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Abstract. We investigate boundedness results for families of holomorphic symplectic varieties up
to birational equivalence. We prove the analogue of Zarhin’s trick for K3 surfaces by constructing

big line bundles of low degree on certain moduli spaces of stable sheaves, and proving birational
versions of Matsusaka’s big theorem for holomorphic symplectic varieties.

As a consequence of these results, we give a new geometric proof of the Tate conjecture for

K3 surfaces over finite fields of characteristic at least 5, and a simple proof of the Tate conjecture
for K3 surfaces with Picard number at least 2 over arbitrary finite fields – including fields of

characteristic 2.

1. Introduction

1.1. Main results. The main goal of this paper is to investigate geometric and arithmetic finiteness
results for K3 surfaces and related objects. The initial inspiration for the results of this text is the
paper [Zar74]. The main insight of Zarhin – ”Zarhin’s trick” – is the fact that if A is an abelian

variety over an arbitrary field k, then (A× Â)4 admits a principal polarization. In particular, while
the set of isomorphism classes of polarized abelian varieties of fixed dimension g does not form a
limited family if g > 1, it does map naturally to the moduli space of principally polarized abelian
varieties of dimension 8g. As proved by Tate in [Tat66], this finiteness result directly implies the
Tate conjecture for abelian varieties over finite fields.

It is well-known that the Tate conjecture is related to finiteness results for certain classes of
algebraic varieties over finite fields or number fields. The aforementioned argument of Zarhin shows
that, in the case of abelian varieties over finite fields, such finiteness are consequences of boundedness
results that hold over arbitrary fields.

The goal of this paper is to discuss an analogue of this circle of ideas for K3 surfaces, and explain
applications to new proofs of the Tate conjecture for divisors on these surfaces. While some of our
results are not new, one of the goal of this paper is to emphasize the role of certain geometric objects
– moduli spaces of twisted and untwisted sheaves – regarding the existence of divisors on surfaces.
It seems that our results are the first occurrence of new versions of Zarhin’s trick since Zarhin’s
original paper.

We first investigate Zarhin’s trick for K3 surfaces and proceed in two steps. The first step is to
construct big line bundles on moduli spaces of sheaves on K3 surfaces. A simplified version of our
result, which is stated in detail in Theorem 2.9, is the following.

Theorem 1.1. Let k be a field, and let d be a positive integer. Then there exists a positive integer r
such that for infinitely many positive integers m, if (X,H) is a polarized K3 surface of degree 2md
over k, then there exists a smooth, 4-dimensional, projective moduli space M of stable sheaves on X
and a line bundle L on M satisfying c1(L)4 = r and q(L) > 0, where q is the Beauville-Bogomolov
form on M.

We actually give a congruence condition on m that ensures it satisfies the property above.
1
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The space M is a natural analogue of the product (A× Â)4 appearing in Zarhin’s trick. Indeed,
at least over C, it is an irreducible holomorphic symplectic variety – that is, it is simply connected
and its space of holomorphic 2-forms is spanned by a single symplectic form. Furthermore, it is
deformation-equivalent to the Hilbert scheme X [2] of 2 points on X.

By an important theorem of Huybrechts [Huy99, 3.10], either L or its dual is big. This means
that there exists a power of L that induces a birational map fromM onto a subvariety of projective
space. Another major theme – and the second step – of this paper is investigating the extent to which
a birational version of Matsusaka’s big theorem holds in this setting. We formulate an optimistic
possible result as a question.

Question. Let M be either a complex projective holomorphic symplectic variety or – in positive
characteristic – a smooth projective moduli space of stable sheaves of dimension 2n on a K3 surface,
and let L be a big line bundle on M with c1(L)2n = r and q(L) > 0, where q is the Beauville-
Bogomolov form. Do there exist integers N, d and k depending only on r and n such that the
complete linear system |kL| induces a birational map from M onto a subvariety of degree at most
d of Pm with m ≤ N ?

One could even ask whether the integer k can be chosen independently of r. If one could control
the singularities of a general member of |L|, this would follow in characteristic zero from Theorem
1.3 in [HMX14].

We are not able to answer the question – in positive characteristic, even the case where L is
assumed to be ample is not clear – but give partial results in that direction. For K3 surfaces,
geometric considerations following [SD74] allow us to answer the question in any characteristic, up
to replacing L by a different line bundle L′ with self-intersection bounded in terms of r. This is
Proposition 3.1.

In higher dimension, we do not give a completely geometric proof, as we do not understand the
geometry of linear systems well enough in that case – see however related considerations in [O’G05].
Over the field of complex numbers, we can use the period map and the global Torelli theorem of
[Ver13] to answer the question in Theorem 3.3, again possibly changing the bundle L. This has the
following consequence.

Theorem 1.2. Let n and r be two positive integers. Then there exists a scheme S of finite type over
C, and a projective morphism X → S such that if X is a complex irreducible holomorphic symplectic
variety of dimension 2n and L is a line bundle on X with c1(L)2n = r and q(L) > 0, where q is the
Beauville-Bogomolov form, then there exists a complex point s of S such that Xs is birational to X.

In other words, the holomorphic symplectic varieties as above form a bounded family.

In positive characteristic, we deal with finite fields using a similar strategy – in that case, the
period map is replaced by the Kuga-Satake construction. This prevents us from dealing with char-
acteristic 2, as is customary. We also assume that the characteristic is different from 3, but this
might be an unimportant restriction. The finiteness result we obtain is Proposition 3.16.

The main application of our results is to the Tate conjecture for K3 surfaces over finite fields.
In odd characteristic, it has been proved in [Mau12, Cha12], and independently in [MP13b]. The
first of this proofs relies on results of Borcherds on the Picard group of Shimura varieties, while the
second one uses construction of canonical models of certain Shimura varieties. We follow a different
approach that first appeared in spirit in [ASD73] and was discussed in [LMS14]. In the latter paper,
it is proved that the Tate conjecture for K3 surfaces over a finite field k is equivalent to the finiteness
of the set of isomorphism classes of K3 surfaces over k. By refining the arguments of [LMS14], we
are able to use a version of this criterion, together with both our version of Zarhin’s trick above and
our birational boundedness results, and give a new proof of the following theorem.
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Theorem 1.3. Let X be a K3 surface over a finite field of characteristic at least 5. Then X satisfies
the Tate conjecture.

It was the hope of the author that the techniques of this paper would be able to give a proof of
the Tate conjecture for K3 surfaces over finite fields that might not rely on Kuga-Satake varieties.
However, our proof of birational boundedness results for higher-dimensional holomorphic symplectic
varieties in positive characteristic turned out to require this construction. The reason why it appears
is that since the birational geometry of holomorphic symplectic varieties might be hard to control, it
is very helpful to translate the problem in terms of abelian varieties where the birational geometry
is trivial and Matsusaka’s big theorem is known even in positive characteristic. It seems possible
that further understanding of the underlying geometry might answer the question above along the
lines of Proposition 3.1.

Our last result, which is new only in characteristic 2 but whose proof is in any case significantly
simpler that all the other proofs of the Tate conjecture, should be seen as a modern rephrasing of
the main result of [ASD73] which dealt with elliptic K3 surfaces. It does not use the Kuga-Satake
construction nor p-adic methods. As opposed to the proofs of the Tate conjecture for various classes
of K3 surfaces that appeared after [ASD73], it does not rely on the geometry of moduli spaces of
K3 surfaces, but rather on the geometry of the surfaces themselves.

Theorem 1.4. Let X be a K3 surface over a finite field of arbitrary characteristic. If the Picard
number of X is at least 2, then X satisfies the Tate conjecture.

It is perhaps interesting to notice that, after a finite extension of the base field, the hypothesis of
the theorem above is satisfied as soon as X satisfies the Tate conjecture – if this holds, the Picard
number of Xk should be even, see for instance [dJK00]. It would be very interesting to find a direct
proof of this fact.

The paper is split in three parts, which are independent in some respect. In section 2, we prove
a version of Zarhin’s trick for K3 surfaces over arbitrary fields. This relies on the study of moduli
spaces of stable sheaves on K3 surfaces and their cohomology, as initiated by Mukai.

Section 3 is devoted to birational versions of Matsusaka’s big theorem for holomorphic symplectic
varieties, over C and finite fields. For K3 surfaces, we explain how to use results of Saint-Donat to
prove the desired results, while in the other cases we need a finer analysis of some moduli spaces
via period maps. This leads to technical complications in positive characteristic, which arise in
particular due to the fact that there does not seem to be a satisfying definition of holomorphic
symplectic varieties over arbitrary fields.

In section 4, we apply the aforementioned results to the Tate conjecture for K3 surfaces over
finite fields. We follow the strategy of [LMS14] for the most part by using moduli spaces of twisted
sheaves. We also discuss a simple proof of Theorem 1.4.

While the last section is arithmetic in nature, we hope that the first two might be of some interest
even for complex geometers.

1.2. A preliminary result. We will need the following lifting result. It is certainly well-known to
experts and follows easily from [LM14], see also [LO14, Proposition A.1].

Proposition 1.5. Let X be a K3 surface over an algebraically closed field k of positive characteristic,
and let L1, . . . , Lr be line bundles on X. Assume that L1 is ample, and let W be the ring of Witt
vectors of k. If r ≤ 10, there exists a finite flat morphism S → SpecW , where S is the spectrum of
a discrete valuation ring, and a smooth projective relative K3 surface X → S such that

(i) The special fiber of X → S is isomorphic to X;
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(ii) The image of the specialization map

Pic(X )→ Pic(X)

contains the classes of L1, . . . , Lr.

Proof. If X has finite height, the result follows from [LM14, Corollary 4.2]. In general, in the defor-
mation space of (X,L1) over k, which has dimension 19, the complement of the locus of surfaces of
finite height has dimension 9 by [Art74], and the deformation space of (X,L1, . . . , Lr) has codimen-
sion r − 1. As a consequence, (X,L1, . . . , Lr) is a specialization of a K3 surface with finite height,
which allows us to conclude. �

1.3. Acknowledgements. This work was started during the junior trimester on algebraic geometry
at the Hausdorff Institute in Bonn. I would like to thank the Hausdorff Institute for excellent working
conditions. I am very happy to thank Olivier Benoist, Daniel Huybrechts and Eyal Markman for
many useful conversations and pointing out some errors in a first version of this text. Presenting an
early version of these results during a workshop on K3 surfaces in Fudan University, Shanghai was
very helpful, and I am happy to thank the organizers.

2. A variant of Zarhin’s trick for K3 surfaces

2.1. Moduli spaces of stable sheaves on K3 surfaces. The goal of this section is to describe
the geometry of moduli spaces of stable sheaves on K3 surfaces. Over the field of complex numbers,
these results are well-known due to the work of Mukai, O’Grady and Yoshioka. We explain below
how to extend them to arbitrary fields.

Mukai lattices were first defined in [Muk87a]. Recently, they have been defined and studied in
great generality in the paper [LO14]. For our purposes, we only need very basic definitions which
recall now.

Definition 2.1. Let k be a field with algebraic closure k, and let X be a K3 surface over k. Let `
be a prime number which is invertible in k.

(i) The `-adic Mukai lattice of X is the free Z`-module

H̃(Xk,Z`) := H0(Xk,Z`)⊕H
2(Xk,Z`(1))⊕H4(Xk,Z`(2))

endowed with the Mukai pairing

〈(a, b, c), (a′, b′, c′)〉 = bb′ − ac′ − a′c.

(ii) Let ω be the numerical equivalence class of a closed point in Xk. A Mukai vector on X is an
element v of

N(X) := Z⊕NS(X)⊕ Zω.
We denote by rk(v) the rank of v, that is, its first component, and by c1(v) its component in
Pic(X). We identify a Mukai vector and its image in the `-adic Mukai lattice under the natural
injection

N(X)→ H̃(Xk,Z`).
(iii) Let F be a coherent sheaf on X. The Mukai vector of F is

v(F) := ch(F)
√
tdX = rk(F) + c1(F) + (χ(F)− rk(F))ω.

If F and G are two coherent sheaves on X, let χ(F ,G) =
∑
i(−1)iExti(F ,G). If F is locally free,

then χ(F ,G) = χ(F∨ ⊗ G). By the Riemann-Roch theorem, see [Muk87a, Proposition 2.2] we have
the following.
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Proposition 2.2. Let F and G be two coherent sheaves on X. Then

χ(F ,G) = −v(F).v(G).

Given a Mukai vector v and a polarization H on X – that is, H is an isomorphism class of ample
line bundles on X – we denote by MH(X, v) the moduli space of Gieseker-Maruyama H-stable
sheaves F on X such that v(F) = v. This moduli space is well-defined as a quasi-projective scheme
over k in arbitrary characteristic by work of Langer [Lan04, Theorem 0.2]. When X is fixed, we will
denote this moduli space by MH(v).

Over the field of complex numbers, it is customary to require the polarization H to be generic
with respect to v. Over an arbitrary field, we will state our results under a stronger assumption on
v.

Definition 2.3. Let X be a K3 surface over a field k, and let H be a polarization on X. We say
that a Mukai vector v on X satisfies condition (C) if

(i) The vector v is primitive, rk(v) > 0 and v2 > 0;
(ii) Writing v = rk(v) + c1(v) + λω, then

gcd(rk(v), H.c1(v), λ) = 1;

The following theorem describes the geometry of the moduli space in arbitrary characteristic. We
will refine some of these results below under additional assumptions.

Theorem 2.4. Let k be a field with algebraic closure k, and let X be a K3 surface over k. Let v be
a Mukai vector on X satisfying condition (C).

(i) The space MH(v) is a smooth, projective, geometrically irreducible variety of dimension v2 +2
over k. It is deformation-equivalent to the Hilbert scheme X [n] parametrizing subschemes of

dimension 0 and length n = v2+2
2 in X. It is endowed with a natural symplectic structure, i.e.,

the sheaf Ω2
X/k has a global section which is everywhere non-degenerate.

(ii) If k is the field C of complex numbers, then MH(v) is an irreducible holomorphic symplectic
variety.

(iii) If ` is a prime number which is invertible in k, then the `-adic cohomology group H2(MH(v)k,Z`(1))
is endowed with a canonical quadratic form q satisfying the formula

(2.1) ∀α ∈ H2(MH(v)k,Z`(1)), (2n)!q(α)n = (n!)2nα2n

where 2n is the dimension of MH(v).
(iv) There exists a canonical quadratic form on NS(MH(v)k). If p > 0, this quadratic form has

values in Z[1/p]. If p = 0, it has values in Z. For any ` 6= p, the first Chern class map

c1 : NS(MH(v)k)⊗ Z` → H2(MH(v)k,Z`(1))

is an isometry.
(v) Let ` be a prime number which is invertible in k. Let v⊥ be the orthogonal complement of v

in the `-adic Mukai lattice of X – by a slight abuse of notation, we do not make explicit the
dependence in `. Then there exists a canonical, Gal(k/k)-equivariant, isomorphism

θv,` : v⊥ → H2(MH(v)k,Z`(1))

which is an isometry.
(vi) Assume that k is either algebraically closed or finite. Let v⊥ ∩ N(X) be the orthogonal com-

plement of v in the lattice N(X) of Mukai vectors on X. There exists an injective isometry

θv : v⊥ ∩N(X)→ NS(MH(v))
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such that the following diagram commutes

v⊥ ∩N(X)
θv //

c1

��

NS(MH(v))

c1

��
v⊥

θv,` // H2(MH(v)k,Z`(1))

for any prime number ` as above.
(vii) Assume that k is either algebraically closed or finite. Then the cokernel of θv is a p-primary

torsion group, where p is the characteristic of k.

Proof. Let F be a semistable torsion-free sheaf of Mukai vector v. Write v = rk(v) + c1(v) +λω. By
Proposition 2.2 we have, for any integer d,

χ(F(d)) =
rk(v)

2
d2H2 + (H.c1(v))d+ λ+ rk(v).

Since H.c1(v), rk(v) and λ are relatively prime, this implies – since F is semistable – that if G is any
coherent subsheaf of F , then

χ(F(d))

rk(F)
>
χ(G(d))

rk(G)

for any large enough integer d. Equivalently, F is stable. As a consequence, Theorem 0.2 of [Lan04]
shows that MH(v) is projective. By [Muk84, Corollary 0.2], it is smooth, endowed with a natural
symplectic structure and, if non-empty, it is pure of dimension v2 + 2.

Let n = v2+2
2 . If k = C, [O’G97, Main Theorem] – see also [Yos01, Theorem 8.1] – shows that

the moduli space MH(v) is an irreducible holomorphic symplectic variety birational to X [n]. In
particular,MH(v) is not empty. By the main theorem of [Huy99],MH(v) is deformation-equivalent
to X [n]. The Lefschetz principle shows that these statements hold over any algebraically closed field
of characteristic zero.

Now assume k is an arbitrary field. We want to show that MH(v) is deformation-equivalent to
X [n]. For this, we can assume that k is algebraically closed and, by the discussion above, that k has
positive characteristic. By Proposition 1.5, we can find a finite flat morphism S → SpecW , where
W is the ring of Witt vectors of k, and a lifting X → S of X over S such that both H and c1(v) lift
to X . As a consequence, the Mukai vector v also lifts to X .

Consider the relative moduli spaceMH(X , v), which exists by [Lan04, Theorem 0.2]. By [Muk84,

Theorem 1.17], it is smooth over S. Since its generic fiber is deformation-equivalent to X [n]
η ,

MH(X, v) is deformation-equivalent to X [n]. This shows (i) and (ii).

We now prove items (iii) to (v). For these, we can assume that k is algebraically closed. First
assume that k = C. Then the Beauville-Bogomolov quadratic form on H2(MH(v),Z`(1)) satisfies
equation (2.1) by [O’G05, 4.14]. By the comparison theorem between singular and `-adic cohomology,
this shows (iii) for k = C, hence for k algebraically closed of characteristic zero. For general k, lifting
as before by Proposition 1.5, the smooth base change theorem gives (iii).

Let ` be a prime number invertible in k. The cycle class map gives an injection

c1 : NS(MH(v))→ H2(MH(v),Z`(1)).

As a consequence, the Beauville-Bogomolov form on H2(MH(v),Z`(1)) induces a quadratic form on
NS(MH(v) with values in Z`. We denote it by q. We show that q actually takes values in Q and is
independent of `. This will imply (iv). If k = C, this holds because the Beauville-Bogomolov form is
actually defined on singular cohomology with integer coefficients. This shows that the result holds
if k has characteristic zero. Assume that k has positive characteristic and choose a lifting X → S of
X,H and v to characteristic zero as above.
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Let HM ∈ NS(MH(v)) be an ample line bundle on MH(X, v) that lifts to MH(X , v). Since
HM lifts to characteristic zero, the argument above shows that q(HM) is an integer independent of
`.

Let η be a generic geometric point of S. By [Bea83, Théorème 5 and end of p.775], there exists
a rational number λ, independent of `, such that for any α ∈ H2(MH(Xη, v),Z`(1)) such that

α ∪H2n−1
M = 0, we have

(2.2) q(α) = λα2 ∪H2n−2
M .

Indeed, this is true over C by the result of Beauville quoted above, and thus holds over any alge-
braically closed field of characteristic zero. Furthermore, the same formula holds for MH(v) by the
smooth base change theorem. This readily implies that the quadratic form q on NS(MH(v)) takes
values in Q and is independent of `. This proves (iv).

Over the field of complex numbers, the map θv,` is defined on the level of singular cohomology
with coefficients in Z in [Muk87b, 5.14] and (v) holds by the main theorem of [O’G97]. By the
same arguments as above, it holds over an arbitrary algebraically closed field. Since the morphism
is canonical, it is Galois-equivariant.

We now prove (vi). The map θv,` is induced by an algebraic correspondence with coefficients in
Q, see again [Muk87b, 5.14]. As a consequence, it induces a map

θv : (v⊥ ∩N(X))⊗Q→ NS(MH(v))⊗Q.

This map is clearly compatible with θv,` via the cycle class map. By the definition of the quadratic
forms involved, this implies that θv is an injective isometry.

We claim that θv,k is defined over Z, that is, that it sends v⊥ ∩N(Xk) to NS(MH(v)k). If k has
characteristic zero, this is due to the fact that θv,` is defined over Z` for any prime number ` and
that the cokernel of the cycle class map

c1 : NS(MH(v)k)→ H2(MH(v)k,Z`(1))

has no torsion.

To show that θv,k is defined over Z for arbitrary k, we lift once again to characteristic zero. Given

α ∈ N(Xk), we can lift X, H, v and α to characteristic zero by Theorem 1.5 and apply the claim
to the generic fiber. This shows (vi) if k is algebraically closed.

Assume now that k is a finite field. Since H1(MH(v)k,Z`) = 0 – as follows from (ii) if k is the
field of complex numbers and from a lifting argument in general – the Hochschild-Serre spectral
sequence shows that the map

H2(MH(v),Z`(1))→ H2(MH(v)k,Z`(1))Gal(k/k)

is an isomorphism, where the left-hand side denotes continuous étale cohomology. Furthermore, a
classical argument involving the Kummer exact sequence shows that the cycle class map

Pic(MH(v))→ H2(MH(v),Z`(1))

has a torsion-free cokernel. In other words, the cokernel of the cycle class map

Pic(MH(v))→ H2(MH(v)k,Z`(1))Gal(k/k)

is torsion-free.

Now let α ∈ N(X)∩v⊥. Since θv,` is Galois-equivariant, the element θv,`(α) ∈ H2(MH(v)k,Z`(1))
is Galois-invariant. Furthermore, by the argument above, some multiple of α is the Chern class of
an element of Pic(MH(v)). This shows that α belongs to NS(MH(v)).
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Let k be as in (vii). To show the result, we need to show that if ` is any prime number invertible
in k, then

θv ⊗ Z` : (v⊥ ∩N(X))⊗ Z` → NS(MH(v))⊗ Z`
is an isomorphism. We already know that θv ⊗ Z` is injective. Furthermore, in the commutative
diagram

(v⊥ ∩N(X))⊗ Z`
θv⊗Z` //

c1

��

NS(MH(v))⊗ Z`

c1

��
v⊥

θv,` // H2(MH(v)k,Z`(1))

the lower horizontal map is an isomorphism and the cokernel of the two vertical maps are torsion-free
as shown above. This implies that the cokernel of θv ⊗Z` is torsion-free. To show that θv ⊗Z` is an
isomorphism, we now have to show that

θv ⊗Q` : (v⊥ ∩N(X))⊗Q` → NS(MH(v))⊗Q`
is an isomorphism. Let HM be the homological equivalence class of an ample divisor onMH(v) and
consider the composition φ`

(v⊥ ∩N(X))⊗Q`
θv // NS(MH(v))⊗Q`

c1 // H2(MH(v)k,Q`(1))

∪H2n−2
M

��
v⊥ ⊗Q` H4n−2(MH(v)k,Q`(1))

θ∨v,`

oo

where

θ∨v,` : H2n−2(MH(v),Z`(1))→ v⊥

is the Poincaré dual of θv,`. Then φ` is injective by the hard Lefschetz theorem, (v) and (vi).
Furthermore, it sends (v⊥∩N(X))⊗Q` into itself since it is induced by an algebraic correspondence
and is Galois-equivariant. As a consequence, it induces an automorphism of (v⊥ ∩ N(X)) ⊗ Q`.
Furthermore, by the same argument, the composition

NS(MH(v))⊗Q` // H2(MH(v)k,Q`(1)) // H4n−2(MH(v)k,Q`(1)) // v⊥` ⊗Q`

is injective, and maps into (v⊥ ∩N(X))⊗Q`. This implies that θv ⊗Q` is surjective and concludes
the proof. �

Under suitable assumptions on the characteristic of the base field and the K3 surface X, we can
also both describe the de Rham cohomology groups of MH(v) and extend the description of the
Néron-Severi group of MH(v) to some non-algebraically closed fields.

Proposition 2.5. Let k be an algebraically closed field of characteristic p > 0 and let (X,H) be a
polarized K3 surface over k. Let v be a Mukai vector on X satisfying condition (C). Let W be the
ring of Witt vectors of k.

Assume that the triple (X, v,H) lifts to a projective K3 surface over W . Then the Hodge to de
Rham spectral sequence of MH(v) degenerates at E1 if p > v2 + 2. In general, the Hodge numbers
hp,q = Hq(MH(v),ΩpX/k) of MH(v) satisfy the equalities

(1) h1,0 = h0,1 = 0 if p > 2;
(2) h2,0 = h0,2 = 1 and h1,1 = 21 if p > 3.

Proof. As above, a projective lift of (X, v,H) to W induces a projective lift MH(X , v) of MH(v)
to W . By the main result of [DI87], and since p > v2 + 2 = dimMH(v), this implies that the Hodge
to de Rham spectral sequence of MH(v) degenerates at E1.
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If p > 2, the result of [DI87] still shows that Ep,q1 = Ep,q∞ if p+ q = 1, and if p+ q = 2 if p > 3.

The statement regarding the Hodge numbers can be rephrased as saying that the Hodge numbers
of MH(v) are the same as those of MH(Xη, v), where Xη is the generic fiber of X over W . By the
universal coefficient theorem for crystalline cohomology, it is enough to show that the second and
third crystalline cohomology groups ofMH(v) are torsion-free. By the integral comparison theorem
of Fontaine-Messing [FM87], this is the case as soon as the corresponding p-adic cohomology groups
of MH(Xη, v) are torsion-free. Since MH(Xη, v) is deformation-equivalent to a Hilbert scheme of
points on a K3 surface in characteristic zero, it suffices to show that if S is any projective complex
K3 surface, then H2(S[n],Z) and H3(S[n],Z) are both torsion-free.

The fact that H2(S[n],Z) is torsion-free is proved in [Bea83, Remarque after Proposition 6]. We
now show that H3(S[n],Z) = 0.

Following [Bea83], let S(n) be the n-fold symmetric product of S, and let ε : S[n] → S(n) be the
Hilbert-Chow morphism. Let π : Sn → S(n) be the natural map. Let D be the diagonal in S(n),
that is, the locus of elements x1 + . . .+ xn such that xi = xj for some i 6= j, and let D∗ be the open
subset of D consisting of zero-cycles of the form 2x1 + . . .+ xn−1 where the xi are all distinct. We

define S
(n)
∗ = S(n) \ (D \ D∗), S[n]

∗ = ε−1(S
(n)
∗ ) and Sn∗ = π−1(S

(n)
∗ ). Then by [Bea83, Section 6],

S[n] \S[n]
∗ has codimension 2 in S[n] and S[n] is the quotient by the symmetric group of the blow-up

of Sn∗ along the diagonal ∆∗ = π−1(D∗).

From the description above, it is straightforward to check that H3(S
[n]
∗ ,Z) = 0. Since S[n] \ S[n]

∗
has codimension 2 in S[n], the restriction morphism

H3(S[n],Z)→ H3(S
[n]
∗ ,Z)

is injective, which shows the result. �

Corollary 2.6. Let k be a field of characteristic p > 2 that is either finite or algebraically closed
and let (X,H) be a polarized K3 surface over k. Let v be a Mukai vector on X satisfying condition
(C). Let W be the ring of Witt vectors of k.

Assume that the triple (X, v,H) lifts to a projective K3 surface X over W . Let η be the generic
point of SpecW .

Then there exists an isometry

θv,η : v⊥ ∩N(Xη)→ NS(MH(Xη, v))

such that the following diagram commutes

v⊥ ∩N(Xη)
θv,η //

��

NS(MH(Xη, v))

��
v⊥ ∩N(X)

θv // NS(MH(X, v))

where the vertical maps are the specialization maps.

Proof. By the proof of (vi) in Theorem 2.4, we know that there exists an isometry

θv,η : (v⊥ ∩N(Xη))⊗Q→ NS(MH(Xη, v))⊗Q

making the analog of the diagram above commute. We need to show that θv,η sends v⊥ ∩N(Xη) to
NS(MH(Xη, v)).

By [EJ11] – which is stated over Zp but whose proof extends verbatim to our setting over W –
the equality H1(MH(v),OMH(v)) = 0 proved in Proposition 2.5 implies that the cokernel of the
specialization map

NS(MH(Xη, v))→ NS(MH(X, v))
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is torsion-free, which shows the result. �

Corollary 2.7. Let k be an algebraically closed field of characteristic p, and let X be a K3 surface
over k. Let H be a polarization on X, and let v be a Mukai vector on X that satisfies condition (C)
of Definition 2.3. If p > 0, we can find nonnegative integers λ and t such that 0 < λ ≤ v2 and

|disc(NS(X))| = ptλ|disc(NS(MH(v)))|.
If p = 0, then

|disc(NS(X))| ≤ v2|disc(NS(MH(v)))|.

Proof. We treat the case where p > 0. By Theorem 2.4, (vi) and (vii), we have an injective isometry

θv : v⊥ ∩N(X)→ NS(MH(v)),

where v⊥ is the orthogonal of v in N(X) = Z⊕NS(X)⊕ Zω. The cokernel of the map above is a
p-primary torsion group. By [LMS14, Lemma 2.1.1], we have

|disc(v⊥ ∩N(X))| = pr|disc(NS(MH(v)))|
for some nonnegative integer r. Furthermore, we have a natural injection of lattices with torsion
cokernel

Zv ⊕ (v⊥ ∩N(X)) ↪→ N(X).

Since the discriminant of Zv ⊕ v⊥ is v2disc(v⊥ ∩N(X)), this implies by the same argument that

|disc(N(X))| ≤ v2|disc(v⊥ ∩N(X))|.
Finally, since as a lattice, N(X) ' NS(X) ⊕ U , where U is the hyperbolic plane, we get the
result. �

2.2. Low-degree line bundles on moduli spaces of stable sheaves on K3 surfaces. If n is
an integer, let Λ2n denote the lattice

Λ2n = 〈2n〉 ⊕ U,
where U is the hyperbolic plane.

Proposition 2.8. Let d be a positive integer, and let Λ be a rank 2 positive definite sublattice of
Λ2d. There exists a positive integer N and nonzero integers a, b such that if m is any positive integer
satisfying

(i) m = 1[N ],
(ii) m is prime to a and b, and both a and b are quadratic residues modulo m,

then there exists a primitive embedding of Λ into Λ2md.

Proof. We use a result of Nikulin that describes primitive embeddings of even lattices. We describe
here its content in our case.

Let Λ be any rank 2 positive-definite lattice. Fix a positive integer n. Let AΛ = Λ∗/Λ be the
discriminant group of Λ. It is endowed with a natural quadratic form qΛ with values in Q/2Z.
Similarly, let A2n = Z/2nZ be the discriminant group of the even lattice Λ2n, and let q2n be the
natural quadratic form on A2n. Then q2n(1) = 1

2n ∈ Q/2Z.

It is proved in [Nik79, Proposition 1.15.1] that primitive embeddings of Λ into Λ2n are in one-
to-one correspondence with the tuples (V,W, γ, t) where V ⊂ AΛ and W ⊂ A2n are subgroups,
γ : V → W is an isomorphism respecting the restrictions of qΛ and q2n to V and W respectively
and t is a positive integer such that the quadratic form

(qΛ ⊕ (−q2n))|Γ⊥γ /Γγ

is isomorphic to the quadratic form on Z/2tZ that sends 1 to 1
2t , where

Γγ = {(a, b) ∈ V ⊕W |γ(a) = b}.
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Note that Γγ is a cyclic group as it can be identified to W ⊂ Z/2nZ.

In the setting of the Proposition, the primitive embedding of Λ into Λ2d corresponds to a tuple
(H,H ′, γ, t). Let m be a positive integer such that m = 1[4dt] and m = 1[|AΛ|]. Assume also that
m is prime to (2n)!. Note that multiplication by m is the identity in AΛ. We will make further
assumptions on m later on.

The map

AΛ ⊕A2d
Id⊕mId // AΛ ⊕A2md

is injective and respects the quadratic forms qΛ ⊕ (−q2d) on the left and qΛ ⊕ (−q2md) on the right.
Indeed, since m = 1[4d], we have

q2md(m) =
m2

2md
=
m

2d
=

1

2d
∈ Q/2Z.

Let W ′ be the image of W in A2nd, and let

γ′ : V →W ′

be the isometry induced by γ.

By assumption, the group Γ⊥γ /Γγ is isomorphic to Z/2tZ. We can also find an element (x0, y0)

of Γ⊥γ ⊂ AΛ ⊕A2d that maps to a generator of Γ⊥γ /Γγ and such that

qλ(x0)− y2
0

2d
=

1

2t
∈ Q/2Z.

We see y0 as an integer between 1 and 2d. Then we can consider (x0, y0) as an element of
AΛ ⊕A2md.

Let (α, β) be a generator of Γγ , where α ∈ AΛ and β ∈ A2d is considered as an integer. Then
(α,mβ) is a generator of Γγ′ . Let bλ, b2d, b2md be the bilinear forms with values in Q/Z associated
with qΛ, q2d and q2md respectively. We have

bΛ(x0, α)− b2d(y0, β) = bΛ(x0, α)− y0β

2d
= 0 ∈ Q/Z

since (x0, y0) ∈ Γ⊥γ . This implies that

bΛ(x0, α)− b2md(y0,mβ) = bΛ(x0, α)− my0β

2md
= 0 ∈ Q/Z,

which shows that (x0, y0) belongs to Γ⊥γ′ in AΛ ⊕A2md.

By construction and since m is prime to y0, the order of (x0, y0), seen as an element of Γ⊥γ′ , in the

group Γ⊥γ′/(Γ
⊥
γ′ ∩ Im(AΛ ⊕ A2d)), is exactly m. Furthermore, m(x0, y0) is the image of the element

(mx0, y0) = (x0, y0) ∈ AΛ ⊕A2d, which maps to a generator of Γ⊥γ /Γγ by assumption.

Since Γγ and Γγ′ are canonically isomorphic, the discussion above shows that the group Γ⊥γ′/Γγ′

is cyclic of order 2tm, and has a generator v such that

q(v) = qλ(x0)− y2
0

2md
=

1

2t
+
y2

0

2d
− y2

0

2md
=

1

2t
+
y2

0(m− 1)

2md
∈ Q/2Z,

where q is the natural quadratic form on Γ⊥γ′/Γγ′ .

To show the result – after adding conditions on m according to the statement of the Proposition
– we need to find a generator v′ of Γ⊥γ′/Γγ′ such that q(v′) = 1

2mt ∈ Q/2Z. Writing v′ = λv, we need
to find an integer λ such that

(i) λ is prime to 2mt;

(ii) λ2( 1
2t +

y20(m−1)
2md )− 1

2mt ∈ 2Z.
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The second condition can be rephrased as the congruence

λ2(md+ ty2
0(m− 1))− d = 0[4mdt].

From now on, we only consider integers λ such that λ = 1[4dt]. Since by assumption m = 1[4dt],
this implies that the condition above is always satisfied modulo 4dt. As a consequence, we only have
to consider the condition modulo m, which becomes

λ2ty2
0 + d = 0[m].

Note that, as above, y0 is prime to m. Choosing m such that both −d and t are both quadratic
residues modulo m, this shows that we can find a suitable λ, and concludes the proof. �

Theorem 2.9. Let k be a field, and let d be a positive integer. Then there exists a positive integer
r, a positive integer N and nonzero integers a, b such that if (X,H) is a polarized K3 surface of
degree 2md over k, where m is any positive integer satisfying

(i) m = 1[N ],
(ii) m is prime to a and b, and both a and b are quadratic residues modulo m,

then there exists a Mukai vector v on X satisfying condition (C) such that

(i) c1(v) is proportional to c1(H);
(ii) The moduli space MH(v) has dimension 4;

(iii) There exists a line bundle L on MH(v) satisfying c1(L)4 = r and q(L) > 0.

If n is any integer not divisible by 2 or 3, we can assume that q(L) is an integer prime to n,
and that there exists an ample line bundle A on MH(v) such that q(A) is an integer prime to n. If
furthermore k is algebraically closed or finite, the same result holds even when n is divisible by 3.

Finally, assume that k has characteristic p > 2, and let W be the ring of Witt vectors of an alge-
braic closure k of k. If the pair (Xk, H) lifts to W , then we can assume that the triple (MH(v)k, L,A)
lifts to W .

Proof. In the lattice Λ2d, consider a positive-definite rank-2 sublattice Λ containing elements v and w

with v2 = 2 and v.w = 1. Let l be an element of Λ such that l.v = 0, and let r = (4)!
(2!)22 (l2)2 = 3(l2)2.

Note that we can indeed choose l so that l2 is prime to n if n is odd.

By Proposition 2.8, we can find integers N, a and b as above such that if m is any positive integer
satisfying the conditions of the theorem, Λ2md contains Λ as a primitive sublattice.

Let X be any K3 surface over k with an ample line bundle H of self-intersection 2md, with m as
above. Then the lattice N(X) of Mukai vectors on X contains the sublattice Z⊕ZH ⊕Zω ' Λ2md.
As a consequence, there exists an injection

Λ ↪→ Λ2md ↪→ N(X).

Seeing v ∈ Λ as an element of N(X), write v = rk(v) + c1(v) + λω. By assumption there exists
w ∈ Λ ⊂ Z ⊕ ZH ⊕ Zω such that v.w = 1. In particular, the vector v ∈ N(X) is primitive.
Furthermore, we have

gcd(rk(v), c1(v).H, λ) = 1.

In particular, since 2 divides c1(v).H, rk(v) and λ cannot both vanish. After composing the
embedding of Λ into Λ2md by a suitable automorphism of Λ2md, we can assume that rk(v) > 0.
Since v2 > 0, this shows that v satisfies condition (C). As a consequence of Theorem 2.4, (i), the
moduli space MH(v) has dimension v2 + 2 = 4.

We first assume that k is algebraically closed or finite. Let n be an odd integer. Then the vector
l ∈ Λ ⊂ N(X) defined above lies in v⊥ ∩N(X) by assumption. By Theorem 2.4, (vi), we have an
injection of lattices

v⊥ ∩N(X) ↪→ NS(MH(v)).
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By (iii) and (iv) of the same theorem, the image of l in NS(MH(v)) is the class of a line bundle L
on MH(v) such that

c1(L)4 = 3(l2)2 = r.

The integer q(L) is prime to n.

Let A0 be an ample divisor onMH(v). We can assume that q(A0) is an integer after raising to a

sufficiently large p-th power. If λ is large enough and n divides λ, then A = A⊗λ0 ⊗ L is ample and
q(A) is congruent to q(L) modulo n, which implies that q(A) is prime to n.

If k is an arbitrary field, the construction above provides a line bundle L on MH(v)k with
Galois-invariant first Chern class. This implies that L itself is Galois-invariant.

Consider the exact sequence

Pic(MH(v))→ Pic(MH(v)k)Gal(k/k) → Br(k)→ Br(MH(v)).

Since MH(v) is deformation-equivalent to X [2], c4(MH(v)) is a zero-cycle of degree 324 = 22 ×
34, see [EGL01, Remark 5.5]. Such a zero-cycle induces a map Br(X) → Br(k) such that the
composition Br(k) → Br(X) → Br(k) is multiplication by 324. In particular, the cokernel of the

map Pic(MH(v))→ Pic(MH(v)k)Gal(k/k) is killed by multiplication by 324. This shows that L⊗324

satisfies the conclusion of the theorem.

Finally, assume that k has characteristic p > 2, and assume that the pair (Xk, H) lifts to a
projective K3 surface (X , H) over W . Then since c1(v) is a multiple of c1(H), v lifts to X as well.
The result then follows directly from Corollary 2.6. �

Remark 2.10. Even over an arbitrary field, it is possible to ensure that q(L) and q(A) are prime
to 3 by considering a 6-dimensional moduli space of sheaves: these have top Chern class of degree
3200 = 27 × 52.

3. Finiteness results for holomorphic symplectic varieties

Theorem 2.9 was devoted to constructing irreducible holomorphic symplectic varieties of dimen-
sion 4 – or, in positive characteristic, reduction of such varieties – together with a line bundle L of
low positive self-intersection. By a theorem of Huybrechts [Huy99, Corollary 3.10], either L or its
dual is big. We now investigate finiteness results for families of such varieties.

In characteristic zero, we prove that given positive integers n and r, the family of irreducible
holomorphic varieties X such that there exists a line bundle L on X with c1(L)2n = r is birationally
bounded. Unfortunately, our proof does not make explicit any of the natural constants involved. It
relies on the global period map and the local Torelli theorem.

Over finite fields of characteristic p > 3, we show a finiteness result for Néron-Severi groups of
such varieties. The proof relies on the Kuga-Satake construction as a replacement for the period
map.

3.1. The case of K3 surfaces. Before dealing with higher-dimensional varieties below, we treat
the much easier case of K3 surfaces. The following result is certainly well-known to experts. The
proof is very close to arguments in [SD74], but since this paper assumes that the characteristic is
odd, we make sure that the statement is correct in arbitrary characteristic.

Proposition 3.1. Let r be a positive integer. Then there exist positive integers N and d such that
if k is any field, and if X is a K3 surface over an algebraically closed field k with a line bundle L
such that L2 = r, then there exists a line bundle L′ on k with h0(X,L′) ≤ N such that the complete
linear system |L′| induces a birational map from X to a subvariety of P|L′| of degree at most d.
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Proof. In this proof, we will identify L and c1(L). We can assume that L is big and nef. Indeed,
by [Ogu79, 1.10 and p.371], see also [Huy14, Chapter 8 par.2], there exists a line bundle L′ with
the same self-intersection as L that is big and nef. In particular, we have h1(L) = 0 by [Huy14,
Proposition 3.1].

By the Riemann-Roch theorem, we have

h0(L) + h0(L∨) =
r

2
+ 2 ≥ 3.

Since L is nef, this shows that L is effective and h0(L) ≥ 3.

We now rephrase the argument of [SD74, Proposition 8.1]. Let F be the fixed part of the linear
system |L|. Assume that F 6= 0. Let M = L ⊗ O(−F ). Then M2 ≥ 0. By [SD74, 2.6 and 2.7.4],
which does not make use of any hypothesis on the characteristic, either M2 > 0 or we can find an
irreducible curve E on X with arithmetic genus 1 such that M = O(mE) with m = h0(L)− 1 ≥ 2.
Furthermore, we can then find an irreducible rational curve Γ in F such that F.E = 1.

Let L′ = M if M2 > 0 and L′ = mE + Γ in the other case. Write L = L′ + ∆. Assume that
∆ 6= 0. Then by the Hodge index theorem, see [Huy14, Chapter 1, Remark 2.4 (iii)], L′.∆ > 0. Now

h0(L′) = h0(L) = L2

2 + 2 and h1(L′) = 0 by [SD74, Lemma 2.2]. This shows that L′.L′ = L.L. In
other words, we have

2L′.∆ + ∆2 = 0.

However, since L′.∆ > 0, this implies that

L.∆ = L′.∆ + ∆2 < 0

which contradicts the fact that L is nef. This shows that ∆ = 0, i.e., L = L′.

Now up to replacing L by 2L, it is readily seen that we can assume that L has no fixed part. By
[SD74, Proposition 2.6] – see also [Huy14, Chapter 2, Remark 3.7 (ii)] – we can write L = O(C)
where C is an irreducible curve on X. Furthermore, we have h1(L) = 0 by [Huy14, Proposition 3.1]
again.

The discussion above readily implies that the image of the rational map φL from X to P r
2 +1

induced by the complete linear system |L| has dimension 2. Furthermore, φL is either birational or
has generic degree 2 onto its image. Indeed, the degree of the image of φL in projective space is at
least r

2 .

It is stated in the literature that φ2L is birational onto its image. If the characteristic is odd, this
follows from the existence of a smooth, irreducible global section of L as in [SD74]. In general, this
is stated as ”well-known” in [ASD73], after Lemma 5.17. We briefly give an argument that shows
that φ4L is birational onto its image.

The line bundle L is big and net, and the fixed part of L vanishes. By [Huy14, Chapter 2,
Corollary 3.14 (i)], L is base point free. We assume that φL is of generic degree 2 onto its image.
Let C be an irreducible curve belonging to |L|. It might not be possible to choose a reduced C if
the characteristic of k is 2. Let Cred be the reduced corresponding curve. Then as cycles on X, we
have C = aCred where a = 1 or a = 2 – in characteristic 2, it can happen that a is necessarily 2.
By the adjunction formula – which holds for non-reduced curves, see [Liu02, 9.1.37], the arithmetic
genus of C is 1 + r

2 .

The exact sequence

0→ (k − 1)L→ kL→ (kL)|C → 0

together with the vanishing of H1(X, (k − 1)L) shows that for any k > 0 we have a surjection
H0(X, kL)→ H0(C, kL).

Now using the adjunction formula and Riemann-Roch (which both hold for non-reduced curves,
see [Liu02, 7.3.17 and 9.1.37]), the usual arguments show that the restriction of 4L to C induces an
application of degree 1 onto its image. This shows that φ4L is birational onto its image.
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Since h1(X, 4L) = 0 and 4L is base point free, this shows that φ4L induces a birational map from
X to a subvariety of degree r of PN with N = r

2 + 1. �

Since K3 surfaces are minimal, this shows that the surfaces X as in the proposition above form
a bounded family. In particular, we get the following result.

Corollary 3.2. Let k be a finite field with algebraic closure k, and let r be a positive integer. Then
there exist finitely many k-isomorphism classes of K3 surfaces X over k such that there exists a line
bundle L on Xk with L2 = r.

If the characteristic of k is odd, then there exist only finitely many isomorphism classes over k of
such K3 surfaces.

Proof. After replacing k by a finite extension K of fixed degree, we can assume that any line bundle
on Xk is defined over X. Let N, d and L′ be as in Proposition 3.1. Then L′ is defined over K, and
so is the image of X under the rational map defined by the complete linear system associated to L′.

The theory of Chow forms shows that there are only finitely many subvarieties of PNK of degree
at most d. As a consequence, the number of K-birational classes of surfaces X as in the statement
is finite. Since K3 surfaces are minimal, this shows the first result.

The second statement is a consequence of the first and of [LMS14, Proposition 2.4.1]. �

3.2. A birational version of Matsusaka’s big theorem for holomorphic symplectic va-
rieties. The goal of this section is to prove the following result. It should be seen as a – weak –
birational version of Matsusaka’s big theorem. It will not be used in the proof of the Tate conjecture.

Theorem 3.3. Let n and r be two positive integers. Then we can find constants k,N and d such
that if X is a complex irreducible holomorphic symplectic variety of dimension 2n and L is a line
bundle on X with c1(L)2n = r and q(L) > 0, where q is the Beauville-Bogomolov form, then there
exists a line bundle L′ with c1(L′)2n = r such that h0(X, kL′) ≤ N and such that the complete linear
system |kL′| induces a birational map from X to a subvariety of P|kL′| of degree at most d.

In particular, there exists a scheme S of finite type over C, and a projective morphism X → S
such that if (X,L) is any pair as above, there exists a complex point s of S such that Xs is birational
to X.

Remark 3.4. Our proof relies crucially on the existence of the global period map. It does not give
an explicit value for the constants k,N and d – in particular, they might depend on r.

We start with two lemmas.

Lemma 3.5. There exist finitely many pairs (X1, L1), . . . , (Xs, Ls) where the Xi are complex ir-
reducible holomorphic symplectic manifolds of dimension 2n and Li is an ample line bundle on Xi

with c1(Li)
2n = r such that if (X,L) is a pair as in Theorem 3.3, then either (X,L) or (X,L⊗−1)

is deformation-equivalent to (Xi, Li) for some i.

In the statement above and in the proof below, we are considering deformations of complex
varieties over bases that are complex manifolds which are not necessarily projective.

Proof. Let (X,L) be a pair as in Theorem 3.3. By [Huy99, Theorem 3.11] and [Huy03], X is
projective. By the local Torelli theorem for X [Bea83, Théorème 5], we can find a small deforma-
tion (X ′, L′) of the pair (X,L) such that Pic(X ′) has rank 1. By the aforementioned theorem of
Huybrechts, X ′ is projective, which implies, up to replacing L by its dual, that L′ is ample.

Consider pairs (X ′, L′) where X ′ is smooth projective of dimension 2n, KX′ = 0 and L′ is an
ample line bundle with c(L)2n = r. By Kollár-Matsusaka’s refinement of Matsusaka’s big theorem
[KM83], the family of such pairs (X,L) is bounded. As a consequence, we can find finitely many
pairs (X1, L1), . . . , (Xs, Ls) where the Xi are complex irreducible holomorphic symplectic manifolds
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of dimension 2n and Li is an ample line bundle on Xi with c1(L)2n = r such that any pair (X ′, L′)
as in the paragraph above is deformation-equivalent to one of the (Xi, Li). �

Lemma 3.6. Let S be a noetherian scheme over C, and let X → S be a projective morphism. Let
L be a line bundle over X such that for every complex point s of S, the restriction Ls of L to Xs is
big. Then there exists integers k,N and d such that for any complex point s of S, h0(Xs, kLs) ≤ N
and the complete linear system |kLs| induces a birational map from Xs to a subvariety of P|kLs| of
degree at most d.

Proof. We use noetherian induction on S. It suffices to show that if S is non-empty, there exists a
non-empty open subset U of S and constants k,N, d such that the conclusion of the lemma holds
on U .

Since Ls is big for any complex point s of S, Baire’s theorem shows that if η is any generic point
of S, then Lη is big. This readily shows the result. �

Proof of Theorem 3.3. By Lemma 3.5, we can restrict our attention to the pairs (X,L) that are
deformation-equivalent to a given (X0, L0) where L0 is ample. Note that this implies that L is big.

We denote by Λ the lattice H2(X0,Z) endowed with its Beauville-Bogomolov form, and by l ∈ Λ
the element c1(L). Note that l2 > 0. Let Λprim be the orthogonal complement of l in Λ, let D be
the period domain associated to Λprim, that is,

D = {x ∈ P(Λprim ⊗ C)|x2 = 0, x.x > 0}.

Let Õ(Λprim) be the group

Õ(Λprim) := {g|Λprim |g ∈ O(Λ), g(l) = l}.

We will freely identify Õ(Λprim) to a subgroup of O(Λ) when needed.

Let M be the monodromy group of (X0, L0), see for instance [Mar11, Definition 1.1(5)]. Then M

can be identified with a subgroup of Õ(Λprim). By a result of Sullivan [Sul77], M has finite index

in Õ(Λprim) – the result of Sullivan deals with the unpolarized case, see the discussion in [Ver13,
Theorem 3.5], but the polarized case follows from [Mar11, Proposition 1.9].

Let Γ be a subgroup of finite index in both M and a torsion-free arithmetic subgroup of Õ(Λprim).
By the theorem of Baily-Borel [BB66], the quotient Γ\D is a normal quasi-projective variety.

To any triple (X,L, φ) where X is an irreducible holomorphic symplectic variety, L is a line
bundle on L such that the pair (X,L) is deformation-equivalent to (X0, L0) and φ is an isomorphism
φ : H2(X,Z) → Λ sending c1(L) to l, we can associate its period point P(X,L, φ). The element
φ(H2,0(X)) ⊂ Λ⊗C belongs to D, and we define P(X,L, φ) to be the image of φ(H2,0(X)) in Γ\D.
If γ is any element of Γ, then P(X,L, φ) = P(X,L, γ ◦ φ).

Let S be a smooth quasi-projective complex scheme, and let X → S be a smooth projective
morphism whose fibers are irreducible holomorphic symplectic varieties. Let L be a line bundle
on X such that the pairs (Xs, Ls) are deformation-equivalent to (X0, L0) for any complex point s
of S. Assume for simplicity that S is connected and fix s and such a deformation. Then, using
parallel transport, we can identify Λ and H2(Xs,Z). By definition of the monodromy group M , the
monodromy representation ρ : π1(S, s) → O(Λ) factors through M . If ρ factors through the finite
index subgroup Γ ⊂M , then the construction above induces a period map

P : S → Γ\D.
By a result of Borel [Bor69], P is algebraic.

Let (X,L, φ) and (X ′, L′, ψ) be two triple as above. Assume that φ (resp. ψ) is induced by
parallel transport along a deformation of (X,L) (resp. (X ′, L′)) to (X0, L0). Then the global Torelli
theorem of Verbitsky [Ver13] shows that if P(X,L, φ) = P(X ′, L′, ψ), then X and X ′ are birational.
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In case L and L′ are ample, this is the statement of [Mar11, Theorem 1.10], and the general case can
be deduced either by using a small deformation to the ample case or by using [Mar11, Proposition
1.9] to reduce to the general global Torelli theorem.

We claim that there exists S,X and L as above such that the monodromy representation of each
connected component of S factors through Γ and such that the image of P is Γ\D. By noetherian
induction, we can find S,X and L, as well as a Zariski open subset U of Γ\D, such that the image of
the period map P : S → Γ\D contains U and such that U is maximal with respect to this property.
We assume by contradiction that U is strictly contained in Γ\D.

Let Z be an irreducible component of the complement of U in Γ\D, and let z be a very general
complex point of Z. Using the surjectivity of the period map [Huy99, Theorem 8.1], we can find a
triple (Xz, Lz, φ), where (Xz, Lz) is deformation-equivalent to (X0, L0) and φ : H2(Xz, Lz) → Λ is
induced by parallel transport, such that P(Xz, Lz) = z.

By the aforementioned theorem of Huybrechts, Xz is projective. Let Hz be an ample line bundle
on Xz. By the local Torelli theorem [Bea83, Théorème 5], the pair (Xz, Lz) can be deformed over a
small open subset of Z(C) – for the usual topology. Since z is a very general point of Z, the whole
Néron-Severi group of Xz deforms above this open subset, hence so does Hz. This shows that this
deformation can be algebraized.

As a consequence, resolving singularities of the base and passing to a finite cover, we can find
a smooth projective morphism XT → T , where T is a smooth complex quasi-projective variety
whose fibers are irreducible holomorphic symplectic varieties, and L a line bundle on XT where the
pairs (Xt, Lt) are deformation-equivalent to (X0, L0) for any complex point t of T , such that the
modnodromy representation on T factors through Γ and the image of the period map

P : T → Γ\D

is a Zariski-open subset V of Z. Since Z is an irreducible component of (Γ\D) \ U , we can shrink
V so that V is open in (Γ\D) \ U .

Now taking the disjoint union of the families X → S and XT → T , we get a family as above such
that the image of the period map

P : S t T → Γ\D

contains U ∪ V , which is open in Γ\D and stricty contains U . This is the desired contradiction.

Now let S,X and L be as above such that the image of the period map is Γ\D. By Lemma 3.6,
we can find integers k,N and d such that for any complex point s of S, h0(Xs, kLs) ≤ N and the
complete linear system |kLs| induces a birational map from Xs to a subvariety of P|kLs| of degree
at most d.

Let (X,L) be any pair as in the theorem that is deformation-equivalent to (X0, L0). Let φ :
H2(X,Z)→ Λ be induced by parallell transport. By construction of S, we can find a complex point
s of S such that P(X,L, φ) = P(s). As noted above, this implies by the global Torelli theorem
that Xs is birational to X. Since X and Xs have trivial canonical bundle, such a birational map
is an isomorphism outside a closed subscheme of codimension at least 2. In particular, it induces
an isomorphism between the Picard groups of X and Xs. Let L′ be the image of Ls in the Picard
group of Xs. Then (X,L′) satisfies the condition of the theorem. �

Remark 3.7. While using it simplifies slightly the phrasing of the proof, the global Torelli theorem
of Verbitsky – as well as the surjectivity of the period map – could be replaced by the local Torelli
theorem.
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3.3. A variant of the Kuga-Satake construction and birational boundedness in positive
characteristic. The goal of this section is to extend part of the boundedness result above to positive
characteristic. To facilitate the exposition, we will prove a weaker result. The proof is very similar to
that of Theorem 3.3, but we replaced the complex period map with the Kuga-Satake construction.

It is very likely that the construction by Pera in [MP13a] of integral models of Shimura varieties
of orthogonal type provides a period map that is sufficient to translate with only minor changes
the proof of Theorem 3.3 to a positive characteristic setting – which would also take care of the
case of characteristic 3. However, since one of the goals of this paper is to investigate the extent
to which one can refrain from using too much of the theory of integral models of Shimura varieties,
we decided to provide a slightly more elementary – though certainly related – proof. To simplify
certain arguments, we will work in characteristic at least 5.

The Kuga-Satake construction associates an abelian variety to a polarized Hodge structure of
weight 2 with h2,0 = 1. As shown by Deligne in [Del72], when applied to the primitive second
cohomology group of a K3 surface, it is given by an absolute Hodge cycle.

At least over the field of complex numbers, the Hodge-theoretic definition of the Kuga-Satake
construction makes it possible to apply it to any irreducible holomorphic symplectic variety endowed
with a line bundle such that q(L) > 0, q being the Beauville-Bogomolov form – in that case, the
orthogonal of c1(L) in H2(X,Z) is indeed a polarized Hodge structure of weight 2 with h2,0 = 1.
Most of the usual results on the arithmetic of the Kuga-Satake construction extend to this setting
without any change in the proofs, as we explain in this section.

The following is the situation we will be considering.

Setup. Let k be a perfect field of characteristic p > 3, and let W be the ring of Witt vectors of k.
Let K be the fraction field of W . Fix an embedding of K into the field C of complex numbers. Let
T be a smooth, irreducible W -scheme, and let π :M→ T be a smooth projective morphism. Let L
and H be two line bundles on M. We assume that H is relatively ample. We fix a k-point 0 of T .

We assume thatMC → TC is a family of irreducible holomorphic symplectic manifolds, and that
for any complex point t of T , the restriction Lt of L to Mt satisfies q(Lt) > 0, where q is the
Beauville-Bogomolov form. We assume that there is no torsion in the second and third singular
cohomology groups of the fibers of MC → TC.

Let Λ be a lattice isomorphic to H2(Mt,Z) for any complex point t of T . Let l and h be elements
of Λ that are mapped to c1(Lt) and c1(Ht) under such an isomorphism. Let Λl, Λh and Λl,h be the
orthogonal complement of l, h and Zl+Zh in Λ respectively. We assume that the reduction modulo
p of the restriction of q to Λl is non-degenerate.

For the sake of later reference, we will turn the preceding situation into a definition.

Definition 3.8. In the setup above, we say that the triple (M0, H0, L0) is admissible and that
the lattice Λl is a primitive lattice for (M0, L0). The quadratic form of the lattice is called the
Beauville-Bogomolov quadratic form. It induces a quadratic form on the Néron-Severi group of
M0.

We say that (M0, H0, L0) is strongly admissible if in the setup above, we can ensure the following
condition: let ηk be a geometric generic point of the special fiber Tk of T above W . Then Mηk is
ordinary in degree 2 – that is, its second crystalline cohomology group has no torsion, and its Newton
and Hodge polygons coincide –and the Néron-Severi group of Mηk is generated over Q by c1(L) and
c1(H).

Remark 3.9. By [DI87], the Hodge to de Rham spectral sequence of M0 satisfies Ep,q1 = Ep,q∞ if
p+ q = 1 or p+ q = 2. Furthermore, as in Proposition 2.5, the hypotheses ensure that h2,0(M0) =
h0,2(M0) = 1.
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The following result shows that moduli spaces of sheaves on K3 surfaces tend to be strongly
admissible. We refer to [Ogu79] for the definition of superspecial K3 surfaces. They consist of
isolated points in the moduli space of polarized K3 surfaces and correspond to the singular locus of
this moduli space.

Proposition 3.10. In the situation of Theorem 2.9, assume that k has characteristic at least 5,
and that (X,H) is a polarized, non superspecial K3 surface over k. Then we can find a polarization
A on MH(v) such that (MH(v), A, L) is strongly admissible.

Proof. Dividing H by an integer if necessary, we can assume that H is primitive. Let X̂ → T̂ be the

formal universal deformation of the pair (X,H). Since X is not superspecial, T̂ is formally smooth of

dimension 19, i.e., T̂ is isomorphic to Spf W [[t1, . . . , t19]]. By Theorem 2.9, c1(v) is proportional to

H, so v lifts to X̂. Consider the relative moduli spaceMH(X̂, v) over T̂ . It is smooth and projective.

As a consequence, we can find an ample line bundle A on MH(v) that lifts to MH(X̂, v). Since

MH(X̂, v) → T̂ is algebraizable, and by Proposition 2.5, the only thing that remains to be proved

to show that (MH(v), A, L) is strongly admissible is that L lifts to MH(X̂, v).

Let P be the W -point of T̂ that corresponds to t1 = . . . = t19 = 0. By Theorem 2.9, we know

that L lifts toMH(X̂, v)P . We prove by induction on n that L lifts to the n-th infinitesimal neigh-

borhood of P in T̂ . Note that such liftings are unique since H1(MH(v),OMH(v)) = 0. Furthermore,

Proposition 2.5 also shows that the formation of R2π∗OMH(X̂,v) is compatible with base change.

We just showed that the result is true for n = 0. Assume that L lifts to the n-th infinitesimal

neighborhood Pn of P in T̂ . The obstruction to lifting L to the n+ 1st infinitesimal neighborhood

of P belongs to H2(MH(X̂, v)Pn ,OMH(X̂,v)P
). By Proposition 2.5 again, this group is a free W -

module of rank 1. However, Theorem 2.4, (vi) shows that some power of L actually lifts to T̂ , so
this obstruction is torsion. This shows that the obstruction vanishes and concludes the proof. �

We now investigate the Kuga-Satake construction in the setup above. If ` is a prime number
different from p, we write R2π∗Z`,prim for the orthogonal of c1(L) in R2π∗Z`. Let n ≥ 3 be an
integer prime to p. Up to replacing k by a finite extension whose degree only depends on n and the
pair (Λ, l), we can assume that the family M→ T is endowed with a spin structure of level n with
respect to R2π∗Z`,prim. We refer to [Cha12, 3.2] and to [And96, Riz10, Mau12] for definitions and
details.

Let Sn,l,h, Sn,h and Sn,l be the orthogonal Shimura varieties with spin level n associated to Λl,h,
Λh and Λl respectively, see [Cha12, 3.6]. Then these three varieties are all defined over Q and we
have closed embeddings of Sn,l,h into Sn,h and Sn,l. These are both defined over Q.

The period map P, as defined for instance in the previous section, gives a morphism

P : TC → Sn,l,h.

The argument of [Cha12, Proposition 16], which is essentially contained in [And96, Appendix 1],
the composition

TC
P // Sn,l,h // Sn,h

is defined over K. Since the second map is a closed immersion defined over Q, this shows that

P : TC → Sn,l,h
is defined over K, and so is

Pl : TC → Sn,l
defined as the composition with Sn,l,h → Sn,l.
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The Kuga-Satake construction induces a morphism

(3.1) KS : Sn,l → Ag,d′,n,Q
where Ag,d′,n,Q is the moduli space over Q of abelian varieties of dimension g with a polarization of
degree d′2 and level n structure, for some integers g and d′, where d′ is prime to p, see [And96]. Let

κK : TK → Ag,d′,n,K
be the composition of KS with P.

Let ψ : AK → TK be the abelian scheme induced by κK , and let C = C(Λl) be the Clifford
algebra associated to Λl. Then there is a canonical injection of C into the ring of endomorphisms of
the scheme AK and, as shown in [Del72, 6.5], we have an isomorphism of `-adic sheaves of algebras
on TK

(3.2) C(R2π∗Z`(1)prim) ' EndC(R1ψ∗Z`)
where C denotes the Clifford algebra – here we are using the Kuga-Satake construction with respect
to the full Clifford algebra.

By [Riz10, 6.1.2], the data above is sufficient to show that the Kuga-Satake morphism κK can be
extended in a unique way to a morphism over W

κ : T → Ag,d′,n
where Ag,d′,n denotes the moduli space over W .

Definition 3.11. The morphism
κ : T → Ag,d′,n

is the Kuga-Satake mapping.

We know recall some properties of the Kuga-Satake construction. Assume that k is algebraically

closed. Recall that 0 is a k-point of T , and let T̂ is the formal neighborhood of 0 in T . As in
[Mau12, Section 6], and by the argument of [Cha12, Proposition 13], we have the following canonical
primitive strict embedding of filtered Frobenius crystals

(3.3) R2π∗Ω
•
M̂/T̂

(1)prim ↪→ EndC(R1ψ∗Ω
•
Â/T̂ ).

It is compatible with (3.2) and the Beauville-Bogomolov form via the comparison theorems. In
particular, we get a primitive isometry

(3.4) H2
cris(M0/W ) ↪→ End(H1

cris(A0/W ))

Lemma 3.12. Let Λl be a lattice, and let A0 be an abelian variety of dimension g over k, together
with a level n structure and a polarization of degree d′. Then there are only finitely many subspaces
V ⊂ End(H1

cris(A0/W )) that arise as the image of some H2
cris(M0/W ) for some admissible triple

(M0, H0, L0) with primitive lattice Λl.

Proof. By the main construction and result of [Kis10], and since l2 is not divisible by p, the Shimura
variety Sn,l admits a smooth canonical integral model Sn,l over W , and the Kuga-Satake morphism
KS : Sn,l → Ag,d′,n,Q extends to a finite, unramified morphism

(3.5) KS : Sn,l → Ag,d′,n.

Let P be the canonical locally OSn,l-module endowed with a connection ∇ and a Hodge filtration

of weight 0 on Sn,l over K. Denote again by ψ : A → Sn,l the abelian scheme induced by KS. Then
by definition of the Kuga-Satake construction we have a morphism over Sn,l
(3.6) P ↪→ End(R1ψ∗Ω

•
A/Sn,l)

analogous to (3.3). It is compatible with the Hodge filtrations and the connexions on both sides.
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Now let A0 be as in the lemma. It suffices to show that there are a finite number of subspaces
V ′ ⊂ End(H1

cris(A0/W )⊗K) that arise as stated. Such a V ′ is obtained by first picking a preimage
of the point of Ag,d′,n corresponding to A0, then lifting this preimage to a W -point of Sn,l. If
AK is the corresponding abelian variety over K, then the relation (3.6) induces a subspace of
End(H1

dR(AK/K)). Via the comparison theorem between the de Rham cohomology of AK and the
crystalline cohomology of A0, this induces the subspace V ′ of End(H1

cris(A0/W )⊗K).

Since (3.6) is compatible with the Gauss-Manin connection, it is readily seen that the construction
above only depends on the choice of a preimage of the point corresponding to A0 in Sn,l under KS.

Since KS is finite, this shows the result. �

Remark 3.13. The proof of the lemma above is the only appearance in the text of canonical integral
models of Shimura varieties. While they make the proof more natural, we do not really make full use
of their properties, and they could be replaced by any model that allows us to extend the Kuga-Satake
morphism over W .

Remark 3.14. The idea of the proof could be extended to show that there is only finitely many
birational equivalence classes of varieties M0 as above that have a given Kuga-Satake variety. We
will prove a weaker result instead.

The following lemma appears in the proof of [Cha12, Proposition 22]. For K3 surfaces, it is stated
and proved in [MP13b, Proposition 4.17 (4)], see also [Ben14, Proposition 2.3].

Lemma 3.15. Assume that k is algebraically closed. Let (M0, H0, L0) be a strongly admissible
triple over k, and let A0 be the abelian variety associated to M0 under the Kuga-Satake mapping.
Let i : H2

cris(M0/W ) ↪→ End(H1
cris(A0/W )) be the morphism (3.4).

Then we have an isomorphism of lattices

{α ∈ NS(M0)|q(α, c1(L0)) = 0} ' End(A0) ∩ Im(i).

Proof. The arguments of the proof of [Cha12, Proposition 22] – which are essentially the same as
those of [MP13b, Proposition 4.17 (4)] – apply without any change. For the sake of completeness,
we briefly recall the argument. We work in the setup above.

Let α be a class in the Néron-Severi group ofM0 that is orthogonal to c1(L0). Since h0,2(M0) = 1,
the assumption on the geometric generic fiber of T ensures that α lifts to characteristic zero. In
particular, it lifts to a Hodge class. Via the Kuga-Satake correspondence and the Hodge conjecture
for endomorphisms of abelian varieties, it induces an endomorphism of a lift of A0, hence of A0

itself. This endomorphism belongs to the image of i by construction.

Now let β be a class in End(A0)∩ Im(i). The argument of [Cha12, End of Proposition 22], which
is a rephrasing of [Ogu79, Theorem 2.9], shows that there exists a lift of M0 parametrized by T
such that β lifts to an endomorphism of the induced Kuga-Satake abelian variety. In particular, it
lifts to a Hodge class, which by the Hodge conjecture for divisors allows us to conclude as before
that β was induced by a line bundle on M0, orthogonal to c1(L). �

The two results above directly imply the following finiteness result, which is a weak version of
Theorem 3.3.

Proposition 3.16. Let k be a finite field of characteristic at least 5. Let r and n be two positive
integers. Then there exist finitely lattices Λ1, . . . ,Λr such that if (M0, H0, L0) is a strongly admissible
triple over k with dim(X) = 2n and c1(L0)2n = r, then

NS(M0,k) ' Λi

for some integer i., where the left-hand side is endowed with the Beauville-Bogomolov form.
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Proof. Since by assumption (M0, H0, L0) lifts to C, we can apply Lemma 3.5 to show that there
exist finitely many lattices that can appear as a primitive lattice for (M0, L0) and that q(L0) is
uniformly bounded. As a consequence, we can restrict our attention to those sternly admissible
triple with primitive lattice Λl for some fixed Λl.

Fix some integer n ≤ 3. After replacing k by a finite extension whose degree only depends on n
and Λl so that spin structures are defined on suitable deformations of (M0, H0, L0) as before, we
can construct the Kuga-Satake abelian variety A0 together with the canonical morphism

i : H2
cris(M0/W ) ↪→ End(H1

cris(A0/W )).

If d′ is as in Definition 3.11, then A0 is a polarized abelian variety over k of degree d′, together
with a level n structure. Since k is finite, there are only finitely many such A0. Furthermore, given
A0, there are only finitely many subspaces V ⊂ End(H1

cris(A0/W )) that arise as the image of a
morphism i as above.

By Lemma 3.15, this discussion shows that the lattice c1(L0)⊥ := {α ∈ NS(M0,k)|q(α, c1(L0)) =

0} can take only finitely many values as the strongly admissible triple varies. The inequality

|disc(NS(M0,k))| ≤ q(L0)|disc(c1(L0)⊥)|

shows that the discriminant of NS(M0,k) is bounded. Since the set of isomorphism classes of

lattices with bounded rank and discriminant is finite by [Cas78, Chap. 9, Theorem 1.1], this shows
the result. �

3.4. Finiteness results for K3 surfaces over finite fields. The following weak finiteness result
for K3 surfaces over finite fields will be the key to the proof of the Tate conjecture for K3 surfaces.
We refer to [Ogu79] for the definition of superspecial K3 surfaces. They consist of isolated points in
the moduli space of polarized K3 surfaces and correspond to the singular locus of this moduli space.

Proposition 3.17. Let k be a finite field of characteristic at least 5. Let k be an algebraic closure
of k and let W be the ring of Witt vectors of k.

Let d and t0 be positive integers. Then there exists a positive integer N and nonzero integers a, b
such that there exist only finitely many polarized non-superspecial K3 surfaces (X,H) of degree 2md
over k , where m is a positive integer satisfying

(i) m = 1[N ],
(ii) m is prime to a and b, and both a and b are quadratic residues modulo m.

(iii) The p-adic valuation of the discriminant of NS(Xk) is at most t0.

Proof. We fix integers r, n,N, a, b as in Theorem 2.9. As a consequence, if (X,H) is a polarized K3
surface over k as above, we can find a Mukai vector v on X satisfying condition (C) of Definition
2.3 such that the moduli spaceMH(v) has dimension 4 and there exists a line bundle L onMH(v)
satisfying c1(L)4 = r and q(L) > 0. Proposition 3.10, there exists an ample line bundle A onMH(v)
such that (MH(v), A, L) is strongly admissible.

As a consequence of Proposition 3.16, we can find finitely many lattices Λ1, . . . ,Λs, depending
only on d,N, a, b, such that if X,H and v are as above, then

NS(MH(v)k) ' Λi.

Let p be the characteristic of k. By Corollary 2.7, we can write

|disc(NS(Xk))| = ptλ|disc(Λi)|

for some λ ≤ v2 = n−2 and some nonnegative integer t. Since the p-adic valuation of disc(NS(Xk))
is bounded by assumption, this shows that the discriminant of NS(Xk) is bounded independently
of X. Since the set of lattices with bounded rank and discriminant is finite by [Cas78, Chap. 9,
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Theorem 1.1], Corollary 3.2 shows that the set of isomorphism classes of K3 surfaces X as in the
statement is finite. �

4. The Tate conjecture for K3 surfaces over finite fields

This section is devoted to the application of moduli spaces of twisted sheaves to the Tate conjecture
for K3 surfaces. This circle of ideas originates in [LMS14], though it is in the line of [ASD73]. As
explained [LMS14], the failure of the Tate conjecture for a given K3 surface X over a finite field
can be rephrased as the existence of an infinite family of so-called twisted Fourier-Mukai partners
of X over k. Finiteness results as we proved above allow us to control such families, thus proving
Theorem 1.3 and Theorem 1.4.

We will need a variation on the techniques of [LMS14] to adapt their results to a slightly more
flexible setting and make it work in arbitrary characteristic. After recalling basic facts on moduli
spaces of twisted sheaves, we give a very short proof of Theorem 1.4 and prove Theorem 1.3.

4.1. Moduli spaces on twisted sheaves on K3 surfaces. We briefly recall the theory of moduli
spaces of twisted sheaves on a K3 surface. We refer to the discussion in [LMS14, 3.1 to 3.4] for
details.

Let X be a K3 surface over a field k. Let ` be a prime number invertible in k. An `-adic B-field
on X is an element

B = α/`n ∈ H2(X,Q`(1))

where α ∈ H2(X,Z`(1)) is primitive. The Brauer class associated to B is the image of α under the
composition

H2(X,Z`(1))→ H2(X,µ`n)→ Br(X)[`n].

It is denoted by [αn].

Let B = α/`n be an `-adic B-field on X and write r = `n. Following [Yos06, (3.4)], we define

T−α/r : H̃((Xk,Z`)→ H̃((Xk,Q`), x 7→ x ∪ e−α/r.

Let Nα/r(X) be the preimage of N(X) by T−α/r. This is the group denoted by CHα/r(X,Z) in
[LMS14]. By [LMS14, Lemma 3.3.3], we have

(4.1) Nα/r(X) = {(ar,D + aα, cω)|(a, c ∈ Z, D ∈ NS(X)} ⊂ H̃((Xk,Z`).

Elements of Nα/r(X) are called twisted Mukai vectors on X.

Let X → X be a µr-gerbe representing the class [αn]. Given an X -twisted sheaf on X, we
can define its Mukai vector as an element of Nα/r(X). Let v be a primitive element in Nα/r(X).
Assume that rk(v) = r and v2 = 0. Then by [LMS14, Proposition 3.4.1], the stack of simple X -
twisted sheaves on X with Mukai vector v is a µr-gerbe over a K3 surfaceM(v) – denoted by MX (v)
in [LMS14].

The discriminant of Nα/r(Xk) is easy to compute.

Lemma 4.1. With the notations above, we have

|disc(Nα/r(Xk))| = r2|disc(NS(Xk)|

Proof. Let D1, . . . , Ds be a basis of the free Z-module NS(Xk). Then by (4.1), a basis of Nα/r(Xk))
is given by

(r, α, 0), (0, 0, 1), (0, D1, 0), . . . , (0, Ds, 0).

The result follows immediately. �
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We now relate the Néron-Severi group of a 2-dimensional moduli space of twisted sheaves on a
K3 surface with that of the Néron-Severi group of the K3 surface. The following discussion parallels
Theorem 2.4. We do not repeat the arguments allowing us to deduce results over arbitrary fields
from the results over the field of complex numbers.

Let ` be a prime number that is invertible in k. Theorem 3.19, (ii) in [Yos06] shows that there
exists a canonical bijective isometry

v⊥,`/Z`v → H2(M(v)k,Z`(1))

induced by an algebraic correspondence, where v⊥,` is the orthogonal of v in the `-adic Mukai lattice
of X. Note that v is isotropic by assumption, so Z`v ⊂ v⊥,`.

The exact same argument as in the proof of 2.4, (vi) and (vii) shows that – if k is algebraically
closed or finite – there exists an injective isometry

(4.2) θv : v⊥/Zv → NS(M(v)),

where v⊥ is the orthogonal of v in the lattice of twisted Mukai vectors on Xk, Nα/r(X). Furthermore,
the cokernel of θv is a p-primary torsion group, where p is the characteristic of k.

Proposition 4.2. With the notations above, let nv be the positive integer defined by

v.Nα/r(Xk) = nvZ.

If k has positive characteristic p, then there exists a nonnegative integer t such that

(nv)
2ptdisc(NS(M(v))k) = r2disc(NS(Xk)).

If k has characteristic zero, then

(nv)
2disc(NS(M(v))k) = r2disc(NS(Xk)).

Proof. By (4.2), and as in Corollary 2.7, we can find a nonnegative integer t such that

|disc(v⊥/Zv)| = pt|disc(NS(M(v)k))|

We now relate the discriminant of v⊥/Zv to that of Nα/r(Xk). Let e1, . . . , et be elements of v⊥

that form a basis of vperp/Zv. Then v, e1, . . . , et is a basis of v⊥. Let w be an element of Nα/r(Xk)

such that v.w = nv. Then w, v, e1, . . . , et is a basis of Nα/r(Xk). Computing the discriminant of

Nα/r(Xk) in this basis, we get

|disc(Nα/r(Xk))| = (nv)
2|disc(v⊥/Zv)|.

Using Lemma 4.1, we finally get

r2|disc(NS(Xk)| = (nv)
2pt|disc(NS(M(v)k))|.

�

4.2. Finiteness statements and the Tate conjecture for K3 surfaces. The goal of this section
is to prove Theorem 1.3. In [LMS14], the authors prove the following statement.

Theorem 4.3. Let k be a finite field of characteristic at least 5. Assume that there are only finitely
many K3 surfaces defined over each finite extension of k. Then the Tate conjecture holds for all K3
surfaces over k.

We will not be able to use the theorem above directly, and will rely on a simplified version of the
argument of [LMS14], which holds in arbitrary characteristic.

From now on, let X be a K3 surface over a finite field k of characteristic p. Up to replacing k by
a finite extension, we can and will assume that NS(Xk) = NS(X).
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If ` is a prime number different from p, we denote by T (X,Z`) the orthogonal complement of
NS(X)⊗ Z` in H2(X,Z`(1)). Note that by the Hodge index theorem for surfaces, the intersection
form on NS(X) is non-degenerate.

The following is a slightly modified version of Lemma 3.5.1 of [LMS14] that gets rid of the
hypothesis on the characteristic of k and does not make use of [ASD73].

Lemma 4.4. Assume that Br(X) is infinite. There exist prime numbers p1, . . . , pr such that if ` is
big enough and pi is a square modulo ` for all i, there exists α ∈ T (X,Z`) such that α2 = 1.

Proof. By Proposition 2.1.2 of [LMS14], we can assume that the discriminant of H2(X,Z`(1)) has
`-adic valuation zero. As a consequence, again if ` is big enough, the discriminant of T (X,Z`) has
`-adic valuation zero. Furthermore, there are only finitely many prime numbers pi such that the
discriminant of T (X,Z`) can have nonzero pi-adic valuation as `-varies by Proposition 2.1.2 again.

By Hensel’s lemma, we can prove the result after tensoring T (X,Z`) with F`. If the rank of
T (X,Z`) is at least 2, T (X,Z`)⊗F` represents 1 by general results. If the rank is 1, the result holds
since its discriminant is a square by assumption. �

For the sake of reference, we also state the following easy lemma.

Lemma 4.5. Let x1, . . . , xr be finitely many integers. Then there exists infinitely many prime
number ` such that all the xi are quadratic residues modulo `.

Proof. We can assume that x1 = −1, x2 = 2 and the remaining xi are distinct odd prime numbers.
Then choosing ` to be congruent to 1 modulo 8 ensures that x1 and x2 are quadratic residues modulo
`. Using the quadratic reciprocity law and Dirichlet’s theorem on primes in arithmetic progressions
allows us to conclude. �

Now let D be a line bundle of degree 2d on X, and let t0 be the p-adic valuation of disc(NS(X)).
Let N, a and b be as in Proposition 3.17. Let ` be a big enough prime number, different from p, such
that 2, a, b,−2d are quadratic residues modulo `. Assume that ` satisfies the condition of Lemma
4.4. This is possible by Lemma 4.5.

Assume that X does not satisfy the Tate conjecture, so that Br(X) is infinite by [LMS14, Propo-
sition 3.2.8] for instance. As in [LMS14, Proposition 3.5.4], the assumptions on ` and Lemma 4.4
show that we can find γ ∈ T (X,Z`) such that γ2 = −2d.

If n is a positive integer, let

vn = (`n, γ +D, 0) ∈ Nγ/`n(X).

As in [LMS14, Proposition 3.5.4], we have v2
n = 0. As in section 4, the twisted moduli space

Xn :=MHn(vn) is a K3 surface over k.

By Proposition 4.2,

λ2
np
tdisc(NS((Xn)k)) = `2ndisc(NS(Xk)).

Here λn is an integer such that

vn.N
γ/`n = λnZ.

Since vn.(0, D, 0) = −2d, we have λ2
n ≤ 4d2, so that the `-adic valuation of disc(NS((Xn)k)) goes

to infinity as n goes to infinity.

We now use the surfaces Xn to prove Theorems 1.3 and 1.4, i.e. that X satisfies the conjecture if
the characteristic is at least 5 or if the Picard number is at least 2. The second one does not rely on
Theorem 2.9 and only uses Proposition 3.1. It should be seen as a modern rephrasing of [ASD73].

Proof of Theorem 1.4. Assume that X has Picard number at least 2. Then we can assume that d is
negative and find a divisor B on X, orthogonal to D, such that B2 = 2e > 0.
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Let bn = (0, B, 0) ∈ Nγ/`n(X). Then bn.vn = 0 and b2n = 2e. By equation (4.1), this shows that
there exists a divisor Bn on X with B2

n = 2e > 0. Corollary 3.2 implies that the surfaces Xn,k

fall into finitely many isomorphism classes, which is in contradiction with the fact that the `-adic
valuation of disc(NS((Xn)k)) goes to infinity as n goes to infinity. �

Proof of Theorem 1.3. Assume that the characteristic of k is at least 5. We can assume that X
is not superspecial. Indeed, these admit supersingular deformations that are not superspecial by
[Ogu79, Remark 2.7], so the Tate conjecture for these follow from the result for non superspecial
surfaces and [Art74, Theorem 1.1].

We assume that D is ample. By equation (4.1), we have

hn := (`2n, `nγ,−2d) ∈ Nγ/`n(Xk).

Furthermore, we have

hn.vn = `nγ2 + 2d`n = 0

and

h2
n = `2nγ2 + 4d`2n = 2d`2n.

By equation (4.2), this shows that there exists a line bundle Hn on Xn with c1(B)2 = 2d`2n. It is
easy to show that Hn is ample. Indeed, if X → S is a deformation of (X,H) over a discrete valuation
ring with generic fiber of Picard rank 1, then M(v) lifts to a projective scheme over S with generic
fiber of Picard rank 1, generated by a lift of Hn.

Using again the equality

λ2
np
tdisc(NS((Xn)k)) = r2disc(NS(Xk)).

with λ2
n ≤ 4d2, we get that the p-adic valuation of disc(NS((Xn)k)) is bounded independently of n.

We now restrict to the positive integers n such that `2n = 1[N ]. By Proposition 3.17, there exist
only finitely many K3 surfaces over k satisfying the condition above, which is in contradiction with
the fact that the `-adic valuation of disc(NS((Xn)k)) goes to infinity as n goes to infinity and proves
that X satisfies the Tate conjecture.

�
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Vol. II, volume 64 of Astérisque, pages 3–86. Soc. Math. France, Paris, 1979.

[Riz10] Jordan Rizov. Kuga-Satake abelian varieties of K3 surfaces in mixed characteristic. J. Reine Angew. Math.,
648:13–67, 2010.

[SD74] B. Saint-Donat. Projective models of K − 3 surfaces. Amer. J. Math., 96:602–639, 1974.

[Sul77] D. Sullivan. Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math., (47):269–331
(1978), 1977.

[Tat66] J. Tate. Endomorphisms of Abelian varieties over finite fields. Invent. Math., 2:134–144, 1966.
[Ver13] Misha Verbitsky. Mapping class group and a global Torelli theorem for hyperkähler manifolds. Duke Math.

J., 162(15):2929–2986, 2013. Appendix A by Eyal Markman.

[Yos01] K. Yoshioka. Moduli spaces of stable sheaves on abelian surfaces. Math. Ann., 321(4):817–884, 2001.
[Yos06] K. Yoshioka. Moduli spaces of twisted sheaves on a projective variety. In Moduli spaces and arithmetic

geometry, volume 45 of Adv. Stud. Pure Math., pages 1–30. Math. Soc. Japan, Tokyo, 2006.
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