Exam 25/01/19, 3h

No notes are allowed.

Exercice 1. You only need to give a brief justification for the following.

- 1. Give the definition of a Dedekind ring.
- 2. Let L/K be a finite extension of number fields, \mathcal{O}_K and \mathcal{O}_L the corresponding rings of integers. Describe in terms of $\Omega^1_{\mathcal{O}_L/\mathcal{O}_K}$ the ramified primes of \mathcal{O}_L .
- 3. Give the definition of a local field.
- 4. Let K be a field. Let $\alpha \in Br(K)$, n > 0. Does there exist $\beta \in Br(K)$ with $n\beta = \alpha$? Give a class of fields for which this always holds.
- 5. Let K be a local field. How many isomorphism classes of central simple finitedimensional algebras A with $A^{\otimes n} \simeq M_n(K)$ are there?

Exercice 2. Let K be a number field, and let L be a finite extension of K. We denote by P(L/K) the set of primes \mathfrak{p} of \mathcal{O}_K such that there exists in \mathcal{O}_L a prime \mathfrak{P} above \mathfrak{p} such that $f(\mathfrak{P}/\mathfrak{p}) = 1$.

- 1. If L/K is Galois, recall the definition of Frobenius elements and the Cebotarev theorem for L/K.
- 2. We do not assume that L/K is Galois. Let N be a Galois extension of K containing L. Show that \mathfrak{p} is in P(L/K) if and only if the conjugacy class of the Frobenius at \mathfrak{p} in Gal(N/K) intersects Gal(N/L).
- 3. Using the question above, show that the analytic density of P(L/K) is at least 1/[L:K].
- 4. Show that L/K is Galois if and only if equality holds in the previous question.
- 5. Assume that all primes of \mathcal{O}_K , except a finite number, totally split in L. Show that L = K.
- 6. Show that L/K is Galois if and only if any prime in P(L/K) totally splits in L.

Exercice 3. Let $n \geq 3$, ζ_n a primitive root of unity in \mathbb{C} .

- 1. Recall, for a prime number p, when the ideal (p) is ramified in $\mathbb{Q}(\zeta_n)$.
- 2. Describe the Galois group of $\mathbb{Q}(\zeta_n)/\mathbb{Q}$, and describe the Galois group of $\mathbb{Q}(\zeta_n)/\mathbb{Q}(\zeta_n + \zeta_n^{-1})$ inside it.
- 3. Describe the Frobenius in the Galois group of the extension $\mathbb{Q}(\zeta_n + \zeta_n^{-1})/\mathbb{Q}$.
- 4. At which condition on p does the ideal (p) totally split in $\mathbb{Q}(\zeta_n + \zeta_n^{-1})$?

Problem

Let K be a non-archimedean local field, and let L be a finite extension of K. Assume that L/K is Galois with group G. Let v_K and v_L be the discrete valuations of K and L respectively, \mathfrak{p} and \mathfrak{P} their prime ideals. Let p be the residual characteristic.

- 1. Show that there exists an integer e such that $(ev_L)_{|K} = v_K$. Give an alternate characterization of e.
- 2. For any integer s, let G_s be the subgroup of G

$$G_s = \{ \sigma \in G | \forall a \in \mathcal{O}_L, v_L(\sigma(a) - a) \ge s + 1 \}.$$

What are the groups G_{-1}, G_0 ? What is the intersection of the G_s ?

3. For $s \geq 1$, let U_s be the group $1 + \mathfrak{P}^s$, $U_0 = \mathcal{O}_L^*$. Let ϖ be a uniformizing parameter of L. Show that the morphism

$$G_s/G_{s+1} \to U_s/U_{s+1}, \sigma \mapsto \frac{\sigma(\varpi)}{\varpi}$$

is well-defined, independent of ϖ .

- 4. Reducing to the case where L/K is totally ramified, show that the morphism above is injective.
- 5. What can you say about the groups G_s/G_{s+1} and their cardinality?
- 6. Assume now that K contains a primitive p-th root of unity. Let $L = K(\varpi^{1/p})$. Show that L is Galois, cyclic, totally ramified.
- 7. Let σ be a generator of Gal(L/K). Find the largest s such that $\sigma \in G_s$, as a function of e and p.
- 8. Assume K is arbitrary. Choose n prime to p with $n < pv_K(p)/(p-1)$. Let $\alpha \in K$ be an alement with valuation -n, $L = K[X]/(X^p X \alpha)$. Show that L/K is Galois with groupe $\mathbb{Z}/p\mathbb{Z}$ (you might express all the roots of the equation as a function of one of them).
- 9. Compute the groupes G_s in the previous case.
- 10. Compute the groups G_s for the extension $\mathbb{Q}_p(\zeta_{p^n})$.