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Abstract. Using constructions of Voisin, we exhibit a smooth projective variety de-
fined over a number field K and two complex embeddings of K, such that the two complex
manifolds induced by these embeddings have non isomorphic cohomology algebras with
real coe‰cients. This contrasts with the fact that the cohomology algebras with l-adic co-
e‰cients are canonically isomorphic for any prime number l, and answers a question of
Grothendieck.

1. Introduction

Let X be an algebraic variety defined over an algebraically closed field K of charac-
teristic 0. If l is a prime number, the l-adic cohomology of X , H �ðX ;QlÞ, is a graded alge-
bra over Ql . Its definition as an inverse limit of étale cohomology groups shows that it does
not depend on the structural map X ! SpecK.

Now suppose K is a finitely generated extension of Q. We can consider the l-adic co-
homology of XK , where K is an algebraic closure of K . This does not depend on the choice
of the algebraic closure. Moreover, if L is any algebraically closed field containing K , the
proper base change theorem shows that the l-adic cohomology of XL is canonically isomor-
phic to that of XK . In particular, H �ðXC;QlÞ is canonically defined and does not depend on
an embedding K ,! C. Let us choose such an embedding, and assume from now on that X
is smooth over K . Artin’s comparison theorem of [3], Exp. XI, shows that H �ðXC;QlÞ is
canonically isomorphic to the Betti cohomology of X an

C , the underlying complex manifold
of XC, with coe‰cients in Ql . As a consequence, the latter does not depend on the embed-
ding K ,! C.

The preceding discussion shows that the cohomology algebra with coe‰cients in Ql

of the complex manifold X an
C does not vary under automorphisms of C. In other words, it

does only depend on the abstract scheme XC and not on its map to SpecC.

The topology of a complex variety can nonetheless vary under automorphisms of C.
Indeed, Serre constructs in [6] two conjugate complex smooth projective varieties with dif-
ferent fundamental groups. Note however that the profinite completions of those are can-
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onically isomorphic, due to Grothendieck’s theory of the algebraic fundamental group. In
particular, they do not have the same homotopy type.

Other constructions of conjugate varieties which are not homeomorphic can be found
in [1], and more recently in [4] and [7] (the last article actually considers open varieties). See
also [2] for related constructions. Nevertheless, the arguments leading to the constructions
of the previous examples all make use of the integral homotopy type, by actually consider-
ing fundamental groups or Betti cohomology with coe‰cients in Z.

This leads naturally to the following question, asked in [5]:

Do there exist conjugate varieties with di¤erent rational homotopy type?

Very similarly, it had already been asked by Grothendieck (Montréal, july 1970) whether
there exist conjugate varieties with distinct cohomology algebras with rational coe‰cients.

In this paper, we answer positively these questions. We actually show the following,
which is stronger:

Theorem 1. There exist smooth projective conjugate varieties whose real cohomology

algebras are not isomorphic.

To construct the example, we use the methods of [9], where Voisin shows how to use
the cohomology algebra of some varieties to recover their endomorphism rings. As in [6],
our example is built out of abelian varieties with complex multiplication.

Acknowledgements. I would like to thank Claire Voisin for sharing her ideas with
me, and for her many very helpful remarks. This paper owes her a lot. I would also like
to thank Johan de Jong for many useful discussions. This work was completed during a
stay at Columbia University.

2. Statement of the theorem

Let k and k 0 be two di¤erent imaginary quadratic subfields of C1), and let E (resp. E 0)
be a complex elliptic curve with complex multiplication by Ok (resp. Ok 0). Let A be the
product of E and E 0.

Suppose we are given polarizations f and f 0 of E and E 0, that is, numerical equi-
valence classes of very ample line bundles. Those give a polarization c of A with
c ¼ fl f 0, which comes from some projective embedding i : A ,! PN . The idea of the
example is to construct a variety whose cohomology ring encodes the endomorphism ring
of A and contains a distinguished line related to the polarization. This will be achieved by
blowing-up some special subvarieties of A� A� PN .

Let a and a 0 be imaginary elements of Ok and Ok 0 which generate the fields k and
k 0 respectively. We will denote by f (resp. f 0) the endomorphism a� 0 (resp. 0� a 0) of

1) For simplicity, but at the loss of some functoriality, we fix complex embeddings of the quadratic fields.
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A ¼ E � E 0—we will sometimes still denote by f (resp. f 0) the corresponding endomor-
phism of E (resp. E 0). The induced homomorphisms on the first cohomology group of A
have eigenvalues 0 and a, �a (resp. a 0, �a 0).

Let x, y, z and t be points of PN and u be a point of A. Let us consider the following
smooth subvarieties of A� A� PN :

Z1 ¼ A� 0� x; Z2 ¼ GIdA � y; Z3 ¼ Gf � z; Z4 ¼ Gf 0 � t; Z5 ¼ u� Gi;

where G stands for the graph of a morphism. For a generic choice of x, y, z, t, u, those
subvarieties are pairwise disjoint. Let X be the blow-up of A� A� PN along those sub-
varieties. This is a smooth complex projective variety2).

For any smooth complex variety V , one can consider the underlying complex mani-
fold V an and its real cohomology algebra H �ðV an;RÞ. By an abuse of notation, we will
denote the latter algebra by H �ðV ;RÞ, remembering that it depends on the usual topology
on V . For a scheme Y over a field K , and s an automorphism of K, let Y s denote the
scheme Y nK ;sK . If Y is smooth (resp. polarized), then so is Y s. Our theorem is the fol-
lowing.

Theorem 2. Let X be constructed as above, and let s be an automorphism of C which

acts trivially on one of the fields k and k 0, but not on the other. Then the real cohomology

algebras H �ðX ;RÞ and H �ðX s;RÞ are not isomorphic.

3. Proof of the theorem

Theorem 2 will be obtained as a consequence of propositions 3 and 4, which will be
stated and proved in the next subsections.

3.1. Some linear algebra. Let s be an automorphism of the field C. In this section,
we describe some linear objects attached to the polarized abelian variety ðAs;csÞ and study
how they vary under the action of automorphisms of C. What we would like to do is to
recover the CM-type of E s and E 0s from part of the cohomology of X s. Actually, we will
only be able to compare, in some sense, those CM-types, which will be enough for our pur-
pose. This is the reason why we have to work with two elliptic curves.

Let s be an automorphism of C. There is a canonical isomorphism of abstract
schemes from As to A. Though it is by no means defined over C, it still induces an isomor-
phism between the endomorphism rings of the complex varieties As and A. As a conse-
quence, there is a canonical action of k � k 0 on As. The real vector space H 1ðAs;RÞ
thus becomes a free rank 1 C� C-module, as knQ R and k 0 nQ R are canonically iso-
morphic to C (recall we chose complex embeddings of k and k 0). From the embedding

is : As ,! PN , we get a homomorphism is� : H 2ðPN ;RÞ !
V2
R

H 1ðAs;RÞ.

2) Since abelian varieties with complex multiplication are defined over number fields, we can even choose

the polarizations and the points adequately so that X is also defined over a number field.
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As a consequence, with each s comes a free rank 1 C� C-module

V ¼ H 1ðAs;RÞ;

a 1-dimensional R-vector space

L ¼ H 2ðPN ;RÞ

and a nonzero homomorphism

m ¼ is� : L !
V2
R

V :

Let L be the set of isomorphism classes of such triples ðV ;L; mÞ, with the obvious
notion of morphism. The preceding description gives us a map

l : AutðCÞ ! L:

Proposition 3. Let s A AutðCÞ act trivially on one of the fields k and k 0, but not on the

other. Then lðsÞ3 lðIdCÞ.

Proof. Let V be a free rank 1 C� C-module. Using the idempotents of C� C, we
get a canonical splitting of V as a direct sum of two complex vector spaces V1 and V2 of
rank 1, such that 0� C acts trivially on V1 and C� 0 acts trivially on V2. The action of
C� 0 on V1 and of 0� C on V2 endows those real vector spaces with a complex structure,
so the underlying real vector spaces of V1 and V2 are canonically oriented. Let us call those
complex structures and the induced orientations the algebraic ones.

Let L be a real vector space of rank 1. Any homomorphism m of real vector spaces

from L to
V2
R

V canonically induces homomorphisms from L to
V2
R

V1 and
V2
R

V2. Suppose

that those are isomorphisms—this is the case for the triples in the image of l. We get an

isomorphism between
V2
R

V1 and
V2
R

V2, which may or may not respect the algebraic orienta-

tion. Let us define the sign of the triple ðV ;L; mÞ to be 1 or �1 according to wether it is the
case or not. The sign only depends on the isomorphism class of the triple.

In the setting of the proposition, the sign of a triple is easy to compute. Let us indeed
choose an automorphism s of C. The aforementioned splitting of H 1ðAs;RÞ corresponds
to the splitting

H 1ðAs;RÞ ¼ H 1ðE s;RÞlH 1ðE 0s;RÞ:

Aside from the complex structure induced by complex multiplication, the space
H 1ðE s;RÞ has a complex structure induced by its identification with the cotangent space
at 0 to the complex manifold E s. It does not have to agree with the one previously defined
through complex multiplication. The same construction works with E 0. Let us call those
complex structures and the induced orientations transcendental. Now let h A H 2ðPN ;RÞ
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be the class of a hyperplane. The homomorphisms H 2ðPN ;RÞ !
V2
R

H 1ðE s;RÞ and

H 2ðPN ;RÞ !
V2
R

H 1ðE 0s;RÞ defined earlier both send h to elements which are positive with

respect to the transcendental orientation.

As a consequence, the isomorphism
V2
R

H 1ðE s;RÞ !
V2
R

H 1ðE 0s;RÞ induced by the

polarization respects the transcendental orientations. From this remark, it results that the
sign of the triple lðsÞ is 1 if and only if the algebraic and transcendental orientations either

coincide on both H 1ðE s;RÞ and H 1ðE 0s;RÞ, or if they di¤er on both those spaces.

Recall that a complex structure on a real vector space V is given by an automorphism
I of V such that I 2 ¼ �IdV . Giving I is in turn equivalent to giving a splitting of the com-
plex vector space

V nC ¼ V 1;0 lV 0;1

such that V 1;0 and V 0;1 are complex conjugate of each other. Those spaces are the eigens-
paces of I for the eigenvalues i and �i respectively.

Now let I salg and I str be the automorphisms of H 1ðE s;RÞ corresponding to the alge-
braic and transcendental complex structures. Since the action of complex multiplication
on H 1ðE s;RÞ is C-linear with respect to the transcendental complex structure (indeed, mor-
phisms of smooth complex algebraic varieties are holomorphic), I salg and I str commute,

which implies, as their eigenspaces are one-dimensional and they have i and �i as eigen-
values, that they are either equal or opposite to each other.

The splitting of H 1ðE s;RÞ corresponding to the transcendental complex structure is
well-known, as it corresponds to the Hodge decomposition

H 1ðE s;CÞ ¼ H 0ðE s;WE sÞlH 1ðE s;OE sÞ;

with I str acting as i on the first summand and as �i on the second. Therefore, we just have to
investigate the action of complex multiplication on H 0ðE s;WE sÞ.

We have an obvious isomorphism of one-dimensional complex vector spaces

H 0ðE;WEÞ ! H 0ðE s;WE sÞ; o 7! os

given by pullback of di¤erential forms by the isomorphism of abstract schemes E s ! E.
This isomorphism is s-linear, that is, it sends lo to sðlÞos. Let f be the endomorphism
of E we chose earlier. It generates its complex multiplication, and corresponds to a certain
imaginary a A Ok HC. For any global holomorphic one-form o on E, we have

f s�os ¼ ð f �oÞs:

The morphisms f � and f s� act as scalars on H 0ðE;WEÞ and H 0ðE s;WE sÞ respectively. Let
f � act by multiplication by l. The complex number l may be either a or a ¼ �a, and it is
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equal to a if and only if the algebraic and transcendental complex structures on H 1ðE;RÞ
coincide. But

f s�os ¼ ð f �oÞs ¼ ðloÞs ¼ sðlÞos:

This proves that if s is an automorphism of C fixing a, hence k, then the transcenden-
tal and algebraic complex structures on H 1ðE s;RÞ coincide if and only if they do on
H 1ðE;RÞ. The same goes for the algebraic and transcendental orientations. On the other
hand, if s acts as complex conjugation on k, the transcendental and algebraic orientations
on H 1ðE s;RÞ coincide if and only if they don’t on H 1ðE;RÞ.

Since the same goes for E 0s and k 0, the preceding discussion shows that the sign of
lðsÞ is the same as the sign of lðIdCÞ if and only if s acts either trivially on k and k 0 or by
complex conjugation on both. This concludes. r

Remark. Using the Hasse principle and the main theorem of complex multiplica-
tion, one can prove that the image of l has exactly two elements, and that lðsÞ ¼ lðIdCÞ if
either s acts trivially on both k and k 0 or if it acts by complex conjugation on both. This is
still true if we replace elliptic curves by abelian varieties (assuming the polarizations are
compatible with the complex multiplication).

3.2. Analysis of the cohomology algebra. The goal of this section is to prove the
following.

Proposition 4. The variety X being defined as in the previous section, let C be the set

of isomorphism classes of real graded algebras of the form H �ðX s;RÞ, where s is an auto-

morphism of C, and let c be the map

AutðCÞ ! C; s 7! H �ðX s;RÞ:

Then the map l : AutðCÞ ! L defined in 3.1 factors through c.

In other words, given the real cohomology algebra of X s, one can recover the linear
algebra data described previously.

Let us fix some notations. Let t : X ! A� A� PN be the blowing-down map and
p : X ! A� A be the composite of t with the projection on the first two factors. While
Z1; . . . ;Z5 are the centers of the blow-up, let D1; . . . ;D5 denote the corresponding excep-
tional divisors of X and for k between 1 and 5, let

jk : Zk ,! A� A� PN ; ~jjk : Dk ,! X ; tk ¼ tjDk

be the canonical morphisms. For a subvariety Z of X , let ½Z� denote its cohomology class.
Let h A H 2ðX ;RÞ be induced by the cohomology class of a hyperplane in PN via the natu-
ral morphism X ! PN . We will use the same notations, with a superscript s, for the corre-
sponding objects of X s.

Proposition 4 is a straightforward consequence of the following two statements.
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Proposition 5. Let C 0 be the set of isomorphism classes of 7-uples ðH;L1; . . . ;L6Þ,
where H is an element of C and L1; . . . ;L6 are lines in H. Let c 0 be the map

AutðCÞ ! C 0; s 7!
�
H �ðX s;RÞ;R½Ds

1 �; . . . ;R½Ds
5 �;Rhs

�
:

If s and s 0 are automorphisms of C, then cðsÞ ¼ cðs 0Þ if and only if c 0ðsÞ ¼ c 0ðs 0Þ.

Proposition 6. The map l factors through c 0.

Before going through the proofs, let us state a lemma for future reference. This is the
analogue of the computations made in the proof of theorem 3 of [9], and, as in Voisin’s
paper, is the key to extracting information from the algebra structure on cohomology
spaces. We give a proof for the reader’s convenience.

Let p1 (resp. p2) be the restriction map from H 1ðA� A;RÞ to H 1ðA;RÞ induced by
the inclusion of the first (resp. second) factor. Let q1 (resp. q2) be the restriction map from
H 2ðA� PN ;RÞ to H 2ðA;RÞ (resp. H 2ðPN ;RÞ) induced by the inclusion of the first (resp.
second) factor. Using pullback by p, we can consider H �ðA� A;RÞ as a subspace of
H �ðX ;RÞ. Note that H 1ðA� A;RÞ ¼ H 1ðX ;RÞ.

Let us fix a nonzero cohomology class a A H 2ðA� A;RÞHH 2ðX ;RÞ. For k

between 1 and 5, consider cup-product with ½Dk�. It gives a homomorphism
H 1ðA� A;RÞ ¼ H 1ðX ;RÞ ! H 3ðX ;RÞ. We get similar homomorphisms by taking cup-
product with h or a.

Lemma 7. The images of those homomorphisms U½D1�; . . . ;U½D5�, Uh, and Ua, are in
direct sum. Furthermore, KerðUaÞ is at most 2-dimensional and

� KerðUhÞ ¼ 0,

� KerðU½D1�Þ ¼ Kerðp1Þ,

� KerðU½D2�Þ ¼ Kerðp1 þ p2Þ,

� KerðU½D3�Þ ¼ Kerðp1 þ f �p2Þ,

� KerðU½D4�Þ ¼ Kerðp1 þ f 0�p2Þ,

� KerðU½D5�Þ ¼ Kerðp2Þ,

The kernel of

U½D5� : H 2ðA� PN ;RÞHH 2ðX ;RÞ ! H 4ðX ;RÞ

is

Kerðq1 þ i�q2Þ;

where the inclusion H 2ðA� PN ;RÞHH 2ðX ;RÞ is given by pullback by the composite of t

with the projection of A� A� PN on the two last factors.
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Obviously, the lemma remains true after letting any automorphism of C act.

Proof. Let us first prove the assertion about the images by considering the general
situation of a blow-up t : ~YY ! Y of a complex smooth projective variety along a smooth,
but not necessarily irreducible, subvariety Z, of codimension everywhere at least 2. Let E
be the exceptional divisor. It is a projective bundle over Z. Let jZ and jE be the inclusions
of Z and E in Y and ~YY respectively. It is known (see [8], 7.3.3) that there exists a homo-
morphism f : H �ðZ;RÞ ! H �ðE;RÞ, given by excision and the Thom isomorphism, such
that the cohomology of ~YY is the quotient in the following exact sequence of (non-graded)
vector spaces

0 ! H �ðZ;RÞ ! H �ðY ;RÞlH �ðE;RÞ ! H �ð ~YY ;RÞ ! 0;

where the first map is ð jZ�; fÞ and the second one is t� l jE�.

Now let Z1; . . . ;Zn be the irreducible components of Z, E1; . . . ;En the corresponding
irreducible components of E, tEi

the restriction of t to Ei, and jZi
and jEi

the obvious in-
clusions. Let x be a degree 2 cohomology class in Y . We want to show that the images of
the homomorphisms U½Ei� � t� and t� � Ux, restricted to degree 1 cohomology classes in Y ,
are in direct sum. Indeed, since t� is injective on cohomology because t is birational, and
since the images of Uh and Ua in H 3ðA� A� PN ;RÞ are in direct sum, as the Künneth
formula shows, this will prove the assertion.

We have

U½Ei� � t� ¼ jEi� � t�Ei
� j �Zi

;

so it is enough to prove that the images of the jEi� : H
1ðEi;RÞ ! H 3ð ~YY ;RÞ and of

t� : H 3ðY ;RÞ ! H 3ð ~YY ;RÞ are in direct sum. But the map

H 3ðY ;RÞlH 1ðE;RÞ ! H 3ð ~YY ;RÞ

has zero kernel for degree reasons, as the exact sequence above shows. This proves the as-
sertion about the images.

Let us now consider the kernels. To compute the first two, it is enough to work on
A� A� PN since t� is injective on cohomology. The Künneth formula shows that h has
nonzero cup-product with any nonzero element of H �ðX ;RÞ coming from A� A.

Consider now cup-product with a. Since the real cohomology algebra of an abelian
variety is the exterior algebra on the first real cohomology space, the assertion concerning
KerðUaÞ boils down to the following lemma.

Lemma 8. Let V be a finite dimensional vector space, and let a be a nonzero element

of
V2
V. The kernel of the homomorphism

5a : V !
V3
V

is at most 2-dimensional.
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Proof. Let us choose a basis e1; . . . ; en for V . The space
V2
V has a basis consisting

of all the ei5ej with i < j. Without loss of generality, we can assume that a has a nonzero
component on e15e2 with respect to this basis. It is then clear that the elements

a5e3; . . . ; a5en of
V3
V are linearly independent. This shows that the homomorphism

5a : V !
V3
V has rank at least n� 2, and concludes the proof. r

As for the computation of the other kernels, since the cohomology of a smooth vari-
ety is embedded in the cohomology of any smooth blow-up of it, the result is a straightfor-
ward consequence of the following general computation.

Consider the situation of two smooth complex projective varieties B and C, together
with a morphism f : B ! C. Let t : gB� CB� C ! B� C be the blow-up of B� C along the
graph G of f . Let E be the exceptional divisor, and let tE be the restriction of t to E. Let

jG and jE be the inclusions of G and E into gB� CB� C and B� C respectively. The map

U½E� � t� : H �ðB� C;RÞ ! H �þ2ð gB� CB� C;RÞ

is equal to

jE� � t�E � j �G:

It follows from [8], 7.3.3 that jE� � t�E is injective, which means that the kernel of U½E� � t�
is equal to the kernel of j �G. Now the morphism from B to B� C with coordinates IdB and
f identifies G with B, and jG : G ,! B� C with

ðIdB � f Þ : B ! B� C:

As a consequence, the kernel of j �G is equal to the kernel of the homomorphism

H �ðB� C;RÞ ¼ H �ðB;RÞnH �ðC;RÞ ! H �ðB;RÞ

which sends an element of the form an b to aW f �ðbÞ.

If b and c are complex points of B and C, let p and q be the projections from
H �ðB� C;RÞ to H �ðB;RÞ and H �ðC;RÞ induced by the immersions B ,! B� C,
x 7! ðx; cÞ and C ,! B� C, x 7! ðb; xÞ. By the Künneth formula, if g is a degree 1 coho-
mology class in H �ðB� C;RÞ ¼ H �ðB;RÞnH �ðC;RÞ, we have

g ¼ pðgÞn 1þ 1n qðgÞ;

which shows that j �GðgÞ ¼ 0 if and only if pðgÞ þ f �qðgÞ ¼ 0.

This proves that the kernel of

U½E� � t� : H 1ðB� C;RÞ ! H 3ð gB� CB� C;RÞ

is

Kerðpþ f �qÞ:

9Charles, Conjugate varieties with distinct real cohomology algebras
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It is straightforward to check that this equality remains true for degree 2
cohomology classes in case B or C has no degree 1 cohomology, since we have then
H 2ðB� C;RÞ ¼ H 2ðB;RÞlH 2ðC;RÞ. r

3.2.1. Proof of proposition 5. Without loss of generality, we can suppose that s 0 is
the identity. Let s be an automorphism of C and g be an isomorphism from H �ðX ;RÞ to
H �ðX s;RÞ. We will show that g sends R½Dk� to R½Ds

k � for any k between 1 and 5, and Rh to
Rhs. This will be achieved step by step.

The Albanese map. We use the same argument as in [9]. Recall that p is the natural
map from X to A� A. Pullback by p gives an isomorphism between H 1ðA� A;RÞ and
H 1ðX ;RÞ. The injection

p� : H �ðA� A;RÞ ¼
V
H 1ðX ;RÞ ,! H �ðX ;RÞ

is given by this isomorphism and cup-product. As a consequence, cup-product alone allows
us to recover H �ðA� A;RÞ as a subalgebra of H �ðX ;RÞ: it is the algebra

V
H 1ðX ;RÞ. This

being true also after letting s act, we get the following.

Lemma 9. The isomorphism g sends the subalgebra H �ðA� A;RÞ of H �ðX ;RÞ to the

subalgebra H �ðAs � As;RÞ of H �ðX s;RÞ.

Image of the cohomology classes of the exceptional divisors.

Lemma 10. There exists a permutation f of f1; . . . ; 5g such that for each k between 1
and 5, g sends the line R½Dk� to the line R½Ds

fðkÞ�.

Proof. From the Künneth formula and the computation of the cohomology of a
blow-up, we get a splitting

H 2ðX ;QÞ ¼ p�H 2ðA� A;QÞlQhl
L5
k¼1

Q½Dk�:

Let k be an integer between 1 and 5. The isomorphism g sends ½Dk� to some element of
H 2ðX s;RÞ of the form

gð½Dk�Þ ¼ as þ m1½Ds
1 � þ � � � þ m5½Ds

5 � þ nhs;

with as coming from H 2ðAs � As;RÞ.

We now use lemma 7. The map

U½Ds
k � : H 1ðX s;RÞ ! H 3ðX s;RÞ

has a 2 dimA ¼ 4-dimensional kernel. Furthermore, the kernel of

Uas þ m1½Ds
1 � þ � � � þ m5½Ds

5 � þ nhs : H 1ðX s;RÞ ! H 3ðX s;RÞ
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is the intersection of the kernels of the Umi½Ds
i �, Uas and Unhs, because the images of these

homomorphisms are in direct sum. Since Uhs is injective on degree 1 cohomology, we get
n ¼ 0. Furthermore, the kernel of Uas : H 1ðX s;RÞ ! H 3ðX s;RÞ is at most 2-dimensional
unless as ¼ 0. This proves as ¼ 0, and since the kernels of the Umi½Ds

i � are pairwise distinct
4-dimensional vector spaces, which implies that the intersection of two of them has dimen-
sion at most 3, this implies that ½Dk� is sent to some mi½Ds

i �. This proves the lemma. r

Lemma 11. The permutation f is the identity.

Proof. For k between 1 and 5, let Fk be the subspace of H ¼ H 1ðX ;RÞ consisting of
elements a such that aW ½Dk� ¼ 0. For s an automorphism of C, let F s

k be the correspond-
ing subspace of H s ¼ H 1ðX s;RÞ. We determined those spaces in lemma 7. From there,
and from the actual definition of f and f 0, one sees that F1 is the only one of the Fk that
has a nonzero intersection with two other ones, namely F3 and F4. The same is true for the
F s
k . As a consequence, fð1Þ ¼ 1 and fðf3; 4gÞ ¼ f3; 4g, thus fðf2; 5gÞ ¼ f2; 5g.

For k and k 0 between 1 and 5 such that Fk XFk 0 ¼ 0, let pkk 0 (resp. ps
kk 0) be the pro-

jection along Fk onto Fk 0 (resp. along F s
k onto F s

k 0). Since g sends R½Dk� to R½Ds
fðkÞ�, it sends

Fk to F s
fðkÞ. The projection pkk 0 is therefore conjugate to ps

fðkÞfðk 0Þ.

Recall that we chose f and f 0 to be generators of the complex multiplication of A.
Let f � and f 0� be the homomorphisms they induce on the first cohomology group of A.
Recall that f � (resp. f 0�) has eigenvalues 0, a and �a (resp. 0, a 0 and �a 0), with a (resp.
a 0) being a generator of k (resp. k 0). Direct computation shows that, identifying F1 with
H 1ðA;RÞ, we have the equality

ðp21 � p53ÞjF1
¼ 1� f �:

As a consequence, the endomorphism ðps
fð2Þ1 � ps

fð5Þfð3ÞÞjF s
1
of F s

1 is conjugate to 1� f s�.

If fð2Þ ¼ 2 and fð5Þ ¼ 5, this imposes f ¼ Id, as f � and f 0� have di¤erent eigen-
values. If fð2Þ ¼ 5, fð5Þ ¼ 2 and fð3Þ ¼ 3, then

ðps
fð2Þ1 � ps

fð5Þfð3ÞÞjF s
1
¼ ðps

51 � ps
23ÞjF s

1
¼ ð1� f s�Þ�1;

where we identified F s
1 with H 1ðAs;RÞ. Again, consideration of the eigenvalues proves that

ð1� f s�Þ�1 is not conjugate to 1� f s�. Indeed,
1

1� a
can’t be equal to either 1� a or

1þ a, so this case cannot happen. Similarly, we cannot have fð2Þ ¼ 5, fð5Þ ¼ 2 and
fð3Þ ¼ 4. This proves that f is the identity. r

Image of h. The only thing left to show is that g sends the line Rh to the line Rhs.

Since g is an isomorphism, and because of the preceding paragraph, it sends h to some
nonzero multiple of an element of H 2ðX s;RÞ of the form

hs þ as þ l1½Ds
1 � þ � � � þ l5½Ds

5 �;

where as is the pull-back of a class in H 2ðAs � As;RÞ.
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The Zk are pairwise disjoint, so the cup-product of any two di¤erent ½Dk� is 0. Fur-
thermore, if H is a generic hyperplane of PN , then A� A�H is disjoint from Z1, Z2, Z3

and Z4, which proves that hW ½Dk� ¼ 0 for k between 1 and 4. This is of course true after
conjugation by s.

Let k be between 1 and 4. Since ½Dk� is sent to a nonzero multiple of ½Ds
k �, we con-

clude that

½Ds
k �W as þ lk½Ds

k �
2 ¼ 0

for k between 1 and 4. We will compute this more explicitely to show that it implies that lk
and as are both zero.

Let us write as ¼ ts�bs, where t is the blowing-down map and bs is a class in
H 2ðAs � As � PN ;RÞ coming from H 2ðAs � As;RÞ. For k between 1 and 5, let
hk A H 2ðDk;QÞ be the first Chern class of the normal bundle of Dk in X . It follows from
[8], lemma 7.32 that the cohomology of Dk is a free module on the cohomology of Zk, with
basis 1, hk; . . . ; h

Nþ1
k , since the codimension of Zk in A� A� PN is N þ 2. For simplicity,

we will drop the s superscript when applied to morphisms.

The self-intersection formula gives, for any positive integer a,

½Ds
k �

a ¼ ~jjk�
�
ðhs

k Þ
a�1�;

where ~jjk is the inclusion of Dk in X . As a consequence, we can compute, for any positive a
and nonnegative b,

½Ds
k �

a W ðt�bsÞb ¼ ~jjk�
�
ðhs

k Þ
a�1 W t�k j

�
k ðbsÞb

�
:

In particular, for k between 1 and 4, we get

~jjk�
�
t�k j

�
k ðbsÞ þ lkh

s
k

�
¼ 0:

Using [8], 7.3.3 as before, we see that the map

~jjk� : H
2ðDs

k ;RÞ ! H 4ðX s;RÞ

is injective. This proves that

t�k j
�
k ðb

sÞ þ lkh
s
k ¼ 0

in H 2ðDs
k ;RÞ, for any k between 1 and 4, which is equivalent to lk ¼ 0 and j �k ðb

sÞ ¼ 0.
Making k ¼ 1 and k ¼ 2, then using lemma 7, this proves that bs is in the kernel of p1
and p2, hence is zero.

We thus have shown that g sends h to some nonzero multiple of an element of
H 2ðX s;RÞ of the form

hs þ l½Ds
5 �:

We want to show that l is zero. The next lemma concludes the proof.
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Lemma 12. Let l be a real number. Then

ðhþ l½D5�ÞNþ1 ¼ 0 , l ¼ 0:

The same is true after conjugation by s.

Proof. We obviously have hNþ1 ¼ 0, so let us suppose ðhþ l½D5�ÞNþ1 ¼ 0. Let H be
a hyperplane in PN . Recall that h is the pullback by the blowing-down map t of the coho-
mology class g of A� A�H in A� A� PN . Using the preceding computation, we get

~jj5�

 PN
i¼0

�
N þ 1

i þ 1

�
l iþ1hi

5 W t�5 j
�
5 ðgN�iÞ

!
¼ 0:

Using [8], 7.3.3 again, and noticing that the map

j5� : H
�ðZ5;RÞ ! H �ðA� A� PN ;RÞ

is injective, we see that the homomorphism

~jj5� : H
2NðD5;QÞ ! H 2Nþ2ðX ;QÞ

is injective. We thus get

PN
i¼0

N þ 1

i þ 1

� �
l iþ1hi

5 W t�5 j
�
5 ðgN�iÞ ¼ 0;

hence, since the hi
5 are linearly independent over H �ðZ5;RÞ for i < codimZ5 ¼ N þ 2, we

obtain

l iþ1t�5 j
�
5 ðgN�iÞ ¼ 0

for i between 0 and N. For i ¼ N, this proves that l ¼ 0. r

Now, since hNþ1 ¼ 0, we have

ðhs þ l½Ds
5 �Þ

Nþ1 ¼ 0:

The preceding lemma thus shows that l ¼ 0, which concludes the proof. r

3.2.2. Proof of proposition 6. Once we know lemma 7, the proof of this proposition
is purely formal. Indeed, let s be an automorphism of C. We want to recover, given the
abstract graded algebra H �ðX s;RÞ together with the lines R½Ds

1 �; . . . ;R½Ds
5 � and Rhs, the

space H 1ðAs;RÞ with the action of f s and f 0s, the space H 2ðPN ;RÞ and the restriction
map

is� : H 2ðPN ;RÞ ! H 2ðAs;RÞ

induced by the projective embedding of As.
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We are going to use the restriction maps ps
1 and ps

2 from

H 1ðX s;RÞ ¼ H 1ðAs � As;RÞ

to H 1ðAs;RÞ induced by the inclusions of the first and the second factor respectively. From
lemma 7, we see that the data we have allow us to recover, in the space H 1ðX s;RÞ, the
subspaces

Kerðps
1 Þ; Kerðps

2 Þ; Kerðps
1 þ ps

2 Þ; Kerðps
1 þ f s�ps

2 Þ; Kerðps
1 þ f 0s�ps

2 Þ:

Giving those subspaces is equivalent to giving the vector space H 1ðAs;RÞ together
with the action of f s and f 0s on it. Indeed, the first two subspaces determine a splitting
of H 1ðX s;RÞ into two subspaces isomorphic to H 1ðAs;RÞ. The third one is the graph of
a specific isomorphism between them, which allow us to identify them—actually, using the
opposite of this particular isomorphism in order to get the right sign. The last two sub-
spaces are then the graphs of the endomorphisms �f s and �f 0s of H 1ðAs;RÞ. We thus re-
cover the real vector space H 1ðAs;RÞ with the action of f s and f 0s.

The same procedure allows us to recover the other data through the second part of
lemma 7. Indeed, the line Rh is equal to the space H 2ðPN ;RÞHH 2ðX s;RÞ. In the previous
paragraph, we showed how to recover the subspace Kerðps

1 Þ ¼ H 1ðAs;RÞHH 1ðX s;RÞ,
which allows us to recover

H 2ðAs;RÞ ¼
V2
H 1ðAs;RÞHH 2ðX s;RÞ;

this being the image of the cohomology of As under the pull-back by the projection on the
second factor. We thus obtained the subspace H 2ðAs � PN ;RÞHH 2ðX s;RÞ and its direct
sum decomposition

H 2ðAs � PN ;RÞ ¼ H 2ðAs;RÞlH 2ðPN ;RÞ:

Using lemma 7, we obtain the graph of the opposite of the homomorphism

is� : H 2ðPN ;RÞ ! H 2ðAs;RÞ: r
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