le c**nam**

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Lecture 12 Green formula

• Integration by parts in one space dimension

We give ourselves two real numbers *a* and *b* so that a < b. Recall that the classical relation $\int_a^b \frac{df}{dx} dx = f(b) - f(a)$ can be written by introducing the exterior normal n(x) at the two points *a* and *b* of the boundary $\partial([a, b]) = \{a, b\}$ of the interval [a, b]: n(a) = -1 and n(b) = +1. Then $\int_a^b \frac{df}{dx} dx = \sum_{x \in \partial[a,b]} f(x)n(x)$.

• Integrating a derivative in a rectangle

We introduce a > 0, b > 0 and the rectangle $\Omega =]0, a[\times]0, b[$. Its edges are parallel to the coordinate axes and the boundary $\partial\Omega$ is composed by four sides a_j for $1 \le j \le 4$. We have $a_1 = [0, a] \times \{0\}, a_2 = \{a\} \times [0, b], a_3 = [0, a] \times \{b\}$ and $a_4 = \{0\} \times [0, b]$. Along each of these sides, an external unit normal n_j pointing outside the domaine can be defined and we have $n^1 = (0, -1), n^2 = (1, 0), n^3 = (0, 1)$ and $n^4 = (-1, 0)$.

We evaluate the integral $I = \iint_{\Omega} \frac{\partial f}{\partial x} dx dy$ for a differentiable function f. Thanks to Fubini's theorem, we have

 $I = \int_0^b dy \int_0^a dx \frac{\partial f}{\partial x} = \int_0^b dy \left[f(a, y) - f(0, y) \right] = \int_{a_2} f n_x^2 dy + \int_{a_4} f n_x^4 dy \text{ and we can add to this expression the double sum } \int_{a_1} f n_x^1 dx + \int_{a_3} f n_x^3 dx \text{ because it is composed by two null terms. Then } I = \int_{\partial\Omega} f(M) n_x(M) ds(M)$. We have a first conclusion in this specific case: $\iint_{\Omega} \frac{\partial f}{\partial x} dx dy = \int_{\partial\Omega} f n_x ds.$ We proceed in the same way with the integral $J = \iint_{\Omega} \frac{\partial f}{\partial y} dx dy$. With the other expression of Fubini's theorem, we have $J = \int_0^a dx \int_0^b dy \frac{\partial f}{\partial y} = \int_0^a dx \left[f(x, b) - f(x, 0) \right] = \int_{a_3} f n_y^3 dx + \int_{a_1} f n_y^1 dy.$ As previously, we add

 $J = \int_0^a dx \int_0^b dy \frac{\partial f}{\partial y} = \int_0^a dx \left[f(x, b) - f(x, 0) \right] = \int_{a_3} f n_y^3 dx + \int_{a_1} f n_y^1 dy$ As previously, we add the two integrals $\int_{a_2} f n_y^2 dy$ and $\int_{a_4} f n_y^4 dy$ that do not contribute because $n_y^2 = n_y^4 = 0$. Then $J = \int_{\partial \Omega} f(M) n_y(M) ds(M)$ and we have finally in this second case $\iint_{\Omega} \frac{\partial f}{\partial y} dx dy = \int_{\partial \Omega} f n_y ds$. In conclusion, when we integrate a derivative, we obtain an integral on the boundary of the domain.

• Integration by parts in a bounded domain in two space dimensions

In the case of two dimensions, we give ourselves a bounded domain Ω of the plane \mathbb{R}^2 : it is included in a sufficiently large rectangle. We assume that the boundary $\partial \Omega$ of Ω is fairly regular curve, which is sometimes noted Γ . For example, if Ω is the disk *D* of center the origin and radius R > 0, then its boundary ∂D is the circle of center the origin O and radius *R*. We

FRANÇOIS DUBOIS

denote $\overline{\Omega} = \Omega \cup \partial \Omega$ the union of Ω and its boundary $\partial \Omega$. We say that $\overline{\Omega}$ is the adherence of Ω . For a point $x \in \partial \Omega$ on the boundary of Ω , we denote n(x) the directed normal vector that points towards the exterior of Ω . Recall that n(x) is a unit vector and that the point x is at any position of the edge.

In the case of the disk *D*, a point on the boundary can be written $x = (x_1, x_2) = (R \cos \theta, R \sin \theta)$ with $\theta \in [0, 2\pi]$ the usual polar angle. Then the normal vector n(x) has very simple coordinates in this case: $n(x) = (\cos \theta, \sin \theta)$.

Finally, we give ourselves a regular application f defined on the adherence $\overline{\Omega}: f: \overline{\Omega} \longrightarrow \mathbb{R}$. Then the theorem of integration by parts expresses that the integral of a derivative of the function f in the domain Ω reduces to a curvilinear integral on the boundary $\partial \Omega$:

 $\iint_{\Omega} \frac{\partial f}{\partial x} dx dy = \int_{\partial \Omega} f n_x ds \text{ and } \iint_{\Omega} \frac{\partial f}{\partial y} dx dy = \int_{\partial \Omega} f n_y ds. \text{ We express this property synthetically as } \iint_{\Omega} \frac{\partial f}{\partial x_j} dx dy = \int_{\partial \Omega} f n_j ds \text{ for the two components } (j = 1, 2) \text{ or even } \iint_{\Omega} \partial_j f dx dy = \int_{\partial \Omega} f n_j ds \text{ with } \partial_j \equiv \frac{\partial}{\partial x_j}.$

A common consequence of this relation is obtained with f = uv. With the Leibniz rule of differentiation of the product of two functions, we have from the previous considerations the identity $\iint_{\Omega} \frac{\partial u}{\partial x_i} v \, dx \, dy = -\iint_{\Omega} u \frac{\partial v}{\partial x_i} \, dx \, dy + \int_{\partial \Omega} uv \, n_j \, ds.$

• Integral of the divergence of a vector field

We can combine these two relations by introducing a vector field $\Phi: \overline{\Omega} \ni (x, y) \mapsto \Phi(x, y) \equiv (\Phi_x, \Phi_y) \in \mathbb{R}^2$ regular on the adherence of Ω . The divergence of the vector field Φ is by definition the scalar field div Φ defined by div $\Phi \equiv \frac{\partial \Phi_x}{\partial x} + \frac{\partial \Phi_y}{\partial y}$. If we note exceptionally with a point the scalar product $\Phi.n \equiv \Phi_x n_x + \Phi_y n_y$ along of the boundary, the previous two relations can be written as $\iint_{\Omega} \operatorname{div} \Phi \, dx \, dy = \int_{\partial \Omega} (\Phi.n) \, ds$.

Exercices

• Integration by parts of a vector field

Let D be a two-dimensional domain $(D \subset \mathbb{R}^2)$ and n the external normal along the boundary ∂D . Let $\Phi: D \longrightarrow \mathbb{R}^2$ a regular vector field.

- a) Prove that we have the relation $\int_D \operatorname{div} \Phi \, dx \, dy = \int_{\partial D} (\Phi, n) \, ds$.
- b) Deduce from the previous question that we have $\int_D dx dy = \int_{\partial D} x n_x ds = \int_{\partial D} x dy$.
- c) Deduce from the first question that we have $\int_D dx \, dy = \int_{\partial D} y n_y \, ds = \int_{\partial D} y \, dx$.
- Computation of surfaces

We denote by *K* the square $[0, a] \times [0, a]$.

a) With the help of the second question of the previous exercice, recover the surface |K| of the square *K*.

- b) Same question using the third question of the previous exercice.
- A curious expression of the surface

Let Ω be a subset of the plane \mathbb{R}^2 . We suppose that Ω is bounded and that the boundary $\partial \Omega$ is regular. The external normal along the boundary $\partial \Omega$ is denoted by n(x). We suppose that the tangent vector $\tau(x) \equiv (\frac{dx}{ds}, \frac{dy}{ds})$ is such that the local basis $(n(x), \tau(x))$ is orthonormal and

direct in the plane \mathbb{R}^2 for the canonical scalar product. We set

 $I = \int_{\partial \Omega} (-y \sin^2 x \, dx + \frac{1}{2}(x + \sin x \cos x) \, dy).$

a) Introduce the two components n_x et n_y of the external normal and the curvilinear abscis-

sa ds in the expression of the curvilinear integral I.

b) Show that we have the relation $I = \int_{\partial \Omega} (\Phi_x n_x + \Phi_y n_y) ds$ for a vector field $\Phi \equiv (\Phi_x, \Phi_y)$ that is to precise.

c) What is the value of $\delta \equiv \text{div}\Phi$?

d) Prove that the surface $|\Omega|$ of the set Ω can be computed with the help of the expression $|\Omega| = \int_{\partial \Omega} (-y \sin^2 x \, dx + \frac{1}{2}(x + \sin x \cos x) \, dy).$

• Variational formulation for an elliptic problem

The domain Ω is a bounded part in \mathbb{R}^2 . We denote by $\Gamma \equiv \partial \Omega$ its boundary. It is supposed to be regular. If *v* and *w* are two regular scalar functions defined on the set $\Gamma \equiv \partial \Omega$ and *n* the external boundary to Γ , we recall that $\frac{\partial v}{\partial n} \equiv \nabla v \cdot n \equiv \sum_j \frac{\partial v}{\partial x_j} n_j$. a) Give some examples of such a domain. Precise the geometrical nature of the boundary Γ

a) Give some examples of such a domain. Precise the geometrical nature of the boundary Γ and give some information about the external normal *n*.

Let f be a regular given scalar function defined on the set $\Omega \cup \Gamma$. We consider the following problem: search a scalar function u defined Ω such that $-\Delta u = f$ in Ω and u = 0 on the boundary Γ . We recall that $\Delta u \equiv \sum_j \frac{\partial^2 u}{\partial x_j^2}$. This problem is called the homogeneous Dirichlet problem for the Poisson equation.

b) Show that $-\int_{\Omega} \Delta v \, w \, dx = \int_{\Omega} \nabla v \, \nabla w \, dx - \int_{\partial \Omega} \frac{\partial v}{\partial n} \, w \, d\gamma$. Let *u* and *v* be two functions that are both solution of the problem $-\Delta \zeta = f$ in Ω and $\zeta = 0$ on Γ .

c) What is the system of equations satisfied by the difference $\varphi \equiv u - v$?

d) Deduce from the previous questions that for an arbitrary function *w* identically equal to zero on the boundary Γ , we have $\int_{\Omega} \nabla \varphi \cdot \nabla w \, dx = 0$.

e) Deduce from the previous questions that the function φ is identically null and that the Dirichlet problem $-\Delta u = f$ in Ω and u = 0 on Γ admits at most one regular solution.