le cnam

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Lecture 12 Green formula

- Integration by parts in one space dimension

We give ourselves two real numbers a and b so that $a<b$. Recall that the classical relation $\int_{a}^{b} \frac{\mathrm{~d} f}{\mathrm{~d} x} \mathrm{~d} x=f(b)-f(a)$ can be written by introducing the exterior normal $n(x)$ at the two points a and b of the boundary $\partial([a, b])=\{a, b\}$ of the interval $[a, b]: n(a)=-1$ and $n(b)=+1$. Then $\int_{a}^{b} \frac{\mathrm{~d} f}{\mathrm{~d} x} \mathrm{~d} x=\sum_{x \in \partial[a, b]} f(x) n(x)$.

- Integrating a derivative in a rectangle

We introduce $a>0, b>0$ and the rectangle $\Omega=] 0, a[\times] 0, b[$. Its edges are parallel to the coordinate axes and the boundary $\partial \Omega$ is composed by four sides a_{j} for $1 \leq j \leq 4$. We have $a_{1}=[0, a] \times\{0\}, a_{2}=\{a\} \times[0, b], a_{3}=[0, a] \times\{b\}$ and $a_{4}=\{0\} \times[0, b]$. Along each of these sides, an external unit normal n_{j} pointing outside the domaine can be defined and we have $n^{1}=(0,-1), n^{2}=(1,0), n^{3}=(0,1)$ and $n^{4}=(-1,0)$.
We evaluate the integral $I=\iint_{\Omega} \frac{\partial f}{\partial x} \mathrm{~d} x \mathrm{~d} y$ for a differentialble function f. Thanks to Fubini's theorem, we have
$I=\int_{0}^{b} \mathrm{~d} y \int_{0}^{a} \mathrm{~d} x \frac{\partial f}{\partial x}=\int_{0}^{b} \mathrm{~d} y[f(a, y)-f(0, y)]=\int_{a_{2}} f n_{x}^{2} \mathrm{~d} y+\int_{a_{4}} f n_{x}^{4} \mathrm{~d} y$ and we can add to this expression the double sum $\int_{a_{1}} f n_{x}^{1} \mathrm{~d} x+\int_{a_{3}} f n_{x}^{3} \mathrm{~d} x$ because it is composed by two null terms. Then $I=\int_{\partial \Omega} f(M) n_{x}(M) \mathrm{d} s(M)$. We have a first conclusion in this specific case: $\iint_{\Omega} \frac{\partial f}{\partial x} \mathrm{~d} x \mathrm{~d} y=\int_{\partial \Omega} f n_{x} \mathrm{~d} s$. We proceed in the same way with the integral $J=\iint_{\Omega} \frac{\partial f}{\partial y} \mathrm{~d} x \mathrm{~d} y$. With the other expression of Fubini's theorem, we have
$J=\int_{0}^{a} \mathrm{~d} x \int_{0}^{b} \mathrm{~d} y \frac{\partial f}{\partial y}=\int_{0}^{a} \mathrm{~d} x[f(x, b)-f(x, 0)]=\int_{a_{3}} f n_{y}^{3} \mathrm{~d} x+\int_{a_{1}} f n_{y}^{1} \mathrm{~d} y$. As previously, we add the two integrals $\int_{a_{2}} f n_{y}^{2} \mathrm{~d} y$ and $\int_{a_{4}} f n_{y}^{4} \mathrm{~d} y$ that do not contribute because $n_{y}^{2}=n_{y}^{4}=0$. Then $J=\int_{\partial \Omega} f(M) n_{y}(M) \mathrm{d} s(M)$ and we have finally in this second case $\iint_{\Omega} \frac{\partial f}{\partial y} \mathrm{~d} x \mathrm{~d} y=\int_{\partial \Omega} f n_{y} \mathrm{~d} s$. In conclusion, when we integrate a derivative, we obtain an integral on the boundary of the domain.

- Integration by parts in a bounded domain in two space dimensions

In the case of two dimensions, we give ourselves a bounded domain Ω of the plane \mathbb{R}^{2} : it is included in a sufficiently large rectangle. We assume that the boundary $\partial \Omega$ of Ω is fairly regular curve, which is sometimes noted Γ. For example, if Ω is the disk D of center the origin and radius $R>0$, then its boundary ∂D is the circle of center the origin O and radius R. We

François Dubois

denote $\bar{\Omega}=\Omega \cup \partial \Omega$ the union of Ω and its boundary $\partial \Omega$. We say that $\bar{\Omega}$ is the adherence of Ω. For a point $x \in \partial \Omega$ on the boundary of Ω, we denote $n(x)$ the directed normal vector that points towards the exterior of Ω. Recall that $n(x)$ is a unit vector and that the point x is at any position of the edge.
In the case of the disk D, a point on the boundary can be written $x=\left(x_{1}, x_{2}\right)=(R \cos \theta, R \sin \theta)$ with $\theta \in[0,2 \pi]$ the usual polar angle. Then the normal vector $n(x)$ has very simple coordinates in this case: $n(x)=(\cos \theta, \sin \theta)$.
Finally, we give ourselves a regular application f defined on the adherence $\bar{\Omega}: f: \bar{\Omega} \longrightarrow \mathbb{R}$. Then the theorem of integration by parts expresses that the integral of a derivative of the function f in the domain Ω reduces to a curvilinear integral on the boundary $\partial \Omega$:
$\iint_{\Omega} \frac{\partial f}{\partial x} \mathrm{~d} x \mathrm{~d} y=\int_{\partial \Omega} f n_{x} \mathrm{~d} s$ and $\iint_{\Omega} \frac{\partial f}{\partial y} \mathrm{~d} x \mathrm{~d} y=\int_{\partial \Omega} f n_{y} \mathrm{~d} s$. We express this property synthetically as $\iint_{\Omega} \frac{\partial f}{\partial x_{j}} \mathrm{~d} x \mathrm{~d} y=\int_{\partial \Omega} f n_{j} \mathrm{~d} s$ for the two components $(j=1,2)$ or even $\iint_{\Omega} \partial_{j} f \mathrm{~d} x \mathrm{~d} y=$ $\int_{\partial \Omega} f n_{j} \mathrm{~d} s$ with $\partial_{j} \equiv \frac{\partial}{\partial x_{j}}$.
A common consequence of this relation is obtained with $f=u v$. With the Leibniz rule of differentiation of the product of two functions, we have from the previous considerations the identity $\iint_{\Omega} \frac{\partial u}{\partial x_{j}} v \mathrm{~d} x \mathrm{~d} y=-\iint_{\Omega} u \frac{\partial v}{\partial x_{j}} \mathrm{~d} x \mathrm{~d} y+\int_{\partial \Omega} u v n_{j} \mathrm{~d} s$.

- Integral of the divergence of a vector field

We can combine these two relations by introducing a vector field $\Phi: \bar{\Omega} \ni(x, y) \longmapsto \Phi(x, y) \equiv$ $\left(\Phi_{x}, \Phi_{y}\right) \in \mathbb{R}^{2}$ regular on the adherence of Ω. The divergence of the vector field Φ is by definition the scalar field $\operatorname{div} \Phi$ defined by $\operatorname{div} \Phi \equiv \frac{\partial \Phi_{x}}{\partial x}+\frac{\partial \Phi_{y}}{\partial y}$. If we note exceptionally with a point the scalar product $\Phi . n \equiv \Phi_{x} n_{x}+\Phi_{y} n_{y}$ along of the boundary, the previous two relations can be written as $\iint_{\Omega} \operatorname{div} \Phi \mathrm{d} x \mathrm{~d} y=\int_{\partial \Omega}(\Phi . n) \mathrm{d} s$.

Exercices

- Integration by parts of a vector field

Let D be a two-dimensional domain ($D \subset \mathbb{R}^{2}$) and n the external normal along the boundary ∂D. Let $\Phi: D \longrightarrow \mathbb{R}^{2}$ a regular vector field.
a) Prove that we have the relation $\int_{D} \operatorname{div} \Phi \mathrm{~d} x \mathrm{~d} y=\int_{\partial D}(\Phi, n) \mathrm{d} s$.
b) Deduce from the previous question that we have $\int_{D} \mathrm{~d} x \mathrm{~d} y=\int_{\partial D} x n_{x} \mathrm{~d} s=\int_{\partial D} x \mathrm{~d} y$.
c) Deduce from the first question that we have $\int_{D} \mathrm{~d} x \mathrm{~d} y=\int_{\partial D} y n_{y} \mathrm{~d} s=-\int_{\partial D} y \mathrm{~d} x$.

- Computation of surfaces

We denote by K the square $[0, a] \times[0, a]$.
a) With the help of the second question of the previous exercice, recover the surface $|K|$ of the square K.
b) Same question using the third question of the previous exercice.

- A curious expression of the surface

Let Ω be a subset of the plane \mathbb{R}^{2}. We suppose that Ω is bounded and that the boundary $\partial \Omega$ is regular. The external normal along the boundary $\partial \Omega$ is denoted by $n(x)$. We suppose that the tangent vector $\tau(x) \equiv\left(\frac{\mathrm{d} x}{\mathrm{~d} s}, \frac{\mathrm{~d} y}{\mathrm{~d} s}\right)$ is such that the local basis $(n(x), \tau(x))$ is orthonormal and

Applied Mathematics

direct in the plane \mathbb{R}^{2} for the canonical scalar product. We set $I=\int_{\partial \Omega}\left(-y \sin ^{2} x \mathrm{~d} x+\frac{1}{2}(x+\sin x \cos x) \mathrm{d} y\right)$.
a) Introduce the two components n_{x} et n_{y} of the external normal and the curvilinear abscissa $\mathrm{d} s$ in the expression of the curvilinear integral I.
b) Show that we have the relation $I=\int_{\partial \Omega}\left(\Phi_{x} n_{x}+\Phi_{y} n_{y}\right) \mathrm{d} s$ for a vector field $\Phi \equiv\left(\Phi_{x}, \Phi_{y}\right)$ that is to precise.
c) What is the value of $\delta \equiv \operatorname{div} \Phi$?
d) Prove that the surface $|\Omega|$ of the set Ω can be computed with the help of the expression $|\Omega|=\int_{\partial \Omega}\left(-y \sin ^{2} x \mathrm{~d} x+\frac{1}{2}(x+\sin x \cos x) \mathrm{d} y\right)$.

- Variational formulation for an elliptic problem

The domain Ω is a bounded part in \mathbb{R}^{2}. We denote by $\Gamma \equiv \partial \Omega$ its boundary. It is supposed to be regular. If v and w are two regular scalar functions defined on the set $\Gamma \equiv \partial \Omega$ and n the external boundary to Γ, we recall that $\frac{\partial v}{\partial n} \equiv \nabla v . n \equiv \sum_{j} \frac{\partial v}{\partial x_{j}} n_{j}$.
a) Give some examples of such a domain. Precise the geometrical nature of the boundary Γ and give some information about the external normal n.
Let f be a regular given scalar function defined on the set $\Omega \cup \Gamma$. We consider the following problem: search a scalar funtion u defined Ω such that $-\Delta u=f$ in Ω and $u=0$ on the boundary Γ. We recall that $\Delta u \equiv \sum_{j} \frac{\partial^{2} u}{\partial x_{j}^{2}}$. This problem is called the homogeneous Dirichlet problem for the Poisson equation.
b) Show that $-\int_{\Omega} \Delta v w \mathrm{~d} x=\int_{\Omega} \nabla v \cdot \nabla w \mathrm{~d} x-\int_{\partial \Omega} \frac{\partial v}{\partial n} w \mathrm{~d} \gamma$. Let u and v be two functions that are both solution of the problem $-\Delta \zeta=f$ in Ω and $\zeta=0$ on Γ.
c) What is the system of equations satisfied by the difference $\varphi \equiv u-v$?
d) Deduce from the previous questions that for an arbitrary funtion w identically equal to zero on the boundary Γ, we have $\int_{\Omega} \nabla \varphi . \nabla w \mathrm{~d} x=0$.
e) Deduce from the previous questions that the function φ is identically null and that the Dirichlet problem $-\Delta u=f$ in Ω and $u=0$ on Γ admits at most one regular solution.

