le cnam

Master Structural Mechanics and Coupled Systems

Applied Mathematics

Lecture 7 Length and normal of a curve

• Plane curve in the Euclidian plane

The first example is the line segment [A,B] between the two points $A(\alpha,\beta)$ and $B(\gamma,\delta)$. We have a parameterization $[0,1] \ni t \longmapsto M(t) = (X(t),Y(t)) = (1-t)A+tB$. In particular, $X(t) = (1-t)\alpha + t\gamma$ and $Y(t) = (1-t)\beta + t\delta$.

The second example is a circular arc. We introduce R > 0 and θ_1 and θ_2 such that $0 \le \theta_1 < \theta_2 \le 2\pi$ to fix the ideas. Then a point $M(\theta)$ of this curve satisfies the conditions $\theta_1 \le \theta \le \theta_2$ and $M(\theta) = R(\cos \theta, \sin \theta)$.

Functional curve (third exmple). For a > b two given reals, we consider the mapping $[a, b] \ni t \longmapsto f(t) \in \mathbb{R}$ and the associate graph in the Euclidean plane: X(t) = t, Y(t) = f(t).

In general, we have two regular functions X and Y from the interval [a, b] and taking their values in \mathbb{R} . The curve Γ is composed by all the points M(t) = (X(t), Y(t)) for all $t \in [a, b]$.

Velocity vector

When the mapping $t \mapsto M(t)$ is derivable, we set $V(t) = \frac{dM}{dt}$. The components of the velocity vector are simply $\frac{dM}{dt} = \left(\frac{dX}{dt}, \frac{dy}{dt}\right)$.

For the previous examples, we have respectively $V(t) = -A + B = \overrightarrow{AB}$ for the first example, $V(\theta) = R(-\sin\theta, \cos\theta)$ in the second case and V(t) = (1, f'(t)) for a functional curve.

Length of a regular curve

We introduce an integer $N \ge 1$ and we first define the approximated length L_N . With $h = \frac{b-a}{N}$, we consider $a = t_0 < t_1 < ... < t_j = a + jh < t_{j+1} = t_j + h < ... < t_N = b$ and $M_j = M(t_j)$. We approach the length of the curvilear arc $\widehat{M_j M_{j+1}}$ by the length $||\widehat{M_j M_{j+1}}||$ of the segment $[M_j, M_{j+1}]$. We have $||\widehat{M_j M_{j+1}}|| = \sqrt{(X(t_{j+1}) - X(t_j))^2 + (Y(t_{j+1}) - Y(t_j))^2}$ and we set $L_N = \sum_{j=1}^N ||\widehat{M_j M_{j+1}}||$ for the length of the polygoal approximation of the curve.

We have also the following expansions, if the functions X and Y are derivable:

 $X(t_j+h) = X(t_j) + h \frac{\mathrm{d}X}{\mathrm{d}t}(t_j) + h \varepsilon_j^X(h)$ and $Y(t_j+h) = Y(t_j) + h \frac{\mathrm{d}Y}{\mathrm{d}t}(t_j) + h \varepsilon_j^Y(h)$ with $\varepsilon_j^X(h)$ and $\varepsilon_j^Y(h)$ tending to zero as h tends to zero. Then $||\overline{M_jM_{j+1}}|| = h ||\frac{\mathrm{d}M}{\mathrm{d}t}(t_j)|| + h \eta_j(h)$ and $\eta_j(h)$ tends to zero if h tends to zero. In consequence, we have the decomposition

FRANÇOIS DUBOIS

 $L_N = \sum_{j=1}^N h||\frac{\mathrm{d}M}{\mathrm{d}t}(t_j)|| + h\sum_{j=1}^N \eta_j(h)$. The second term tends to zero when h tends to zero and the first tends to the integral $\int_a^b ||\frac{\mathrm{d}M}{\mathrm{d}t}(t)|| \, \mathrm{d}t$ in the same conditions.

The length L of the curve Γ between the parameters a and b is given by the relation $L = \int_a^b ||\frac{\mathrm{d}M}{\mathrm{d}t}(t)|| \, \mathrm{d}t = \int_a^b ||V(t)|| \, \mathrm{d}t.$

For an arc segment, we recover the coherence $L = ||\overrightarrow{AB}|| = AB$. For an arc of circle, we have $||\frac{dM}{d\theta}|| = R$ and $L = R(\theta_2 - \theta_1)$. A functional curve satisfies $||V(t)|| = \sqrt{1 + (f'(t))^2}$ and $L = \int_a^b \sqrt{1 + (f'(t))^2} \, dt$.

• Regular points

A regular point M(t) of a curve Γ satisfies the condition $\frac{dM}{dt}(t) \neq 0$. All the previous examples are composed only with regular points.

• Curvilinear abscissa

With the notations used previously, we define the curvilinear abscissa by the relation $s(t) = \int_a^t ||\frac{\mathrm{d}M}{\mathrm{d}t}(t)|| \, \mathrm{d}t$. Then we have s(a) = 0, s(b) = L, the function $t \longmapsto s(t)$ is derivable and $\frac{\mathrm{d}s}{\mathrm{d}t} = ||\frac{\mathrm{d}M}{\mathrm{d}t}(t)|| > 0$ if all the points are regular. Then this function is continuous and strictly increasing. It realizes a bijection from the interval [a,b] onto the interval [0,L]. Its reciprocal mapping $T \colon [0,L] \ni s \longmapsto T(s) \in [a,b]$ gives the value of the parameter t when the value of the curvilinear absissa is known. Moreover, this reciprocal function $s \longmapsto t = T(s)$ is derivable and we have the classical relation $\frac{\mathrm{d}T}{\mathrm{d}s} = \frac{1}{\left|\frac{\mathrm{d}M}{\mathrm{d}t}\right|}$.

Tangent vector

We use the intrinsic parametrization of the curve Γ by the curvilinear abscissa. We consider the composed map $[0, L] \ni s \longmapsto P(s) = (M_{\circ}T)(s) = M(T(s))$. Then its derivate $\tau(s) = \frac{\mathrm{d}P}{\mathrm{d}s} = \frac{\mathrm{d}M}{\mathrm{d}t} \frac{\mathrm{d}T}{\mathrm{d}s} = \frac{1}{||\frac{\mathrm{d}M}{\mathrm{d}t}||} \frac{\mathrm{d}M}{\mathrm{d}t}$ is a unitary vector: $||\tau(s)|| = 1$. It is by definition the tangent vector to the curve Γ .

For the previous examples, we have $\tau(s) = \frac{1}{||\overrightarrow{AB}||} \overrightarrow{AB}$ for the line segment, $\tau(s) = (-\sin\theta, \cos\theta)$ for the arc of circle and $\tau(s) = \frac{1}{\sqrt{1+(f'(t))^2}} (1, f'(t))$ for a functional curve.

Normal vector

The normal vector n(s) is defined in these lectures as the result of a rotation of angle $-\frac{\pi}{2}$ on the tangent vector $\tau(s)$. We have the relation $n(s) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \tau(s)$ and looking to the components: $n_x = \tau_y$, $n_y = -\tau_x$. Then the local basis $(n(s), \tau(s))$ is a direct orthonormal basis of the vector plane \mathbb{R}^2 .

For the arc of circle, we have $M(\theta) = (R \cos \theta, R \sin \theta)$ and the normal proposed in this section is simply given by $n = (\cos \theta, \sin \theta)$. We observe that it is pointing outside the disc of radius R centered at the origin.

Curvature

The curvature $\rho(s)$ is defined by the relation $\frac{d\tau}{ds} = -\rho(s)n(s)$ with the normal n(s) introduced in the previous section.

2

For a line segment, the curvature is null and for an arc of circle, we obtain easily $\rho = \frac{1}{R}$.

APPLIED MATHEMATICS

Exercices

• Catenary curve

We recall some elements of hyperbolic trigonometry: $\cosh x = \frac{1}{2} \left(\exp(x) + \exp(-x) \right)$ and $\sinh x = \frac{1}{2} \left(\exp(x) - \exp(-x) \right)$.

- a) Prove that for each real number x, we have $(\cosh x)^2 (\sinh x)^2 = 1$.
- b) Prove the following rules for the derivatives of hyperbolic cosine and hyperbolic sinus: $\frac{d}{dx} \cosh x = \sinh x$ and $\frac{d}{dx} \sinh x = \cosh x$.

We suppose given a > 0 and $X \ge 0$. A catenary curve has a cartesian equation given by the relation $y = a \cosh\left(\frac{x}{a}\right)$ in an orthonormal frame of reference.

- c) Draw the catenary curve.
- d) What is the length of the catenary curve between the points of abscissa x = 0 and x = X? $[L = a \sinh(\frac{X}{a})]$
- Length of an arch of parabola

We use hyperbolic cosine and hyperbolic sinus recalled in the previous exercice.

- a) Show that the hyperbolic sinus map is continuous, strictly increasing, that $\sinh x$ approaches $+\infty$ [respectively $-\infty$] if x approaches $+\infty$ [respectively $-\infty$].
- b) Deduce from the previous question that the hyperbolic sinus map is bijective from \mathbb{R} to \mathbb{R} . We denote by argsh the inverse function: $x = \operatorname{argshy}$ is equivalent to $y = \sinh x$.
- c) What is the derivative of the function argsh?
- d) Prove that we have $\operatorname{argsh} x = \log (x + \sqrt{1 + x^2})$.

We set $F(x) = \frac{1}{2} \left(\operatorname{argsh} x + x \sqrt{1 + x^2} \right)$.

e) Show that the function F is derivable for $x \in \mathbb{R}$ and evaluate the derivative $\frac{dF}{dx}$.

We introduce a > 0 and the parabola of equation $y = \frac{x^2}{2a}$ in an orthonormal frame of reference. We suppose also given an abscissa $X \ge 0$.

- f) Compute the length of an arc of this parabola between the ponts with abscissa x = 0 and x = X. We can explicit the result with the function F introduced previously. $[L = aF(\frac{X}{a})]$
- Length of a cycloid

A cycloid associated with a circle of radius R > 0 admits the following parametric representation $x(\theta) = R(\theta - \sin \theta)$, $y(\theta) = R(1 - \cos \theta)$.

- a) Draw this curve for $0 \le \theta \le 2\pi$.
- b) Express the element of length ds in terms of the variable θ and the infinitesimal d θ .
- c) What is the length of the arch of cycloid between the points A corresponding to $\theta = 0$ and B associated with $\theta = 2\pi$? [8R]

3

• Curvature of a functional curve

We suppose that the function $t \mapsto f(t)$ is two times derivable on the interval [a, b].

- a) Show that the curvature is given by the expression $\rho(t) = \frac{f''(t)}{\left(\sqrt{1+f'(t)^2}\right)^3}$.
- b) Interpret in terms of curvature the classic condition for beeing an inflexion point.