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TL;DR — local class field theory

Important points

Let K be a local field (usually we assume that K has characteristic zero).

The first point is the computation of the Brauer group of K.

Central simple algebras over K are always cyclic algebras associated to an un-
ramified extension of K.

The result above allows us to construct a natural isomorphism, the Hasse in-
variant

invg : Br(K) — Q/Z.
It is functorial in K.
Through Pontryagin duality, the Hasse invariant gives rise to the Artin reci-
procity map

PK - K*— G%)

where G is the absolute Galois group of K, and G its abelianization as a

profinite group, i.e the limit of all abelian finite quotients of Gx. Then G% is
the Galois group of the maximal abelian extension of K.

pi is characterized by the formula

invg(x,a) = x(pk(a))
for y € X(K), a € K*.

The main theorem of class field theory describes the behaviour of pg: it is
functorial in K, the composition

K*—G% —17

given by restricting to the maximal unramified extension is the valuation map.
If L is a finite abelian extension of K, then the composition

K* — G% — Gal(L/K)

induces an isomorphism K*/Np/x(L*) ~ Gal(L/K), and pg induces an isomor-
phism -
pr P K* — G2,

The interesting part of px is its restriction to O}, which maps isomorphically
to I, the Galois group of a maximal totally ramified, abelian, extension of K.
The difficult part is proving injectivity, which amounts to finding enough totally
ramified abelian extensions of K. This is the existence theorem.
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o If K = Q,, an explicit computation shows that cyclotomic extensions give
enough extensions to prove the existence theorem. This is then enough to prove
the local and global versions of the Kronecker-Weber theorem: any finite abelian
extension of Q, (resp. Q) is contained in a cyclotomic extension.

e In the general case, cyclotomic extensions are not enough (as K* is larger —
it has dimension > 1 as a p-adic Lie group, and cyclotomic extensions only
account for a Z,-worth of extensions). We gave an argument adding roots of
unity and considering Kummer extensions. Another argument constructs the
needed extensions through Lubin-Tate theory.
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References we followed the presentation of Kato-Kurokawa-Saito. Serre’s
treatment in local fields follows a cohomological approach which is more efficient but
more abstract — it is more standard nowadays. You can find a beautiful presentation
of Lubin-Tate theory in Cassels-Frohlich. For a very involved modern proof of local
class field theory through geometric techniques, see L. Fargues, Simple connezité des
fibres d’une application d’Abel-Jacobi et corps de classe local, ASENS to appear.



