TL;DR - 18-19/11/19

Important points

We fix a Dedekind ring \mathcal{O} with fraction field K.

- If L is a finite separable extension of K, \mathcal{O}_L its ring of integers, then \mathcal{O}_L is a Dedekind ring, and a \mathcal{O}_K -module of finite type.
- The study of the morphism $\pi : \operatorname{Spec}\mathcal{O}_L \to \operatorname{Spec}\mathcal{O}_K$ is very important. Understanding the fiber of π over a prime \mathfrak{p} is related to the factorization of $\mathfrak{p}\mathcal{O}_L$ into primes, which are those in $\pi^{-1}(\mathfrak{p})$.
- We say that a prime \mathfrak{P} in \mathcal{O}_L lies above \mathfrak{p} if $\pi(\mathfrak{P}) = \mathfrak{p}$. The residual extension $f_{\mathfrak{P}/\mathfrak{p}}$ is the degree of the extension of residue fields $(\mathcal{O}_L/\mathfrak{P})/(\mathcal{O}_K/\mathfrak{p})$. The ramification index $e_{\mathfrak{P}/\mathfrak{p}}$ is the maximal integer e such that \mathfrak{P}^e divides $\mathfrak{p}\mathcal{O}_L$.
- The sum of all products $e_{\mathfrak{P}/\mathfrak{p}}f_{\mathfrak{P}/\mathfrak{p}}$ as \mathfrak{P} runs through all primes above \mathfrak{p} , is equal to n = [L : K].
- \mathfrak{p} is totally split if all e and f are $1 \mathfrak{p}$ is totally ramified is there is only one \mathfrak{P} above \mathfrak{p} , with e = n and f = 1. \mathfrak{p} is inert if $\mathfrak{p}\mathcal{O}_L$ is prime.
- There are only finitely many ramified primes.
- Important construction: norm of fractional ideals. This is compatible with the norm of elements.
- Section 3.4 is important: it gives you explicit ways of working through the concepts above. Note the apparition of Eisenstein polynomials and their relationship to ramification. Note also that we may always work locally.
- Galois extensions have even more structures. All invariants e and f are constant above a given prime, and the Galois group acts transitively on the fibers of π .
- Galois extensions along decomposition groups, that map to the Galois group of residual extensions, and inertia group, that control ramification.
- We worked out some differential calculus. There is an \mathcal{O}_L -module $\Omega^1_{\mathcal{O}_L}/\mathcal{O}_K$ whose support is exactly the ramified primes (no Galois assumption). Its annihilator is an ideal called the different $\mathcal{D}_{L/K}$. We may compute it explicitly in some cases.
- Proposition 3.72 was given an incorrect proof in class check the notes for a correct proof.

References

Everything is classical and covered in the general references, except for the relationship between differentials and the dualizing module. A beautiful discussion for this in a way more general context is given in the Stacks project, chapter 47.