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LB models.
General framework.

a cubic lattice in D dimensions,
a set of Q velocities (~cqδx/δt) connecting nodes of the
lattice and such that, for any ~cq in the set, ~cq̄ = −~cq is also
in the set,
an associated set of particle densities fq(~r , t) (f = (fq)),
an evolution equation for these particle densities:

fq(~r + ~cqδx , t + δt) = f ∗q (~r , t) ≡ fq(~r , t) + Cq(f(~r , t)),

where C is a collision term function of f.
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Some velocity sets.

D1Q3: {−1, 0, 1},
D2Q5: {(0,−1), (−1, 0), (0, 0), (1, 0), (0, 1)},
D2Q9: D2Q5 ∪ {(−1,−1), (−1, 1), (1,−1), (1, 1)},
D3Q7: {(0, 0, 0), (±1, 0, 0), (0,±1, 0), (0, 0,±1)},
D3Q9: {(0, 0, 0), (±1,±1,±1)},
D3Q13: {(0, 0, 0), (±1,±1, 0), (±1, 0,±1), (0,±1,±1)},
D3Q15: D3Q7 ∪ D3Q9,
D3Q19: D3Q7 ∪ D3Q13,
D3Q27: D3Q7 ∪ D3Q9 ∪ D3Q13,
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LB models.
Collisions through relaxation.

Following Higuera et al. (1989), the collision term is done
through a relaxation toward a given “attractor” e function of f:
C(f) = −A · (f− e(f)), where A is a given collision operator.

BGK (Bhatnagar-Gross-Krook) or SRT
(Single-Relaxation-Time): A = λI (λ = 1/τ ).
MRT (Multiple-Relaxation-Time): A is defined by its
eigenvalues (relaxation times) and its eigenvectors.

“Kinetic” models: eigenvectors based on the velocity set,
bmnp = (cm

qxcn
qy cp

qz).
L-models (I. Ginzburg): based on the symmetric and
antisymmetric components of f.
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LB models.
Two-Relaxation-Time (TRT) LBE.

Splitting the particle densities in their symmetric and
antisymmetric components:

f +
q =

(fq + fq̄)

2
, f−q =

(fq − fq̄)

2
,

fq = f +
q + f−q , fq̄ = f +

q − f−q .

the TRT evolution is given by

fq(~r + ~cqδx , t + δt) = [fq − λ+
(
f +
q − e+

q
)
− λ−

(
f−q − e−q

)
](~r , t),

or with λ∗ = (λ+ + λ−)/2 and δλ = (λ+ − λ−)/2

fq(~r + ~cqδx , t + δt) = [(1− λ∗)fq − δλ fq̄ + λ∗eq + δλ eq̄](~r , t),
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Conserved quantities

The fundamental ingredient of the LB models is the existence of
quantities conserved during the collision, for instance the mass:

ρ =
∑

q

fq =
∑

q

f ∗q ,

the momentum

ρ~u =
∑

q

fq~cq =
∑

q

f ∗q~cq,

energy ...
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equilibrium

The “attractor” of the relaxation (also called equilibrium) is
restricted to be functions of the conserved quantities only. To
satisfy the conservation laws, the equilibrium must be chosen
such that: ∑

q

eq = ρ,

for the mass, ∑
q

eq~cq = ρ~u.

for the momentum ...
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LB models
Stability

von Neumann stability.

In a periodic domain, the solutions of the linearized evolution
equations have the form:

f(~r , t) = Ωt/δt exp(i~k ·~r/δx)f0,

The population f after advection is given by

f(~r + ~cqδx , t + δt) = Ωekq f(~r , t),

with ~k · ~cq. Using K = diag(ekq ) and e = Ef, it comes

(I − A · (I − E)) · f0 = ΩK · f0.
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Stability

von Neumann stability.

Writing the system:

Ω f0 = K−1 · (I − A · (I − E)) · f0,

the growth rate Ω can take one of the eigenvalue of the matrix
K−1 · (I − A · (I − E)).
The LB model will be stable for a set of parameters defining A
and E iff all the Ω are |Ω| ≤ 1 for all the values of ~k (0 ≤ ~k ≤ π).
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FD BGK
BGK stability

BGK model for λ = 1.
Finite-difference equivalent scheme.

For the BGK models the evolution equation is given by

fq(~r + ~cqδx , t + δt) = [fq − λ(fq − eq)](~r , t),

For λ = 1 this equation becomes

fq(~r + ~cqδx , t + δt) = eq(~r , t),

or

fq(~r , t + δt) = eq(~r − ~cqδx , t),

Projecting this equation on the conserved quantities, it comes

ρ(~r , t + δt)− ρ(~r , t) =
∑

q

(eq(~r − ~cqδx , t)− eq(~r , t)),
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FD BGK
BGK stability

BGK model for λ = 1.
Stability condition for λ∗ = 1.

For models with only mass conservation (advection-diffusion),
the linearized equilibrium can be written: eq = Eqρ, with∑

q Eq = 1. The growth rate Ω is solution of

Ω =
∑

q

eqe−kq = A + iB,

with

A =
∑

q

E+
q cos(kq), B =

∑
q

E−
q sin(kq).

It can be shown that for any value of δλ ∈ [−1, 1], |Ω| ≤ 1 iff
A2 + B2 ≤ 1.
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FD co-BGK
co-BGK stability

Co-BGK LBE.
Evolution equation for λ∗ = 1.

The TRT evolution equation is given by

fq(~r + ~cqδx , t + δt) = [(1− λ∗)fq − δλ fq̄ + λ∗eq + δλ eq̄](~r , t),
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FD co-BGK
co-BGK stability

Co-BGK LBE.
Evolution equation for λ∗ = 1.

For λ∗ = 1 the TRT evolution equation becomes

fq(~r + ~cqδx , t + δt) = [−δλ fq̄ + eq + δλ eq̄](~r , t),
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Co-BGK LBE.
Evolution equation for λ∗ = 1.

For λ∗ = 1 the TRT evolution equation can also be written

fq(~r , t + δt) = [−δλ fq̄ + eq + δλ eq̄](~r − ~cqδx , t),
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Co-BGK LBE.
Evolution equation for λ∗ = 1.

For λ∗ = 1 the TRT evolution equation can also be written

fq(~r , t + δt) = [−δλ fq̄ + eq + δλ eq̄](~r − ~cqδx , t),

or

fq̄(~r − ~cqδx , t) = [−δλ fq + eq̄ + δλ eq](~r , t − δt),
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Co-BGK LBE.
Evolution equation for λ∗ = 1.

For λ∗ = 1 the TRT evolution equation can also be written

fq(~r , t + δt) = [−δλ fq̄ + eq + δλ eq̄](~r − ~cqδx , t),

or

fq̄(~r − ~cqδx , t) = [−δλ fq + eq̄ + δλ eq](~r , t − δt),

then

fq(~r , t + δt) = [eq + δλ eq̄](~r − ~cqδx , t)
− δλ [−δλ fq + eq̄ + δλ eq](~r , t − δt),
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FD co-BGK
co-BGK stability

Co-BGK LBE.
Evolution equation for λ∗ = 1.

Summing over q the equation

fq(~r , t + δt) = [eq + δλ eq̄](~r − ~cqδx , t)
− δλ [−δλ fq + eq̄ + δλ eq](~r , t − δt),

gives

ρ(~r , t + δt) =
∑

q

[eq + δλ eq̄](~r − ~cqδx , t)

− δλ
∑

q

[−δλ fq + eq̄ + δλ eq](~r , t − δt),
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Co-BGK LBE.
Evolution equation for λ∗ = 1.

Summing over q the equation

fq(~r , t + δt) = [eq + δλ eq̄](~r − ~cqδx , t)
− δλ [−δλ fq + eq̄ + δλ eq](~r , t − δt),

gives also

ρ(~r , t + δt) = −δλ ρ(~r , t − δt) +
∑

q

[eq + δλ eq̄](~r − ~cqδx , t),
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FD co-BGK
co-BGK stability

Co-BGK LBE.
Evolution equation for λ∗ = 1.

Summing over q the equation

fq(~r , t + δt) = [eq + δλ eq̄](~r − ~cqδx , t)
− δλ [−δλ fq + eq̄ + δλ eq](~r , t − δt),

gives also

ρ(~r , t + δt) = −δλ ρ(~r , t − dt)

+
∑

q

[(1 + δλ )e+
q + (1− δλ )e−q ](~r − ~cqδx , t),
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FD co-BGK
co-BGK stability

Co-BGK LBE.
Evolution equation for λ∗ = 1.

Summing over q the equation

fq(~r , t + δt) = [eq + δλ eq̄](~r − ~cqδx , t)
− δλ [−δλ fq + eq̄ + δλ eq](~r , t − δt),

gives finally a du Fort-Frankel scheme ((1+δλ )/(1−δλ ) = 2Λ−)

1
2
(ρ(~r , t + δt)− ρ(~r , t − δt))−

∑
q

e−q (~r − ~cqδx , t) =

2Λ−
∑

q

(e+
q (~r − ~cqδx , t)− 1

2
(e+

q (~r , t + δt) + e+
q (~r , t − δt))),
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Co-BGK LBE.
Stability condition for λ∗ = 1.

The growth rate Ω is solution of

Ω2 − ((1 + δλ )A + i(1− δλ )B)Ω + δλ = 0,

with

A =
∑

q

E+
q cos(kq), B =

∑
q

E−
q sin(kq).

It can be shown that for any value of δλ ∈ [−1, 1], |Ω| ≤ 1 iff
A2 + B2 ≤ 1 as for BGK and τ = 1.
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Permeability

Permeability of a porous medium.
Picture.

d’Humières, Ginzburg LBE and FD



Introduction
BGK model for relaxation time equal to 1.

co-BGK.
Steady Recurrence Equations.

Summary

Permeability

Permeability of a porous medium.
Table.

503, φ ≈ 0.973
ν λν kxx

1/6 1 42.249358
k rel

Λ2 =1/4 BGK
(10−12)

1/24 8/5 0.1 −0.094
1/6 1 0 0.021
1/2 1/2 1.1 0.356
7/6 1/4 −0.3 1.123
5/2 1/8 0.3 2.946
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Steady Recurrence Equations
Populations.

fq(~r , t) = [e+
q + e−q − (

1
2

+ Λ+)g+
q − (

1
2

+ Λ−)g−q ](~r , t),

f ∗q (~r , t) = [e+
q + e−q + (

1
2
− Λ+)g+

q + (
1
2
− Λ−)g−q ](~r , t)

Λ+ = (
1

λ+
− 1

2
) > 0 , Λ− = (

1
λ−

− 1
2
) > 0 , ∀ q .
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Steady Recurrence Equations
Recurrence equations.

With the help of the following link-wise finite-difference
operators,

∆̄qφ(~r) =
1
2
(φ(~r + ~cqδx)− φ(~r − ~cqδx)),

∆2
qφ(~r) = φ(~r + ~cqδx)− 2φ(~r) + φ(~r − ~cqδx),

and Λ∓q = Λ+Λ−, the steady evolution equation gives

g±q (~r) = [∆̄qe∓q − Λ∓q ∆2
qe±q + (Λ2 − 1

4
)∆2

qg±q ](~r),

0 = [∆2
qe±q − Λ±q ∆2

qg±q − ∆̄qg∓q ](~r).
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Steady Recurrence Equations
Populations.

(Λ+g+
q )(~r) = [∆̄q(Λ+e−q )− Λ2∆2

qe+
q + (Λ2 − 1

4
)∆2

q(Λ+g+
q )](~r),

g−q (~r) = [∆̄qe+
q −∆2

q(Λ+e−q ) + (Λ2 − 1
4
)∆2

qg−q ](~r),

0 = [∆2
qe+

q −∆2
q(Λ+g+

q )− ∆̄qg−q ](~r),

0 = [∆2
q(Λ+e−q )− Λ2g−q − ∆̄q(Λ+g+

q )](~r).

Bounce-back rule, fq̄ = f ∗q , gives Λ2g−q = (Λ+e−q ) + (Λ+g+
q )/2.
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Summary

Some LBEs are finite-difference schemes.
The known results for convergence, stability, consistency
apply for this class of LBE.
For suitable boundary conditions, the steady state of TRT
models is controlled by the product Λ+Λ−.

Outlook
Have we found all the LBEs being FD schemes?
If it exists a class of LBE not being a FD scheme, does it
change the LBE properties?
Can we get more analytic stability results?
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