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Abstract. Let E and E′ be two elliptic curves over a number field. We prove that the reductions
of E and E′ at a finite place p are geometrically isogenous for infinitely many p, and draw conse-

quences for the existence of supersingular primes. This result is an analogue for distributions of

Frobenius traces of known results on the density of Noether-Lefschetz loci in Hodge theory. The
proof relies on dynamical properties of the Hecke correspondences on the modular curve.

1. Introduction

The goal of this paper is to prove the following theorem. Say that two elliptic curves over a field
k are geometrically isogenous if they are isogenous over an algebraic closure of k.

Theorem 1.1. Let k be a number field, and let E and E′ be two elliptic curves over k. Then there
exist infinitely many finite places p of k such that the reductions Ep and E′p of E and E′ modulo p
are geometrically isogenous.

If k is the function field of a curve over a finite field and E,E′ are both non-isotrivial elliptic curves,
the analogous result is proved in [CO06, Proposition 7.3] – the situation there is quite different due
to the existence of the Frobenius morphism on the base.

Using Faltings’ isogeny theorem [Fal83] and the Cebotarev density theorem, it is possible to show
that if E and E′ are not themselves geometrically isogenous, then – after replacing k by a finite
extension – the density of such primes p is zero.

The above result is an arithmetic analogue of the following Hodge-theoretic theorem due inde-
pendently to Green [Voi02, Proposition 17.20] and Oguiso [Ogu03] – see also [BKPSB98]. If H is a
Hodge structure of weight 2, let ρ(H) be the Picard number of H, that is, the rank of the group of
Hodge classes – integral classes of type (1, 1) – in H.

Let ∆ be the unit disk in C, and let H be a non-trivial variation of Hodge structures of weight 2
over ∆ with Hodge number h2,0 = 1. Let M be the minimal value of the integers ρ(Hs) for s in ∆.
Then the Noether-Lefschetz locus

NL(H) := {s ∈ ∆, ρ(Hs) > M}

is dense in ∆. Note however that ρ(Hs) = M if s is very general in ∆.

In the arithmetic setting, ∆ is replaced by a suitable open subset of the spectrum of the ring
of integers in a number field k. In that setting, variations of Hodge structures are replaced by
representations of the absolute Galois group Gk of k, and the Noether-Lefschetz locus is replaced
by the set of primes at which some power of the Frobenius has invariants which do not have a
finite orbit under the whole group Gk. Theorem 1.1 then deals with the Galois representation
Hom(H1(Ek,Z`), H

1(E′
k
,Z`)). Indeed, by a theorem of Deuring [Deu41], the reductions of E and

E′ at a prime p are geometrically isogenous if and only if some power of the Frobenius at p fixes
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a nonzero element of Hom(H1(Ek,Z`), H
1(E′

k
,Z`)). Since we do not know of an analogue of the

Hodge-theoretic argument in this setting, let us offer a different heuristic for Theorem 1.1.

Assume for simplicity that k is the field Q of rational numbers and that E does not have complex
multiplication. Then the Sato-Tate conjecture – now a theorem proved in [CHT08, Tay08, HSBT10,
BLGHT11] over totally real fields, see also [BLGG11, BLGGT14] for related developments – pre-
dicts that as p varies among the prime numbers, the traces tp of the Frobenius at p are roughly
equidistributed between −2

√
p and 2

√
p. Assume that the same holds for the traces t′p associated

to E′, and that E and E′ are not geometrically isogenous. Then one might expect – see [Har09] for
the case of totally real fields – that the distributions of the tp and t′p are independent, so that the

probability that tp is equal to t′p is of the order of 1√
p . By Tate’s isogeny theorem [Tat66], tp and t′p

are equal if and only if the reductions of E and E′ modulo p are isogenous. Since the sum over all
prime numbers p of the 1√

p diverges, it might be expected that there exist infinitely many primes p

such that the reduction of E and E′ modulo p are isogenous.

It seems very difficult to turn the heuristic we just described into a proof. While our proof
of Theorem 1.1 can likely be made effective, the lower bounds on the number of p satisfying the
conclusion is very far from the bounds that could be expected from the discussion above.

The techniques of our paper are much easier than the ones used in the aforementioned proof of
the Sato-Tate conjecture. However, we emphasize that Theorem 1.1 does not entail any assumption
on the base field nor on the existence of places of multiplicative reduction for E or E′.

Theorem 1.1 has consequences for the reduction modulo different primes of a single elliptic curve.

Corollary 1.2. Let k be a number field, and let E be an elliptic curve over k. Then at least one of
the following statements holds :

(1) There exist infinitely many places p of k such that E has supersingular reduction at p.
(2) For any imaginary quadratic number field K, there exist infinitely many places p of k such

that the reduction of E modulo p acquires complex multiplication by K after a finite extension
of the ground field.

Recall that an elliptic curve over a finite field either has complex multiplication by a quadratic
imaginary field or is supersingular. A folklore expectation, related to the Lang-Trotter conjecture
[LT76], is that both statements of the corollary above should hold unless E has complex multipli-
cation. The existence of infinitely many supersingular primes has been addressed by Elkies [Elk89],
who managed to prove that statement (1) is always true when k admits a real place. Very little
seems to be known about (2) or the general case of (1).

Our proof of Theorem 1.1 relies on the Arakelov geometry of the moduli space of elliptic curves.
The basic strategy is very simple: given a positive integer N , the set of finite places p of k such
that the reductions Ep and E′p of E and E′ modulo p are related – after some base field extension
– by a cyclic isogeny of degree N can be expressed as the image in SpecZ of the intersection of an
arithmetic curve in P1

Z × P1
Z with the graph of a Hecke correspondence tN . We need to show that

we can obtain infinitely many places this way as we let N vary.

Instead of the set-theoretic intersection, we can consider the intersection number in the sense
of Arakelov geometry. Knowing the height of the modular curves by work of Cohen [Coh84] and
Autissier [Aut03] makes it possible to show that the order of magnitude of this intersection number
is N logN – assuming N has few prime factors for simplicity. This reduces the proof of the theorem
to bounding the local intersection numbers at all places of k – finite or infinite. This turns out to be,
in various forms, a manifestation of the ergodicity of Hecke correspondences as proved in [COU01],
though it does not seem to follow directly from it.
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As this sketch might suggest, our method of proof is related to the techniques of Gross and Zagier
in their celebrated result [GZ86]. Instead of computing intersections of Hecke orbits for Heegner
points, we are giving estimates for similar intersection numbers at arbitrary points of the modular
curve. Our task is made much simpler technically by the fact that we do not need to prove exact
formulas for intersection numbers on modular curves.

As will be apparent in the paper, our proof of Theorem 1.1 should generalize to similar statements
regarding to the behavior of Hecke correspondences on Shimura curves.

Section 2 is devoted to setting up notation and proving some basic – and certainly well-known –
lemmas. In section 3, we show how Corollary 1.2 can be deduced from the main theorem and reduce
the main theorem to local statements. The last two parts of the paper are devoted to the proof of
these local statements.

Acknowledgements. This paper has greatly benefited from numerous conversations with Em-
manuel Ullmo, whom it is a great pleasure to thank. I would like to thank Ching-Li Chai for
pointing out the reference [CO06].

I am especially grateful for a very careful reading of three referees, who went through a rough first
version of these papers and helped greatly in improving the exposition and pointing out mistakes.
I thank Ananth Shankar and Yunqing Tang for useful correspondence and discussions pointing out
inaccuracies, as well as helpful suggestions.

2. Notations and preliminary results

2.1. Notation. Let X(1) be the coarse moduli scheme of generalized elliptic curves as defined
in [DR73]. It is a smooth arithmetic surface over SpecZ. The modular invariant j provides an
isomorphism

j : X(1)→ P1
Z.

Let H be the Poincaré half-plane, and let H be the union of H with the set of cusps Q ∪ {∞}.
There is a canonical isomorphism between the Riemann surfaces X(1)C and H/Γ(1). We will denote
by τ the standard coordinate on H.

Let N be a positive integer, and let X0(N) be the Deligne-Rapoport compactification of the
coarse moduli scheme which parametrizes cyclic isogenies of degree N between elliptic curves. It is
a normal arithmetic surface over SpecZ.

The two tautological maps from X0(N) to X(1) induce a self-correspondence tN of X(1). It is
called the Hecke correspondence of order N . Define eN = N Πp|N (1 + 1

p ), where p runs over the

prime divisors of N . The Hecke correspondence tN has bidegree (eN , eN ).

Let M be the line bundle of modular forms of weight 12 on X(1). The modular form

∆(τ) = (2π)12qΠn≥1(1− qn),

with q = e2iπτ induces a global section of M. It has a zero of order 1 at the cusp j−1(∞) and does

not vanish anywhere else. As a consequence, ∆ induces an isomorphism j∗O(1)
∼→M.

If t ∈ C, the modular form (t− j)∆ induces a global section of MC that has a zero of order 1 at
j−1(t) and does not vanish anywhere else. More generally, let Y is an horizontal divisor of relative
degree d on X(1) with YC =

∑
i niyi and assume that no yi is a cusp. Then the modular form

Πi[(j(yi)− j)∆]ni is a section of M⊗d with divisor Y .

The Petersson metric on modular forms induces a hermitian metric ||.|| on MC such that

||∆(τ)|| = |∆(τ)||Im(τ)|6,
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where |.| is the usual complex norm. This metric is L2
1-singular along the cusp j−1(∞) – following

the terminology of [Bos99, Section 3]. The line bundle M endowed with the Petersson metric on
MC is a hermitian line bundle M on X(1).

When working with fields equipped with a non-archimedean valuation such that the residue field
has characteristic p > 0, we will often use the absolute value |.| such that |p| = p−1 and the valuation
v such that v(p) = 1. We will say that this absolute value (resp. valuation) is normalized.

2.2. Intersection theory on modular curves. We will use generalized Arakelov intersection
theory for arithmetic surfaces as in [Bos99], section 5 of which contains the definitions and notations
we are using. We also refer to [Aut03] for the specific case we are considering. The height function

with respect to M is denoted by hM, and arithmetic degrees are denoted by d̂eg.

The starting point of the proof is the formula giving the height of Hecke correspondences. The
following is Theorem 3.2 of [Aut03], and was also proved in [Coh84].

Theorem 2.1. Let k be a number field with ring of integers Ok. Let Y be a horizontal one-
dimensional integral subscheme of X(1)Ok such that YC does not meet j−1(∞). Let d = [k(Y ) : k].
Then, as N goes to infinity, we have

(2.1) hM(tN∗Y ) ∼ 6d[k : Q]eN log(N)

The estimate above can be rephrased in terms of intersections of divisors on X(1)Ok . Let k be an
algebraic closure of k. Let P =

∑
i niPi be a zero-cycle on X(1)Ok , where the Pi are closed points.

The arithmetic degree of P is defined as

d̂eg(P ) =
∑
i

ni logN(Pi),

where N(Pi) is the cardinality of the residue field of Pi. Let Y and Z be two divisors in X(1). The

arithmetic degree d̂eg(Y.Z) is defined as the arithmetic degree of the intersection 0-cycle Y.Z.

Finally, let σ be an embedding of k into C. If Z is any purely horizontal divisor on X(1)Ok , write
ZC =

∑
i niQi with Qi ∈ X(1)(C). Assume that j(Qi) 6=∞ for all i, and let zi = j(Qi) ∈ C ⊂ P1(C).

Let d′ be the sum of the ni. We denote by sσZ the global section of M⊗d
′

C such that

sσZ(τ) = Πi[(zi − j(τ))∆(τ)]ni .

Then the sσZ , as σ varies through all embeddings of k into C, extend to a section sZ of M⊗d′ over
X(1)Ok .

If Y is any purely horizontal divisor on X(1) with YC =
∑
jmjPj , write

sσZ(Y ) = Πjs
σ
Y (Pj)

mj .

Let σ1, . . . , σr1 be the real embeddings of k, and let σr1+1, σr1+1, . . . , σr1+r2 , σr1+r2 be the complex
embeddings of k. We extend the σi to embeddings k → C. As usual, set εi = 1 if 1 ≤ i ≤ r1 and
εi = 2 if r1 +1 ≤ i ≤ r1 +r2. Using the sections sσZ to compute heights with respect toM, Theorem
2.1 gives the following.

Corollary 2.2. Let Y and Z be two purely horizontal divisors on X(1)Ok of relative degree d and
d′ respectively. Assume that Y is effective and irreducible, and that for any positive integer N , the
divisors tN∗Y and Z do not have any common component. Then, as N goes to infinity, we have

d̂eg(Z.tN∗Y )−
r1+r2∑
i=1

εi log ||sσiZ (tN∗Y )|| ∼ 6dd′[k : Q]eN log(N).



EXCEPTIONAL ISOGENIES BETWEEN REDUCTIONS OF PAIRS OF ELLIPTIC CURVES 5

3. Local statements and proof of the main results

In this section, we reduce the proofs of Theorem 1.1 and Corollary 1.2 to local statements which
provide estimates for the terms appearing in Corollary 2.2. The proof of these local estimates will
be the core of the paper.

Let us briefly explain the motivation for the estimates below. We will prove Theorem 1.1 by
showing that, for suitable large N , each individual local term in Corollary 2.2 is negligible before
the right-hand-side, which is of the order of eN log(N). Let us consider the archimedean term as an
example. Let z and y be two complex numbers, that we consider as complex points of X(1). If N
is a positive integer, write the Hecke orbit of y, tN∗y, as

tN∗y = j(τ1) + . . .+ j(τeN )

where the τi belong to the Poincaré upper half-plane H. We are interested in comparing the quantity

(3.1)

eN∑
i=1

log(|z − j(τi)| ||∆(τi)||)

to eN log(N) as N goes to infinity.

Equidistribution of Hecke points as proved in [COU01] suggests that the sum above should be
compared to the integral

eN

∫
Γ\H

log(|z − j(τ)| |∆(τ)| |Im(τ)|6)
dx dy

y2

with τ = x + iy and Γ = PSL2(Z). It is readily checked that the latter integral converges, which
suggests that the sum (3.1) is negligible before eN log(N).

The argument above is not correct, as the function we are integrating has a singularity at the
point j−1(z). However, what the above computation shows is that the estimate we are interested in
amounts to controlling the best approximations of z by points in the Hecke orbit of y.

It might be possible to extend the estimates of our paper so as to study the behavior of the sum
(3.1), but we will be content with weaker estimates.

In the following, we write |tN∗y| to denote the support of the Hecke orbit of y.

The three propositions below contain the estimates that allow the argument above to go through.
The first one deals with the places of bad reduction. From now on, we identify X(1) and P1

Z via the
j-invariant when convenient – in particular, we see k as a subset of X(1)(k) for any field k.

Proposition 3.1. Let |.| be a non-archimedean normalized absolute value on Q, and let C be the
completion of Q with respect to |.|. Let y and z be two distinct points of C ⊂ X(1)(C).

Assume that |y| > 1. Then there exists a positive integer n such that for any positive integer N
which is not a perfect square and is prime to n, the following inequality holds :

(3.2) ∀α ∈ |tN∗y|, |z−1 − α−1| ≥ |z−1|.

The following result should be seen as a very weak equidistribution result for Hecke correspon-
dences. For archimedean valuations, it follows from [COU01]. For non-archimedean valuations and
supersingular reduction, equidistribution has been proved by Fargues (unpublished). For lack of
reference, we provide a self-contained argument for our easier result.

Proposition 3.2. Let |.| be an absolute value on Q, which we assume to be normalized in the non-
archimedean case, and let C be the completion of Q with respect to |.|. Let y and z be two distinct
points of C ⊂ X(1)(C). If the absolute value |.| is not archimedean, assume furthermore that |y| ≤ 1.
Let ε1 and ε2 be two positive real numbers.
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There exists a positive constant η such that, letting

By,z = {N ∈ N \ (pN), |{α ∈ |tN∗y|, |z − α| ≤ η}| ≥ ε1eN},

where elements in the Hecke orbit of y are counted with multiplicity, then the upper density of By,z
is at most ε2, i.e.

lim sup
n→∞

1

n
|By,z ∩ {1, . . . , n}| ≤ ε2.

The last result goes beyond equidistribution. It shows that there cannot exist too many Hecke
orbits that contain very good approximations of a given point.

Proposition 3.3. Let |.| be an absolute value on Q, and let C be the completion of Q with respect
to |.|. Let y and z be two distinct points of C ⊂ X(1)(C) such that y is not the j-invariant of a
CM elliptic curve. If the absolute value |.| is not archimidean, assume that it is normalized and that
|y| ≤ 1.

Let D be a large enough integer – depending on y, z and the chosen |.|, and define

SDy,z = {N ∈ N \ (pN)| ∃α ∈ |tN∗y|, |α− z| ≤ N−D}.

Then

lim
n→∞

1

n
|SDy,z ∩ {1, . . . , n}| = 0.

Remark 3.4. It is possible to give an explicit bound on D – e.g. D ≥ 20 suffices in the archimedean
case – see Proposition 5.16 and Proposition 5.23.

The three propositions above will be proved in the next section. We now explain how they imply
the main results of the paper.

Proof of Theorem 1.1. We argue by contradiction, and assume that there are only finitely many
places p of k as in Theorem 1.1. In particular, E and E′ are not geometrically isogenous. We
can and will assume that E does not have complex multiplication – if both curves have complex
multiplication, the theorem is clear as there exist infinitely many primes of supersingular reduction
for both E and E′ and any two supersingular elliptic curves are geometrically isogenous.

Let S be a finite set of finite places of k containing the places p such that the reductions of E
and E′ modulo p are smooth and geometrically isogenous as well as the places of bad reduction for
E or E′. Up to enlarging k, we can assume that the only places of bad reduction for E or E′ are
the places of multiplicative reduction.

Let y (resp. z) be the rational point of X(1)k corresponding to E (resp. E′). Let Y and Z be
the Zariski closures of y and z in X(1)Ok respectively. Let N be a positive integer. Since E and E′

are not geometrically isogenous, Z and tN∗Y have no common component. By definition of tN , the
geometric intersection points of Z and tN∗Y correspond precisely to the pairs consisting of a finite
place p of k such that there exists a cyclic isogeny of degree N between Eκ(p) and E′κ(p), where κ(p)

is an algebraic closure of the residue field of p.

We use the notations of Corollary 2.2 and get, as N goes to infinity

d̂eg(Z.tN∗Y )−
r1+r2∑
i=1

εi log ||sσiZ (tN∗Y )|| ∼ 6[k : Q]eN log(N).

Write Z.tN∗Y =
∑
i niPi, where the Pi are closed points of X(1)Ok . If p is a finite place of k, let

us write degp(Z.tN∗Y ) for the sum
∑
i ni logN(Pi) where Pi runs through the closed points lying

over p. By definition of S, we have degp(Z.tN∗Y ) = 0 if p does not belong to S. As a consequence,
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we get, as N goes to infinity

(3.3)
∑
p∈S

degp(Z.tN∗Y )−
r1+r2∑
i=1

εi log ||sσiZ (tN∗Y )|| ∼ 6[k : Q]eN log(N).

Given p in S, let |.|p be the corresponding normalized, non-archimedean absolute value on Q.

If i is an integer between 1 and r1 + r2, let |.|i be an archimedean absolute value on Q extending
the absolute value on k defined by the embedding σi of k in C. We restrict our attention to those
integers N which are prime to the residual characteristic of the p ∈ S.

Let p be an element of S. We have

degp(Z.tN∗Y ) =
∑

α∈|tN∗y|

log
|α− z|p

Max(1, |α|p)Max(1, |z|p)
.

Here tN∗y is seen as a set of eN distinct Q-points of X(1) – recall that E does not have complex
multiplication.

For any α ∈ |tN∗y|, the valuation of y with respect to p is negative if and only if the valuation of
α is. As a consequence, the above formula specializes to

degp(Z.tN∗Y ) =
∑

α∈|tN∗y|

Max(0,− log |α− z|p)

if the valuation of y is nonnegative, and

degp(Z.tN∗Y ) =
∑

α∈|tN∗y|

Max(0,− log |α−1 − z−1|p)

if the valuation of y is negative.

Let A be the finite set consisting of the absolute values |.|p for p ∈ S and of the archimedean
absolute values |.|i. We apply Propositions 3.1, 3.2 and 3.3 to the absolute values in A simultaneously.
Let ε be a positive real number, that we will take to be small enough.

We first apply Proposition 3.1 simultaneously to the set Amult of those non-archimedean absolute
values |.|a in A for which |y|a > 1. We can find an integer n such that if N is any positive integer
which is not a square and is prime to n, then

∀α ∈ |tN∗y|, |z−1 − α−1|a ≥ |z−1|a
for any non-archimedean absolute value |.|a in Amult.

We now consider the absolute values |.|a that are archimedean or satisfy |y|a ≤ 1. Applying
Proposition 3.2 to those simultaneously, we can find a positive constant η and a set of integers B
of upper density at most ε such that for any |.|a as above, and any positive integer N prime to the
residual characteristic of |.|a, we have

N /∈ B =⇒ |{α ∈ |tN∗y|, |z − α|a ≤ η}| ≤ εeN .

Finally, applying Proposition 3.3, for any D large enough and any of the finitely many absolute
values |.|a in A that are archimedean or non-archimedean and satisfies |y|a ≤ 1, we have

lim sup
n→∞

1

n
|{1 ≤ N ≤ n|∀α ∈ |tN∗y|,∀a ∈ A|α− z|a ≥ N−D}| ≥

1

2|A|
.

The discussion above shows that we can find infinitely many positive integers N satisfying the
following three properties:

(i) For any absolute value |.|a in Amult and any α in tN∗y, then

|z−1 − α−1|a ≥ |z−1|a;
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(ii) for any absolute value |.|a in A \Amult, then

|{α ∈ |tN∗y|, |z − α|a ≤ η}| ≤ εeN ;

(iii) for any absolute value |.|a in A \Amult and any α in tN∗y, then

|α− z|a ≥ N−D.

Let us spell out the consequences of these estimates for the intersection numbers we are consid-
ering. Let |.|a be an absolute value in A. If |.|a is in Amult, then we can write

(3.4) degp(Z.tN∗Y ) =
∑

α∈tN∗y

Max(0,− log |α−1 − z−1|a) ≤ eN log |z|.

If |.|a is non-archimedean and does not belong to Amult, we have

(3.5) degp(Z.tN∗Y ) =
∑

α∈tN∗y

Max(0,− log |α− z|p) ≤ eN log(η−1) + εeND log(N).

If |.|a is archimedean, and corresponds to an embedding σ of k in C, choose, for each α in the
N -th Hecke orbit of y, an element τα ∈ H such that j(τα) = σ(α). We have

log ||sσZ(tN∗Y )|| =
∑

α∈|tN∗y|

log(|α− z|a||∆(τα)||).

As the imaginary part of τα tends to ∞, the expression log(|α− z|a||∆(τα)||) tends to ∞ as well.
Choose a compact set K ∈ C such that log(|α− z|a||∆(τα)|| ≥ 0 for any α outside K. Then we have

log ||sσZ(tN∗Y )|| ≥
∑

α∈|tN∗y|∩K

log(|α− z|a||∆(τα)||) =
∑

α∈|tN∗y|∩K

log(|α− z|a) +O(eN ).

Going back to the above estimates, we find

(3.6) log ||sσZ(tN∗Y )|| ≥ eN log ||∆(τ)|| − εeND log(N)) + (1− ε)eN log(η) +O(eN ).

We now plug in the estimates (3.4), (3.5) and (3.6) in the global degree estimate (3.3) to find –
after dividing by eN , comparing the higher order terms, and noting that the εi are either 1 or 2 –

(3.7) 6[k : Q] ≤ (|S \Amult|+ 2(r1 + r2))εD.

Since ε can be chosen arbitrarily small, this is a contradiction. �

Proof of Corollary 1.2. Assume that E has only finitely many places of supersingular reduction.
Let K be an imaginary quadratic extension of Q. We need to show that there exist infinitely many
places p of k such that the reduction of E modulo p has complex multiplication by K after some
finite extension of the ground field.

Up to enlarging k, we can find an elliptic curve E′ defined over k with complex multiplication
by K. If p is any place of k, then the reduction of E′ modulo p is either a supersingular elliptic
curve or has complex multiplication by K. Since E has only finitely many supersingular reductions,
Theorem 1.1 applied to E and E′ shows the result. �

4. Basic estimates

The goal of this section is to prove Proposition 3.1 and Proposition 3.2. The – more involved –
study of good approximations at the places of good reduction will be dealt with in the next section.
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4.1. Multiplicative reduction. We prove Proposition 3.1. It is a consequence of the following
more precise result, the proof of which is essentially contained in [Sil90, Proposition 2.1].

Proposition 4.1. Let v be a non-archimedean valuation on Q and let C be the completion of Q at
v. Let x be a rational number and write x = a

b , where a and b are relatively prime integers. Let E
be an elliptic curve over C and assume that v(j(E)) is negative. Write v(j(E)) = c

d , where c and d
are relatively prime integers. Let N be a positive integer such that

(1) N is not a perfect square ;
(2) N is prime to abcd.

Let E′ be the quotient of E by a subgroup of order N . Then

v(j(E′)) 6= x.

Proof. Since the valuation of j(E) is negative, E is isomorphic to a Tate curve. Thus, as rigid
analytic spaces,

E(C) ' C∗

qZ

for some q ∈ C∗, with

v(q) = −v(j(E)).

Let N be any positive integer. Let ξ be a N -th root of q, and let ω be a primitive N -th root of
unity. Then the subgroups of E of order N are of the form

ωtZ(ωsξr)Z

qZ
,

where r, s and t are positive integers such that rt = N and s < t. As in [Sil90, Proposition 2.1], the
map x 7→ xr induces an isomorphism

C∗

ωtZ(ωsξr)Z
' C∗

(ωsξr)rZ
=

C∗

(ωrsξr2)Z

so that the valuation of j(E′) is

v(j(E′)) = −v(ωrsξr
2

) = −r
2

N
v(q) =

r

t
v(j(E)).

Now assume that N satisfies the assumptions of the proposition and that v(j(E′)) = x. This
means that

rbc = tad.

Since N = rt is prime to abcd, this implies r = t, which is a contradiction since N is not a square
by assumption. �

Proof of Proposition 3.1. Let v be the valuation corresponding to the absolute value |.|. Let E be
an elliptic curve over C with j(E) = y, and let x be the valuation of z. With the notations of
Proposition 4.1, let n = abcd. Then if N is any positive integer prime to n which is not a perfect
square, then Proposition 4.1 shows that any α in |tN∗y| satisfies v(α) 6= x = v(z). As a consequence,
we have

|z−1 − α−1| ≥ |z−1|.

This proves the result. �
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4.2. Equidistribution. The goal of this section is to prove Proposition 3.2. We use the notations
of the proposition. If the absolute value |.| is archimedean, then the result follows from the main
theorem of Clozel, Oh and Ullmo [COU01].

We now assume that |.| is non-archimedean. Let p be the residue characteristic. The assumptions
on y and z ensure that we can find a complete discrete valuation ring W whose francion field is a
subfield of C, and whose residue field is an algebraically closed field of characteristic p, as well as
two elliptic curves E and E′ over W such that j(E) = y and j(E′) = z.

Let π be a uniformizing parameter of W . If n is a nonnegative integer, let Wn be the ring
Wn = W/πn+1. Let v be the additive valuation on W such that v(π) = 1.

Since the valuation of y is nonnegative, so is the valuation of any α in a Hecke orbit of y. If the
valuation of z is negative, this implies |z−α| = |z| and the result follows. As a consequence, we can
assume that the valuation of z is nonnegative.

Denote by Hn be the group

Hn = HomWn
(E,E′)

that consists of morphisms from the reduction of E modulo πn+1 to that of E′.

The restriction maps Hn → Hn+1 are injective for any n ≥ 0, see e.g. [Con04, Theorem 2.1].
As a consequence, we consider the sequence (Hn)n≥0 as a decreasing sequence of subgroups of H0.
Grothendieck’s existence theorem implies that the intersection H =

⋂
n≥0Hn is equal to the group

HomW (E,E′) of morphisms defined over W considered as a subgroup of H0.

Let q be the natural positive-definite quadratic form on H0 defined by q(f) = deg(f). Let us
state a basic estimate for number of points in lattices.

Lemma 4.2. Let ε1 and ε2 be two positive real numbers. There exists a positive integer n such that
the set of integers

Bn = {N ∈ N, |q−1(N) ∩Hn| ≥ ε1N}

has upper density at most ε2.

Proof. General results on the endomorphisms groups of elliptic curves show that the groups Hn are
free modules of rank 1, 2 or 4. If the rank of the Hn is at most 2, let δ be a positive real number
such that the balls of radius δ in Hn⊗R with respect to q centered at the points of Hn are pairwise
disjoint. Write B(0, R) for the open ball of radius R and center 0 in Hn⊗R, and A(0, R,R′) for the
open annulus in Hn ⊗ R consisting of the elements x ∈ Hn ⊗ R such that R < q(x) < q(R′). Write
v for the euclidean volume in Hn ⊗ R. Then

v(B(0, δ)|q−1(N) ∩Hn| ≤ v(A(0,
√
N − δ,

√
N + δ)) = O(

√
N),

so that, for any fixed n, |q−1(N) ∩Hn| = O(
√
N) as N goes to infinity. As a consequence, we can

assume that the Hn have rank 4.

The intersection H of the Hn has rank at most 2, as it is equal to the group of morphisms between
two elliptic curves over a field of characteristic zero. Since there are only finitely many lattices of
bounded index in H0, the index of Hn in H0 goes to infinity with n.

Now we have, by the same volume computation as before,

|{h ∈ H0|q(h) ≤ N}| = O(N2).

Furthermore, it is an easy exercise to show that for any positive n, we have

lim
N→∞

|{h ∈ H0|q(h) ≤ N}|
|{h ∈ Hn|q(h) ≤ N}|

= [H0 : Hn].
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It follows that for any positive real number ε, and any n large enough, the following estimate holds
for all N large enough:

(4.1) |{h ∈ Hn|q(h) ≤ N}| ≤ εN2.

Fix such an integer n, and let ε1 and Bn be as in the statement of the lemma. We can write, for
any integer N large enough,

(4.2) |{h ∈ Hn|q(h) ≤ N}| ≥
∑

k∈Bn,k≤N

|{q−1(k) ∩Hn}| ≥
∑

k∈Bn,k≤N

ε1k ≥ ε1
|BNn |(|BNn |+ 1)

2
,

with NN
n = Bn ∩ {1, . . . , N}. The estimates (4.1) and (4.2) show that we can write

2εN2 ≥ ε1|BNn |2.

Choosing ε small enough so that 2ε ≤ ε1ε
2
2, the estimate above shows that, for suitable n and for

all N large enough, we have |BNn | ≤ ε2N . This proves the result.

�

Proof of Proposition 3.2. We keep the notations above, and choose n as in Lemma 4.2. Let N be an
integer prime to p. Then the group scheme E[N ] defined as the kernel of multiplication by N is étale
over W since N is prime to p. Since the residue field of W is algebraically closed by assumption,
E[N ] is isomorphic to the constant group (Z/NZ)2. In other words, the N -torsion points of E are
defined over W .

Let α be a point in the Hecke orbit tN∗y of y. Since E has no complex multiplication and since
E[N ] is defined over W , there exists a unique elliptic curve Eα over W with j-invariant α together
with a cyclic isogeny E → Eα of degree N . If n is a positive integer and F an elliptic curve over W ,
denote by Fn the reduction of F modulo πn+1.

Proposition 2.3 of [GZ85] states the we have the following equality

v(α− z) =
∑
n≥0

|Ison(Eα, E
′)|

2
,

where Ison(Eα, Eβ) denotes the set of isomorphisms from Eα,n to E′n. Let n be the largest integer
such that Eα,n and E′n are isomorphic. Since the group of automorphisms of an elliptic curve over
W/πn+1 has cardinality at most 24, we have

(4.3) n+ 1 ≥ 1

12
v(α− z).

Choose an isomorphism Eα,n → E′n. The composition

En → Eα,n → E′n

is an element hα ∈ q−1(N) ∩Hn. The isogeny hα is well-defined up to automorphisms of E′n, and
hα determines α as the j-invariant of the image of hα. This shows that for any positive integer n,
we have

|{α ∈ |tN∗y|, v(α− z) ≥ 12(n+ 1)}| ≤ |q−1(N) ∩Hn|.

Let η be a positive real number such that |z − α| ≤ η implies v(z − α) ≥ 12(n + 1) for any α in
W . Since for any positive N , eN ≥ N , Lemma 4.2 shows that the set

By,z = {N ∈ N \ (pN), |{α ∈ |tN∗y|, |z − α| ≤ η}| ≥ ε1eN},

has upper density at most ε2. This shows the result. �
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5. Bounding the best approximations

The goal of this section is to prove Proposition 3.3. We handle the case of non-archimedean val-
uations and archimedean valuations separately. The non-archimedean case is proved in Proposition
5.15, and the archimedean case – which reduces to the study of the usual absolute value on C – is
Proposition 5.23.

We need to show that, given two points y and z of X(1)(C), there exist sufficiently many Hecke
orbits of y that do not contain elements that are too close to z – with precise estimates to be given
below. Our argument is the following: we will show that the only way two different Hecke orbits of
y can both contain very good approximations of z is if y is very close to a CM point whose ring of
endomorphisms has small discriminant. Since distinct CM points of small discriminant cannot be
too close to one another, this will allow us to find Hecke orbits of y that don’t contain very good
approximations of z.

Before getting to the actual proofs, we record some elementary results. If L is a quadratic lattice,
that is, a free abelian group of finite rank endowed with a positive definite, integral valued quadratic
form, let disc(L) denote its discriminant, which is well-defined as an element of Z.

Lemma 5.1. Let E and E′ be two isogenous CM elliptic curves over an algebraically closed field
of characteristic zero. Consider End(E) and Hom(E,E′) as quadratic lattices with respect to the
quadratic form f 7→ deg(f). Then we have

|disc(End(E))| ≥ |disc(Hom(E,E′))|.

Proof. Let f : E → E′ be a cyclic isogeny, and consider the morphism

α : Hom(E,E′)→ End(E), φ 7→ φ̂ ◦ f,

where φ̂ : E′ → E is the isogeny dual to φ. Then for any φ ∈ Hom(E,E′), we have deg(α(φ)) =
deg(f)deg(φ). In particular, we have

|disc(α(Hom(E,E′)))| = deg(f)2|disc(Hom(E,E′))|.
If n is a positive integer, let [n] denote multiplication by n on E. Then for [n] to belong to the image
of α, it is necessary that the kernel of f be included in the kernel of [n]. Since the kernel of [n] is
isomorphic to (Z/nZ)2 as an abelian group, for [n] to belong to the image of α, the group (Z/nZ)2

needs to contain an element of order deg(f). In particular, deg(f) must divide n and the cokernel
of α has cardinality at least deg(f).

This shows that

|disc(α(Hom(E,E′)))| = |disc(End(E))||Coker(α)|2 ≤ |disc(End(E))|deg(f)2,

which shows the result. �

We record a proof of the following elementary lemma without any regards for the optimality of
the constants involved.

Lemma 5.2. Let L be a rank 2 lattice with positive-definite quadratic form q and discriminant δ.
Then for any positive integer n, we have

|{N ≤ n | ∃ l ∈ L, q(l) = N}| ≤ 1 + 4
√

2n+
8n√
δ

Proof. By an abuse of notation, we write q for both the quadratic form and the associated bilinear
form. Lagrange reduction for rank 2 lattices shows that we can find a basis (e, f) for L such that
2|q(e, f)| ≤ q(e) ≤ q(f). Let a and b two integers. Then

q(ae+ bf) = a2q(e) + b2q(f) + 2abq(e, f) ≥ 1

2
(a2q(e) + b2q(f)).
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In particular, q(ae + bf) ≤ n implies a2q(e) ≤ 2n and b2q(f) ≤ 2n. This implies in particular that
the set {(a, b)|q(ae+ bf) ≤ n} has cardinality at most

|{(a, b)|q(ae+ bf) ≤ n}| ≤
(

1 +
2
√

2n√
q(e)

)(
1 +

2
√

2n√
q(f)

)
≤ 1 + 4

√
2n+

8n√
q(e)q(f)

.

The discriminant δ of L is

δ = q(e)q(f)− q(e, f)2 ≤ q(e)q(f).

Since of course we have

|{N ≤ n| ∃ l ∈ L, q(l) = N}| ≤ |{(a, b)|q(ae+ bf) ≤ n}|,

this finishes the proof. �

Putting the two lemmas above together, we find the following statement.

Proposition 5.3. Let E and E′ be two CM elliptic curves over an algebraically closed field of
characteristic zero. Let δ be the discriminant of the lattice End(E). Then, for any positive integer
n, we have

|{N ≤ n| ∃φ ∈ Hom(E,E′), deg(φ) = N} ≤ 1 + 4
√

2n+
8n√
δ
.

5.1. The non-archimedean case. We start with the case where |.| is supposed to be non-archimedean,
and let v be an additive valuation associated to |.|. Let p be the residual characteristic of v and
assume that |.| and v are normalized, so that |p| = p−1 and v(p) = 1.

We start by discussing some deformation-theoretic results.

Let W be a complete discrete valuation subring of C, with algebraically closed residue field. Let π
be a uniformizing parameter of W . If n is a nonnegative integer, let Wn be the ring Wn = W/πn+1.
Let e be the ramification index, so that v(π) = e−1.

Let E be an elliptic curve over W . We write En for the reduction of E modulo πn+1. Let Gn be
the group

Gn = EndWn(E).

If n < 0, we write Gn = G0.

As in section 4.2, we consider the sequence (Gn)n≥0 as a decreasing sequence of subgroups of G0.
Write q for the positive-definite quadratic form on G0 defined by q(f) = deg(f).

Proposition 5.4. Let n be a nonnegative integer. The multiplication by p maps Gn into Gn+e, and
the induced map

Gn/Gn+e → Gn+e/Gn+2e

is injective.

Proof. We reproduce an argument in the proof of [Gro86, Proposition 3.3]. Serre-Tate theory and
deformation theory of formal groups shows that we have a natural injection

Gn/Gn+e ↪→ H2(Ê, (πn+1)/(pπn+1)),

where Ê is the formal completion of E at the origin – see also [?, Section 2]. Now since (p) = (πe),
multiplication by p induces an isomorphism

H2(Ê, (πn+1)/(pπn+1))→ H2(Ê, (πn+e+1)/(pπn+2e+1)).
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This proves the proposition by considering the commutative diagram

Gn/Gn+e
� � //

��

H2(Ê, (πn+1)/(pπn+1))

��
Gn+e/Gn+2e

� � // H2(Ê, (πn+e+1)/(pπn+2e+1))

�

While lifting endomorphisms of elliptic curves, we will consider the following property.

Definition 5.5. Let α /∈ Z be an algebraic integer. We say that α satisfies condition (P ) if the
index of the ring Z[α] in its integral closure in Q[α] is prime to p.

If φ is an endomorphism of an elliptic curve over a scheme, it makes to ask whether φ satisfies
condition (P ).

Lemma 5.6. Let E1 and E2 be two elliptic curves over a field, and let φ : E1 → E2 be an isogeny

of degree prime to p. Let α be a self-isogeny of E1 satisfying condition (P). Then φ◦α◦ φ̂ : E2 → E2

satisfies condition (P).

Proof. We have φ̂ ◦ φ = N IdE1 and φ ◦ φ̂ = N IdE2 . As a consequence, there is an endomorphism of
rings

End(E1)⊗ Z[1/N ]→ End(E2)⊗ Z[1/N ], x 7→ φ ◦ x ◦ 1

N
φ̂.

In particular, since N is prime to p, if α satisfies condition (P ), then 1
N φ ◦ α ◦ φ̂ does as well, and

so does φ ◦ α ◦ φ̂. �

Lemma 5.7. Let α be an algebraic integer such that Q[α] is an imaginary quadratic field. Let d be
the discriminant of the characteristic polynomial of α, that is, d = t2 − 4N , where t is the trace of
α and N its norm.

(i) Assume that p is odd. Then α satisfies condition (P ) if and only if p2 does not divide d;
(ii) Assume that p = 2. If α satisfies condition (P ), then 16 does not divide d.

Proof. Write d = r2d′, where d′ is square free and r is an integer.

If d is congruent to 1 modulo 4, then the ring of integers of Q[α] has discriminant equals to d′.
As a consequence, the index of Z[α] in this ring of integers is equal to r. Similarly, if d′ is congruent
to 2 or 3 modulo 4, this index is equal to r/2 as the corresponding ring of integers has discriminant
4d′. This shows the result, since the p-adic valuation of d′ is at most 1. �

Lemma 5.8. Assume that E0 is supersingular, and let φ be an element of Gn \ Z for some non-
negative integer n. Write N = q(α). Then there exists a nonnegative integer k with pk ≤ N and an
element α ∈ Gn−ke such that the following holds

(i) α satisfies condition (P );
(ii) pkα ∈ Z[φ];

(iii) q(α) ≤ 1 +N .

Proof. Let d = pkd′ be the index of Z[φ] in its integral closure, where d′ is prime to p. Since the
discriminant of Z[φ] is bounded above by N2, d is bounded above by N , hence pk ≤ N .

Since E0 is supersingular, its ring of endomorphisms G0 is a maximal order in a quaternion algebra
over Q ramified at p and ∞. In particular, G0 ⊗ Zp is the unique maximal order in the quaternion
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algebra over Qp, so that any element of G0 ⊗Q with integral norm and trace lies in G0 ⊗ Zp. Note
that for any α ∈ G0 such that Zp[φ] ⊂ Zp[α], α satisfies condition (P ) if and only if

[Zp[α] : Zp[φ]] = pk.

Let x be a generator of the integral closure of Z[φ] in Q[φ] ⊂ G0 ⊗ Q. Then x ∈ G0 ⊗ Zp. This
means that there exists an integer n, prime to p, such that α := nx belongs to G0. By construction,
we have Zp[φ] ⊂ Zp[α] and α satisfies condition (P ), i.e.

[Zp[α] : Zp[φ]] = pk.

Up to multiplying once again α by an integer prime to p, we may assume that pkα belongs to Z[φ].

For any β ∈ Z[φ], we have

[Zp[α+ β] : Zp[φ]] = pk,

so that α+β satisfies condition (P ). As a consequence, we may replace α with α+β. In particular,
we may assume that α = λ+ µφ with 0 ≤ λ, µ ≤ 1, so that q(α) ≤ 1 +N .

Finally, we know that φ ∈ Gn so that pkα ∈ Gn. Proposition 5.4 shows that α ∈ Gn−ke. �

We now state a lifting lemma for endomorphisms satisfying condition (P).

Lemma 5.9. For some n ≥ 4e, let φn : En → En be an isogeny satisfying condition (P ). Then the
pair (En−4e, φn−4e) lifts uniquely to a pair (ECM , φCM ) over W .

Proof. On the tangent space Lie(En), φn induces multiplication by an element wn in W/πn+1. As
an application of Lubin-Tate theory, it is proved in [GZ85, Proposition 2.7] that condition (P )
guarantees1 that the pair (En, φn) lifts uniquely to a pair (ECM , φCM ), where ECM is an elliptic
curve over W and φCM : ECM → ECM is a cyclic isogeny of degree N , as soon as the equation

X2 − Tr(φn)X + q(φn) = 0

has a solution w in W that is congruent to wn modulo πn+1.

Lemma 5.7 shows that the discriminant Tr(φn)2 − 4q(φn) is not divisible by p4. Hensel’s lemma
as in [Eis95, Theorem 7.3] shows that there exists a solution w in W of the equation above that
is congruent to wn modulo πn+1−4e. The discussion above shows that the pair (En−4e, φn−4e) lifts
uniquely to a pair (ECM , φCM ) over W . �

As a consequence of Lemma 5.8, we deduce the following statement.

Proposition 5.10. Assume that E0 is supersingular. Let n ≥ 4e be an integer, and let φn :
En → En be an isogeny of degree N which is not in Z. Let k be the largest integer with pk ≤
N . Then there exists an isogeny α : En−ke → En−ke,satisfying condition (P ), such that the pair
(En−(4+k)e, αn−(4+k)e) lifts uniquely to a pair (ECM , φCM ) over W . Furthermore, we can assume
that α has degree at most 1 +N .

We give a lower bound for the distance between CM elliptic curves.

Proposition 5.11. Let M1 and M2 be two positive integers. Let E1 and E2 be two elliptic curves
over W with self-isogenies of degree M1 and M2 respectively, both satisfying condition (P ). Assume
that E1 and E2 are not isomorphic, and let n be a nonnegative integer such that E1,n and E2,n are
isomorphic over Wn. Then

p2n ≤ 4M1M2.

1The assumption in [GZ85] is actually that Z[φn] is integrally closed in its fraction field. However, one only needs

for the proof to go through that the index of Z[φn] in its integral closure be prime to p.
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Proof. Let n be the largest integer such that E1,n and E2,n are isomorphic. We can assume that
n ≥ 0, i.e., that the reductions of E1 and E2 modulo π are isomorphic over the field k = W/π to
the elliptic curve E/k.

If E is a CM elliptic curve, then E1 and E2 both are isomorphic over C to the canonical lifting of
E as their endomorphisms rings have index prime to p in their algebraic closure – see for instance
[Gro86, Section 2]. This is impossible since we assumed that E1 and E2 are not isomorphic. As a
consequence, we can assume that E is a supersingular elliptic curve, and fix an isomorphism from
the reduction of E1 over Wn to that of E2.

Let Γ1 and Γ2 be the formal Zp-modules E1[p∞] and E2[p∞] over W . If m is any positive integer,
let Endm(Γi) be the group of endomorphisms of Γi over Wm for i = 1, 2. Choose an isomorphism
γ : E1,n → E2,n. Using γ, we make the identification

Endn(Γ1) = Endn(Γ2).

Now let Oi = EndW (Γi), and let D = End1(Γ1) = End1(Γ2). As subgroups of D, we have
O1 6= O2, for instance by [Gro86, Proposition 2.1]. Both O1 and O2 are saturated in D, and we
have Oi

[
1
p

]
= Qp[φi] for i = 1, 2. Since Oi contains the endomorphisms group of Ei, it is integrally

closed.

In [Gro86], Gross computes the endomorphisms groups above and shows the equality, for any
positive integer m,

Endm(Γi) = Oi + pmD.

As a consequence, we have, as subgroups of D,

O1 + pnD = O2 + pnD

and in particular

O1/p
nO1 = O2/p

nO2

as subgroups of D/pnD.

Since O1 and O2 are commutative algebras, the formula above shows that the commutator [φ1, φ2]
belongs to pnD, so that its reduced norm if divisible by p2n. However, since φ2 does not belong
to O1, it does not belong to O1

[
1
p

]
since φ2 is integral over Zp and O1 is integrally closed in its

fraction field. Since O1

[
1
p

]
is its own commutant in the quaternion algebra D

[
1
p

]
, this means that

the commutator [φ1, φ2] is not zero. In particular, its reduced norm is at least p2n.

Now by assumption the reduced norm of φ1 (resp. φ2) in D is M1 (resp. M2). As a consequence,
the reduced norm of [φ1, φ2] is at most 4M1M2. Finally, we get

4M1M2 ≥ p2n.

�

Corollary 5.12. Let E be an elliptic curve over W , and let n and N be positive integers. Assume
that

p2n > 4N2.

Then there exists at most one elliptic curve ECM over W admitting an isogeny of degree at most N
satisfying condition (P ), and such that En ' ECM,n.

We can now proceed to a proof of Propostion 3.3. Let us fix some notation.

Let y and z be as in Proposition 3.3. We may assume that the valuation of z is nonnegative. The
assumptions on y and z ensure that we can find a complete discrete valuation ring W as above, as
well as two elliptic curves E and E′ over W such that j(E) = y and j(E′) = z. By assumption, E
is not a CM elliptic curve.
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Write once again En and E′n for the reductions of E and E′ modulo πn+1 respectively. Define
Hn = HomWn(En, E

′
n), and consider (Hn)n≥0 as a decreasing sequence of sublattices of H0 endowed

with quadratic form q given by the degree. Write again Gn = EndWn
(En), and write q for the degree

quadratic form on Gn as well.

Proposition 5.13. Assume that E0 is a CM elliptic curve. For any nonnegative integer n, define

Sn = {N ≥ 0|∃φ ∈ HomWn
(En, E

′
n),deg(φ) = N}.

Then the upper density of Sn tends to zero as n tends to ∞.

Proof. We may assume that E0 and E′0 are isogenous, so that E′0 is CM as well.

By assumption, the lattices Hn all have rank 2. Since the two curves E and E′ are not isomorphic,
the intersection of the Hn is zero, so that the discriminant of the lattices Hn tends to ∞ with n.
Lemma 5.2 allows us to conclude. �

Proposition 5.14. Assume that E0 is supersingular. Let N1 and N2 be two positive integers,
the product of which is not a perfect square. Let n be a nonnegative integer such that there exists
φ1, φ2 ∈ Hn with q(φ1) = N1, q(φ2) = N2. Let k be the largest integer such that pk ≤ N1N2.

Then there exists a CM elliptic curve ECM , together with an isogeny satisfying condition (P), of
degree at most 1 +N1N2, such that ECM,n−(4+k)e ' En−(4+k)e.

Proof. The composition φ = φ̂1 ◦ φ2 is an element of Gn. We have q(φ) = N1N2. Since it is not a
perfect square, φ does not belong to Z. By Proposition 5.10 shows the result. �

Putting Proposition 5.14 and Proposition 5.11 together, we obtain the following.

Proposition 5.15. If D is a positive integer, define

SD = {N ∈ N \ pN|∃n ≥ 0, pn ≥ ND and∃φ ∈ Hn, q(φ) = N}.
If D > 8 + 4e, then the density of SD is zero.

Proof. By Proposition 5.13, we may assume that E0 is supersingular.

Let M be a large enough integer. We may assume that SD contains at least two integers N1, N2

such that N1N2 is not a perfect square and
√
M ≤ N1, N2 ≤ M . By definition, we can find n ≥ 0

such that pn ≥ MD/2 and φ1, φ2 ∈ Hn with q(φ1) = N1, q(φ2) = N2. We can apply Proposition
5.14 and find an elliptic curve ECM over W such that

(i) ECM admits a self-isogeny α of degree at most M2, satisfying condition (P );
(ii) En−(4+k)e ' ECM,n−(4+k)e,

where k is the largest integer such that pk ≤ N1N2.

Note that since D > 8 + 4e > 4 + 4e, we have

p2(n−(4+k)e) ≥ p2n(N1N2)−2ep−8e ≥MDM−8ep−4e ≥ 4M4

for any large enough M , which shows, via Corollary 5.12, that ECM is the only elliptic curve over
W satisfying the two conditions above.

We now use the curve ECM to bound the cardinality of SD ∩ {
√
M, . . . ,M}. Let N be any

element of SD ∩ {
√
M, . . . ,M}. By assumption, we can find n with pn ≥MD/2 and φN : En → E′n

of degree N . In particular, we find an isogeny of degree N , which we denote by φN as well

φN : ECM,n−(4+k)e → E′n−(4+k)e.

Let K0 be the kernel of φN . Then since N is prime to p, K0 lifts uniquely to a subgroup K of
ECM . Define E′CM = ECM/K and write ψN for the quotient map ψN : ECM → E′CM . Then we
have
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(i) E′CM admits a self-isogeny of degree at most M4, satisfying condition (P );
(ii) E′CM,n−(4+k)e ' E

′
n−(4+k)e.

The second point is obvious by construction. For the first, note that

ψ̂ ◦ α ◦ ψ : E′CM → E′CM

is a self-isogeny of E′CM of degree at most N2M2 ≤M4. Lemma 5.6 shows that it satisfies condition
(P). Since D > 8 + 4e, we have once again

p2(n−(4+k)e) ≥MDM−8ep−4e ≥ 4M8,

for any large enough M . This shows that E′CM is the only elliptic curve over W satisfying the two
conditions above.

We just constructed an injective map

SD ∩ {
√
M, . . . ,M} → Hom(ECM , E

′
CM ), N 7→ ψN

such that q(ψN ) = N . Let δCM be the discriminant of ECM . Proposition 5.3 implies the inequality

(5.1) |SD ∩ {1, . . . ,M}| ≤ 1 + 4
√

2M +
8M

δCM
+
√
M.

The elliptic curve E is not CM , and we proved En−(4+k)e ' ECM,n−(4+k)e. Our assumption on
D guarantees that n − (4 + k)e tends to infinity with M , ECM takes infinitely many values as n
grows. Since there are only finitely many CM elliptic curves over C with bounded discriminant,
this shows that δCM goes to infinity with n. Equation (5.1) allows us to conclude. �

Using (4.3), the previous roposition gives us the following statement, which is a more precise form
of the non-archimedean part of Proposition 3.3.

Proposition 5.16. Define SDy,z as in Proposition 3.3. If D > 12 × (8 + 4e) = 96 + 32e, then SDy,z
has density 0.

5.2. The archimedean case. We now transpose the results of our preceding question to the
archimedean setting, following the same strategy – the reader will compare Proposition 5.14 and
Corollary 5.20, as well as Proposition 5.11 and Proposition 5.22. We work over the field of complex
numbers, and let |.| be the usual absolute value on C.

We start with two elementary lemmas.

Lemma 5.17. Let τ be an element of H. Let N be a positive integer, and let a, b, c, d be integers
with ad− bc = N . Let

f : H→ H, z 7→ az + b

cz + d
.

Let Ω be a compact subset of H. Then there exists a positive constant c1 depending only on Ω such
that

(τ, f(τ)) ∈ Ω2 =⇒ Max(|a|, |b|, |c|, |d|) ≤ c1
√
N.

Proof. We keep the notations of the statement. Then, for any τ ∈ H, we have

Imf(τ) =
N Im(τ)

|cτ + d|2
.

As a consequence, the inequality

Im(τ) ≥ inf
τ∈Ω

Im(τ) > 0

implies |cτ + d| ≤ λ
√
N for some constant λ depending only on Ω. Since the imaginary part of

τ is positive, this implies the required estimate on c, and consequently on d. Furthermore, since
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|cτ + d| ≤ λ
√
N , we can find a constant µ depending only on Ω such that |aτ + b| ≤ µ

√
N as well,

which provides the required estimates for a and b as well. �

Lemma 5.18. Let us keep the notations of the previous lemma and assume f 6= IdH. Then there
exists positive constants ε2, c2 depending only on Ω, such that

|τ − f(τ)| ≤ ε2

N
=⇒ ∃ τ0 ∈ H, f(τ0) = τ0 and |τ − τ0| ≤ c2

√
N |τ − f(τ)|.

Proof. We leave it to the reader to show that if c = 0 and ε2 is chosen small enough, then there is
no τ ∈ H satisfying

|τ − f(τ)| ≤ ε2

N
.

We now assume c 6= 0. In that case f has two fixed points in C, τ0 and τ ′0. We can write

|τ − f(τ)| = |c||τ − τ0||τ − τ
′
0|

|cτ + d|
.

Lemma 5.17 proves that |c| and |d| are bounded above by c1
√
N for some constant c1 depending

only on Ω. It is readily shown that – once again choosing ε2 to be small enough, the existence of
τ ∈ H with

|τ − f(τ)| ≤ ε2

N
implies that τ0 and τ ′0 are complex conjugates and are not real numbers. We can assume that τ0
is in H. As a consequence, we have |τ − τ ′0| ≥ Im(τ). Putting these estimates together shows the
result. �

Proposition 5.19. Let y be an element of C ⊂ X(1)(C). Then there exist positive constants c3 and
ε3 such that for any integer N > 1 and any α ∈ |tN∗y| such that

|y − α| ≤ ε3

N
,

there exists a CM elliptic curve E0 over C with a cyclic self-isogeny of degree N such that

|y − j(E0)| ≤ c3
√
N |y − α|.

Proof. Let τ be an element of H with j(τ) = y. Let ε, C be positive real numbers such that for any
z ∈ C ⊂ X(1)(C) with |z − y| ≤ ε, we can find τ ′ with j(τ ′) = z and

C−1|y − z| ≥ |τ − τ ′| ≥ C|y − z|.

The preimage of tN∗y by j exactly the set of elements aτ+b
cτ+d ∈ H, with

(5.2)

(
a b
c d

)
∈ SL2(Z)

(
α β
0 δ

)
,

where α, β and δ are three integers with no common factor and αδ = N , α ≥ 1, 0 ≤ β < δ.

Let us consider α ∈ |tN∗y| with |y − α| ≤ ε2. We can write α = j(aτ+b
cτ+d ) with a, b, c, d as in (5.2)

and |τ − aτ+b
cτ+d | ≤ C

−1|y− α|. Now choose ε2 as in Lemma 5.18 and assume that |y− α| ≤ C ε
N . We

can find τ0 ∈ H such that

(5.3) τ0 =
aτ0 + b

cτ0 + d

and |τ − τ0| ≤ C ′
√
N |y − α|, where C ′ is a positive constant depending only on y. Since a, b, c, d

are chosen as in (5.2), (5.3) shows that j(τ0) is the j-invariant of an elliptic curve E0 with a cyclic
self-isogeny of degree N . Now writing

|y − j(E0)| ≤ C−1|τ − τ0| ≤ C−1C ′
√
N |y − α|

concludes the proof. �
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As in the non-archimedean case, we get the following.

Corollary 5.20. Let y and z be two elements of C ⊂ X(1)(C). Then there exist positive constants
c3, ε3 such that for any two distinct positive integers N1, N2 > 1, and any (α, β) ∈ tN1∗y × tN2∗y
such that

max(|α− z|, |β − z|) ≤ ε3

N1N2
,

there exists a CM elliptic curve E0 over C with a cyclic self-isogeny of degree at most N1N2 such
that

|y − j(E0)| ≤ c3
√
N1N2|α− β|.

Proof. Since α belongs to |tN1∗y|, y belongs to |tN1∗α|. Furthermore, since N1 and N2 are distinct,
the elements of |tN1∗β| are all elements of some |tN∗y| for some positive integer N with 1 < N ≤
N1N2.

As a consequence of Proposition 5.19, it is enough to show that, if |α− z and |β − z| are smaller
than a constant depending only on y and z, there exists β′ ∈ |tN1∗β| such that |y − β′| ≤ c′3|α− β|,
where c′3 is a positive constant depending only on y and z.

Since y is the Hecke orbit tN1∗α, we can write y = j(aτα+b
cτα+d ), where τα is an element of H with

j(τα) = α and a, b, c, d are as in (5.2) – N being replaced by N1 of course. Now we can find τβ ∈ H
with j(τβ) = β and |τα − τβ | ≤ C|α− β| for some positive constant C depending only on z.

Since homographies preserve the hyperbolic distance on H, the hyperbolic distance between y

and
aτβ+b
cτβ+d is equal to that between α and β. Writing β′ = j(

aτβ+b
cτβ+d ) and noting that the hyperbolic

distance on H and the usual distance on C ⊂ X(1)(C) are equivalent via j on neighborhoods of τ
and j(τ) = y, this shows the inequality

|y − β′| ≤ c′3|α− β|

where c′3 depends only on y and z. By construction, β′ belongs to |tN1∗β|, which allows us to
conclude. �

Remark 5.21. While the conclusion of Corollary 5.20 seems not to depend on z, the constants
might depend on it.

The following easy result shows that CM points of X(1) cannot be too close to one another.

Proposition 5.22. Let Ω be a compact subset of C ⊂ X(1)(C). Let M1,M2 > 1 be two integers,
and let E1, E2 be two CM elliptic curves over C with cyclic self-isogenies of degree M1 and M2

respectively. Assume that j(E1) and j(E2) belong to Ω. If E1 and E2 are not isomorphic, then

|j(E1)− j(E2)| ≥ c4(M1M2)−1,

where c4 is a positive constant depending only on the compact set Ω.

Proof. As before, and since we are working over a compact set, we only have to prove that if Ω is
any compact subset of H, then for any τ1, τ2 ∈ Ω such that j(τi) = j(Ei) for i = 1, 2, we have

|τ1 − τ2| ≥ C(M1M2)−1/2(
√
M1 +

√
M2)−1

for some positive constant C depending only on the compact set Ω.

Since E1 has a cyclic self-isogeny of degree M1, we have

τ1 =
α1τ1 + β1

γ1τ1 + δ1
,

where the matrix (
α1 β1

γ1 δ1

)
∈ M2(Z)
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has determinant M1 and is not a homothety. In particular, γ1 6= 0. By Lemma 5.17, |γ1| is bounded
above by K1

√
M1, where the positive constant K1 only depends on the compact set Ω. Now we can

write

τ1 =
α1 − δ1 + i

√
∆1

2γ1
,

with ∆1 = 4M1 − (α1 + δ1)2 ≤ 4M1. Computing τ2 the same way, we find

|τ1 − τ2| ≥ |Im(τ1)− Im(τ2)| =
∣∣∣√∆1

2γ1
−
√

∆2

2γ2

∣∣∣,
where ∆1,∆2 are positive integers bounded above by 4M1 and 4M2 respectively, and, by Lemma 5.17,
γ1 and γ2 are integers whose absolute value is bounded above by c1

√
M1 and c1

√
M2 respectively,

for some positive constant c1 depending only on Ω.

We can write

|τ1 − τ2| ≥
γ2

√
∆1 − γ1

√
∆2

2γ1γ2
≥ 1

2γ1γ2(γ2

√
∆1 + γ1

√
∆2)

≥ (4c41M1M2)−1.

Note indeed that |
√
a−
√
b| ≥ 1√

a+
√
b

for any two distinct positive integers a and b. �

Putting the estimates of Corollary 5.20 and Proposition 5.22 together, we obtain the following
statement, analogous to Proposition 5.15.

Proposition 5.23. Let D be a positive integer and y, z points in C ⊂ X(1)(C). Define

SDy,z = {N ∈ N|∃α ∈ |tN∗y|, |α− z| ≤ N−D}.

Assume that y is not the j-invariant of a CM elliptic curve. Then for D ≥ 20, SDy,z has density
zero.

Proof. Let M be a large enough integer. Fix y and z as above. We can assume that there exists two
distinct integers N1, N2 ∈ SDy,z with

√
M ≤ N1, N2 ≤M . We get elements α ∈ tN1∗y and β ∈ tN2∗y

with

|α− z| ≤ N−D1 ≤ n−D/2, |β − z| ≤ N−D2 ≤M−D/2.
In particular, we have |α− β| ≤ 2M−D/2. Since D/2 > 2, Corollary 5.20 shows that we can find an
elliptic curve ECM with a cyclic self-isogeny of degree at most n2 such that

(5.4) |y − j(ECM )| ≤ c3M1−D/2

for some positive constant c3. Since 1 −D/2 < −4, Proposition 5.22 shows that ECM is uniquely
defined.

We now use the curve ECM to bound the cardinality of SDy,z ∩{1, . . . ,M}. Let N be any element

of SDy,z with
√
M ≤ N ≤ M . By assumption, there exists an element αN of |tN∗y| such that

|αN − z| ≤ M−D/2. Write y = j(τy). We can find a homography f : τ 7→ aτ+b
cτ+d such that

αN = j(f(τy)) and ad − bc = N . Applying Lemma 5.17 with a compact neighborhood of a given
preimage τz of z by j, we find a constant c1 such that |a|, |b|, |c|, |d| are bounded above by c1

√
n.

Using (5.4), we can find an element τCM of H such that

|τCM − τy| ≤ C3M
1−D/2

for some positive constant C3. Let τ ′ = f(τCM ) and let E′CM be the corresponding elliptic curve.
Then the bound on the coefficients of f guarantees the inequality

|j(τ ′)− z| ≤ K
√
MM1−D/2 = KM (3−D)/2

for some positive constant K.
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At that point, we copy the end of the proof of Proposition 5.15. By construction, E′CM is a CM
elliptic curve with a cyclic isogeny

ψN : ECM → E′CM
of degree N . Let α : ECM → ECM be a cyclic self-isogeny of degree at most n2. We get a self-isogeny

ψN ◦ α ◦ ψ̂N : E′CM → E′CM

of degree N2deg(α). In particular, E′CM admits a cyclic self-isogeny of degree at most M4. Again,
since (3 −D)/2 < −8, Proposition 5.22 shows that E′CM is determined by this last condition – in

particular, it is independent of N ∈ SDy,z ∩ {
√
M, . . . ,M}.

We just constructed an injective map

SDy,z ∩ {
√
M, . . . ,M} → Hom(ECM , E

′
CM ), N 7→ ψN

such that q(psiN ) = N . Let δCM be the discriminant of ECM . Proposition 5.3 implies the inequality

(5.5) |SDy,z ∩ {1, . . . ,M}| ≤ 1 + 4
√

2M +
8M

δCM
+
√
M.

Since y is not the j-invariant of a CM elliptic curve, the estimate (5.4) and Proposition 5.22 imply
that ECM takes infinitely many values as n grows. Since there are only finitely many CM elliptic
curves over C with bounded discriminant, this shows that δCM goes to infinity with n. Equation
(5.5) allows us to conclude. �
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1983.

[Gro86] B. H. Gross. On canonical and quasicanonical liftings. Invent. Math., 84(2):321–326, 1986.



EXCEPTIONAL ISOGENIES BETWEEN REDUCTIONS OF PAIRS OF ELLIPTIC CURVES 23

[GZ85] B. H. Gross and D. B. Zagier. On singular moduli. J. Reine Angew. Math., 355:191–220, 1985.
[GZ86] B. H. Gross and D. Zagier. Heegner points and derivatives of L-series. Invent. Math., 84(2):225–320,

1986.

[Har09] Michael Harris. Potential automorphy of odd-dimensional symmetric powers of elliptic curves and appli-
cations. In Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, volume 270 of Progr.
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