id − L) = Id on Dom(L). In particular Im(Id − L) = B
and ImR = Dom(L) (which is dense in B). Hence R is the inverse map of Id − L. The
operator R = (Id− L)−1 is called the resolvent of L.

We end by the following important proposition which will turn useful in the next section
(see Hirsch [60] Théorème 13, and also [55] Satz 4.1)

Proposition 1.1. The space C∞
c (G) of compactly supported smooth functions on G is

a core for the infinitesimal generator L of the semi-group (Tt)t>0, that is for any f ∈
Dom(L) one can find a sequence (fn)n in C∞

c (G) such that fn → f and Lfn → Lf where
the convergence holds in B (i.e. uniformly on G). Equivalently (Id− L)C∞

c (G) is dense
in B.

Proof. To see that the two assertions are equivalent is easy. The first assertion follows
from the second since if gn ∈ C∞

c (G) is such that gn −Lgn converges to f −Lf in B then,
applying the contraction R = (Id− L)−1, we deduce that gn converges to f in B. Hence
also Lgn tends to Lf , and C∞

c (G) is a core for L. The converse follows from the fact that
(Id− L)Dom(L) = Im(Id− L) = B as noted above.

To show that (Id − L)C∞
c (G) is dense we can equivalently show that no non-zero

bounded measure ν on G is orthogonal to (Id−L)C∞
c (G). Indeed the dual Banach space

to B is the space of bounded Borel measures on G. First note that if f ∈ Dom(L)
then ν ∗ f ∈ Dom(L) because Tt(ν ∗ f) = ν ∗ Ttf for all f ∈ B and t > 0, and thus
ν ∗ Lf = L(ν ∗ f).

Let ν be a bounded Borel measure on G which is orthogonal to (Id − L)C∞
c (G), i.e.

such that
∫

(f − Lf)(g)dν(g) = 0 for all f ∈ C∞
c (G). Since ν ∗ f belongs to B = C0(G),

up to changing f into −f if necessary, we can find an element g0 ∈ G such that ν ∗f(g0) =
‖ν ∗ f‖. Now since f ∗ δg0

∈ C∞
c (G) we have

∫
(f ∗ δg0

− L(f ∗ δg0
))(g)dν(g) = 0



RANDOM WALKS ON LIE GROUPS 7

which can also be written as

ν−1 ∗ f ∗ δg0
(e) = ν−1 ∗ L(f ∗ δg0

)(e)

= L(ν−1 ∗ f ∗ δg0
)(e)

Let h = ν−1 ∗ f ∗ δg0
. On the one hand we have h(e) = L(h)(e) and on the other hand we

have h(e) = ‖h‖. But from the very definition of L

Lh(e) = lim
t→0

1

t

∫
(h(x) − h(e))dµt(x)

it follows that Lh(e) ≤ 0. Hence ‖h‖ = h(e) ≤ 0 and h = 0. In particular h(g−1
0 ) =∫

fdν = 0. Since f was arbitrary, we conclude that ν = 0. �

�

1.4.2. Gaussian semi-groups and Brownian motions. When the measure η
φ (called the

Lévy measure) is identically zero, then we say that the semi-group (µt)t is gaussian

(equivalently, (µt)t is gaussian if and only if for any neighborhood U of the identity
P(Xt /∈ U) = o(t)), and that the associated stochastic process (Xt)t is a (left-invariant)
Brownian motion on G. In this case and this case only, the stochastic process (Xt)
has continuous sample paths almost surely. Moreover, the gaussian semi-group (µt) is

symmetric (i.e. Xt
d
= X−1

t ) if and only if the bi’s are all zero.

The second order differential operator
∑

i biXi+
1
2

∑d
i=1 aijXiXj can be put in the form

E0 +
∑p

i=1 E
2
i , 1 ≤ p ≤ d, for certain vectors Ei in g. Let h be the Lie algebra generated

by the vectors E1, ..., Ep together with all brackets of all orders between different Ei’s,
0 ≤ i ≤ p, in which E0 appears at least once. We say that the operator Lµ is a sub-

laplacian, if the differential operator ∂
∂t − Lµ on R∗

+ × G is hypoelliptic, which amounts
to say that h = g thanks to Hörmander’s theorem. In this case and this case only, the
gaussian semi-group (µt)t>0 has a density pt(x)dx with respect to the Haar measure on
G. This density is the heat kernel associated to Lµ (see for instance [116] in the case when
µt is symmetric, and [101], [102] for the general case). The functions (pt(x))t>0 are C∞

and constitute a Dirac family. They also satisfy the heat equation ( ∂
∂t − Lµ)pt = 0. It

can be shown that, on a unimodular group, pt(x) decays faster, at fixed t, than e−cd(e,x)2

for a certain constant c = c(t) > 0 (see [113] for a detailed study of the heat kernel pt in
terms of the geometry of the group G). If the matrix (aij) is positive definite (i.e. p = d),
then the densities pt(x) are analytic functions on G (see [58] Theorem 6.3.1).

Obviously, the support of µt is contained in the analytic subgroup G0 of G whose Lie
algebra g0 is generated by the vectors E0, ..., Ep. The subalgebra h is a ideal in g0 and
h = g0 if and only if the µt’s are absolutely continuous with respect to the Haar measure
of G0. If h is a proper ideal in g0 then the support of µt is contained in the coset HetE0

where H is the subgroup of G corresponding to the Lie subalgebra h. On the other hand,
the support of µt contains the coset MetE0 where M is the subgroup of G corresponding
to the Lie algebra m generated by the vectors E1, ..., Ep ([101] Theorem 4). In particular,
if E1, ..., Ep generate all of g then supp(µt) = G. When G is a simply connected nilpotent
Lie group, then m is proper is and only if h is proper. Hence in this case, supp(µt) = G if
and only if µt has a density with respect to the Haar measure. However, for an arbitrary
Lie group G, it may happen that the support of µt is proper, although µt is absolutely
continuous (see [101] example 3.4b, in particular pt(x) is not analytic in general).

1.5. Law of large numbers, Central limit theorem. There are different ways to
generalize the law of large numbers and the central limit theorem to random walks on
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Lie groups. One approach consists in studying the random variables d(e, Sn) where d is a
left-invariant Riemannian metric on G in order to obtain a law of large numbers for these
variables, in other words, a convergence of the type

d(e, Sn)

n
→ γ

where γ is a non-negative real number. In [49], Guivarc’h shows that such a convergence
holds almost surely for every locally compact group G and that one can be more precise
about the limit γ in many cases. For instance, when G is not amenable then γ > 0. More
precisely, one can ask whether a central limit theorem holds, that is whether the following
convergence holds

d(e, Sn) − γn√
n

→ X

where X is a non-degenerate centered gaussian random variable. We will not consider
this question here (cf. [49] and [52] and the book [18]).

Another approach is to consider the products Pn = X1,n·...·Xn,n of independent random
variables such that the typical size ofXk,n is very small of the order of 1/

√
n. WhenG is Rd

or a homogeneous nilpotent Lie group (see below 3.1.2), then G has a one-parameter semi-
group of dilations (δt) which are automorphisms of G with the property that δt(K) → e
when t→ 0 for every compact set K in G. Then one can set Xk,n = δ 1

√

n
(Xk) and study

Pn = δ 1
√

n
(Sn). When G = Rd, the classical central limit theorem says that Pn converges

in distribution to a gaussian variable, under the assumption that the law of Xk has a
finite moment of order 2. In the Lie group case, this infinitesimal approach yields the
fundamental limit theorem stated below.

We keep the notations from the last subsection. In particular G is a connected Lie
group and the coordinate functions xi(g) are as defined above.

We are given a sequence (µn)n≥1 of probability measures on G together with indepen-
dent random variables (Xk,n)1≤k≤n with law µn. The random variable Sn = X1,n ·...·Xn,n

is distributed according to µ∗n
n . Then the following theorem holds:

Theorem 1.3. (CLT on Lie groups, Wehn [114] [115] [43]) We make the following
assumption. There are real numbers bi’s and aij ’s such that for every i, j = 1, ..., d we
have

(i)
∫
xi(g)dµn(g) = bi

n + o( 1
n )

(ii)
∫
xi(g)xj(g)dµn(g) =

aij

n + o( 1
n )

(iii) µn(U c) = o( 1
n ) for every neighborhood U of the identity in G.

Then the sequence of measures (µ∗n
n )n converges to the measure ν1, which belongs to the

gaussian semi-group of probability measures (νt)t>0 on G, whose infinitesimal generator
is given by

Lν =
d∑

i=1

biXi +
1

2

d∑

i=1

aijXiXj

In the above formula, the elements of the Lie algebra Xi’s are considered as differential
operators acting on C2

c (G). The matrix (aij) is by definition positive semi-definite and
the semi-group (νt)t>0 associated to Lν by the Lévy-Khinchin-Hunt formula is gaussian.

When G = Rd, Wehn’s theorem implies the classical central limit theorem: the exis-
tence of a finite second moment is equivalent to condition (ii) above and implies condition
(iii). Similarly Wehn’s theorem implies the now well-known central limit theorem on
graded nilpotent groups (see below theorem 3.11), and it can be checked that conditions
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(ii) and (iii) are automatically satisfied when there is a finite second moment. However
the conditions of Theorem 1.3 are weaker in this case. We give below an example of a mea-
sure on the Heisenberg group with no finite second moment, but for which the conditions
of the theorem are still fulfilled (see Example 3.1).

Wehn’s original statement involved commutative triangular arrays of probability mea-
sures and some additional assumptions (see Wehn [114] [115] and Grenander [43]). His
original proof is only sketched in Grenander’s book [43] while the full argument remains
virtually impossible to find in the available literature1. His proof was based on the theory
of semi-groups and certain convergence theorems for sequences of semi-groups established
by Hunt. For the sake of completeness, I give below a complete proof of Wehn’s theorem
using essentially his original method.

Let me mention that Stroock and Varadhan [110] have generalized this result for non-
commutative triangular systems by giving a similar necessary and sufficient condition for
convergence in law to (νt)t>0, for the process obtained by gluing piecewise the Xk,n’s into

a single Xt(n) defined by X1,n · ... ·X[nt],n on the interval [ [nt]
n , [nt]+1

n [. Their proof is very
different and purely probabilistic but, as Wehn’s proof, does not require any result from
the structure theory of Lie groups.

Proof of Theorem 1.3. The proof uses ideas and techniques from the beautiful theory
of continuous semi-groups of operators in Banach spaces as exposed in Davies [31] for
example. In particular, Lemma 1.2 below is part of the well-known Trotter-Kato theorems
on perturbations of semi-groups. However, the exposition we give here is entirely self-
contained and does not require anything but very basic functional analysis.

Let Ln be the Laplacian associated to µn rescaled by a factor n, that is the bounded
operator defined for f ∈ B = C0(G) by

Lnf = n(f ∗ µn − f)

We define the one-parameter group (etLn)t∈R by the formula

etLn =
∑

k≥0

tk

k!
Lk

n

Since Ln is a bounded operator (in fact ‖Ln‖ ≤ 2n), this sum is well defined. Moreover
etLn = e−ntentµn and hence

∥∥etLn

∥∥ ≤ 1. We denote by Rn the resolvent of Ln, defined

as was done above for (Tt)t and equal to (Id− Ln)−1. Similarly we have ‖Rn‖ ≤ 1. Let
(Tt)t be the gaussian semi-group of probability measures defined in the statement of the
theorem and let L be its infinitesimal generator. The main lemma is the following:

Lemma 1.1. Let f ∈ C∞
c (G) then Lnf → Lf in B as n tends to infinity.

From this lemma and the result of Proposition 1.1, the conclusion of the theorem
follows by a direct application of the Trotter-Kato theory of perturbations of operator
semi-groups. Yet, for the sake of completeness, we indicate the full argument below.

Lemma 1.2. We have successively:
(i) Rnf → Rf for any f ∈ B.
(ii) etLnf → Ttf for any f ∈ B and t > 0.
(iii)

∥∥µ∗n
n f − eLnf

∥∥ → 0 for any f ∈ B.

1His Yale dissertation, made under the supervision of S. Kakutani in 1959, is only accessible through
the archives department of the Sterling Memorial Library at Yale university and it bears a special notice
prohibiting its photocopying.
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It is clear that the conclusion of the theorem follows from the combination of (ii) and
(iii) in this lemma.

Proof of Lemma 1.1. The lemma follows by writing down the Taylor expansion of f
and using the three conditions assumed in the theorem. Let f ∈ C∞

c (G) and U be a
neighborhood of the identity in G where the exponential map is a diffeomorphism. Write
y = eY , Y ∈ Lie(G) and Y =

∑
yiXi for y ∈ U . Then by the classical Taylor-Lagrange

theorem applied to t 7→ f(xetY )

f(xy) − f(x) = Y f(x) +
1

2
Y 2f(xeθY )

for some number θ ∈ [0, 1] depending on x and y. We can write

Lnf(x) = n

∫

U

(f(xy) − f(x)) dµn(y) + εn(x)

where εn ∈ B and ‖εn‖ ≤ 2n ‖f‖µn(U c) → 0 from assumption (iii). Moreover

n

∫

U

Y f(x)dµn(y) =
∑

1≤i≤d

n

(∫

U

yidµn(y)

)
Xif(x)

converges uniformly in x ∈ G to ∑

1≤i≤d

biXif(x)

as follows from the combination of assumptions (i) and (iii). We proceed similarly for the
quadratic term. More precisely we first have from (ii) and (iii)

n

∫

U

Y 2f(x)dµn(y) →
∑

1≤i,j≤d

aijXiXjf(x)

uniformly in x ∈ G. It remains to show that

n

∫

U

(
Y 2f(xeθY ) − Y 2f(x)

)
dµn(y)

can be made arbitrarily small uniformly in x ∈ G when n is large enough and U is small
enough. Since f ∈ C∞

c (G), Y 3f also belongs to C∞
c (G) and by Taylor’s inequality, for all

x ∈ G and y ∈ U we have
∣∣Y 2f(xeθY ) − Y 2f(x)

∣∣ ≤
∥∥Y 3f

∥∥

Moreover ∥∥Y 3f
∥∥ ≤

∑

i,j,k

|yiyjyk| ‖XiXjXkf‖

Hence it is enough to show that each integral

n

∫

U

|yiyjyk| dµn(y)

can be made arbitrarily small for n large enough and U small enough. Let ε > 0 and take
U so small that |yi| < ε for all i = 1, ..., d and y ∈ U . Then

n

∫

U

|yiyjyk| dµn(y) ≤ εn

∫

U

|yiyj| dµn(y)

≤ ε

(
n

∫

U

y2
i dµn(y)

)1/2 (
n

∫

U

y2
jdµn(y)

)1/2
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Since both factors in the right hand side converge to a
1/2
ii and a

1/2
jj respectively by assump-

tion (ii), we are done.�
Proof of Lemma 1.2. Let us begin by (i). Since Rn and R are contractions, it is enough

to show the convergence for all f belonging to a dense subspace of B, for example the
subspace (Id − L)C∞

c (G), which is dense by Proposition 1.1. Let f ∈ C∞
c (G). From

Lemma 1.1 we have that (Id− Ln)f converges to (Id − L)f in B. Applying Rn on both
sides, we get that Rn(Id − L)f converges to f (because Rn is a contraction). In other
words Rng converges to Rg for any g of the form g = (Id − L)f , f ∈ C∞

c (G). We are
done.

For (ii) note first that for t ≥ 0 and for every f ∈ Dom(L) we have

etLnf − Ttf = etLn(f − e−tLnTtf) = etLn

∫ t

0

e−sLn(Ln − L)Tsfds

Changing f into Rf and applying Rn on both sides, we now get for an arbitrary f ∈ B

Rn(etLn − Tt)Rf = etLn

∫ t

0

e−sLn(Rn −R)Tsfds

The quantity under the integral sign is bounded in norm by 2 ‖f‖ while it converges for
every s ∈ (0, t) to 0 owing to part (i) of the lemma and the fact that the e−sLn are
contractions. By dominated convergence we obtain that

Rn(etLn − Tt)Rf → 0

for every f ∈ B. However, since ImR = Dom(L) is dense in B and Rn and the semi-
groups etLn and Tt are contractions, we obtain

Rn(etLn − Tt)f → 0

for every f ∈ B. But we can write

Rn(etLn − Tt)f = etLn(Rn −R)f − (Rn −R)Ttf + etLnRf − TtRf

Since both etLn(Rn −R)f and (Rn −R)Ttf tends to 0 for any f ∈ B by (i), we obtain

etLnRf − TtRf → 0

Again, since ImR is dense, we conclude that etLnf → Ttf for all f ∈ B.
Finally we prove (iii). Note that µn and etLn commute for all t > 0. In particular

µ∗n
n − eLn = (µn − eLn/n)

n−1∑

k=0

µn−1−k
n ekLn/n

and taking the norms, for any f ∈ B
∥∥µ∗n

n f − eLnf
∥∥ ≤ n

∥∥∥µnf − eLn/nf
∥∥∥

On the other hand µn = 1 + Ln

n and therefore

µnf − eLn/nf =
∑

k≥0

1

(k + 2)!
(
Ln

n
)k · (Ln

n
)2f

Since ‖Ln‖ ≤ 2n we obtain

∥∥∥µnf − eLn/nf
∥∥∥ ≤ e2

∥∥L2
nf

∥∥
n
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However
∥∥L2

nf
∥∥ might not be bounded for any f ∈ B or even C∞

c (G). To go around this

problem we change f into R2
nf . Then

∥∥L2
nR

2
n

∥∥ ≤ ‖LnRn‖2 ≤ 4 because LnRn = Rn − Id
and Rn is a contraction. Hence

∥∥∥µnR
2
nf − eLn/nR2

nf
∥∥∥ → 0

Moreover it follows from (i), and the fact that Rn is a contraction, that R2
nf → R2f for

every f ∈ B. Since µn and eLn/n are contractions, we obtain that
∥∥∥µnR

2f − eLn/nR2f
∥∥∥ → 0

for every f ∈ B. But again the image of R is dense and R is a bounded operator, hence
the image of R2 is also dense and this implies that the convergence

∥∥µnf − eLn/nf
∥∥ → 0

holds for every f ∈ B. �

2. Local limit theorems on compact or abelian groups and their extensions

2.1. Local limit theorems on abelian groups. On Rd one has the following theorem,
classically known as the local limit theorem, and whose proof relies on real analysis and
the use of the Fourier transform.

Theorem 2.1. (see [19] Theorem 10.17) Let µ be a centered and aperiodic probability
measure on Rd with a finite moment of order 2 and let K be its covariance matrix. Then
for any continuous function f of compact support on Rd we have

lim
n→+∞

nd/2

∫
fdµn =

1√
(2π)d detK

∫

Rd

f(x)dx

Let us remark that the aperiodicity condition is necessary to obtain the convergence
above. It is therefore not surprising that we find it in all other equidistribution statements.
In a way, the case of Rd is ideal, and most studied, and the general goal is to try to obtain
similar theorems for other Lie groups. In these notes, we will consider almost exclusively
amenable groups, or groups with polynomial growth. For non-amenable groups, the be-
havior of µn is very different, but the question of equidistribution can be addressed in a
similar fashion (see §6).

On more general abelian groups, we always have the following ratio limit theorem:

Theorem 2.2. (Stone [107]) Let G be an abelian locally compact second countable group
generated by a compact neighborhood of the identity. Let µ be an aperiodic and centered
probability measure on G. Then we have

lim
n→+∞

µn(A)

µn(B)
=

|A|
|B|

for all relatively compact Borel subsets A and B in G with positive Haar measure and with
negligible boundary.

We stress that in this theorem, we assume the existence of a finite moment of order 1
only.

2.2. Compact groups. If the group is compact, there always is equidistribution. This
is an old theorem of Itô and Kawada (cf. [65]).

Theorem 2.3. (Itô-Kawada) Let µ be an aperiodic probability measure on G. Then the
sequence µn converges in distribution to the normalized Haar measure on G.
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The proof is based on Lévy’s criterion for convergence of measures (i.e. Theorem 1.1).
Indeed, irreducible unitary representations of G are finite dimensional and the operators
π(µ) are just matrices. It is enough to check that if π is not the trivial representation, then
the powers π(µ)n converge to 0. To see this is suffices to prove that the operator norm of
π(µ) is strictly less than 1, or equivalently that all eigenvalues of π(µ) are of modulus < 1.
But the existence of a modulus 1 eigenvalue contradicts easily the aperiodicity assumption.
This method is essentially the method used already by Poincaré in his 1912 treatise on
Probability Theory [86], in order to show this theorem in the particular case when G is
the finite group of the permutations of n elements.

This theorem implies the equidistribution of every random walk on a compact group.
For example, the equidistribution problem of Arnol’d and Krylov (see [5]). Every random
walk on S2, where each move is a random isometry, is equidistributed, as long as the
group generated by the support of the probability is dense in SO(3).

The problem of determining the speed of convergence in the above theorem is a delicate
issue. Is f is a C∞ function on G, then one can try to estimate the speed of convergence
of

∫
fdµn toward

∫
G
f(g)dg. By decomposing f into a sum of harmonics corresponding

to the decomposition of the regular representation of G as a direct sum of irreducible
representations (πn)n, one can reduce partly this question to the study of the operator
norms ‖πn(µ)‖. We will not deal with this difficult question here. Let us just make a few
remarks. If µ is not singular with respect to the Haar measure, then there is a “spectral
gap”, that is a number α < 1 such that ‖πn(µ)‖ ≤ α for all n 6= 0. However, if µ is
singular, and in particular if µ is atomic, then the problem is widely open when G is not
commutative. When G is a semisimple Lie group, Dolgopyat [32] has recently obtained a
polynomial upper bound of the form ‖πn(µ)‖ ≤ 1 − c

nβ for some constants c, β > 0. This
yields a polynomial speed of convergence for C∞ functions in the local limit theorem.
However it has been conjectured, for instance for the group G = SO(3), that there always
is a spectral gap (see the book of Sarnak [96]). For this group, only very special examples
of measures with a spectral gap have been found (see [96] [39] et [73]), all of which come
from some arithmetic considerations related to the solution to the well-known Ruziewicz
problem (see [73]).

2.3. Equidistribution in the plane. In this paragraph, we will consider the case of a
random walk evolving in the Euclidean space Rd, seen as a homogeneous space for the
group of motions of Rd. So we let G = SO(d) · Rd, X = Rd and Sn · x be a random
walk starting at x. From x, we apply at each step a random motion according to a given
probability law µ on G. An element of G can be written as g = (τ, ρ) where τ ∈ Rd

is a translation and ρ ∈ SO(d) is a rotation. The first important result concerning this
random walk is the following central limit theorem:

Theorem 2.4. (CLT for SO(d) · Rd) Let µ be a non-degenerate probability measure
on G = SO(d) · Rd such that the image of µ into Rd under the projection G → Rd,
g 7→ τ has a finite moment of order 2. Let Sn = (τn, ρn) be the product of n independent
random variables distributed according to the same law µ. Then the random variable
1√
n
τn converges in distribution towards a gaussian law N (0, σ2), which is centered and of

diagonal covariance σ2Id.

It follows that 1√
n
Sn · x converges also in distribution to the same limit. This theorem

is a direct consequence of the well-known Ibragimov-Billingsley for martingale differences
(cf. [63] and [13] Theorem 35.12). Such stochastic processes always satisfy a central
limit theorem under the Lindeberg condition. The sequence Sn can be written in the
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form X1 · ... · Xn (in this order) and, when projected to Rd, is a martingale as soon as
E(Ti) = 0. Indeed, it can be written as T1 + ρ1(T2) + ... + ρn−1(Tn) where Ti is the
projection of Xi on Rd. See also [48] for another proof by Roynette and also Gorostiza’s
paper [42].

Let us now focus on the question of equidistribution. In 1965, Kazhdan (cf. [66])
proved the following theorem (the proof was later corrected and completed by Guivarc’h
in [47]).

Theorem 2.5. ([66] et [47]). Let G = SO(2) ·R2 be the group of Euclidean motions of the
plane. Let µ be a non-degenerate measure on G which we assume symmetric and of finite
support. Then for every x ∈ R2, and for all positive continuous functions with compact
support φ and ψ on R2, we have the following ratio limit theorem:

lim
n→+∞

∫
G
φ(g · x)dµ2n(g)∫

G ψ(g · x)dµ2n(g)
=

∫
R2 φ(y)dy∫
R2 ψ(y)dy

In [72], Le Page gave another proof (which also allows to treat the case of any symmetric
compactly supported measure) based on the absence of positive µ-harmonic functions on
R2.

Below, we generalize this result by proving the corresponding local limit theorem in
complete generality. If µ is aperiodic on G, then the map G → R2,g 7→

∫
G
g · xdµ has a

unique fixed point x0 ∈ R2. We set σ2 =
∫

G
|g · x0|2 dµ(g). Then we have

Theorem 2.6. (LLT in the plane) Let µ be an aperiodic probability measure on G =
SO(2) · R2 with a finite moment of order 2. Then for every x ∈ R2, and for every
continuous function f of compact support on R2, we have

(3) lim
n→+∞

n

∫

G

f(g · x)dµn(g) =
1

2πσ2

∫

R2

f(y)dy

Proof. The idea is to generalize the classical proof of the local limit theorem on R by
using the Fourier transform. We first make the following classical reduction (see [19]):

Claim 2.1. It is enough to show the convergence (3) for functions f on R2 whose Fourier
transform is continuous and of compact support (these functions are integrable but no
longer compactly supported).

Proof of claim: Let h be a continuous function which we take integrable and strictly

positive on R2 such that its Fourier transform ĥ is compactly supported (such a function
does exist, see [19] 10.2). From Lévy’s criterion for convergence of measures, the sequence
of finite measures νn = nh(y)µn ∗ δx(dy) converges to the measure 1

2πσ2h(y)dy, since
characteristic functions ν̂n(t) do converge point-wise toward the characteristic function of
the limit measure. Indeed, ν̂n(t) is nothing else but n

∫
G
ht(g · x)dµn(g) where ht(y) =

eit·yh(y) and ĥt is the translate of ĥ by t (hence compactly supported). Now since f is
continuous with compact support on R2 then f/h is also continuous with compact support
and the expression

∫
f/hdνn, which also equals n

∫
fd(µn ∗ δx), converges to the desired

limit.
�
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Let us come back to the proof of the theorem. Clearly, it is enough to prove the
equidistribution when x = 0. Then we have

∫

G

f(τ)dµn(g) =

∫

G

∫

R2

f̂(x)eiτ ·xdxdµn(g)(4)

=

∫ +∞

0

∫

G

∫ 2π

0

f̂(rθ)eirτ ·θdθdµn(g)rdr

=

∫ +∞

0

〈
πr(µ)nf̂r, 1

〉

L2(S1)
rdr

where f̂r is the function defined on the circle S1 by f̂(rθ) and πr is the irreducible unitary
representation of G defined on the space L2(S1) by

(5) πr(g)φ(θ) = eirτ ·θφ(ρ−1θ)

where r > 0 and g = (τ, ρ) ∈ G. Then we do the following substitution r → r
√
n in (4)

and we observe that by the central limit theorem 2.4, for any r > 0 and θ ∈ S1, we have

lim
n→+∞

πr/
√

n(µ)nf̂r/
√

n(θ) = lim
n→+∞

E

(
e

ir Sn
√

n
·θ
f̂(

r√
n
R−1

n θ)

)

= E(eirN ·θ)f̂(0)

= e−r2σ2/2f̂(0)

where N is the gaussian law N (0, σ2) and Rn is the rotation part of Sn. Consequently,〈
πr/

√
n(µ)nf̂r/

√
n, 1

〉
converges for each r > 0 to 2πf̂(0)e−r2σ2/2. If we can interchange

the integral sign and the limit, then we will have the desired conclusion, that is

lim
n→+∞

n

∫

G

f(τ)dµn(g) = f̂(0)

∫

R

2πe−r2σ2/2rdr =
1

2πσ2

∫

R2

f(y)dy

since f̂(0) = 1
(2π)2

∫
f .

Since f̂ has compact support, we can restrict the domain of integration in (4) to a
compact set [0,M ]. Then we get the following lemma:

Lemma 2.1. There is a constant c > 0 such that ‖πr(µ)‖ ≤ 1 − cr2 when r lies in a
neighborhood of 0, i.e. [0, ε], and moreover s = supr∈[ε,M ] ‖πr(µ)‖ < 1.

Before we proceed to the proof of the lemma, let us explain how to deduce the theorem
from it. From the lemma, we obtain:

∣∣∣
〈
πr/

√
n(µ)nf̂r/

√
n, 1

〉∣∣∣ ≤ sn
∥∥∥f̂

∥∥∥
∞

−→ 0

as soon as r ∈ [ε
√
n,M

√
n], hence this term is negligible. And

∣∣∣
〈
πr/

√
n(µ)nf̂r/

√
n, 1

〉∣∣∣ ≤ (1 − cr2

n
)n

∥∥∥f̂
∥∥∥
∞

≤ e−cr2
∥∥∥f̂

∥∥∥
∞

for the interval r ∈ [0, ε
√
n]. This allows to apply Lebesgue’s dominated convergence

theorem to justify the convergence. �

Proof of the lemma. The proof of these inequalities relies on the essential fact that

G is a solvable Lie group because d = 2. Let us first observe that since ‖πr(µ)‖2
=∥∥πr(µ ∗ µ−1)

∥∥ , we can assume that µ is symmetric and non-degenerate. Let us show the
first inequality. We fix two non-commuting elements x0 and y0 belonging to the support
of µ. The commutator (x0, y0) is a non-trivial pure translation. Similarly we fix two other
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non-commuting elements w0 and z0 in the support of µ such that the pure translation
(w0, z0) is not co-linear to (x0, y0). This is possible since µ is non-degenerate. We then fix
a neighborhood U of the identity in G such that the norm of the translation vector (x, y),
where x ∈ x0U and y ∈ y0U , and that of (w, z), w ∈ w0U and z ∈ z0U , are bounded
below by some fixed positive real number, say α > 0. We can also assume that the angle
between any two of these translation vectors in bounded below by α. We have:

µ =

∫
νx,y,w,zµ(dx)µ(dy)µ(dw)µ(dz)

where

νx,y,w,z =
1

8

(
δx + δx−1 + δy + δy−1 + δw + δw−1 + δz + δz−1

)

Let µx0U and µy0U be the normalized restrictions of µ to x0U and y0U . Then there exists
c0 > 0 and two probability measures ν1 and ν2 such that

µ = c0ν1 + (1 − c0)ν2

ν1 =

∫
νx,y,w,zµx0U (dx)µy0U (dy)µw0U (dw)µz0U (dz)

Therefore

1 − ‖πr(µ)‖ ≥ c0(1 − ‖πr(ν1)‖)
≥ c0(1 − sup

x∈x0U,...,z∈z0U
‖πr(νx,y,w,z)‖)

It remains to show the desired inequality for νx,y,w,z uniformly when x ∈ x0U, ..., z ∈
z0U. But it is now easy to obtain such a bound since it is enough to get it for ν4

x,y,w,z in

place of νx,y,w,z and ν4
x,y,w,z is a finitely supported symmetric probability measure whose

support contains the pure translations (x, y), (x, y)−1, (w, z) and (w, z)−1. The length of
these translations and the angle between them are bounded below by α > 0, hence we
deduce immediately that for any sufficiently small r > 0 and uniformly in x, ..., z

1 − ‖πr(νx,y,w,z)‖ ≥ C · r2

for some constant C > 0 depending only on µ. This follows from the fact that since the
angle between t1 = (x, y) and t2 = (w, z) is bounded below, the quantity (t1 ·θ)2 +(t2 ·θ)2
is bounded below by some positive constant, uniformly when θ varies in S1. This ends
the proof of the first estimate.

For the second estimate, things are easier and we refer the reader to Proposition 3.1
below, or to [21] where a similar argument (in fact essentially present already in [46]) will
be found. �

Note that the theorem is stated only for dimension 2. Its validity in higher dimensions
is an open question as of now. Even the extension of Kazhdan’s ratio limit theorem to
higher dimensions is unknown.

This above proof illustrates the fact that a crucial step in proving equidistribution is
to obtain an estimate of the norm ‖π(µ)‖ for a given unitary representation π and in
particular the proof of a “spectral gap” ‖π(µ)‖ < 1.

3. The case of nilpotent groups

In this section N will denote a simply connected nilpotent Lie group. We will also de-
note by (Cp(N))p=1,...,r the descending central series corresponding to N , where C1(N) =
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N and r is the largest index for which Cr(N) is non trivial. Moreover, we write

(6) d(N) =
∑

p≥1

p · dim(Cp(N)/Cp+1(N)).

a call this number the exponent of polynomial growth of the group N, or equivalently the
homogeneous dimension of N .

3.1. Polynomials and dilations. The main source for this paragraph is the book by
Goodman [41].

3.1.1. Polynomial maps. Let N be the Lie algebra of N . The exponential map gives rise
to a diffeomorphism exp : N → N . A polynomial map on N is a map P : N → R such
that P (log(x)) is a polynomial map on the real vector space N .

Let (ei)i=1,...,n be a basis of N , with n = dimR N . We assume further that this basis
is triangular in the sense that [ei, ej ] belongs to span (ek, k ≥ max{i, j}) for all i, j. For
every index i = 1, ..., n we set di to be the largest positive integer r such that ei ∈ Cr(N ).

This allows to define a notion degree of a polynomial map on N in the following way.
Let (xi)i=1,..,n be the coordinate maps (i.e. xi(y) = yi if y = y1e1 + ...+ ynen), then any
polynomial map on N is a linear combination of monomials of the form xα1

1 · ... ·xαn
n which

we simply denote by xα, where α = (α1, ..., αn) is a multi-index and αi’s are non-negative
integers. Then we define the degree of xi to be the number di defined above. The degree
of the monomial xα will be equal to d(α) := α1d1 + ... + αndn, and the degree of an
arbitrary polynomial map is equal to the maximum of degree of each of its monomials.
For example, let N be the Heisenberg group of upper triangular three by three matrices,
i.e. the step-2 nilpotent group whose Lie algebra is defined a basis (X,Y, Z) and the
relation [X,Y ] = Z. The coordinate maps x and y are polynomials of degree 1 although
the coordinate map z has degree 2. This definition is easily seen to be independent of the
choice of the triangular basis used to define it.

The coordinates of the product of two elements in the basis (ei)i=1,..,n are obtained
from the Campbell-Hausdorff formula as follows (see Goodman [41] p. 14):

(7) (xy)i = xi + yi + Pi(x1, ..., xi−1, y1, ..., yi−1)

where Pi is a polynomial map on N ×N with the following properties. Its total degree, as
a polynomial on N ×N , is less or equal to di. It depends only the first i− 1 coordinates
of x and y. As a polynomial of x (resp. y) it has degree less or equal to di − 1 and has
valuation greater or equal to 1.

3.1.2. Associated graded algebra, dilations. We identify N and N via the exponential map.
We will write gr(N ) for the graded Lie algebra canonically associated to N . By definition
gr(N ) =

⊕
p≥1 C

p(N )/Cp+1(N ) is endowed by the Lie bracket induced from that of N .

Let Dk =
⊕

p≥k C
p(N )/Cp+1(N ). The Dk’s form a filtration of gr(N ), that is

gr(N ) = D1 ! D2 ! ... ! Dr+1 = {0} et [Dk, Dl] ⊂ Dk+l

in the same way that the Cp(N )’s formed a filtration of N .
From now on, we will fix a collection of sub-vector spaces (mp)p≥1 of N such that for

each i,

Cp(N ) = Cp(N ) ⊕mp.
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Then N = ⊕p≥1mp and in this decomposition, any element x in N (or N by abuse of
notation) will be written in the form

x =
∑

p≥1

xp

This allows to define on N another Lie algebra structure. Let N ′ be the same vector
space N endowed with this new Lie bracket defined by [xp,yq]

′ = [xp,yq]p+q.
An equivalent way to define this new Lie algebra structure is as follows. We can define

a linear map

φ = (φ1, ..., φr) : N → gr(N )

by the property that if x ∈ mp, then φ(x) = φi(x) = x mod(Cp+1(N )). In this way, φ is an
isomorphism of vector spaces which preserves the respective filtrations, i.e. φ(Cp(N )) ⊂
Dp. Moreover, φ induces on mp an isomorphism with Cp(N )/Cp+1(N ) which coincide
with the canonical quotient map. Then φ establishes an isomorphism of Lie algebras
between N ′ and gr(N ).

A choice of supplementary subspaces (mp)p≥1 allows to define a semi-group (δt)t≥0 of
linear transformations of N called dilations as follows:

δt(xp) = tpxp

Conversely, the semi-group (δt)t≥0 determines the (mp)p≥1 since they appear as eigenspaces
of each δt. The dilations δt’s preserve the new Lie algebra structure N ′ but do not pre-
serve a priori the original Lie algebra structure on N . Moreover, we see that N and N ′

(or gr(N )) are isomorphic as Lie algebras if and only if the δt’s are automorphisms of N .
We will say that N (or N ) is homogeneous if one can find a sequence of supplemen-

tary subspaces (mp)p≥1 such that the corresponding δt’s are automorphisms (equivalently
[mp,mq] ⊂ mp+q).

3.2. Homogeneous norms. For this paragraph, we refer the reader to the following two
articles of Y. Guivarc’h [49] and [46].

Let U be a compact neighborhood of the identity in N . We define as above the function
δU as follows

δU (g) = inf{n ≥ 0, g ∈ Un}
The function δU is sub-additive (i.e. δU (gh) ≤ δU (g) + δU (h)) and any other choice of
U would lead to a coarsely equivalent function (i.e. there are positive constants A and
B such that δU (g) ≤ AδV (g) + B and vice-versa). This allows to define a left-invariant
distance on the Lie group by letting δU (x, y) = δU (x−1y). This distance is usually called
the word metric associated to the generating set U . The following fact is straightforward,
and valid on any connected Lie group:

Proposition 3.1. Every left-invariant Riemannian metric is coarsely equivalent to δU .

On a simply connected nilpotent Lie group N endowed with a semi-group of dilations
(δt)t and their eigenspaces (mp)p (we do not assume that the δt’s are automorphisms), it
is convenient to define the following notion.

Definition 3.1. A continuous function | · | : N → R+ is called on homogeneous norm on
N for the dilations (δt)t if it satisfies the following properties

(i) |x| = 0 ⇔ x = 0
(ii) |δt(x)| = t|x| for all t > 0
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Clearly a homogeneous norm is determined by its sphere of radius 1 and two homoge-
neous norms are always equivalent in the sense that 1

c |·|1 ≤ |·|2 ≤ c |·|1 for some constant

c > 0. Also changing |x| into (|x|+ |x−1|)/2 gives rise to a symmetric homogeneous norm.
More generally, the homogeneous norms are easily seen to satisfy the following properties.
There is a constant C > 0 such that

(i) |x−1| ≤ C · |x|.
(ii) |xi| ≤ C · |x|di if x = x1e1 + ...+ xnen.
(iii) |xy| ≤ C(|x| + |y|)
It can be a problem that the constant C in (iii) may not be 1. However the following

proposition is often a good enough remedy to this situation. Let ‖·‖p be an arbitrary
norm on the vector space mp.

Proposition 3.2. ([46] lemme II.1) Up to rescaling each ‖·‖p into a proportional norm

λp ‖·‖p (λp > 0) if necessary, the function |x|N := maxp ‖xp‖1/p
p (where x = x1 + ...+xr,

xp ∈ mp) becomes a homogeneous norm on N which coarsely equivalent to δU and is
almost sub-additive, i.e. there exists a constant c > 0 such that |xy| ≤ |x| + |y|+ c for all
x, y ∈ N .

The proof is based on the Campbell-Hausdorff formula (7). As we show below this
proposition has a very nice immediate application, namely the computation of the expo-
nent of growth of nilpotent groups.

The following definition is useful.

Definition 3.2. Let (X1, ..., Xn) be a basis of N adapted to the choice of supplementary
subspaces (mp)p. A subset of N is called a rectangle in N is it consists of all elements
x = t1X1 + ...+ tnXn such that ti ∈ [ai, bi] for some intervals [ai, bi].

Remark 3.1. It is also possible to define an almost sub-additive function on N that is
coarsely equivalent to δU by considering exponential coordinates of second kind to param-
etrize N instead of taking the coordinates from the Lie algebra. Let (X1, ..., Xn) be an
adapted basis of N = ⊕p≥1mp such that span(Xk, ..., Xn) is an ideal of N for each k, and
consider the map

φ : N → N∑
tiXi 7→

∏
exp(tiXi)

The φ is a polynomial diffeomorphism together with its inverse (see [27]). Moreover set
δ(x) = maxi |ti|1/di . Then as in proposition 3.2, up to rescaling the basis Xi’s if necessary,
we obtain an almost sub-additive function on N which is coarsely equivalent to δU .

3.3. The growth of nilpotent groups. In this section | · | will denote the homogeneous
norm introduced in Proposition 3.2. The existence of such a homogeneous norm, which
is coarsely equivalent to δU (g) = inf{n ≥ 0, g ∈ Un} has the following direct corollary.

Theorem 3.1. (Guivarc’h) Let U be a compact neighborhood of the identity in the simply
connected nilpotent Lie group N . Then there are positive constants C1 and C2 such that
for any positive integer n

(8) C1 · nd(N) ≤ vol(Un) ≤ C2 · nd(N)

where vol(X) denotes the Haar measure of X and d(N) is the exponent of growth defined
in (6).
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The proof follows immediately from the fact that, since | · | is coarsely equivalent to δU ,
there is a constant c > 0 such that for all positive integers n,

Bn/c ⊂ Un ⊂ Bcn

where Bt = {x ∈ N , |x| ≤ t}. Moreover |·| is a homogeneous norm and hence Bt = δt(B1),
so vol(Bt) = td(N) · vol(B1) where d(N) is given by formula (6).

Now if Γ is a finitely generated nilpotent group, say torsion-free, then according to a
theorem of Malcev (see [87] Theorem 2.18), there exists a simply connected nilpotent Lie

group Γ̃ such that Γ embeds as a co-compact discrete subgroup of Γ̃. We immediately
deduce

Theorem 3.2. (Guivarc’h) Let Γ be a finitely generated nilpotent group and let S be a
symmetric generating set for Γ, then there are two positive constants C1 and C2 such that
for all positive integers n

C1 · nd(Γ) ≤ #BS(n) ≤ C2 · nd(Γ)

where d(Γ) = d(Γ̃) is the exponent
∑
i ·rk(Ci(Γ)/Ci+1(Γ)) and BS(n) is the ball of radius

n in the word metric defined by S.

This theorem has also been established independently by H. Bass by a purely combi-
natorial method (see [53] for a short discussion of this result and older references, see also
[64]).

3.4. Irreducible unitary representations of nilpotent Lie groups.

3.4.1. Harmonic functions. Given a probability measure µ on a group G, a function f
on G is called µ-harmonic if it satisfies the convolution equation µ ∗ f = f . Harmonic
functions are important in the study of equidistribution and ratio limit theorems (see most
notably the article of Le Page [72]). A recent result of A. Raugi [93] shows that bounded
µ-harmonic functions on locally compact second countable nilpotent groups are constant
whenever µ is non-degenerate. Raugi’s proof is based on the martingale convergence
theorem and puts a definite end to a question that was pending for some time. The result
had been established previously in many special cases. For G = Zd this was first treated
by Blackwell, then subsequently by Choquet and Deny for an arbitrary locally compact
second countable abelian group (see [26]). For nilpotent groups, assuming G is finitely
generated and the support of µ generates G as a semi-group, the result was proved by
Dynkin and Maliutov in [33]. In [46], Guivarc’h treats the case of an arbitrary locally
compact second countable nilpotent group, but his argument requires that the measure µ
has a finite moment of positive order. Guivarc’h’s method belongs to harmonic analysis
and yields a more precise and quite remarkable result which is a sort of weak local limit
theorem on G.

Theorem 3.3. (Guivarc’h) Let G be a locally compact second countable nilpotent group
and µ an aperiodic probability measure on G. Then for every integrable function f on G
such that

∫
G f = 0, we have

lim
n→+∞

‖µn ∗ f‖
L1(G) = 0

This theorem is applied in [20] in order to prove certain equidistribution results on
homogeneous spaces. The absence of non-constant µ-harmonic functions can be derived
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as follows: if φ is a bounded and continuous µ-harmonic function, then φ ∗ µn = φ for
every positive integer n. Thus

‖φ ∗ f‖∞ = ‖φ ∗ µn ∗ f‖∞ ≤ ‖φ‖∞ ‖µn ∗ f‖1

and by the above theorem φ ∗ f must be identically zero for every integrable function f
whose integral on G vanishes. This means precisely that φ is constant.

The proof of Guivarc’h relies on representation theory and on the following spectral
gap property for operators associated to an aperiodic probability measure:

Proposition 3.1. Let G be a locally compact second countable nilpotent group and µ and
probability measure on G. Then the following conditions are equivalent:

(i) µ is aperiodic
(ii) for any non-trivial irreducible unitary representation π of G we have ‖π(µ)‖ < 1.

See [46] (Prop. V.4). Similar arguments can already be found in [43].
Proof. Suppose that µ is aperiodic and π is a non-trivial irreducible unitary representa-

tion of G. Let us first show (i) ⇒ (ii). When G is abelian then π is a non trivial character
χ of G and if ‖π(µ)‖ = |χ(µ)| = 1, then there must be a complex number z of modulus 1
such that for µ-almost all g ∈ G we have χ(g) = z. This contradicts the aperiodicity of µ
because kerχ is a proper closed subgroup of G.

Now assume that G is arbitrary and that ‖π(µ)‖ = 1. From Shur’s lemma, the restric-
tion of π to Cr(G) (which is a subgroup of the center of G) coincide with a character
of G, that is a homomorphism χ : Cr(G) → C×. Let (ξn) be such that ‖π(µ)ξn‖ → 1.
Equivalently, this means that∫

G

〈π(g)ξn, ξn〉µ ∗ µ−1(dg) → 1

Now passing to a subsequence if necessary, we can assume that µ∗µ−1-almost everywhere
〈π(g)ξn, ξn〉 → 1, or in other words π(g)ξn − ξn → 0. But Γ = {g ∈ G, π(g)ξn − ξn → 0}
is a subgroup of G such that µ∗µ−1(Γ) = 1. The aperiodicity of µ implies that Γ is dense
in G. It follows that Cr(Γ) is dense in Cr(G). Moreover, if γ ∈ Cr(Γ), (χ(γ) − 1)ξn → 0
and this implies that χ(γ) = 1. Consequently, χ(g) = 1 for all g ∈ Cr(G) and χ is the
trivial character. It follows that the representation π induces a representation π of the
quotient G/Cr(G) and π(µ) = π(µ) where µ is the image of µ in the canonical projection
onto G/Cr(G). Moreover π is a non trivial irreducible unitary representation of G/Cr(G).
But since µ is aperiodic, µ is also aperiodic and it follows by induction on the degree of
the central descending series of G that ‖π(µ)‖ < 1. A contradiction.

To prove the converse, note that if µ were not aperiodic there would exist a proper
closed subgroup H in G and g ∈ G such that µ is supported on gH . To conclude it
suffices to apply the following fact2:

Lemma 3.1. ([45]) Let H be a proper closed subgroup of a locally compact nilpotent group
G. Then H lies in the kernel of a non-trivial continuous character of G.

Indeed we then obtain some θ ∈ R such that χ(x) = eiθ for µ-almost all x in G. Hence
|χ(µ)| = 1.

To prove the lemma, first note that if H is normal, then we can take any non trivial
character of the quotient G/H . Otherwise, we proceed by induction on the largest integer
p such that H contains Cp+1(G). If p = 1, then the image of H under the canonical

2In particular n elements in N generate a dense subgroup in N if and only if their projection in the
maximal abelian quotient N/[N, N ] generate a dense subgroup.
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projection on G/[G,G] is a proper closed subgroup of the abelian group G/[G,G], so it
is normal. If p > 1 and H is not normal, its normalizer L is a proper closed subgroup
containing Cp(G). By induction L (hence also H) must be contained in some kerχ for
some non trivial character χ of G.�

3.4.2. Quantitative estimates of the spectral gap. The classical proof of the local limit
theorem on R is based on an estimation of the modulus of the characteristic function µ̂(t)
of the measure µ when t lies in some neighborhood of zero. In the above proof of the
local limit theorem on the group of motions of the plane (lemma 2.1), a similar estimate is
needed. In [21], we prove the local limit theorem for centered measures on the Heisenberg
group by following a similar strategy. We have to estimate the norm ‖π(µ)‖ when π is a
unitary representation of G lying in a neighborhood of the trivial representation for the
Fell topology on the unitary dual of G. For the definition of the Fell topology, we refer
the reader to [69] and [54].

For a nilpotent Lie group, the unitary dual is fairly well understood thanks to the
Dixmier-Kirillov theory (see [70]). For every linear form ℓ on the Lie algebra Lie(N)
of N , one can find a subalgebra m such that [m,m] ⊂ ker ℓ which is maximal for this
property. This allows to define first a character of the group M = exp(m) by setting
χℓ(exp(v)) = eiℓ(v), and then a representation πℓ,m of N by inducing this character to the
whole of N , πℓ,m = IndN

Mχℓ. The we have (see [70]),

Theorem 3.4. (Kirillov) The representation πℓ,m is irreducible and any two choices for
the maximal subalgebra m lead to equivalent representations. Two linear forms ℓ and ℓ′

are conjugate under the action of N if and only if they lead to equivalent representations.
Moreover any irreducible unitary representation of N is equivalent to a representation of
this form.

It follows that the unitary dual of N is naturally identified to the space of orbits for the
action of N on the space of linear forms on Lie(N), i.e. the dual vector space of Lie(N)
(co-adjoint action). It turns out that this identification is also a homeomorphism between
the Fell topology on the one hand and the quotient topology on the other hand (Brown
[23]).

The proof of Theorem 3.4 begins with the preliminary study of an important special
case: the Heisenberg group. For this group the theorem is a consequence of the following
theorem of Stone and Von Neumann.

Theorem 3.5. (Stone-Von Neumann) Let H be a separable Hilbert space, and A and B
be two self-adjoint operators in H such that AB − BA = id. Then H decomposes as a
completed direct sum H = ⊕̂i≥0Hi of countably many invariant subspaces Hi each iso-
morphic to L2(R) and on which A and B are simultaneously equivalent (i.e. conjugate via
a single unitary transformation) to the operators T1 = i d

dt and T2 = t, the multiplication

by t in L2(R).

For one-parameter subgroups of unitary operators, this theorem admits the following
equivalent formulation: if ρ1 and ρ2 are two unitary representations of the additive group
(R,+) in H such that ρ1(u)ρ2(v)ρ

−1
1 (u)ρ−1

2 (v) = eicuv ( for some c > 0) then H decom-
poses as H = ⊕̂i≥0Hi where Hi ≃ L2(R) and ρ1 and ρ2 are conjugate to multiplication
by eit and translation by c.
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This theorem allows to classify the irreducible unitary representations of the Heisen-
berg group as follows3. Recall that the Heisenberg group is by definition the group of
upper triangular matrices in GL3(R) with 1’s on the diagonal. In the standard matrix
coordinates, the multiplication has the form:

(x, y, z) · (x′, y′, z′) = (x + x′, y + y′, z + z′ + xy′)

Irreducible unitary representations are of two types: there are characters (χ(x, y, z) =
ei(ax+by) for some real numbers a and b) and there is a one-parameter family of repre-
sentations of infinite dimension (πλ)λ parametrized by the non-zero characters λ of the
center of H . One possible model for πλ is given on L2(R) by

πλ(x, y, z) · f(t) = eiλ(z+yt)f(t+ x)

In [21], we make use of the Stone-Von Neumann theorem to obtain the following estimate,
which turns out to be crucial in the proof of the local limit theorem on H :

Proposition 3.2. Let µ be a probability measure on the Heisenberg group H whose support
is not contained in a coset of a proper abelian subgroup of H. Then there exists a constant
c > 0 such that for every λ 6= 0 sufficiently small :

(9) ‖πλ(µ)‖ < 1 − c|λ|

In particular, this result applies to the symmetric measure µ0 = 1
4 (δa +δa−1 +δb +δb−1)

where a = (1, 0, 0) and b = (0, 1, 0). The operator πλ(µ0) can be seen as acting on ℓ2(Z).
Then it coincide with the well-known discrete Schrodinger operator called the Harper
operator and whose spectrum has been extensively studied in mathematical physics: see
most notably Figure 1 in [10] and Theorem 2.1. in [14] which justify the estimate (9).

3.5. Limit theorems for discrete nilpotent groups. In this paragraph, we will quote
some of the numerous known results on the asymptotic behavior of convolution powers
of a probability measure on a finitely generated group. We will restrict mostly to groups
of polynomial growth, that is virtually nilpotent groups according to Gromov’s theorem.
If the group G is discrete, then any probability measure on G is absolutely continuous
with respect to the Haar measure of G, i.e. the counting measure on G. In this case,
the analytic methods initiated by N. Varopoulos and developed subsequently by many
other mathematicians turn out to be remarkably efficient (see the books [113] and [117]).
However these methods do not allow, as far as I know, to treat the case of singular
probability measures (for example atomic probability measures) on Lie groups, a case
which involves some arithmetic aspects related to how dense subgroups equidistribute.

Le us begin with a very general result due to Avez [6] :

Theorem 3.6. (Avez) Let Γ be a finitely generated amenable group and µ a symmetric
probability measure with finite support on Γ. Then for any x and y in Γ,

lim
n→+∞

µ2n(x)

µ2n(y)
= 1

In [113], Varopoulos obtains a coarse local limit theorem for finitely supported sym-
metric measures on a finitely generated group of polynomial growth. More precisely:

3Instead of the Stone-Von Neumann theorem, one can also use a theorem of Mackey on induced
representations: see for instance [118] Theorem 7.3.1 and Example 7.3.2.
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Theorem 3.7. (Varopoulos) Let Γ finitely generated group of polynomial growth and µ a
non-degenerate symmetric probability measure with finite support on Γ. Then there exists
a constant c > 1 such that for all n ≥ 1

1

c

1

nd(Γ)/2
≤ µ2n(e) ≤ c

1

nd(Γ)/2

The exponent d(Γ) is the exponent of growth of the group Γ. According to Gromov’s
theorem, the polynomial growth group Γ must contain a nilpotent subgroup Γn of finite
index. Then d(Γ) is simply given by the formula (6) with Γn in place of N .

Since µ is symmetric, µ2n(x) ≤ µ2n(e) for all x ∈ Γ (as follows immediately from
the Cauchy-Schwarz inequality: see [6]). More generally, if we drop the hypothesis of
symmetry, we still get the following upper bound:

Theorem 3.8. (Varopoulos, [112]) Let Γ finitely generated group of polynomial growth
and µ a non-degenerate probability measure with finite support on Γ. Then there is a
constant C > 0 such that for all n ≥ 1

sup
x∈Γ

µn(x) ≤ C

nd(Γ)/2

These results have been improved by Hebisch and Saloff-Coste in [56] (symmetric case)
and by Alexopoulos [2] (centered case) who obtain a gaussian estimate valid on a large
portion of the support of µn.

Theorem 3.9. ([56] et [2]) Assume that Γ has polynomial growth and µ is a centered
probability measure on Γ whose support is finite and contains a symmetric system of
generators S (S ∋ e) of Γ. Then there exist constants c > 1 and θ ∈ (0, 1) such that

(i) for all integers n ≥ 1 and all x ∈ Γ

µn(x) ≤ c
1

nd(Γ)/2
exp(−d(e, x)

2

cn
)

(ii) for all integers n ≥ 1 and all x ∈ Γ such that d(e, x) ≤ θn

µn(x) ≥ 1

cnd(Γ)/2
exp(−cd(e, x)

2

n
)

where d is the left-invariant distance induced by the system of generators S (word metric).

In [2], Alexopoulos improves these gaussian estimates and obtains the local limit theo-
rem with a sharp and uniform control on the speed of convergence as follows. We assume
as before that Γ has polynomial growth and that µ is a centered probability measure on Γ
whose support is finite and contains a symmetric set of generators S ∋ e of Γ. From Gro-
mov’s theorem, Γ contains a subgroup of finite index which is nilpotent. It is easy to see
that, up to passing to smaller finite index subgroup, this finite index nilpotent subgroup
can be taken to be normal and torsion-free (see [87] lemma 4.6). According to Malcev’s
theorem (see [87]), there exists a simply connected nilpotent Lie group N , unique up to
isomorphism, such that ΓN is isomorphic to a discrete co-compact subgroup of N .

Let g1, ..., gk be representatives of the cosets of ΓN in Γ. By Malcev’s rigidity theorem
([87] 2.11), the automorphisms h 7→ gihg

−1
i extend to the whole ofN . This allows to define

the Lie group G = {hgi, h ∈ N, 1 ≤ i ≤ k}, in which Γ injects as a discrete co-compact
subgroup.

Alexopoulos then defines a left-invariant sub-laplacian Lµ on N associated to the mea-
sure µ. When Γ is itself nilpotent the sub-laplacian has the simple form given by the
formula (10) appearing in the central limit theorem. The associated heat kernel p̃t(x, y)
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(x, y ∈ N) is smooth (see above §1.4) and its coarse asymptotic behavior is well-known
(see [113]). We extend it to the whole of G by setting:

pt(gix, gjy) =
1

k
p̃t(x, y).

Theorem 3.10. (Alexopoulos [2]) We have
(i) There is a real number C(µ) > 0 such that for all x ∈ Γ

lim
n→∞

nd(Γ)/2 · µn(x) = C(µ)

(ii) There is a constant c > 0 such that for any integer n ≥ 1 and any x ∈ Γ, we have

|µn(x) − pn(e, x)| ≤ c

n(d(Γ)+1)/2
exp

(
−d(e, x)

2

cn

)

To a large extent, this theorem is optimal (obviously, it generalizes the classical theo-
rems obtained in [40] in the abelian case by means of Fourier techniques) and it allows to
answer many questions on the behavior of centered random walks on a finitely generated
group of polynomial growth (recurrence, equidistribution, harmonic functions, etc). The
proofs are based on a certain parabolic Harnack inequality for solutions of the heat equa-
tion associated to µ. Let us note that the speed of convergence here is of order 1/

√
n. In

[22] we observe that in the non-discrete case, and already in the case of R, the speed of
convergence in the local limit theorem can be arbitrarily slow for an arbitrary measure µ
and in fact depends on the diophantine properties of µ.

3.6. Limit theorems for nilpotent Lie groups.

3.6.1. The central limit theorem. We have already proved the central limit theorem on
Lie groups (see above Wehn’s theorem §2.4). In the case of simply connected nilpotent
Lie groups, Wehn’s theorem admits the simple corollary stated below as Theorem 3.11.
Let us fix a sequence of supplementary subspaces (mp)p (cf. §3.1.2) and let δt be the
semi-group of dilations associated to this choice:

Cp(N ) = mp ⊕ Cp+1(N )

and δt(x) = tpx whenever x ∈ mp. Let us denote by N ′ the corresponding graded Lie
group and N ′ its Lie algebra. As vector spaces N = N ′ but the Lie algebra structure
may differ. Let X1, ..., Xd be left-invariant vector fields on N such that X1(e), ..., Xd(e)
forms a basis of N which is adapted to the direct sum decomposition N = ⊕p≥1mp (i.e.
the Xi(e)’s belonging to mp form a basis of mp). If g ∈ N we write xi(g) to be the
coordinate of log(g) in this basis, i.e. log(g) =

∑
xi(g)Xi(e). We also introduce the

following notation: we let ni = dim(m1 ⊕ ... ⊕ mi) and X ′
i be the left-invariant vector

fields on N ′ such that X ′
i(e) = Xi(e).

Theorem 3.11. (CLT centered case) Let µ be a centered probability measure on N
admitting a finite moment of order 2. Let Sn be the random walk associated to µ starting at
the identity in N . Then we have the following convergence in distribution (i.e. convergence
of the probability measures):

δ 1
√

n
(Sn)

d→ X

where X = X1 is the value at time 1 of the gaussian process (Xt)t≥0 on N ′ whose infini-
tesimal generator (see §2.4) is the N ′-left-invariant sub-laplacian given on C2

c (N) by

(10) Lµ =

n2∑

i=n1+1

biX
′
i +

1

2

∑

1≤i,j≤n1

aijX
′
iX

′
j
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where

aij =

∫
xi(x)xj(x)dµ(x) if 1 ≤ i, j ≤ n1(11)

bi =

∫
xi(x)dµ(x) if n1 < i ≤ n2

The limit law is non-degenerate if and only if the n1 by n1 matrix (aij)1≤i,j≤n1
is

positive definite or equivalently if the support of the measure µ is not contained in a
closed proper connected subgroup of N . In this case the limit law has a smooth density
with respect to the Haar measure on N (see above 1.4).

The stochastic process (Xt)t is stable for (δt). This means that for each t the random

variable Xt has the same distribution as the random variable δ√t(X1) (denoted Xt
d
=

δ√t(X1)).
Note that in the expression of Lµ, the elements of N are considered as differential

operators acting on C2(N). Also note that the limit (X et Lµ) depends on the choice of
the semi-group of dilations, i.e. on the choice of the supplementary subspaces (mp)p. If we

consider two possible choices, say (a) and (b) such that N = ⊕i≥1m
(a)
i = ⊕i≥1m

(b)
i then

one can check that the limit diffusion processes X
(a)
t (µ) and X

(b)
t (µ) satisfy the following

identity in law

(12) φab(X
(a)
t (µ))

d
= X

(b)
t (µ)

where φab is the endomorphism of the vector space N which maps every element of m
(a)
p to

its projection on m
(b)
p . The map φab establishes an isomorphism between the induced Lie

algebras structures N (a) and N (b) defined on N by the choice (a) or (b) a supplementary
subspaces (cf. §3.1.2). Moreover φab = φ−1

ba . The relation between the corresponding
semi-groups of dilations is given by

φab ◦ δ(a)
t = δ

(b)
t ◦ φab

The relation (12) follows easily from the theorem and from the following observation: we

have the following identity in law X
(a)
t (φba(µ))

d
= X

(a)
t (µ) because aij(φba(µ)) = aij(µ) if

1 ≤ i, j ≤ n1 and bi(φba(µ)) = bi(µ) if n1 < i ≤ n2. Indeed we check that x
(a)
i ◦φba = x

(a)
i

if 1 ≤ i ≤ n1 and x
(a)
i ◦ φba = x

(a)
i + ℓi(x

(a)
1 , ..., x

(a)
n1

) where ℓi is some linear form if
n1 < i ≤ n2. Then taking the averages with respect to µ, and making use of the fact that
µ is centered, in obtain the desired identities.

When N is homogeneous (see the definition above in §3.1.2), the theorem is a particular
case of Wehn’s theorem, since the condition of existence of a finite second moment for
µ is easily seen to imply conditions (ii) and (iii) of Theorem 1.3 for µn := δ 1

√

n
(µ). For

another short proof of this theorem, see [52]. The general case reduces to the case when
N is homogeneous thanks to a lemma due to Crépel et Raugi ([30] Lemme 3.5) asserting
that the difference δ 1

√

n
(Sn) − δ 1

√

n
(S′

n) converges to zero in L2, where S′
n is the random

walk associated to µ on the graded nilpotent group N ′ corresponding to the dilations δt’s.
It is also possible to give an Edgeworth expansion for δ 1

√

n
(Sn). This has been done by

Bentkus and Pap in [12] where they apply Lindeberg’s method to give yet another proof
of Theorem 3.11 that yields (as it does in the classical Rd case) an estimate of the speed
of convergence (in 1/

√
n).

In the non-centered case, the situation is quite different, but a central limit theorem
does exist (see [92] and §6 below).
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The following example shows a probability measure on the Heisenberg group H which
has no finite moment of order 2 and yet satisfies the central limit theorem above. This
constitutes a major difference with the case of Rd. A similar example already appears in
[97].

Example 3.1. Let (X,Y, Z) be distributed according to a probability measure µ on H.
Suppose that X and Y have a finite second moment, i.e. E(X2) < ∞ and E(Y 2) < ∞.
Suppose further that Z has a density f(z) such that

f(z) =
1

z2 log |z|
whenever |z| ≥ 3. Then E(|Z|) = +∞, hence µ has infinite second moment on H.
However it is straightforward to check that conditions (ii) and (iii) of Theorem 1.3 are
satisfied when µn = δ 1

√

n
(µ) is the probability distribution of ( X√

n
, Y√

n
, Z

n ). Hence µ∗n
n

converges toward a gaussian measure on H.

3.6.2. Local limit theorems and equidistribution. Let us now pass to equidistribution prop-
erties of random walks on nilpotent groups. The first theorem of this type for nilpotent
groups is due to Le Page and deals with finitely supported symmetric measures µ.

Theorem 3.12. (Le Page [72]) Let G be a locally compact second countable nilpotent
group and µ be a finitely supported symmetric probability measure on G such that µ(e) > 0.
Then for all continuous functions φ and ψ assumed positive and with compact support, we
have

lim
n→+∞

∫
φdµn

∫
ψdµn

=

∫
φdg∫
ψdg

The proof of this theorem relies on the fact that (
∫
φdµn)1/n converges to 1 because G

is amenable (see Kesten [68] and Guivarc’h [49]) and on the absence of harmonic positive
functions proved in this case by Margulis in [78].

Another old result of this type deals with the equidistribution in homogeneous spaces
and is a corollary of Theorem 3.3,

Theorem 3.13. (Guivarc’h [46] [47]) Let µ be an aperiodic probability measure on N .
Let X be a compact metric space endowed with of probability measure m. Suppose that
N acts continuously on X by homeomorphisms preserving m and so that m is the only
invariant measure under the action of N (unique ergodicity). Then for every x ∈ X and
every continuous function f on X, we have

(13) lim
n→+∞

∫
f(g · x)dµn(g) =

∫

X

f(y)dm(y)

For example, X can be a compact homogeneous space of N or simply the tangent unit
sphere bundle over a compact Riemann surface with N = R acting via the horocyclic
flow (its unique ergodicity was first proved by Furstenberg in [37]). Note that we do not
assume µ to be centered in this theorem. This additional assumption can be waived here
thanks to the unique ergodicity. Below, we give an example of a non-compact Riemann
surface X of finite volume for which the convergence (4.1) (for the horocyclic flow) does
not hold for every starting point x (although it holds for almost all x) as soon as µ is not
centered.

When the measure µ has a compactly supported continuous density with respect to the
Haar measure, the recent results of Alexopoulos allow to obtain the analogue of Theorem
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3.10. The following result is obtained by the same methods as 3.10. Let d(x, y) be a
left-invariant metric on N .

Theorem 3.14. (Alexopoulos [3]) Let µ be a centered probability measure on N which
admits a continuous density of compact support, i.e µ = φ(g)dg. Suppose additionally
that φ(e) > 0. Let Lµ be the left-invariant sub-laplacian defined on N by

Lµ =

n2∑

i=n1+1

biXi +
1

2

∑

1≤i,j≤n1

aijXiXj

where the coefficients aij and bi are defined by the relations (11). Let pt(x) be the heat
kernel associated to Lµ on N (See §1.4). Then there exists a constant c > 0 such that for
all x ∈ N

(14) |φ∗n(x) − pn(x)| ≤ c

n(d(N)+1)/2
exp

(
−|x|2
cn

)

Moreover, there exists a constant c(φ) > 0 such that, uniformly when x remains in a given
compact of N

(15) lim
n→+∞

nd(N)/2φ∗n(x) = c(φ)

Alexopoulos also obtains a similar estimate in the general case of connected Lie groups
of polynomial growth, but in this case, the definition of Lµ is more delicate.

When µ does not admit a density with respect to the Haar measure, the analogous
statements, (15) or (14), that is the local limit theorem and its uniform version, remain
open problems. In [21] however, we show that these results holds for the Heisenberg group.
The proof remains valid for all step-2 nilpotent groups. Applying the same method to the
general case seems quite intricate. We have:

Theorem 3.15. Let N be the Heisenberg group of upper triangular 3 by 3 matrices. Let
µ be an aperiodic, centered probability measure with compact support on N . Let (νt)t be
the gaussian semi-group associated to µ and determined by its infinitesimal generator Lµ

defined in (10). Then for every continuous function f of compact support on N , we have

lim
n→+∞

n2

∫
f(x)dµn(x) = c(µ)

∫

N

f(x)dx

where c(µ) > 0 is the value at e of the density p1 corresponding to ν1 (i.e. the heat
kernel for the sub-laplacian Lµ). Moreover for every bounded Borel subset B of N whose
boundary is negligible with respect to Lebesgue measure (i.e. |∂B| = 0) we have

(16) lim
n→+∞

n2 sup
x∈N

|µn(xB) − νn(xB)| = 0

In this theorem several choices for the gaussian semi-group (νt)t are possible. The
result remains of course true for all choices. Note that N is a graded nilpotent group and
a choice of a (νt)t corresponds to a choice of a semi-group of dilations (δt)t or equivalently
to a choice of a vector subspace of the Lie algebra which is in direct sum with the center of
N . The semi-group (νt) is stable with respect to the corresponding semi-group of dilations
(δt), i.e. νt = δ√t(ν1). If X,Y, Z is a basis of N such that [X,Y ] = Z, then the group of
automorphisms of N is

{(
A 0
C b

)
, A ∈ GL2(R), detA = b

}
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Let δt be the automorphism defined by A = tId, b = t2, C = 0 and let (νt) be the
corresponding gaussian semi-group. Then the other possible semi-groups of dilations are
all of the form φ ◦ δt ◦ φ−1 for some automorphism φ such that A = Id and b = 1.
The gaussian semi-group corresponding to (φ ◦ δt ◦ φ−1)t is (φ(νt))t. The corresponding
densities have the same value at the identity e and hence c(µ) is indeed independent of
the choice of the gaussian semi-group (νt)t.

Note that in Theorem 3.14, the estimate (14) shows that we have a speed of convergence
in at least 1√

n
in the local limit theorem (15) (because nd/2pn(x) converges also with a

speed of order 1/
√
n, by [3] 1.9.2). As we already pointed out in the commutative case

(i.e. N = Rd), such a speed depends strongly on the regularity of the measure µ and is
related to the diophantine properties of µ (see §4.2). In the case when N = Rd and µ has
a density like in the statement of 3.14, we have in fact a speed of convergence in 1/n as
follows for example from [36] ch. XVI, Theorem 1. If however the support of µ is finite
and very well approximable by elements from a discrete subgroup of N , then we cannot
hope for any good speed of convergence in (16).

In [20], we obtain coarser estimates than those of Theorem 3.15 but which are valid for
an arbitrary nilpotent Lie group. The method is very different and yields the following:

Theorem 3.16. Let N be a simply connected nilpotent Lie group and µ non-degenerate
finitely supported symmetric probability measure on N . Then there exists a constant C > 0
such that for every Borel set B with positive Haar measure and negligible boundary, we
have

1

C

|B|
nd(N)/2

≤ µn(B) ≤ C
|B|

nd(N)/2

as soon as n ≥ n1 = n1(B). Moreover the upper bound in this estimate is uniform when
B is changed into a translate xB, x ∈ N .

The method used here takes advantage of the known results for random walks on
discrete groups, in particular Theorem 3.9 due to Hebisch and Saloff-Coste in the case of
a symmetric measure, and combines them with a generalization of Weyl’s equidistribution
theorem for finitely generated dense subgroups of nilpotent Lie groups.
Other limit theorems are known on nilpotent Lie groups (one can have a look at [84]),
most notably a large deviation principle due to Baldi and Caramelino [9]. We will not
need them in the sequel.

4. Equidistribution and refinements of the local limit theorem

4.1. Equidistribution along an orbit. Let µ be an aperiodic and centered probability
measure on Z. Let D be a subset of Z admitting a density d(D), i.e. the following limit
exists

lim
n→+∞

# {D ∩ [−n, n]}
2n+ 1

= d(D) ≥ 0

A natural question arises: do we have

(17) lim
n→+∞

µn(D) = d(D) ?

As we will show below, the answer is yes as soon as the measure µ admits a finite moment
σ2 of order 2. This type of question arises when trying to prove the equidistribution of a
random walk. Assume that (X,T,m) is an ergodic invertible and measure preserving dy-
namical system on a topological space X and assume further that the full orbit {T nx}n∈Z
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of the point x is equidistributed, that is

lim
N→+∞

1

2N + 1

N∑

n=−N

f(T nx) =

∫

X

fdm

for every continuous function f of compact support onX (from Birkhoff’s ergodic theorem
this holds for m-almost every x ∈ X). Then the random walk associated to µ starting at
x and walking along the orbit is also equidistributed, that is

(18) lim
n→+∞

∫
f(T kx)dµn(k) =

∫

X

fdm

Indeed, it is enough to show this convergence for indicator functions f = 1B where B is,
say, an open subset of X such that m(∂X) = 0. Then we take D = {k ∈ Z, T kx ∈ B} and
we reduced the problem to the question above. It is worth noting that the convergence
(18) holds for the same starting point x. If we seek (18) only for m-almost all points, then
the conclusion is easier and follows from a random ergodic theorem (for instance [85]).

The proof of (17) is simple and requires the uniform version of the local limit theorem
on Z, that is

(19) lim
n→+∞

√
n sup

x∈Z

∣∣µn(x) − p(x/
√
n)
√
n
∣∣ = 0

where p is the centered gaussian with variance σ2. This theorem is classical for Z and
proved for example in [40] by means of Fourier analysis. If µ has finite support, this is a
special case of Theorem 3.10 (ii). From the central limit theorem, we also have : for every
ε > 0 there exists C > 0 such that

(20)
∑

|x|≥C
√

n

µn(x) ≤ ε

Combining (19) and (20) we see that it is enough to show the convergence for p(x/
√
n)/

√
n,

that is

lim
n→+∞

∑

x∈D

p(x/
√
n)/

√
n = d(D)

Now approximating p by a piecewise constant function, we reduce to prove that for every
set I = {x ∈ R, |x| ∈ [a, b]}, b > a ≥ 0 we have

lim
n→+∞

1√
n

#{I√n ∩D} = d(D)(b − a)

But this follows immediately from the assumption on D that it has a density d(D).
In a similar way, we can show that if µ is no longer assumed centered then there still

is a Cesaro type of convergence.More precisely, if the average of µ is > 0 and if

lim
n→+∞

# {D ∩ [1, n]}
n

= d(D) ≥ 0

then

lim
n→+∞

1

n

n−1∑

k=0

µk(D) = d(D)

All the above discussion was made on Z, but easily extends to R and Rd. The main
tool, the uniform local limit theorem (19), admits the following form on R. Its proof,
rather delicate, is due to Stone [106].
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Theorem 4.1. (Stone) Let µ be an aperiodic and centered probability measure on R

admitting a finite moment σ2 of order 2 and let ν be the centered gaussian law with
variance σ2. Then there exists a decreasing sequence εn tending to zero and depending
only on µ such that for every closed interval I of R we have

lim
n→+∞

√
n sup

x∈R

|µn(I + x) − νn(I + x)| ≤ εn(1 + |I|)

where |I| is the Lebesgue measure of I.

As above, the theorem has an analogous corollary. The details of the proof are given
in [22].

Theorem 4.2. Let µ be an aperiodic and centered probability measure on R admitting a
finite moment of order 2 a Suppose that f is a uniformly continuous function which is
bounded on R and such that the following limit exists

(21) lim
1

T

∫ T

0

f(t)dt = ℓ

as |T | → +∞. Then

lim
n→+∞

∫
fdµn = ℓ

Remark 4.1. Theorem 4.2 is stated for centered random walks and the same conclusion
is evidently wrong for non-centered random walks. However, in this case, we still have
a convergence in the sense of Cesaro, as was mentioned above for random walks on Z.
More precisely, if µ is aperiodic and non-centered and if f satisfies the assumptions of the
theorem then

lim
n→+∞

1

n

n−1∑

k=0

∫
fdµk = ℓ

The proof of this assertion is in all respects similar to that of the theorem.

Analogously, Theorem 4.2 allows to get probabilistic equidistribution as soon as there
is deterministic equidistribution. More precisely, let X be a locally compact space with
a Borel measure m and (φt)t be a flow acting continuously on X and by measure pre-
serving transformations. The following corollary shows that if the orbit of a point x ∈ X
is equidistributed by the flow, then any centered random walk along this orbit is also
equidistributed. We fix a probability measure µ, which we assume centered and aperiodic
with a finite moment of order 2, and we let Sn be the associated random walk.

Corollary 4.1. Assume that the orbit (φt)t∈R ·x is equidistributed with respect to m, that
is

lim
|T |→+∞

1

T

∫ T

0

f(φt · x)dt =

∫

X

f(y)dm(y)

for every continuous function with compact support f on X. Then we also have

lim
n→+∞

E(f(φSn
· x)) =

∫

X

f(y)dm(y)

The proof follows immediately from Theorem 4.2 applied to the function t 7→ f(φt · x)
which is bounded and uniformly continuous on R because f has compact support. In this
statement, the fact that µ is centered is essential. If µ is not centered, we still have a
convergence in the sense of Cesaro.
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4.2. Local limit theorem and speed of convergence. In [22] we study the problem
of the speed of convergence in the local limit theorem on R (i.e. Theorem 4.1). This
question is related to diophantine properties of the probability measure µ. It is convenient
to introduce the following definition. We say that µ is diophantine if it cannot be well
approximated by a measure supported on an arithmetic progression of R. More precisely,

Definition 4.1. Let l ≥ 0. A probability measure µ on R is said to be l-diophantine if
one of the following equivalent assertions is satisfied:

(i) ∃C > 0 such that if |x| is large enough

inf
y∈R

∫
{xa+ y}2dµ(a) ≥ C

|x|l
where {t} denotes the fractional part of t.

(ii) ∃C > 0 such that if |x| is large enough

|µ̂(x)| ≤ 1 − C

|x|l
where µ̂ is the characteristic function of µ.

We then obtain the following results about the speed of convergence in the local limit
theorem (see [22])

Theorem 4.3. Let µ be a centered probability measure on R admitting a finite moment
of order 4.

(i) Assume that µ is l-diophantine, and let k > 3l/2 + 1. Then for every Ck function
f with compact support there exists a constant C = C(f) > 0 such that

∣∣∣∣
∫
fdµn − 1√

2πσ2n

∫
f(x)dx

∣∣∣∣ ≤
C(f)

n
√
n

(ii) If µ is symmetric of the form µ = ν ∗ ν−1 and if µ is not l-diophantine for any
l ≥ 0 then for any ε > 0 and any integer p > 0 there exists a compactly supported Cp

function f such that

lim
n→+∞

n
1
2
+ε

∣∣∣∣
∫
fdµn − 1√

2πσ2n

∫
f(x)dx

∣∣∣∣ = +∞

(iii) The measure µ is l-diophantine for some l ≥ 0 if and only if there exists k ≥ 0
such that for every compactly supported Ck function on R we have

sup
t∈R

∣∣∣∣
∫
f(t+ ·)dµn −

∫
f(t+ ·)dνn

∣∣∣∣ = O(
1

n
)

where ν is a gaussian law is the same variance as µ.

4.3. Local limit theorems and large deviations. Another phenomenon related to
the two last paragraphs arises when trying to determine the asymptotic behavior of the
expression ∫

fdµn

when f is a continuous and bounded function on R which is not assumed to have a limit
at infinity. A preliminary result in this direction is Theorem 4.2 quoted above. But
what happens if f no longer satisfies the assumption (21) ? Then it is natural to try to
compare the behavior of

∫
fdµn to that of

∫
fdνn where ν is the gaussian law associated

to µ. Indeed the quantity
∫
fdνn is easier to understand since ν is known explicitly. The
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next theorem shows that, under certain regularity hypothesis, the asymptotic behavior of∫
fdνn is the same for all probability measures µ with the same variance. More precisely,

Theorem 4.4. Let µ be a centered probability measure on R admitting a finite moment
of order 4 and let ν be the associated gaussian law. We assume that µ is l-diophantine.
The for every k > 3l/2 + 1 we have

(22) lim
n→+∞

∫
fdµn

∫
fdνn

= 1

for every non-zero bounded Ck function f ≥ 0 on R whose derivatives up to order k are
bounded.

In [22], we give for each k ≥ 0 an example of a Ck function fk whose derivatives up
to order k tend to zero at infinity and a diophantine measure µk which is centered and
finitely supported for which the limit (22) above does not hold.

The proof of Theorem 4.2 required a uniform control of the quantity µn(x + I) on
a large interval of values of x (here I is a fixed closed interval). Such information is
given by Stone’s uniform local limit theorem (Theorem 4.1). Let us remark however that
this theorem gives a significant information only when x is not too large, namely when
|x| ≤ C

√
n where C is a positive constant. As an immediate consequence of Theorem 4.1,

we have

lim
n→+∞

µn(I + x)

νn(I + x)
= 1

uniformly in x when |x|/√n stays bounded. If we try to estimate µn(I + x) for larger
values of x, then we face a large deviations type of question and an additional moment
assumption on µ is necessary. For moderate deviations, we obtain the following local limit
theorem:

Theorem 4.5. Let µ be a centered and aperiodic probability measure on R with variance
σ2 and admitting a finite moment of order r > 2 and let ν be the associated centered
gaussian law (i.e. with variance σ2). Let I = [a, b] be a closed interval in R and c a real
number ∈]0, r − 2[. Then we have

lim
n→+∞

µn(I + x)

νn(I + x)
= 1

uniformly when |x| ≤
√
cσ2n logn.

This theorem extends Stone’s local limit theorem to moderate deviations. Let me
remark that in the particular case when µ has a density with respect to the Lebesgue
measure on R then the analogous result is due to Amosova (see [4]).

5. Unipotent random walks and Ratner’s theorem

5.1. Equidistribution of unipotent orbits in G/Γ. In this paragraph, we briefly
present Ratner’s theorem and certain related results. Let G be a connected Lie group
and Γ a discrete subgroup of finite co-volume in G. We say that an element g ∈ G is
unipotent if the automorphism Ad(g) of the Lie algebra of G is unipotent, that is all its
eigenvalues are equal to 1. A subgroup U of G is said to be unipotent if all its elements are
unipotent. Quite surprisingly the behavior of the orbits of points in G/Γ under the action
of a unipotent subgroup, or more generally a subgroup generated by unipotent elements is
quite tame. This situation contrasts greatly with the case of diagonal actions for example.
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This behavior has been conjectured by Raghunathan, Dani and Margulis during the
seventies and eighties and subsequently partially proved by many authors (Dani, Margulis,
Shah, etc.) before M. Ratner completed the proof in full generality in the early nineties
(cf. [105], [88]).

Theorem 5.1. (Ratner) Let H be a closed connected subgroup of G which is generated by
unipotent elements. Let x ∈ G/Γ. Then there exists a closed subgroup F ⊃ H of G such
that H · x = F · x and such that the closed orbit F · x admits an F -invariant probability
measure denoted by mx. Moreover the measure mx is H-ergodic. Finally every H-ergodic
probability measure on G/Γ is of this form.

An essential ingredient of the proof is the following recurrence theorem due to Dani.

Theorem 5.2. (Dani) Let U = (ut)t be a one-parameter unipotent subgroup of G. Fix
x ∈ G/Γ and ε > 0. Then there exists a compact subset K in G/Γ such that

lim
T→+∞

1

T
|{t ∈ [0, T ], ut · x /∈ K}| ≤ ε

This theorem implies in particular the following non-trivial fact: no unipotent orbit
escapes to infinity in G/Γ. This phenomenon was first studied by Margulis in [75] for
the case of SLn(R)/SLn(Z) and was also a crucial step in the Margulis’ first proof of the
arithmeticity of non co-compact lattices in higher rank. The proof of Theorem 5.2 relies
on the polynomial nature of unipotent flows and uses the ideas introduced in [75].

In order to prove Theorem 5.1, Ratner generalized Dani’s theorem and showed that the
orbits of one-parameter unipotent subgroups are in fact equidistributed in their closure.

Theorem 5.3. (Ratner) If U = {ut, t ∈ R} is a one-parameter unipotent subgroup of G,
the for all x ∈ G/Γ, there exists a closed subgroup F of G such that the orbit F · x is
closed and bears an F -invariant probability measure mx such that

lim
T→+∞

1

T

∫ T

0

f(ut · x)dt =

∫

G/Γ

fdmx

for all bounded and continuous function f on G/Γ.

Later, answering a question of Ratner, N. Shah has generalized this result to the case of
an arbitrary simply connected unipotent subgroup (see [99]). Let U be a simply connected
unipotent subgroup of G and X1, ..., Xn a triangular basis for the Lie algebra Lie(U) (i.e.
for every k ∈ [1, n] the vectors X1, ..., Xk generate an ideal in Lie(U). We introduce the
following subsets of U (rectangles, see above §3.2),

S(s1, ..., sn) =
{∏

exp(tiXi) ∈ U, 0 ≤ ti ≤ si

}

Theorem 5.4. (Shah) Let U be a simply connected unipotent subgroup of G and x ∈ G/Γ.
Then we have

lim
1

λ(S(s1, ..., sn))

∫

U

f(u · x)λ(du) =

∫

G/Γ

fdmx

where λ denote a Haar measure on U and f is a bounded continuous function on G/Γ
and all si’s tend to +∞.

In [100], Shah generalizes Ratner’s theorems for the action of a subgroup H such that
Ad(H) is contained in the Zariski closure of the subgroup generated by the unipotent
elements of Ad(H). In particular H is no longer assumed connected. This allows to
treat the case of discrete subgroups generated by unipotent elements, for example non
co-compact lattices in semisimple Lie groups. He obtains
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Theorem 5.5. (Shah) For all x ∈ G/Γ there exists a closed subgroup F ⊃ H of G such
that H · x = F · x and such that the closed orbit F · x bears an F -invariant locally finite
measure denoted by mx. Moreover the measure mx is H-ergodic. Finally every H-ergodic
locally finite measure on G/Γ is of this form.

We observe that the measure mx here is locally finite (i.e. finite on compact subsets).
Shah conjectures in [100] that the mx are in fact finite and show that this conjecture
reduces to the case when G is semisimple of higher rank and Γ is an irreducible lattice.
Typically the fact that mx is finite implies that if H is discrete then every discrete orbit
of H is in fact finite. In the same article he conjectures that locally finite H-ergodic
measures are finite. Recently, Eskin and Margulis have answered this question positively
and they show in [34] that if H is Zariski dense in G semisimple, then any locally finite
H-invariant measure on G/Γ is finite. Their proof is quite remarkable and consists in
showing a recurrence property of random walks living on an orbit of H in G/Γ. We
describe their result in the next paragraph.

5.2. A probabilistic version of Ratner’s equidistribution theorem. Let G be a
connected Lie group and G a discrete subgroup of finite co-volume in G. We keep the
notations of the last paragraph. In particularmx denotes the invariant measure associated
to x in Ratner’s theorem (Theorem 5.1).

Eskin and Margulis obtain in [34] the following theorem:

Theorem 5.6. (Eskin-Margulis) Assume G is semisimple with finite center and Γ is an
irreducible lattice in G. Let µ be a probability measure on G whose support is Zariski-dense
in G. Then for every ε > 0 there exists a compact subset K of G/Γ such that for every
x ∈ G/Γ we have

µn ∗ δx(K) ≥ 1 − ε

as soon as n ≥ n0 = n0(x). Moreover x 7→ n0(x) is locally bounded.

In particular the sequence of measures (µn ∗ δx)n is relatively compact in the space
of probability measures on G/Γ. The proof uses properties of the convolution operator
given by µ on functions on G and most notably the positivity of the first Lyapunov
exponent due to Furstenberg (see [52] for a quick proof of this theorem) and also makes
use of the techniques introduced in [35] to show the quantitative version of the Oppenheim
conjecture (see the survey [7]). As an immediate corollary, they obtain that every locally
finite µ-stationary measure on G/Γ is in fact finite, thus answering N. Shah’s question
quoted above.

In this theorem, the support of µ is Zariski dense in G and G is assumed semisimple.
One can ask what if the support of µ is contained in, say, a unipotent subgroup of G. This
case is in a sense simpler because we already know much about unipotents orbits thanks
to Ratner’s theorem, in particular the orbits are equidistributed (theorems 5.3 et 5.4).
Below, in [20] and in [21], we study this problem and show that centered random walks
along a unipotent orbit are equidistributed. It is possible to deduce the equidistribution of
the random walk from the equidistribution of the orbit by making use of a refined version
of the local limit theorem on the corresponding unipotent group (see corollary 4.1).

When such a theorem is available, we immediately obtain as a corollary the equidis-
tribution of the corresponding random walk on the homogeneous space G/Γ. For one-
parameter unipotent subgroups, or more generally for commutative unipotent subgroups,
we have:
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Theorem 5.7. Let U = {ut, t ∈ R} be a one-parameter unipotent subgroup of G and µ
be an aperiodic and centered probability measure on U which admits a finite moment of
order 2. If x ∈ G/Γ, then

(23) lim
n→+∞

µn ∗ δx = mx

(weak convergence of probability measures).

This theorem is a direct consequence of the combination of Theorem 5.3 and Corollary
4.1, which we have deduced from Stone’s local limit theorem in the last section.

When U is not commutative, the local limit theorem is still an open problem. In [21],
we show the local limit theorem and its uniform version (i.e. the analogous statement to
Stone’s Theorem 4.1) for the Heisenberg group (see Theorem 3.15 below) and we derive,
as a corollary, the equidistribution of centered random walks on Heisenberg-unipotent
orbits in G/Γ. This is the case for instance for centered random walks on horospheres of
complex hyperbolic manifolds of finite volume.

Note that if the measure µ admits a continuous density of compact support with respect
to the Haar measure, then Alexopoulos’ theorem yields in the same way the convergence
(23).

In [20], we show a coarse local limit theorem for finitely supported symmetric measures
(see Theorem 3.16 above) on an arbitrary simply connected nilpotent Lie group. Combin-
ing this result with Guivarc’h’s Theorem 3.3, we succeed in proving the equidistribution
of the corresponding random walk on G/Γ. We obtain:

Theorem 5.8. Let U be a simply connected unipotent subgroup of G and µ a finitely
supported symmetric and aperiodic probability measure on U , then for all x ∈ G/Γ

lim
n→+∞

µn ∗ δx = mx

5.3. Cesaro convergence. In this paragraph, we show that there always is convergence
in the sense of Cesaro even if the random walk is not centered.

Proposition 5.1. Let U be a one-parameter unipotent subgroup of G and let µ an aperi-
odic probability measure on U with a finite moment of order 2. Then for all x ∈ G/Γ, we
have the following convergence of probability measures

(24) lim
n→+∞

1

n

n−1∑

k=0

µk ∗ δx = mx

In order to show this proposition we could do as in the centered case and use Remark 4.1.
However we will use a slightly different method which has the advantage of not demanding
such detailed information about the random walk as is provided by the uniform version
of the local limit theorem. In [20], we apply this idea to the case of nilpotent groups.

We are going to show that the sequence of Cesaro averages is relatively compact in
the space of probability measures on G/Γ and then that any limit measure is absolutely
continuous with respect to mx. This will follow from the lemma below. However, every
limit measure of the sequence of Cesaro average is µ-stationary. According to the Choquet-
Deny theorem [26], every µ-stationary measure is necessarily invariant under the whole
of U . Since mx is U -ergodic, it follows that every limit measure is equal to mx, thus
establishing the convergence. We have to show the following result:

Lemma 5.1. Let µ be an aperiodic probability measure on R with finite variance σ2 < +∞
and mean d = 1. We denote by Sn+n the associated random walk (Sn is the corresponding
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centered random walk). Then for all ε > 0 there exists δ > 0 such that if f is a bounded
function 0 ≤ f ≤ 1 which is uniformly continuous on R, and such that

(25) lim
T→+∞

1

T

∫ T

0

f(t)dt ≤ δ

then

(26) lim
N→+∞

1

N

N−1∑

n=0

E(f(Sn + n)) ≤ ε

Let φ be a continuous function on G/Γ taking its values in [0, 1] and such that φ ≡ 0 on
a compact subset K and φ ≡ 1 outside a bigger compact subset. Taking f(t) = φ(ut ·x) in

the above lemma, we obtain that the sequence of measures ( 1
n

∑n−1
k=0 µ

k ∗ δx)n is relatively
compact. Note that (25) holds ifK is large enough according to Dani’s recurrence theorem.

Now if φ is continuous and compactly supported on G/Γ and satisfies
∫
φ(y)dmx(y) ≤ δ

then f(t) = φ(ut ·x) satisfies (25) according to Ratner’s equidistribution theorem. Hence,
applying the lemma, for every limit measure of the sequence of Cesaro averages, say ν,
we have

∫
φ(y)dν(y) ≤ ε. This shows that ν is absolutely continuous with respect to mx.

Proof of the Lemma: First note that it is enough to show that

(27) lim
N→+∞

1

N

∑

N/2≤n≤N

E(f(Sn + n)) ≤ δ

instead of (26) as can been by splitting the sum in (26) into summands going from N/2i+1

to N/2i. Moreover, since f is uniformly continuous, it is enough to show (27) for a steps
functions g of the form

g(t) =
∑

i∈Z

fi1Ii

where Ii is the interval [ih, (i + 1)h] and h > 0 is fixed and fi ∈ [0, 1] (to obtain (27)
for a general f we will take h < ω(δ/2) where ω is a modulus of uniform continuity for
f). The only probabilistic information used here is the following upper bound, which is a
consequence of Stone’s local limit theorem: there is a constant C > 0 such that for every
closed interval I in R we have, for n larger than some integer n0 depending only on I

(28) sup
x∈R

P(Sn ∈ I + x) ≤ C · |I|√
n

This being given, we fix another large constant D > 0 and we write

1

N

∑

N/2≤n≤N

E(g(Sn+n)) ≤ 1

N

∑

N/2≤n≤N

E(g(Sn+n)1|Sn|≤D
√

N )+ max
N/2≤n≤N

P(|Sn| ≥ D
√
N)

We can choose D large enough so that the remainder in the term on the right hand side
be smaller than ε/2 as soon as N is large enough. For the first term, we write, for large
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enough N, using (28):

1

N

∑

N/2≤n≤N

E(g(Sn + n)1|Sn|≤D
√

N ) ≤ 1

N

∑

N/2≤n≤N

∑

|ih−n|≤D
√

N

fiP(Sn ∈ Ii − n)

≤ 1

N

∑

N/2≤n≤N

C√
N/2

∫ n+D
√

N

n−D
√

N

g(t)dt

≤ 1

N

∑

N/2≤n≤N

C√
N/2

∫ D
√

N

−D
√

N

g(t+ n)dt

≤ 1

N

∑

N/2≤n≤N

C√
N/2

∑

|k|≤D
√

N

∫ 1

0

g(t+ n+ k)dt

≤ C√
N/2

∑

|k|≤D
√

N

1

N

∫ N+k

N/2+k

g(t)dt

but thanks to the assumption on g, that is (25), each term in the above sum is say ≤ 2δ
for N large enough. Hence we get

lim
N→+∞

1

N

∑

N/2≤n≤N

E(g(Sn + n)1|Sn|≤D
√

N) ≤ 8CDδ

It suffices to choose δ so that 8CDδ ≤ ε/2 and this ends the proof..�

Remark 5.1. Note that Proposition 5.1 is not a corollary of Kakutani’s random ergodic
theorem. According to this theorem, for an arbitrary probability measure m on G/Γ, if m
is U -ergodic (and here U could be any subgroup of G) then the convergence in 24 holds for
m-almost all starting point x in G/Γ (under the assumption that µ is non-degenerate in
U). Here on the other hand, we try to capture the behavior of the random walk for every
orbit of U on which it may live.

5.4. A counter-example in the non-centered case. We give here an example that
shows that if the flow U is not uniquely ergodic, then one cannot remove the assumption
that µ be centered in Theorem 5.7.

Proposition 5.1. Let G = SL2(R) and Γ = SL2(Z) and let U be a one-parameter
unipotent subgroup of G. Let µ be a non-centered probability measure on U with variance
σ2 < +∞ and mean d 6= 0. Then for every compact subset K of G/Γ and for almost
every point x ∈ G/Γ, we have

(29) lim inf
n→+∞

µn ∗ δx(K) = 0

We will say that a real number θ is well approximable from both sides if for every ε > 0
and σ ∈ {−1, 1} one can find two integers x and y in Z2\{(0, 0)} such that

|x(y − θx)| < ε

σx(y − θx) > 0

It is easy to check that θ is well approximable from both sides if and only if its continuous
fraction expansion [a0, a1, ..., an, ...] is such that both subsequences (a2n)n and (a2n+1)n

are unbounded. Moreover almost every real number θ (for the Lebesgue measure) is well
approximable from both sides.
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We identify SL2(R)/SL2(Z) with the space of unimodular lattices in R2 and we set
as usual SL2(R) = G and SL2(Z) = Γ. Let ‖·‖ be the canonical Euclidean norm on R2.
Recall that according to Mahler’s criterion, a subset K ⊂ G/Γ is relatively compact if
and only if there exists δ > 0 such that ‖v‖ > δ for all lattices x ∈ K and all non-zero
vectors v ∈ x. We let also x0 = Z2.

Let (ut)t be a unipotent subgroup of SL2(R) and D a line in R2 which is invariant
under (ut)t. Let θ ∈ R be the slope (which we assume finite) of this line. Then in the
canonical basis of R2 the action of (ut)t can be written as

ut

(
x
y

)
=

(
x+ αt(y − θx)
y + αθt(y − θx)

)

for some α ∈ R\{0}. We fix an arbitrary compact subset K of G/Γ and we fix a number
δ > 0 which correspond to it by Mahler’s criterion (one can choose δ small enough so that
2|θ|δ3 < 1). We denote by Ω the set of all real numbers t such that ut · x0 /∈ K. For(
x
y

)
∈ Z2\{(0, 0)} we set Ax,y =

{
t ∈ R,

∣∣∣∣ut

(
x
y

)∣∣∣∣ < δ

}
. Then

Ω = {t, ut · x0 /∈ K} =
⋃

x,y∈Z2\{(0,0)}
Ax,y

Now we assume that θ /∈ Q and that θ is well approximable from both sides. Let us fix
κ = |2α|max{|θ|, 1} and denote tx,y = x

α(θx−y) and Ix,y = {t, |t| < δ
κ|θx−y|}. We can then

find arbitrarily large integers x and y such that

(30) |x(y − θx)| < δ4

and such that tx,y has whichever sign we desire. We check that, since δ was chosen small
enough

tx,y + Ix,y ⊂ Ax,y

Now let Sn = X1 + ... +Xn be a centered random walk with finite variance σ2 > 0 and
d ∈ R\{0}. Then Sn + nd is a non-centered random walk with a drift term equal to d,
so Sn is distributed according to µn. Since x can be taken as large as we want, we can
assume that |Ix,y| > 2|d|. Hence we can find a positive integer n such that

(31) nd ∈ tx,y +
1

2
Ix,y

Then, if Sn is not too large, i.e. if |Sn| < 1
4 |Ix,y|, we will have Sn + nd ∈ Ω. But if n

satisfies (31) then

n ≤ 2|x|
|α||θx − y|

Thanks to (30), it follows that if |Sn| < Cδ
√
n where Cδ = 1

δ

√
|αd|/2κ2 then |Sn| < 1

4 |Ix,y|.
So we have found an arbitrarily large positive integer n (because tx,y itself is arbitrarily

large) such that

Sn + nd ∈ Ω

as soon as |Sn| < Cδ
√
n. But since δ is as small as we want, Cδ is arbitrarily large and

for all ε > 0 we have

P(|Sn| < Cδ

√
n) ≥ 1 − ε

as it follows from the classical central limit theorem. Hence for every compact subset
K ⊂ G/Γ,

(32) lim sup P(uSn+nd · x0 /∈ K) = 1
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We have established (29) for x = x0 and whenever the slope θ of the invariant line fixed
by U satisfies the diophantine condition stated at the beginning of the paragraph. Let us
come back to the situation of the proposition. Let E be the set of all g ∈ G such that
(29) holds for all x = g−1 · x0. Then E is precisely the set of elements g ∈ G such that
(32) holds for every subset K when (ut) is changed into its conjugate (gutg

−1)t whose
fixed line is g−1D. Therefore E contains the set of all g ∈ G such that the slope of gD
is irrational and well approximable from both sides. The map from G to R sending g
to the slope of gD is differentiable and with no critical points (it identifies with the left
translation in G/P where P is the stabilizer of D). It follows that, for the Haar measure
on G, almost every g belongs to E. End of the proof.

Remark 5.2. In this example, we have shown that a non-centered random walk can stay
in the cusp with high probability at arbitrarily large times. But the same idea shows that the
walk can also stay very close to a closed orbit of U with high probability at arbitrarily large
times. The example described above is for SL2(R)/SL2(Z), but a similar phenomenon
arises as soon as U is not uniquely ergodic on G/Γ, i.e. if there are proper homogeneous
subspaces invariant under U .

6. Questions and further remarks

(i) Let us come back to Theorem 3.15 and observe that the uniform estimate (16)
implies in particular

lim
n→+∞

µn(xB)

νn(xB)
= 1

uniformly when |x|/√n stays bounded. Indeed it follows from the gaussian lower bound
satisfied by the heat kernel pt(x) associated to µ (i.e. the density of νt). However, this
tells nothing about the behavior of this ratio on a larger set of values of x. It would be
interesting to obtain a result similar to Theorem 4.5 in the case of nilpotent groups under
some additional moment assumption. The question can be asked already when µ has a
density, i.e. in Theorem 3.14.

(ii) We did not mention non-centered random walks on non-commutative nilpotent
Lie groups. In this case we have Raugi’s central limit theorem [92] which asserts that
under a certain renormalization d1/

√
n of N by linear dilations (which are not assumed

to be automorphisms) determined by the law µ, the sequence of probability measures
d1/

√
n(µn ◦ δe−nX ) (where X ∈ N represents the mean of µ in N/[N ,N ]) converges to

a non-degenerate probability measure, which is the law at time 1 of a certain diffusion
process on the vector space N whose infinitesimal generator is given explicitly. The
non-centered case differs remarkably from the centered case since the renormalization
d1/

√
n can be strictly stronger in the non-centered case. More precisely, let D(µ) be

the exponent of dilation of the dt’s, i.e. the integer such that vol(dt(B)) = tD(µ)vol(B)
for every compact subset B. Then we always have d(N) ≤ D(µ) ≤ 2d(N) − 1. And
D(µ) = d(N) if and only if the restriction of ad(X) to each N i/N i+1 is zero. Hence in
general, we can have D(µ) > d(N) ; this phenomenon is explained by the fact that inner
automorphisms spread out the random walk on a larger domain. It is natural to ask how
this phenomenon translates at the level of local limit theorems. In particular in the case
of a finitely generated nilpotent group Γ which we embed as a co-compact lattice in a
nilpotent Lie group, if µ is not centered, do we have (see Varopoulos’ Theorem 3.8)

sup
x∈Γ

µn(x) ≤ C

nD(µ)/2
?
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(iii) Let us now come back to the equidistribution in the Euclidean space (§ 2.3).
The proof of the local limit theorem that we gave above for the group of motions of the
plane makes use of an estimate of the norm of some operators associated to µ by the
irreducible unitary representations of G (Lemma 2.1). When d = 2, this estimate is made
possible mainly because G is then a solvable Lie group. If d ≥ 3, G has a non-trivial Levi
factor SO (d) which is a semisimple compact Lie group and the proof of Lemma 2.1 fails.
However it is natural to ask whether we still have a spectral gap in this case, that is

‖πr(µ)‖ < 1

as soon as r > 0. The unitary representation πr of G is irreducible if r > 0 and defined on
L2(Sd−1) by the equation (5). When r = 0 we find the regular representation of SO(d).
The existence of a spectral gap when r = 0 is precisely the question asked by Sarnak in
[96] and seems very delicate.

(iv) Let us consider Theorem 5.6. It implies in particular that the sequences of averages

( 1
n

∑n−1
k=0 µ

k ∗δx)n is relatively compact in the space of probability measures on G/Γ. One
can ask whether this sequence converges to the invariant probability measure mx from
Theorem 5.5. Clearly any limit measure is µ-stationary. So the question boils down
to showing that µ-stationary measures are in fact invariant under the elements of the
support of µ, that is, in some sense, a Choquet-Deny property. In [38], Furstenberg calls
this property stiffness and shows that it holds if µ is not singular with respect to the Haar
measure on G. He also asks whether it holds if we only assume that the support of µ
generate of dense or only Zariski dense subgroup in G.

(v) We did not mention here the problem of equidistribution in non-amenable groups.
On semisimple Lie groups, we have Bougerol’s local limit theorem [17] for probability
measures µ such that some power of it is not singular with respect to the Haar measure.
However the problem remains open for singular measures. In particular, let G be a
semisimple group and a and b be two elements chosen randomly (for the Haar measure) in
a small neighborhood of the identity. As can be shown, the group generated by a and b is
free and dense in G, almost surely. Let then µ be the probability measure giving a weight
of 1/4 to a and b and their inverses. Do we have a ratio limit theorem for µ? Similarly,
one can ask the analogous question when averages are made on balls of the free group
instead.
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(1984), 209 pp.


