Semi-abelian varieties over separably closed fields and maximal divisible subgroup

Franck Benoist (Université Paris-Sud) - Joint work with Elisabeth Bouscaren and Anand Pillay

Logicum Urbanae Lugduni - July 2009
Motivation: the model-theoretic proof of the conjecture of Mordell-Lang

G semi-abelian variety (commutative algebraic group of a special kind)
over K a differentially closed field of characteristic 0 or a non perfect separably closed field of characteristic $p > 0$

Definition 1 $G^\#$ is the smallest type-definable subgroup of $G(K)$ which is Zariski-dense in G.
$G \mapsto G^\#$ defines a functor.

In order to use the machinery of Zariski geometries on $G^\#$, a notion of dimension is required.
• In char 0: Morley rank \((DCF_0)\) is \(\omega\)-stable

• In char \(p > 0\): U-rank \((SCF_{p,e})\) is not superstable, but \(U(G^\#)\) is finite

Is it possible to give a uniform treatment of these two cases by using relative Morley rank for type-definable sets?
Is it true that \(G^\#\) has always a relative Morley rank in char \(p\)?
$G^\# \text{ in char } p$

$K \models SCF_{p,1}, \aleph_1$-saturated

Proposition 1 $G^\# = p^\infty G(K) = \cap_{n \geq 0} p^n G(K)$ the biggest divisible subgroup of $G(K)$

Definition 2 \mathcal{C} subfield of constants of K: $\mathcal{C} = K^{p^\infty} = \cap_{n \geq 0} K^{p^n}$

\mathcal{C} is a pure algebraically closed field, with relative Morley rank 1.

A special case: if G is defined over \mathcal{C}, $G^\# = G(\mathcal{C})$, hence has relative Morley rank equal to $\dim(G)$.
The structure of semi-abelian varieties

A semi-abelian variety \(G \) can be written inside an exact sequence

\[
0 \to T \to G \to A \to 0 \quad (*)
\]

\(T = \mathbb{G}_m^d \) torus

\(A \) abelian variety (i.e connected projective algebraic group)

Remark: \(T^\# \) has relative Morley rank (it is defined over \(\mathcal{C} \))

\(A^\# \) has relative Morley rank (look at the case of simple abelian varieties and use an appropriate version of Zilber’s indecomposability theorem)
Theorem 1 \(G^\# \) has relative Morley rank \(\iff \) the sequence \(0 \rightarrow T^\# \rightarrow G^\# \rightarrow A^\# \rightarrow 0 \) induced by (\(\ast \)) is exact.

Sketch of the proof
\(\Leftarrow \): it is a general fact about relative Morley rank.
\(\Rightarrow \): the only problem may be that \(T^\# \subsetneq T \cap G^\# \).
We can show that \(T^\# \) is the connected component of \(T \cap G^\# \), with \((T \cap G^\#)/T^\# \) torsion free because \(T \) has no \(p \)-torsion. But if \(G^\# \) has relative Morley rank, this quotient has to be finite.
Question (arbitrary characteristic)
Does the functor $G \mapsto G^\#$ preserve exact sequences?

In order to exhibit a counter-example, we prove:

Theorem 2 (char 0 or p) Let $0 \to G_1 \to G_2 \to G_3 \to 0$ be an exact sequence of semi-abelian varieties over K. We assume moreover that they are ordinary in the positive characteristic case. If the sequence of G_i’s is exact, and if G_1 and G_3 descend to \mathcal{C} (i.e are isomorphic to something defined over \mathcal{C}), then G_2 descend to \mathcal{C}.
Sketch of the proof

- Char 0: uses “D-structures” and work by Buium and Bertrand-Pillay.

- Char p: uses p-torsion

Lemma 1 G ordinary semi-abelian variety over K. For any $n \geq 0$, if the p^n-torsion $G[p^n] \subseteq G(K)$, G descends to Kp^n.

Corollary 1 G as before. G descends to \mathcal{C} iff $T_pG(K) = T_pG$ (Tate-module of power of p torsion points)

We obtain the theorem by the fact that, if the sequence of G_i's is exact, then the sequence of $T_pG(K)$'s is exact.
Consequence (char \(p \))
There is a semi-abelian variety \(G \), written as \(0 \to \mathbb{G}_m \to G \to A \to 0 \), with \(A \) ordinary abelian variety over \(\mathbb{C} \), such that \(G^\# \) does not have relative Morley rank.

It uses the parametrization of such extensions \(G \) by \(\hat{A} \), the dual abelian variety of \(A \): a point in \(\hat{A}(K) \setminus \hat{A}(\mathbb{C}) \) corresponds to a semi-abelian variety over \(K \) which does not descend to \(\mathbb{C} \). From the previous, the sequence \(0 \to T^\# \to G^\# \to A^\# \to 0 \) is not exact and \(G^\# \) does not have relative Morley rank.
Some positive results

Proposition 2 (arbitrary char) Let E be an elliptic curve which does not descend to C, and G a semi-abelian variety given by the exact sequence $0 \to T \to G \to E \to 0$. Then the $\#$-functor preserves this exact sequence.

Proposition 3 (char 0) Let $0 \to A_1 \to A_2 \to A_3 \to 0$ be an exact sequence of abelian varieties. Then the $\#$-functor preserves this exact sequence.

Remark This last result is false in char p.