

Méthodes Mathématiques pour le Traitement du Signal

Cours 8 Transformation de Fourier (ii)

- Transformation de Fourier dans l'espace des fonctions intégrables On se donne une fonction intégrable à valeurs complexes : $f \in L^1(\mathbb{R})$, c'est à dire $\int_{-\infty}^{\infty} |f(t)| dt < \infty$. On a vu à la leçon précédente que pour $\omega \in \mathbb{R}$, le nombre complexe $\widehat{f}(\omega) = \int_{-\infty}^{\infty} \exp(-i\omega t) f(t) dt$ est bien défini puisque $f \in L^1(\mathbb{R})$. De plus, la transformée de Fourier $\mathscr{F}f(\omega) = \widehat{f}(\omega)$ de la fonction f est définie par la fonction $\mathbb{R} \ni \omega \longmapsto \widehat{f}(\omega) \in \mathbb{C}$.
- La transformée de Fourier d'une fonction intégrable est bornée Pour tout $\omega \in \mathbb{R}$, on a $|\widehat{f}(\omega)| \leq \int_{\mathbb{R}} |f(t)| dt$. En d'autres termes, $\|\widehat{f}\|_{\infty} \leq \|f\|_{1}$.
- La transformée de Fourier d'une fonction intégrable tend vers zéro à l'infini Si $f \in L^1(\mathbb{R})$, sa transformée de Fourier $\widehat{f}(\omega)$ tend vers zéro lorsque ω tend vers $+\infty$ ou ω tend vers $-\infty$.

Nous constatons que la propriété est vraie pour les trois exemples fondamentaux introduits lors de la leçon précédente, à savoir l'exponentielle causale $\varphi_a(t) = H(t) \exp(-at)$, l'exponentielle causale symétrisée $\psi_a(t) = \exp(-a|t|)$ et la porte P_T égale à 1 si $|t| \leq \frac{T}{2}$ et à zéro sinon [avec a>0 et T>0]. On a en effet $\widehat{\varphi}_a(\omega) = \frac{1}{a+i\omega}$, $\widehat{\psi}_a(\omega) = \frac{2a}{a^2+\omega^2}$ et $\widehat{P}_T(\omega) = T \operatorname{sinc}\left(\frac{\omega T}{2}\right)$; ces trois fonctions tendent bien vers zéro si $|\omega|$ tend vers l'infini.

• La transformée de Fourier d'une fonction intégrable est une fonction continue Si $f \in L^1(\mathbb{R})$, la transformée de Fourier $\mathbb{R} \ni \omega \longmapsto \widehat{f}(\omega) \in \mathbb{C}$ est une fonction continue de l'argument ω . On a dans ce cas $\widehat{f} \in \mathscr{C}(\mathbb{R})$.

On laisse le lecteur vérifier cette propriété pour les trois exemples fondamentaux rappelés cidessus.

- Opérateur de Fourier conjugué Pour $f \in L^1(\mathbb{R})$, on définit l'opérateur de Fourier conjugué $\overline{\mathscr{F}}$ par l'expression $(\overline{\mathscr{F}}f)(\omega) = \int_{-\infty}^{\infty} \exp(i\,\omega t)\,f(t)\,\mathrm{d}t$. Seul le signe de ω dans l'exponentielle complexe a changé. On a la relation $(\overline{\mathscr{F}}f)(\omega) = (\mathscr{F}f)(-\omega)$.
- Théorème d'inversion de Fourier (première formulation)

Si d'une part la fonction f est intégrable $(f \in L^1(\mathbb{R}))$ et si de plus sa transformée de Fourier \widehat{f} est également intégrable $(\widehat{f} \in L^1(\mathbb{R}))$, alors on peut représenter la fonction f à l'aide de l'opérateur de Fourier conjugué : $f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp(i\omega t) \widehat{f}(\omega) d\omega$ et cette égalité a lieu "pour presque tout" $t \in \mathbb{R}$ (pour tout réel t dans les applications en ingénierie). On peut écrire aussi $f(t) = \frac{1}{2\pi} (\overline{\mathscr{F}} \widehat{f})(t)$ ou $f(t) = \frac{1}{2\pi} (\overline{\mathscr{F}} (\mathscr{F} f))(t)$.

Seul le second exemple fondamental permet de tester ce théorème d'inversion de Fourier puisque les fonctions $\widehat{\varphi}_a$ et \widehat{P}_T n'appartiennent pas à $\mathrm{L}^1(\mathbb{R})$ [exercice !]. On a par contre $\widehat{\psi}_a \in \mathrm{L}^1(\mathbb{R})$ [exercice] et le théorème d'inversion de Fourier s'écrit dans ce cas particulier

François Dubois, novembre 2017.

FRANÇOIS DUBOIS

 $\int_{-\infty}^{\infty} \exp(i\,\omega t) \, \frac{\mathrm{d}\omega}{a^2 + \omega^2} = \frac{\pi}{a} \exp(-a\,|t|).$ On constate qu'on a calculé avec des fonctions élémentaires l'intégrale d'une fonction [ici $\exp(i\,\omega t)/(a^2 + \omega^2)$] dont la primitive ne peut pas s'exprimer en termes de fonctions élémentaires.

L'égalité ponctuelle $f(t) = \frac{1}{2\pi} (\overline{\mathscr{F}}(\mathscr{F}f))(t)$ peut s'écrire aussi $f(t) = \frac{1}{2\pi} ((\overline{\mathscr{F}}_{\circ}\mathscr{F})f)(t)$ pour tout réel t, c'est à dire $((\overline{\mathscr{F}}_{\circ}\mathscr{F})f)(t) = 2\pi f(t)$. On en déduit donc une égalité entre fonctions $(\overline{\mathscr{F}}_{\circ}\mathscr{F})f = 2\pi f$ pour toute fonction intégrable dont la transformée de Fourier \widehat{f} est également intégrable.

• Inverse de l'opérateur de Fourier

On note dans ce paragraphe $\mathscr E$ l'espace des fonctions intégrables dont la transformée de Fourier $\widehat f$ est également intégrable. Alors l'égalité précédente $(\overline{\mathscr F}_\circ\mathscr F)f=2\pi f$ est vraie pour toute fonction $f\in\mathscr E$. On en déduit que l'opérateur $\overline{\mathscr F}_\circ\mathscr F$ transforme la fonction f en elle même, à un facteur 2π près. Si on appelle "identité" l'opérateur $\mathscr E\ni f\longmapsto \mathrm{id} f=f\in\mathscr E$, la relation $(\overline{\mathscr F}_\circ\mathscr F)f=2\pi\,\mathrm{id} f$ valable pour toute fonction $f\in\mathscr E$ peut aussi s'écrire comme une relation entre opérateurs de l'espace $\mathscr E\colon\overline{\mathscr F}_\circ\mathscr F=2\pi\,\mathrm{id}$. Quand on compose les opérateurs $\mathscr F$ et $\frac{1}{2\pi}\,\overline{\mathscr F}$, on trouve l'identité: $(\frac{1}{2\pi}\,\overline{\mathscr F})_\circ\mathscr F=\mathrm{id}$. On peut montrer [exercice!] qu'on a aussi $\mathscr F_\circ(\frac{1}{2\pi}\,\overline{\mathscr F})=\mathrm{id}$. En d'autres termes, $\mathscr F^{-1}=\frac{1}{2\pi}\,\overline{\mathscr F}$. A un facteur 2π près, l'inverse de la transformée de Fourier est égal à l'opérateur de Fourier conjugué!

• Approximation des fonctions dans l'espace $L^2(\mathbb{R})$

Si on se donne une fonction de carré intégrable $(f \in L^2(\mathbb{R}))$, elle n'est pas en général intégrable sur \mathbb{R} . Mais si on la tronque en posant pour k entier positif, $f_k = P_{2k}f$, c'est à dire $f_k(t) = f(t)$ si $|t| \le k$ et $f_k = 0$ sinon, on obtient une suite de fonctions dans l'espace $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$. Cette suite f_k converge vers f dans $L^2(\mathbb{R})$: $||f - f_k||_2$ tend vers zéro si k tend vers l'infini.

• Transformée de Fourier dans l'espace $L^2(\mathbb{R})$

Comme la suite f_k appartient à $L^1(\mathbb{R})$, sa transformée de Fourier \widehat{f}_k est bien définie via la relation $\widehat{f}_k(\omega) = \int_{-k}^k \exp(-i\,\omega t)\,f(t)\,\mathrm{d}t$. On peut montrer que cette suite \widehat{f}_k appartient à l'espace $L^2(\mathbb{R})$ et converge dans cet espace vers une fonction notée \widehat{f} ou $\mathscr{F}f$ qui définit la transformation de Fourier dans l'espace $L^2(\mathbb{R})$. De plus, on a pour "presque tout" $\omega \in \mathbb{R}$, $(\mathscr{F}f)(\omega) = \widehat{f}(\omega) = \lim_{k \to +\infty} \int_{-k}^k \exp(-i\,\omega t)\,f(t)\,\mathrm{d}t$.

On constate que la définition de la transformée de Fourier dans $L^2(\mathbb{R})$ n'est pas aussi immédiate que dans l'espace $L^1(\mathbb{R})$. Elle a de toutefois de nombreuses propriétés, très simples à énoncer.

• Conservation, à un facteur 2π près, du produit scalaire

On rappelle que pour deux fonctions f et g de carré intégrables, le produit scalaire $(f,g) \equiv \int_{\mathbb{R}} f(t) \, \overline{g(t)} \, dt$ est bien défini. On a la relation de Bessel-Parseval : $(\widehat{f},\widehat{g}) = 2\pi \, (f,g)$. A un facteur 2π près, la transformation de Fourier conserve le produit scalaire. Dans le cas où f=g, cette conservation du produit scalaire s'écrit comme une conservation des normes : $(\widehat{f},\widehat{f}) = \|\mathscr{F}f\|_2^2 = 2\pi \|f\|_2^2 = 2\pi \, (f,f)$.

• Opérateur de Fourier conjugué dans $L^2(\mathbb{R})$

On étend comme dans le cas précédent la transformée de Fourier conjuguée à l'espace $L^2(\mathbb{R})$: $(\overline{\mathscr{F}}f)(\omega) = \widehat{f}(\omega) = \lim_{k \to +\infty} \int_{-k}^k \exp(i\,\omega t)\,f(t)\,\mathrm{d}t$. On a également, pour $f \in L^2(\mathbb{R})$, $(\overline{\mathscr{F}}f)(\omega) = (\mathscr{F}f)(-\omega)$.

MÉTHODES MATHÉMATIQUES POUR LE TRAITEMENT DU SIGNAL

• Théorème d'inversion de Fourier (seconde formulation)

On a dans l'espace $L^2(\mathbb{R})$ les relations suivantes entre l'opérateur de Fourier \mathscr{F} et l'opérateur de Fourier conjugué $\overline{\mathscr{F}}$: $\overline{\mathscr{F}}_{\circ}\mathscr{F}=\mathscr{F}_{\circ}\overline{\mathscr{F}}=2\pi i d$. On peut aussi écrire ces relations sous la forme $\mathscr{F}^{-1}=\frac{1}{2\pi}\overline{\mathscr{F}}$. A un facteur 2π près, l'inverse de la transformée de Fourier dans l'espace des fonctions de carré intégrable est égal à l'opérateur de Fourier conjugué.

On en déduit que pour toute fonction f de carré intégrable, on a $f = \frac{1}{2\pi} (\mathscr{F}_{\circ} \overline{\mathscr{F}})(f)$ et on a aussi $f = \frac{1}{2\pi} (\overline{\mathscr{F}}_{\circ} \mathscr{F})(f)$. En particulier pour (presque) tout nombre réel t, on a les égalités $f(t) = \frac{1}{2\pi} (\mathscr{F}(\overline{\mathscr{F}}f))(t)$ et $f(t) = \frac{1}{2\pi} (\overline{\mathscr{F}}(\mathscr{F}f))(t)$. On ne peut ensuite écrire ces égalités avec des intégrales que si les fonctions f et $\mathscr{F}f$ sont intégrables.

• Calcul d'une transformée de Fourier à l'aide du théorème d'inversion de Fourier Pour la fonction porte, on se donne T>0. On déduit [exercice!] des égalités précédentes la relation $\mathscr{F}\left(\operatorname{sinc}\left(\frac{\omega T}{2}\right)\right)(t)=\frac{2\pi}{T}P_T(t)$. En particulier pour T=2, $(\mathscr{F}\operatorname{sinc})(t)=\pi$ si |t|<1 et $(\mathscr{F}\operatorname{sinc})(t)=0$ si |t|>1. Grâce au théorème d'inversion de Fourier, on a calculé la transformée de Fourier du sinus cardinal sans jamais écrire une seule intégrale!