Partial exam 30/11/18, 3h

No documents are allowed.

Exercice 1. The next questions need only brief justifications.

- 1. State Wedderburn's theorem. Deduce from it the classifications of central simple algebras of finite dimension over an algebraically closed field. What can you say about the center of a simple algebra of finite dimension over a field.
- 2. Recall the definition of a lattice in \mathbb{R}^n . Let L be a lattice in \mathbb{R}^n , and let L' be a sublattice of L. Compute the covolume of L' in terms of the covolume of L.
- 3. Recall the definition of decomposition and inertia groups in the context of a finite extension of number fields. If L/K is a finite extension of number fields, show that the inertia group is trivial at almost all primes \mathfrak{P} of \mathcal{O}_L .

Exercice 2. Let K be a number field.

- 1. Let A be a discrete valuation ring, with fraction field K. Let B be a subring of K and assume that B is a discrete valuation ring containing A. Show that A = B or B = K.
- 2. Let A be a discrete valuation ring, with fraction field K. Let L be a finite extension of K, and let B be a subring of K, local, noetherian. Assume $\Omega^1_{B/A} = 0$. Show that B is a discrete valuation ring.
- 3. Let L be a finite extension of K. Let B be an \mathcal{O}_K -order of L. If $\Omega^1_{B/\mathcal{O}_K} = 0$, show that $B = \mathcal{O}_L$.
- 4. Let a be an element of K, and let n be a positive integer. Let L be the finite extension $L = K(a^{1/n})$. Give, in terms of a and n, a finite number of prime ideals of \mathcal{O}_K outside which L is unramified.
- 5. Let I be a fractional ideal of \mathcal{O}_K . If I^n is principal, show that there exists a such that $I\mathcal{O}_L$ is principal.
- 6. Let I be a fractional ideal of \mathcal{O}_K , of order n > 1 in the class group of K. Show that if L is a finite extension of K of degree prime to L, then $I\mathcal{O}_L$ is not principal.

Exercice 3. Let $d \neq 0, 1$ be a squarefree integer. Let $K = \mathbb{Q}(\sqrt{d})$.

- 1. Let P be a nonconstant polynomial with integer coefficients. Show that there exist infinitely many primes p such that there exists n with P(n) divisible by p.
- 2. Show that there exist infinitely many primes p such that (p) is totally decomposed in \mathcal{O}_K .

- 3. Let p be a prime number, and assume $p\mathcal{O}_K = \mathfrak{pq}$, with \mathfrak{p} , \mathfrak{q} distinct primes. Assume that for some integer n and some $x \in \mathcal{O}_K$, we have $\mathfrak{p}^n = (x)$. What can you say about the norm of x? Can x belong to \mathbb{Z} ?
- 4. Now assume d < 0. Show that $p^n \ge |d|/4$. As a consequence, find a lower bound on the class number of \mathcal{O}_K .
- 5. Assume that d is not divisible by 3. Give a necessary and sufficient condition on d for (3) to be totally decomposed in \mathcal{O}_K . As a consequence, show that the class numbers of the fields $\mathbb{Q}(\sqrt{d})$, d < 0 are unbounded.

Problem

Let k be a field. Let A be a central simple algebra of dimension n^2 over k.

- 1. Assume A = End(V), where V is a k-vector space of dimension n. Recall what is, up to isomorphism, the unique simple left A-module.
- 2. Let $B = \operatorname{End}(W)$, where W is a k-vector space of dimension n, and let $\phi : A \to B$ be an algebra automorphisms. Making use of the previous question, construct from ϕ an isomorphism $f: V \to W$, and compute ϕ in terms of f.
- 3. Let V be a k-vector space of dimension n. Show that the symmetric group \mathfrak{S}_n acts linearly on $V^{\otimes n}$ in such a way that for every permutation σ and all $v_1, \ldots, v_n \in V$, we have

$$\sigma(v_1 \otimes \ldots \otimes v_n) = v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(n)}.$$

4. Let L be the subspace of $V^{\otimes n}$ consisting of those $\alpha \in L$ such that for every permutation σ , we have

$$\sigma(\alpha) = \epsilon(\sigma)\alpha,$$

where $\epsilon(\sigma) \in \pm 1$ is the signature of σ . Show that L has dimension 1.

- 5. Construct a natural map $p: V^{\otimes n} \to V^{\otimes n}$ with image L, such that $p \circ p = n!p$.
- 6. Construct a canonical isomorphism $\operatorname{End}(V)^{\otimes n} \to \operatorname{End}(V^{\otimes n})$.
- 7. Let H be the image of the morphism

$$\operatorname{End}(V^{\otimes n}) \to \operatorname{End}(V^{\otimes n}), f \mapsto fp.$$

Show that H is a k-vector space of dimension n^n , and that the natural map

$$\operatorname{End}(V^{\otimes n}) \to \operatorname{End}(H)$$

that you will define, is an isomorphism.

8. We now assume that A is arbitrary. Let K be a finite Galois extension of k such that there exists an isomorphism $\phi: A \otimes_k K \to \operatorname{End}(V)$ with $V = K^n$. Let G be the Galois group of K/k. For every $\sigma \in G$, the action of σ on K induces a map $i_{\sigma}: \operatorname{End}(V) \to \operatorname{End}(V)$ which is σ -linear. Similarly, let $j_{\sigma}: A \otimes_k K \to A \otimes_k K$ be the σ -linear isomorphism induced by σ on K. Construct a K-linear isomorphism $f_{\sigma}: V \to V$ such that the isomorphism of K-algebras

$$i_{\sigma} \circ \phi \circ (j_{\sigma})^{-1} \circ \phi^{-1} : \operatorname{End}(V) \to \operatorname{End}(V)$$

is conjugation by f_{σ} .

- 9. If all the the f_{σ} are homotheties, show that A is split over k.
- 10. Using the construction of question 7, show that $A^{\otimes n}$ is a matrix algebra.
- 11. Show that any element of the Brauer group of a field of characteristic 0 is torsion.