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Abstract

We prove the standard conjectures for complex projective varieties that are deforma-
tions of the Hilbert scheme of points on a K3 surface. The proof involves Verbitsky’s
theory of hyperholomorphic sheaves and a study of the cohomology algebra of Hilbert
schemes of K3 surfaces.

1. Introduction

An irreducible holomorphic symplectic manifold is a simply connected compact Kähler manifold
X, such that H0(X,Ω2

X) is generated by an everywhere non-degenerate holomorphic two-form
(see [Be1, Hu1]).

Let S be a smooth compact Kähler K3 surface and S[n] the Hilbert scheme (or Douady space)
of length n zero dimensional subschemes of S. Beauville proved in [Be1] that S[n] is an irreducible
holomorphic symplectic manifold of dimension 2n. If X is a smooth compact Kähler manifold
deformation equivalent to S[n], for some K3 surface S, then we say that X is of K3[n]-type. The
variety X is then an irreducible holomorphic symplectic manifold. The odd Betti numbers of X
vanish [Gö].

The moduli space of Kähler manifolds of K3[n]-type is smooth and 21-dimensional, if n > 2,
while that of K3 surfaces is 20-dimensional [Be1]. It follows that if S is a K3 surface, a general
Kähler deformation of S[n] is not of the form S′[n] for a K3 surface S′. The same goes for projective
deformations. Indeed, a general projective deformation of S[n] has Picard number 1, whereas for
a projective S, the Picard number of S[n] is at least 2.

In this note, we prove the standard conjectures for projective varieties of K3[n]-type. Let us
recall general facts about the standard conjectures.

In the paper [Gr] of 1968, Grothendieck states those conjectures concerning the existence of
some algebraic cycles on smooth projective algebraic varieties over an algebraically closed ground
field. Here we work over C. The Lefschetz standard conjecture predicts the existence of algebraic
self-correspondences on a given smooth projective variety X of dimension d that give an inverse
to the operations

H i(X)→H2d−i(X)

given by the cup-product d − i times with a hyperplane section, for all i 6 d. Above and
throughout the rest of the paper, the notation H i(X) stands for singular cohomology with
rational coefficients.
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Over the complex numbers, the Lefschetz standard conjecture implies all the standard conjec-
tures. If it holds for a variety X, it implies that numerical and homological equivalence coincide
for algebraic cycles on X, and that the Künneth components of the diagonal of X × X are
algebraic. We refer to [K1] for a detailed discussion.

Though the motivic picture has tremendously developed since Grothendieck’s statement of
the standard conjectures, very little progress has been made in their direction. The Lefschetz
standard conjecture is known for abelian varieties, and in degree 1, where it reduces to the Hodge
conjecture for divisors. The Lefschetz standard conjecture is also known for varieties X, for
which H∗(X) is isomorphic to the Chow ring A∗(X), see [K2]. Varieties with the latter property
include flag varieties, and smooth projective moduli spaces of sheaves on rational Poisson surfaces
[ES, Ma2].

In the paper [Ar], Arapura proves that the Lefschetz standard conjecture holds for uniruled
threefolds, unirational fourfolds, the moduli space of stable vector bundles over a smooth projec-
tive curve, and for the Hilbert scheme S[n] of every smooth projective surface ([Ar], Corollaries
4.3, 7.2 and 7.5). He also proves that if S is a K3 or abelian surface, H an ample line-bundle on
S, and M a smooth and compact moduli space of Gieseker-Maruyama-Simpson H-stable sheaves
on S, then the Lefschetz standard conjecture holds for M ([Ar], Corollary 7.9). Those results are
obtained by showing that the motive of those varieties is very close, in a certain sense, to that
of a curve or a surface. Aside from those examples and ones obtained by specific constructions
from them (e.g. hyperplane sections, products, projective bundles, etc.), very few cases of the
Lefschetz standard conjecture seem to be known.

The main result of this note is the following statement.

Theorem 1.1. The Lefschetz standard conjecture holds for every smooth projective variety of
K3[n]-type.

Since the Lefschetz standard conjecture is the strongest standard conjecture in characteristic
zero, we get the following corollary.

Corollary 1.2. The standard conjectures hold for any smooth projective variety of K3[n]-type.

Note that by the remarks above, Theorem 1.1 does not seem to follow from Arapura’s results,
as a general variety of K3[n]-type is not a moduli space of sheaves on any K3 surface.

Theorem 1.1 is proven in section 8. The degree 2 case of the Lefschetz standard conjecture,
for projective varieties of K3[n]-type, has already been proven in [Ma4] as a consequence of
results of [C]. Section 2 gives general results on the Lefschetz standard conjecture. Sections 3 to
5 introduce the algebraic cycles we need for the proof, while sections 6 and 7 contain results on
the cohomology algebra of the Hilbert scheme of K3 surfaces.

2. Preliminary results on the Lefschetz standard conjecture

Let X be a smooth projective variety of dimension d. Let ξ ∈ H2(X) be the cohomology class
of a hyperplane section of X. According to the hard Lefschetz theorem, for all i ∈ {0, . . . , d},
cup-product with ξd−i induces an isomorphism

Ld−i := ∪ξd−i : H i(X)→H2d−i(X).

The Lefschetz standard conjecture was first stated in [Gr], conjecture B(X). It is the following.
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Conjecture 2.1. Let X and ξ be as above. Then for all i ∈ {0, . . . , d}, there exists an algebraic
cycle Z of codimension i in the product X ×X such that the correspondence

[Z]∗ : H
2d−i(X)→H i(X)

is the inverse of ∪ξd−i.

If this conjecture holds for some specific i on X, we will say that the Lefschetz conjecture
holds in degree i for the variety X.

We will derive Theorem 1.1 as a consequence of Theorem 4.1 and Corollary 6.2 below. In this
section, we prove some general results we will need. The reader can consult [Ar], sections 1 and 4
for related arguments, and [An] for a more general use of polarizations and semi-simplicity. Let
us first state an easy lemma.

Lemma 2.2. Let X be a smooth projective variety of dimension d. Let i 6 d be an integer.

(i) Assume i = 2j is even, and let α ∈ H2j(X) be the cohomology class of a codimension j
algebraic cycle in X. Then there exists a cycle Z of codimension i = 2j in X ×X such that
the image of the correspondence

[Z]∗ : H
2d−2j(X)→H2j(X)

contains α.

(ii) Assume that X satisfies the Lefschetz standard conjecture in degrees up to i − 1. Then
X ×X satisfies the Lefschetz standard conjecture in degree up to i− 1.
Let j and k be two positive integers with i = j+k. Then there exists a cycle Z of codimension
i in (X ×X)×X such that the image of the correspondence

[Z]∗ : H
4d−i(X ×X)→H i(X)

contains the image of Hj(X)⊗Hk(X) in Hj+k(X) = H i(X) by cup-product.

Proof. Let α ∈ H2j(X) be the cohomology class of a codimension j algebraic cycle T in X. Let
Z be the codimension i = 2j algebraic cycle T ×T in X×X. Since the image in H i(X)⊗H i(X)
of the cohomology class of Z in H2i(X ×X) is α⊗ α, the image of the correspondence

[Z]∗ : H
2d−i(X)→H i(X)

is the line generated by α. This proves (1).

Let us prove the first part of (2). We repeat some of Kleiman’s arguments in [K1]. Assume
that X satisfies the Lefschetz standard conjecture in degree up to i− 1. We want to prove that
X ×X satisfies the Lefschetz standard conjecture in degree up to i − 1. By induction, we only
have to prove that X ×X satisfies the Lefschetz standard conjecture in degree i− 1.

For any j between 0 and i− 1, there exists a codimension j algebraic cycle Zj in X ×X such
that the correspondence

[Zj ]∗ : H
2d−j(X)→Hj(X)

is an isomorphism. For k between 0 and 2d, let πk ∈ H2d−k(X) ⊗ Hk(X) ⊂ H2d(X × X)
be the k-th Künneth component of the diagonal. By [K1], Lemma 2.4, the assumption on X
implies that the elements π0, . . . , πi−1, π2d−i+1, . . . , π2d are algebraic. Identifying the πj with the
correspondence they induce, this implies that for all j between 0 and i− 1, the projections

πj : H∗(X)→Hj(X) ↪→ H∗(X)
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and

π2d−j : H∗(X)→H2d−j(X) ↪→ H∗(X)

are given by algebraic correspondences. Replacing the correspondence [Zj ]∗ by [Zj ]∗ ◦ π2d−j ,
which is still algebraic, we can thus assume that the morphism

[Zj ]∗ : H
2d−k(X)→H2j−k(X)

induced by [Zj ] is zero unless k = j.

Now consider the codimension i− 1 cycle Z in (X ×X)× (X ×X) defined by

Z =

i−1∑
j=0

Zj × Zi−1−j .

We claim that the correspondence

[Z]∗ : H
4d−i+1(X ×X)→H i−1(X ×X)

is an isomorphism.

Fix j between 0 and i− 1. The hypothesis on the cycles Zj imply that the correspondence

[Zj × Zi−1−j ]∗ : H
4d−i+1(X ×X)→H i−1(X ×X)

maps the subspace H2d−k(X)⊗H2d−i+1+k(X) of H4d−i+1(X ×X) to zero unless k = j, and it
maps H2d−j(X) ⊗ H2d−i+1+j(X) isomorphically onto Hj(X) ⊗ H i−1−j(X). The claim follows,
as does the first part of (2).

For the second statement, let j and k be as in the hypothesis. Since j (resp. k) is smaller
than or equal to i − 1, X satisfies the Lefschetz standard conjecture in degree j (resp. k). As a
consequence, there exists a cycle T (resp. T ′) in X ×X such that the morphism

[T ]∗ : H
2d−j(X)→Hj(X)

(resp. [T ′]∗ : H2d−k(X)→Hk(X)) is an isomorphism. Consider now the projections p13 and p23
from X × X × X to X × X forgetting the second and first factor respectively, and let Z in
CH i(X ×X ×X) be the intersection of p∗13T and p∗23T

′. Since the cohomology class of Z is just
the cup-product of that of p∗13T and p∗23T

′, it follows that the image of the correspondence

[Z]∗ : H
4d−i(X ×X)→H i(X)

contains the image of Hj(X)⊗Hk(X) in Hj+k(X) = H i(X) by cup-product.

The following result appears in [C], Proposition 8.

Theorem 2.3. Let X be a smooth projective variety of dimension d, and let i 6 d be an integer.
Then the Lefschetz conjecture is true in degree i for X if and only if there exists a disjoint union
S of smooth projective varieties of dimension l > i satisfying the Lefschetz conjecture in degrees
up to i− 2 and a codimension i cycle Z in X × S such that the morphism

[Z]∗ : H
2l−i(S)→H i(X)

induced by the correspondence Z is surjective.

The following statement is an immediate corollary of Lemma 2.2 and Theorem 2.3.

4



The Standard Conjectures for some holomorphic symplectic varieties

Corollary 2.4. Let X be a smooth projective variety of dimension d, and let i 6 d be an
integer. Suppose that X satisfies the Lefschetz standard conjecture in degrees up to i− 1.

Let Ai(X) ⊂ H i(X) be the subspace of classes, which belong to the subring generated by
classes of degree < i, and let Algi(X) ⊂ H i(X) be the subspace of H i(X) generated by the
cohomology classes of algebraic cycles1.

Assume that there is a cycle Z of codimension i in X×X such that the image of the morphism

[Z]∗ : H
2d−i(X)→H i(X)

maps surjectively onto the quotient space H i(X)/
[
Algi(X) +Ai(X)

]
. Then X satisfies the Lef-

schetz standard conjecture in degree i.

Proof. We use Lemma 2.2. Let α1, . . . , αr be a basis for Algi(X). We can find codimension i
cycles Z1, . . . , Zr in X × X and (Zj,k)j,k>0,j+k=i in (X × X) × X, such that the image of the
correspondence

[Zl]∗ : H
2d−i(X)→H i(X)

contains αl for 1 6 l 6 r, and such that the image of the correspondence

[Zj,k]∗ : H
4d−i(X ×X)→H i(X)

contains the image of Hj(X)⊗Hk(X) in Hj+k(X) = H i(X), for j + k = i.

We proved that X ×X satisfies the Lefschetz standard conjecture in degree up to i− 1. The
disjoint union of the cycles Z×X, (Zl×X)16l6r and (Zj,k)j,k>0,j+k=i in a disjoint union of copies
of (X ×X)×X thus satisfies the hypothesis of Theorem 2.3 (we took products with X in order
to work with equidimensional varieties). Indeed, the space generated by the images in H i(X)
of the correspondences [Zj,k]∗ contains Ai(X) by definition. Adding the images in H i(X) of the
[Zl × X]∗, which generate a space containing Algi(X), and the image in H i(X) of [Z × X]∗,
which maps surjectively onto H i(X)/

[
Ai(X) +Algi(X)

]
, we get the whole space H i(X).

This ends the proof, and shows that X satisfies the Lefschetz standard conjecture in degree
i.

The strategy formulated in Corollary 2.4 will be used in the rest of this paper to prove
Theorem 1.1.

Corollary 2.5. Let X be a smooth projective variety with cohomology algebra generated in
degree less than i, and assume that X satisfies the Lefschetz standard conjecture in degree up
to i. Then X satisfies the standard conjectures.

Proof. Using induction and taking Z = 0, the previous corollary shows that X satisfies the
Lefschetz standard conjecture, hence all the standard conjectures, since we work in characteristic
zero.

Note that the Lefschetz conjecture is true in degree 1, as it is a consequence of the Lef-
schetz theorem on (1, 1)-classes. The preceding corollary hence allows us to recover the Lefschetz
conjecture for abelian varieties which was proved in [Lie].

1Note that this subspace is zero unless i is even.
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3. Moduli spaces of sheaves on a K3 surface

Let S be a projective K3 surface. Denote by K(S,Z) the topological K group of S, generated
by topological complex vector bundles. The K-group of a point is Z and we let χ : K(S,Z) → Z
be the Gysin homomorphism associated to the morphism from S to a point. The group K(S,Z),
endowed with the Mukai pairing

(v, w) := −χ(v∨ ⊗ w),

is called theMukai lattice and denoted by Λ(S). Mukai identifies the groupK(S,Z) withH∗(S,Z),
via the isomorphism sending a class F to its Mukai vector ch(F )

√
tdS . Using the grading of

H∗(S,Z), the Mukai vector of F is

(rank(F ), c1(F ), χ(F )− rank(F )), (3.1)

where the rank is considered inH0 and χ(F )−rank(F ) inH4 via multiplication by the orientation
class of S. The homomorphism ch(•)

√
tdS : Λ(S) → H∗(S,Z) is an isometry with respect to the

Mukai pairing on Λ(S) and the pairing(
(r′, c′, s′), (r′′, c′′, s′′)

)
=

∫
S
c′ ∪ c′′ − r′ ∪ s′′ − s′ ∪ r′′

on H∗(S,Z) (by the Hirzebruch-Riemann-Roch Theorem). Mukai defines a weight 2 Hodge struc-
ture on the Mukai lattice H∗(S,Z), and hence on Λ(S), by extending that of H2(S,Z), so that
the direct summands H0(S,Z) and H4(S,Z) are of type (1, 1) [Mu1].

Let v ∈ Λ(S) be a primitive class with c1(v) of Hodge-type (1, 1). There is a system of
hyperplanes in the ample cone of S, called v-walls, that is countable but locally finite [HL], Ch.
4C. An ample class is called v-generic, if it does not belong to any v-wall. Choose a v-generic
ample classH. LetMH(v) be the moduli space ofH-stable sheaves on theK3 surface S with class
v. When non-empty, the moduli space MH(v) is a smooth projective irreducible holomorphic

symplectic variety of K3[n] type, with n = (v,v)+2
2 . This result is due to several people, including

Huybrechts, Mukai, O’Grady, and Yoshioka. It can be found in its final form in [Y].

Over S × MH(v) there exists a universal sheaf F , possibly twisted with respect to a non-
trivial Brauer class pulled-back from MH(v). Associated to F is a class [F ] in K(S×MH(v),Z)
([Ma2], Definition 26). Let πi be the projection from S ×MH(v) onto the i-th factor. Assume
that (v, v) > 0. The second integral cohomology H2(MH(v),Z), its Hodge structure, and its
Beauville-Bogomolov pairing [Be1], are all described by Mukai’s Hodge-isometry

θ : v⊥ −→ H2(MH(v),Z), (3.2)

given by θ(x) := c1
(
π2!{π!1(x∨)⊗ [F ]}

)
(see [Y]). Above, π2! and π

!
1 are the Gysin and pull-back

homomorphisms in K-theory.

4. An algebraic cycle

Let M := MH(v) be a moduli space of stable sheaves on the K3 surface S as in section 3, so
that M is of K3[n]-type, n > 2. Assume that there exists an untwisted universal sheaf F over
S ×M. Denote by πij the projection from M× S ×M onto the product of the i-th and j-th
factors. Denote by Ei the relative extension sheaf

Extiπ13 (π
∗
12F , π∗23F) . (4.1)
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Let ∆ ⊂ M×M be the diagonal. Then E1 is a reflexive coherent OM×M-module of rank 2n−2,
which is locally free away from ∆, by [Ma4], Proposition 4.5. The sheaf E0 vanishes, while E2 is
isomorphic to O∆. Let [E

i] ∈ K(M×M,Z) be the class of Ei, i = 1, 2, and set

[E] := [E2]− [E1]. (4.2)

Set κ(E1) := ch(E1) exp
[
−c1(E1)/(2n− 2)

]
. Then κ(E1) is independent of the choice of a

universal sheaf F . Let κi(E
1) be the summand in H2i(M). Then κ1(E

1) = 0. There exists a
suitable choice of MH(v), one for each n, so that the sheaf E1 over MH(v) × MH(v) can be
deformed, as a twisted coherent sheaf, to a sheaf Ẽ1 over X × X, for every X of K3[n]-type
[Ma4]. See [Ca] for the definition of a family of twisted sheaves. We note here only that such
a deformation is equivalent to a flat deformations of End(E1), as a reflexive coherent sheaf,
together with a deformation of its associative algebra structure. The characteristic class κi(Ẽ

1)
is well defined for twisted sheaves [Ma4]. Furthermore, κi(Ẽ

1) is a rational class of weight (i, i),
which is algebraic, whenever X is projective. The construction is summarized in the following
statement.

Theorem 4.1. ([Ma4], Theorem 1.7) Let X be a smooth projective variety of K3[n]-type. Then
there exists a smooth and proper family π : X → C of irreducible holomorphic symplectic
varieties, over a simply connected reduced (possibly reducible) projective curve C, points t0, t1 ∈
C, isomorphismsM ∼= π−1(t0) andX ∼= π−1(t1), with the following property. Let p : X×CX → C
be the natural morphism. The flat section of the local system R∗

p∗Q through the class κ([E1]) in
H∗(M×M) is algebraic in H∗(Xt ×Xt), for every projective fiber Xt, t ∈ C, of π.

Verbitsky’s theory of hyperholomorphic sheaves plays a central role in the proof of the above
theorem, see [V].

5. A self-adjoint algebraic correspondence

Let K(M) be the topological K-group with Q coefficients. Define the Mukai pairing on K(M)
by (x, y) := −χ(x∨ ⊗ y). Let DM : H∗(M) → H∗(M) be the automorphism acting on H2i(M)
via multiplication by (−1)i. Define the Mukai pairing on H∗(M) by

(α, β) := −
∫
M
DM(α)β.

Define

µ : K(M) −→ H∗(M) (5.1)

by µ(x) := ch(x)
√
tdM. Then µ is an isometry, by the Hirzebruch-Riemann-Roch theorem.

Remark 5.1. Note that the graded direct summands H i(M) of the cohomology ring H∗(M)
satisfy the usual orthogonality relation with respect to the Mukai pairing: H i(M) is orthogonal
to Hj(M), if i+ j ̸= 4n.

This is the main reason for the above definition of the Mukai pairing. The Chern character ch :
K(M) → H∗(M) is an isometry with respect to another pairing (x, y) := −

∫
MDM(x) · y · tdM.

However, the graded summands H i(M) need not satisfy the orthogonality relations above.

Given two Q-vector spaces V1 and V2, each endowed with a non-degenerate symmetric bilinear
pairing (•, •)Vi , and a homomorphism h : V1 → V2, we denote by h

† the adjoint operator, defined
by the equation

(x, h†(y))V1 := (h(x), y)V2 ,
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for all x ∈ V1 and y ∈ V2. Set K(S) := K(S,Z) ⊗Z Q. We consider H∗(M), K(M), and K(S),
all as vector spaces over Q endowed with the Mukai pairing.

Let πi be the projection from M×M onto the i-th factor, i = 1, 2. Define

f̃ ′ : K(M) → K(M),

by f̃ ′(x) := π2!(π
!
1(x)⊗ [E]), where [E] is the class given in (4.2), and π2! and π

!
1 are the Gysin

and pull-back homomorphisms in K-theory. Let pi be the projection from S ×M onto the i-th
factor. Define

ϕ′ : K(S) → K(M)

by ϕ′(λ) := p2!(p
!
1(λ)⊗ [F ]). Define

ψ′ : K(M) → K(S)

by ψ′(x) := p1!(p
!
2(x)⊗ [F∨]), where F∨ is the dual class. We then have the following identities

ψ′ = (ϕ′)†, (5.2)

f̃ ′ = ϕ′ ◦ ψ′. (5.3)

Equality (5.2) is a K-theoretic analogue of the following well known fact in algebraic geometry.
Let Φ : Db(S) → Db(M) be the Fourier-Mukai functor with kernel F . Set FR := F∨ ⊗ p∗1ωS [2]
and let Ψ : Db(M) → Db(S) be the Fourier-Mukai functor with kernel FR. Then Ψ is the right
adjoint functor of Φ ([Mu2] or [Hu2], Proposition 5.9). The classes of F∨ and FR in K(S ×M)
are equal, since ωS is trivial. The equality (5.2) is proven using the same argument as its derived-
category analogue. Equality (5.3) expresses the fact that the class [E] is the convolution of the
classes of F∨ and F . We conclude that f̃ ′ is self adjoint. Set

f ′ := µ ◦ f̃ ′ ◦ µ†.

Then f ′ is the self adjoint endomorphism given by the algebraic class(
π∗1

√
tdM

)
ch([E])

(
π∗2

√
tdM

)
in H∗(M×M).

We normalize next the endomorphism f ′ to an endomorphism f . The latter will be shown
to have a monodromy-equivariance property in section 7. Let α ∈ K(M) be the class satisfying

ch(α) = exp
(
−c1(ϕ′(v∨))

2n−2

)
. Note that α is the class of a Q-line-bundle. Let τα : K(M) → K(M)

be tensorization with α, i.e., τα(x) := x⊗ α. Then τα is an isometry. Hence, τ †α = τ−1
α . Set

ϕ := τα ◦ ϕ′,
ψ := ψ′ ◦ τ−1

α ,

f̃ := ϕ ◦ ψ,
f := µ ◦ f̃ ◦ µ†.

Then f is the self adjoint endomorphism given by the algebraic class

π∗1 exp

(
c1(ϕ

′(v∨))

2n− 2

)(
π∗1

√
tdM

)
ch([E])

(
π∗2

√
tdM

)
π∗2 exp

(
−c1(ϕ′(v∨))

2n− 2

)
. (5.4)

Let hi : H
∗(M) → H2i(M) be the projection, and ei : H

2i(M) → H∗(M) the inclusion. Set

fi := hi ◦ f ◦ e2n−i.
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Note that fi is induced by the graded summand in H4i(M×M) of the class given in equation
(5.4).

6. Generators for the cohomology ring and the image of fi

Let A2i ⊂ H2i(M) be the subspace of classes, which belong to the subring generated by classes
of degree < 2i. Set

H
2i
(M) := H2i(M)/

[
A2i +Q · ci(TX)

]
.

Proposition 6.1. The composition

H4n−2i(M)
fi−→ H2i(M) → H

2i
(M) (6.1)

is surjective, for i > 2.

The proposition is proven below after Claim 7.2. Let gi : H4n−2i(M) → H2i(M) be the
homomorphism induced by the graded summand of degree 4i of the cycle

−
(
π∗1

√
tdM

)
κ(E1)

(
π∗2

√
tdM

)
. (6.2)

Denote by f̄i : H4n−2i(M) → H
2i
(M) the homomorphism given in (6.1) and define ḡi :

H4n−2i(M) → H
2i
(M) similarly in terms of gi.

Corollary 6.2. ḡi = f̄i, for i > 2. In particular, ḡi is surjective, for i > 2.

Proof. The equality c1([E]) = π∗1c1(ϕ
′(v∨))−π∗2c1(ϕ′(v∨)) is proven in [Ma4], Lemma 4.3. Hence,

the difference between the two classes (5.4) and (6.2) is ch(O∆)π
∗
1tdM. Now chj(O∆) = 0, for

0 6 j < 2n. Hence, fi = gi, for 0 6 i 6 n−1. The quotient group H
2i
(M) vanishes, for i > n−1,

by [Ma1], Lemma 10, part 4. Consequently, f̄i = 0 = ḡi, for i > n.

Set η := µ ◦ ϕ, where µ is given in equation (5.1). Then η† = ψ ◦ µ†, and we have

f = η ◦ η†.

Set ηi := hi ◦ η. We abuse notation and identify hi with the endomorphism ei ◦ hi of H∗(M).
Similarly, we identify e2n−i with the endomorphism e2n−i ◦ h2n−i of H∗(M). With this notation
we have

h†i = e2n−i.

We get the following commutative diagram.

H4n−2i(M)
fi //

e2n−i

��

η†i

00

H2i(M)

H∗(M)

µ†

��

f // H∗(M)

hi

OO

K(M)
f̃ //

ψ &&LLLLLLLLLL
K(M)

µ ∼=

OO

K(S)

ϕ

99ttttttttt
ηi

\\
(6.3)
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The two main ingredients in the proof of Proposition 6.1 are the following Theorem and the
monodromy equivariance of Diagram (6.3) reviewed in section 7.

Theorem 6.3. The composite homomorphism

K(S)
ηi−→ H2i(M) → H

2i
(M)

is surjective, for all i > 1.

Proof. The subspaces chi(ϕ
′(K(S)), i > 1, generate the cohomology ring H∗(M), by ([Ma1],

Corollary 2). When M = S[n], this was proven independently in [LQW]. The same statement
holds for the subspaces chi(ϕ(K(S)). Indeed, ch1(ϕ(K(S)) = ch1(ϕ

′(K(S)) = H2(M), since
ϕ′(λ∨) is a class of rank 0, for λ ∈ v⊥, and so c1(ϕ

′(λ∨)) = c1(ϕ(λ
∨)), for λ ∈ v⊥. Now

ch1(ϕ
′([v⊥]∨)) = H2(M), since Mukai’s isometry given in (3.2) is surjective. For i > 1, the

subspaces chi(ϕ
′(K(S)) and chi(ϕ(K(S)) are equal modulo the subring generated by H2(M).

The surjectivity of the composite homomorphism follows.

Claim 6.4. If ηi is injective, then Im(fi) = Im(ηi).

Proof. The assumption implies that η†i is surjective. Furthermore, we have fi = ηi ◦ η†i . The
equality Im(fi) = Im(ηi) follows.

In the next section we will prove an analogue of the above claim, without the assumption
that ηi is injective (see Claim 7.2).

7. Monodromy

Recall that the Mukai lattice Λ(S) is a rank 24 integral lattice isometric to the orthogonal direct
sum E8(−1)⊕2 ⊕U⊕4, where E8(−1) is the negative definite E8 lattice and U is the unimodular
rank 2 hyperbolic lattice [Mu1]. Recall that M is the moduli space MH(v). Denote by O+Λ(S)v
the subgroup of isometries of the Mukai lattice, which send v to itself and preserve the spinor
norm. The spinor norm is the character OΛ(S) → {±1}, which sends reflections by −2 vectors to
1 and reflections by +2 vectors to−1. The groupO+Λ(S)v acts on Λ(S) and onK(S) ∼= Λ(S)⊗ZQ
via the natural action.

Let DS : K(S) → K(S) be given by DS(λ) = λ∨.

Theorem 7.1. (i) ([Ma3], Theorem 1.6) There exist natural homomorphisms

mon : O+Λ(S)v −→ GL [H∗(M)] ,

m̃on : O+Λ(S)v −→ GL [K(M)] ,

introducing an action of O+Λ(S)v on both H∗(M) and K(M) via monodromy operators.
Denote the image of g ∈ O+Λ(S)v by mong and m̃ong.

(ii) ([Ma3], Theorem 3.10) The equation

m̃ong(ϕ(λ
∨)) = ϕ

(
[g(λ)]∨

)
(7.1)

holds for every g ∈ O+Λ(S)v, for all λ ∈ Λ(S). Consequently, the composite homomorphism

K(S)
DS−→ K(S)

η−→ H∗(M)

10
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is O+Λ(S)v equivariant.2

Set w := DS(v). We have the orthogonal direct sum decomposition

K(S) = Qw ⊕ w⊥
Q

into two distinct irreducible representations of O+Λ(S)v, where we consider a new action of
O+Λ(S)v on K(S), i.e., the conjugate by DS of the old one. So g ∈ O+Λ(S)v acts on K(S) via
DS ◦ g ◦ DS . Let πw : K(S) → Qw and πw⊥ : K(S) → w⊥

Q be the orthogonal projections. Let

ηw : Qw → H∗(M) be the restriction of η to Qw and ηw⊥ : w⊥
Q → H∗(M) the restriction of η to

w⊥
Q . We have

πw ◦ η† = (ηw)
† and πw⊥ ◦ η† = (ηw⊥)†.

Set ηi,w := hi ◦ ηw and ηi,w⊥ := hi ◦ ηw⊥ . Then

(ηi,w)
† = πw ◦ η† ◦ e2n−i,

(ηi,w⊥)† = πw⊥ ◦ η† ◦ e2n−i.

Claim 7.2. The homomorphisms fi and ηi in diagram (6.3) have the same image in H2i(M).

Proof. Clearly, ηi,w is injective, if it does not vanish. We observe next that the same is true for
ηi,w⊥ . This follows from the fact that ηi,w⊥ is equivariant with respect to the action of the group

O+Λ(S)v (Theorem 7.1, part ii). Now w⊥
Q is an irreducible representation of O+Λ(S)v. Hence,

ηi,w⊥ is injective, if and only if it does not vanish. We have

ηi = ηi,w ◦ πw + ηi,w⊥ ◦ πw⊥ ,

(ηi)
† = (ηi,w)

† + (ηi,w⊥)†, and

fi = ηi,w ◦ (ηi,w)† + ηi,w⊥ ◦ (ηi,w⊥)†.

Furthermore, the image of (ηi,w)
† is equal to Qw, if ηw,i does not vanish, and the image of (ηi,w⊥)†

is equal to w⊥
Q , if ηi,w⊥ does not vanish. Hence, the image of ηi,w ◦ (ηi,w)† is equal to the image

of ηi,w and the image of ηi,w⊥ ◦ (ηi,w⊥)† is equal to the image of ηi,w⊥ . The image of fi is thus
equal to the sum of the images of ηi,w and ηi,w⊥ . The latter is precisely the image of ηi.

Proof. (Of Proposition 6.1) Follows immediately from Theorem 6.3 and Claim 7.2.

8. Proof of the main theorem

We can now prove the main result of this note. We use the notations of section 2.

Proof of Theorem 1.1. Let X be a smooth projective variety of K3[n]-type. According to The-
orem 4.1, there exists a smooth and proper family p : X → C of irreducible holomorphic sym-
plectic varieties, over a connected reduced projective curve C, points t1, t2 ∈ C, isomorphisms
M ∼= p−1(t1) and X ∼= p−1(t2). Additionally, if q : X ×C X → C is the natural morphism, there
exists a flat section s of the local system R∗

q∗Q through the class κ([E1]) in H∗(M×M) which
is algebraic in H∗(Xt ×Xt), for every projective fiber Xt, t ∈ C, of p.

2The appearance of λ∨ instead of λ as an argument of ϕ in (7.1), as well as in equation (3.2) for Mukai’s isometry,
is due to the fact that we use the Mukai pairing to identify Λ(S) with its dual. So the class of the kernel [F ] ⊗
p∗2 exp

(
−c1(ϕ

′(v∨))
2n−2

)
of ϕ in K(S ×M) ∼= K(S)⊗K(M) is O+Λ(S)v invariant with respect to the usual action of

O+Λ(S)v on the first factor, and the monodromy action on the second.
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Let us denote by Zi an algebraic cycle in H2i(X ×X) with cohomology class the degree 2i
component of

(
π∗1

√
tdX

)
s(t2)

(
π∗2

√
tdX

)
, where π1 and π2 are the two projections X ×X→X.

Using the cycles Zi, we prove by induction on i 6 n that X satisfies the Lefschetz standard
conjecture in degree 2i for every integer i – recall that the cohomology groups of X vanish in
odd degrees. This is obvious for i = 0.

Let i 6 n be a positive integer. Assume that the Lefschetz conjecture holds for X in degrees
up to 2i− 1. Let us show that the morphism

H4n−2i(X)
[Zi]∗−→ H2i(X) → H2i(X)/

[
A2i(X) +Q · ci(TX)

]
is surjective. Since p and q are smooth, the morphism above is the fiber at t2 of the morphism

R4n−2ip∗Q→R2ip∗Q

of local systems over C induced by s, which implies that it is surjective at t2 if and only if it is
surjective at t1. The fiber at t1 of this morphism is induced by the class κ([E1]), which shows
that it is surjective by Corollary 6.2.

Corollary 2.4 now shows that X satisfies the Lefschetz standard conjecture in degree 2i, which
concludes the proof.

Remark 8.1. Note that the proof of the main result of this note makes essential use of deforma-
tions of hyperkähler varieties along twistor lines, and that a general deformation of a hyperkähler
variety along a twistor line is never algebraic, see [Hu1], 1.17. Though the standard conjectures
deal with projective varieties, we do not know a purely algebraic proof of the result of this note.
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