Semi-abelian varieties over separably closed fields and maximal divisible subgroup

Franck Benoist (Université Paris-Sud) - Joint work with Elisabeth Bouscaren and Anand Pillay

Logicum Urbanae Lugduni - July 2009

Motivation: the model-theoretic proof of the conjecture of Mordell-Lang

G semi-abelian variety (commutative algebraic group of a special kind)

over K a differentially closed field of characteristic 0 or a non perfect separably closed field of characteristic p > 0

Definition 1 G^{\sharp} is the smallest type-definable subgroup of G(K)which is Zariski-dense in G. $G \mapsto G^{\sharp}$ defines a functor.

In order to use the machinery of Zariski geometries on G^{\sharp} , a notion of dimension is required.

- In char 0: Morley rank (DCF_0 is ω -stable)
- In char p > 0: U-rank ($SCF_{p,e}$ is not superstable, but $U(G^{\sharp})$ is finite)

Is it possible to give a uniform treatment of these two cases by using relative Morley rank for type-definable sets? Is it true that G^{\sharp} has always a relative Morley rank in char p? G^{\sharp} in char p

 $K \models SCF_{p,1}, \aleph_1$ -saturated

Proposition 1 $G^{\sharp} = p^{\infty}G(K) = \bigcap_{n \ge 0} p^n G(K)$ the biggest divisible subgroup of G(K)

Definition 2 C subfield of constants of K: $C = K^{p^{\infty}} = \bigcap_{n \ge 0} K^{p^n}$

C is a pure algebraically closed field, with relative Morley rank 1.

A special case: if G is defined over C, $G^{\sharp} = G(C)$, hence has relative Morley rank equal to dim(G).

The structure of semi-abelian varieties

A semi-abelian variety G can be written inside an exact sequence

$$0 \to T \to G \to A \to 0 \quad (*)$$

 $T = \mathbb{G}_m^d$ torus A abelian variety (i.e connected projective algebraic group)

Remark: T^{\sharp} has relative Morley rank (it is defined over C) A^{\sharp} has relative Morley rank (look at the case of simple abelian varieties and use an appropriate version of Zilber's indecomposability theorem) **Theorem 1** G^{\sharp} has relative Morley rank \Leftrightarrow the sequence $0 \to T^{\sharp} \to G^{\sharp} \to A^{\sharp} \to 0$ induced by (*) is exact.

Sketch of the proof

 \Leftarrow : it is a general fact about relative Morley rank.

 \Rightarrow : the only problem may be that $T^{\sharp} \subsetneq T \cap G^{\sharp}$.

We can show that T^{\sharp} is the connected component of $T \cap G^{\sharp}$, with $(T \cap G^{\sharp})/T^{\sharp}$ torsion free because T has no p-torsion. But if G^{\sharp} has relative Morley rank, this quotient has to be finite.

Question (arbitrary characteristic)

Does the functor $G \mapsto G^{\sharp}$ preserve exact sequences?

In order to exhibit a counter-example, we prove:

Theorem 2 (char 0 or p) Let $0 \rightarrow G_1 \rightarrow G_2 \rightarrow G_3 \rightarrow 0$ be an exact sequence of semi-abelian varieties over K. We assume moreover that they are ordinary in the positive characteristic case. If the sequence of G_i 's is exact, and if G_1 and G_3 descend to C (i.e are isomorphic to something defined over C), then G_2 descends to C.

Sketch of the proof

- Char 0: uses "D-structures" and work by Buium and Bertrand-Pillay.
- Char *p*: uses p-torsion

Lemma 1 *G* ordinary semi-abelian variety over *K*. For any $n \ge 0$, if the p^n -torsion $G[p^n] \subseteq G(K)$, *G* descends to K^{p^n} .

Corollary 1 *G* as before. *G* descends to C iff $T_pG(K) = T_pG$ (*Tate-module of power of p* torsion points)

We obtain the theorem by the fact that, if the sequence of G_i 's is exact, then the sequence of $T_pG(K)$'s is exact.

Consequence (char *p*)

There is a semi-abelian variety G, written as $0 \to \mathbb{G}_m \to G \to A \to 0$, with A ordinary abelian variety over \mathcal{C} , such that G^{\sharp} does not have relative Morley rank.

It uses the parametrization of such extensions G by \hat{A} , the dual abelian variety of A: a point in $\hat{A}(K) \setminus \hat{A}(\mathcal{C})$ corresponds to a semi-abelian variety over K which does not descend to \mathcal{C} . From the previous, the sequence $0 \to T^{\sharp} \to G^{\sharp} \to A^{\sharp} \to 0$ is not exact and G^{\sharp} does not have relative Morley rank.

Some positive results

Proposition 2 (arbitrary char) Let *E* be an elliptic curve which does not descend to C, and *G* a semi-abelian variety given by the exact sequence $0 \rightarrow T \rightarrow G \rightarrow E \rightarrow 0$. Then the \sharp -functor preserves this exact sequence.

Proposition 3 (char 0) Let $0 \rightarrow A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow 0$ be an exact sequence of abelian varieties. Then the \sharp -functor preserves this exact sequence.

Remark This last result is false in char p.