Lattice Boltmann Equations and Finite-Difference Schemes

Dominique d'Humières ¹ Irina Ginzburg ²

¹Laboratoire de Physique Statistique, École Normale Supérieure

²Cemagref, Antony Regional Centre, HBAN

December 5, 2008

くロト (過) (目) (日)

Outline

Introduction

- Lattice Boltzmann (LB) Models.
- Linear Stability Analysis.
- 2 BGK model for relaxation time equal to 1.
 - Finite-difference equivalent scheme.
 - Stability of the BGK models.
- 3 co-BGK.
 - Finite-difference equivalent scheme.
 - Stability of the co-BGK models.
 - 4 Steady Recurrence Equations.
 - Permeability function of the viscosity.

LB models Stability

- a cubic lattice in *D* dimensions,
- a set of *Q* velocities $(\vec{c}_q \delta x / \delta t)$ connecting nodes of the lattice and such that, for any \vec{c}_q in the set, $\vec{c}_{\bar{q}} = -\vec{c}_q$ is also in the set,
- an associated set of particle densities $f_q(\vec{r}, t)$ ($\mathbf{f} = (f_q)$),
- an evolution equation for these particle densities:

 $f_q(\vec{r} + \vec{c}_q \delta x, t + \delta t) = f_q^*(\vec{r}, t) \equiv f_q(\vec{r}, t) + C_q(\mathbf{f}(\vec{r}, t)),$

イロト イポト イヨト イヨト 一臣

where C is a collision term function of **f**.

LB models Stability

LB models. Some velocity sets.

- D1Q3: {-1,0,1},
- D2Q5: {(0,-1), (-1,0), (0,0), (1,0), (0,1)},
- D2Q9: D2Q5 $\cup \{(-1, -1), (-1, 1), (1, -1), (1, 1)\},\$
- D3Q7: {(0,0,0), (±1,0,0), (0,±1,0), (0,0,±1)},
- D3Q9: {(0,0,0), (±1,±1,±1)},
- D3Q13: $\{(0,0,0), (\pm 1,\pm 1,0), (\pm 1,0,\pm 1), (0,\pm 1,\pm 1)\},\$
- D3Q15: D3Q7 ∪ D3Q9,
- D3Q19: D3Q7 ∪ D3Q13,
- D3Q27: D3Q7 \cup D3Q9 \cup D3Q13,

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

LB models Stability

LB models. Collisions through relaxation.

Following Higuera et al. (1989), the collision term is done through a relaxation toward a given "attractor" **e** function of **f**: $C(\mathbf{f}) = -\mathcal{A} \cdot (\mathbf{f} - \mathbf{e}(\mathbf{f}))$, where \mathcal{A} is a given collision operator.

- BGK (Bhatnagar-Gross-Krook) or SRT (Single-Relaxation-Time): $A = \lambda I (\lambda = 1/\tau).$
- MRT (Multiple-Relaxation-Time): A is defined by its eigenvalues (relaxation times) and its eigenvectors.
 - "Kinetic" models: eigenvectors based on the velocity set, $\mathbf{b}_{mnp} = (c_{qx}^m c_{qy}^n c_{qz}^p).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

• L-models (I. Ginzburg): based on the symmetric and antisymmetric components of **f**.

LB models Stability

LB models. Two-Relaxation-Time (TRT) LBE.

Splitting the particle densities in their symmetric and antisymmetric components:

$$\begin{aligned} f_q^+ &= \frac{(f_q + f_{\bar{q}})}{2}, \qquad f_q^- &= \frac{(f_q - f_{\bar{q}})}{2}, \\ f_q &= f_q^+ + f_q^-, \qquad f_{\bar{q}} &= f_q^+ - f_q^-. \end{aligned}$$

the TRT evolution is given by

 $f_q(\vec{r} + \vec{c}_q \delta x, t + \delta t) = [f_q - \lambda^+ (f_q^+ - e_q^+) - \lambda^- (f_q^- - e_q^-)](\vec{r}, t),$ or with $\lambda^* = (\lambda^+ + \lambda^-)/2$ and $\delta \lambda = (\lambda^+ - \lambda^-)/2$ $f_q(\vec{r} + \vec{c}_q \delta x, t + \delta t) = [(1 - \lambda^*)f_q - \delta \lambda f_{\bar{q}} + \lambda^* e_q + \delta \lambda e_{\bar{q}}](\vec{r}, t),$ Introduction BGK model for relaxation time equal to 1. co-BGK. Steady Recurrence Equations. Summary LB models Stability LB models Stability

The fundamental ingredient of the LB models is the existence of quantities conserved during the collision, for instance the mass:

$$\rho = \sum_{q} f_{q} = \sum_{q} f_{q}^{*},$$

the momentum

$$\rho \vec{u} = \sum_{q} f_{q} \vec{c}_{q} = \sum_{q} f_{q}^{*} \vec{c}_{q},$$

energy ...

イロト イポト イヨト イヨト

Introduction BGK model for relaxation time equal to 1. co-BGK. Steady Recurrence Equations. Summary LB models Stability LB models Stability

The fundamental ingredient of the LB models is the existence of quantities conserved during the collision, for instance the mass:

$$\rho = \sum_{q} f_{q} = \sum_{q} f_{q}^{*},$$

the momentum

$$\rho \vec{u} = \sum_{q} f_{q} \vec{c}_{q} = \sum_{q} f_{q}^{*} \vec{c}_{q},$$

energy ...

イロト イポト イヨト イヨト

Introduction BGK model for relaxation time equal to 1. co-BGK. Steady Recurrence Equations. Summary LB models Stability LB models Stability

The fundamental ingredient of the LB models is the existence of quantities conserved during the collision, for instance the mass:

$$\rho = \sum_{q} f_{q} = \sum_{q} f_{q}^{*},$$

the momentum

$$\rho \vec{u} = \sum_{q} f_{q} \vec{c}_{q} = \sum_{q} f_{q}^{*} \vec{c}_{q},$$

energy ...

ヘロト ヘアト ヘビト ヘビト

LB models Stability

LB models.

The "attractor" of the relaxation (also called equilibrium) is restricted to be functions of the conserved quantities only. To satisfy the conservation laws, the equilibrium must be chosen such that:

$$\sum_{\boldsymbol{q}} \boldsymbol{e}_{\boldsymbol{q}} = \rho,$$

for the mass,

$$\sum_{q} e_{q} \vec{c}_{q} = \rho \vec{u}.$$

ヘロン 人間 とくほ とくほ とう

3

for the momentum ..

LB models Stability

LB models.

The "attractor" of the relaxation (also called equilibrium) is restricted to be functions of the conserved quantities only. To satisfy the conservation laws, the equilibrium must be chosen such that:

$$\sum_{\boldsymbol{q}} \boldsymbol{e}_{\boldsymbol{q}} = \rho,$$

for the mass,

$$\sum_{q} e_{q} \vec{c}_{q} = \rho \vec{u}.$$

for the momentum ...

ヘロン 人間 とくほ とくほ とう

= 990

LB models Stability

von Neumann stability.

In a periodic domain, the solutions of the linearized evolution equations have the form:

$$\mathbf{f}(\vec{r},t) = \Omega^{t/\delta t} \exp(i\vec{k}\cdot\vec{r}/\delta x)\mathbf{f}_0,$$

The population f after advection is given by

$$\mathbf{f}(\vec{r}+\vec{c}_q\delta x,t+\delta t)=\Omega \boldsymbol{e}^{k_q}\mathbf{f}(\vec{r},t),$$

with $\vec{k} \cdot \vec{c}_q$. Using $\mathcal{K} = \text{diag}(e^{k_q})$ and $\mathbf{e} = \mathcal{E}\mathbf{f}$, it comes

$$(\mathcal{I} - \mathcal{A} \cdot (\mathcal{I} - \mathcal{E})) \cdot \mathbf{f}_0 = \Omega \, \mathcal{K} \cdot \mathbf{f}_0.$$

イロン イボン イヨン イヨン

Introduction

BGK model for relaxation time equal to 1. co-BGK. Steady Recurrence Equations. Summary

LB models Stability

von Neumann stability.

Writing the system:

$$\Omega \mathbf{f}_0 = \mathcal{K}^{-1} \cdot (\mathcal{I} - \mathcal{A} \cdot (\mathcal{I} - \mathcal{E})) \cdot \mathbf{f}_0,$$

the growth rate Ω can take one of the eigenvalue of the matrix $\mathcal{K}^{-1} \cdot (\mathcal{I} - \mathcal{A} \cdot (\mathcal{I} - \mathcal{E}))$. The LB model will be stable for a set of parameters defining \mathcal{A}

and \mathcal{E} iff all the Ω are $|\Omega| \leq 1$ for all the values of \vec{k} ($0 \leq \vec{k} \leq \pi$).

イロン イボン イヨン イヨン

FD BGK BGK stability

BGK model for $\lambda = 1$. Finite-difference equivalent scheme.

For the BGK models the evolution equation is given by

$$f_q(\vec{r}+\vec{c}_q\delta x,t+\delta t)=[f_q-\lambda(f_q-e_q)](\vec{r},t),$$

For $\lambda = 1$ this equation becomes

$$f_q(\vec{r}+\vec{c}_q\delta x,t+\delta t)=e_q(\vec{r},t),$$

or

$$f_q(\vec{r},t+\delta t)=e_q(\vec{r}-\vec{c}_q\delta x,t),$$

Projecting this equation on the conserved quantities, it comes

$$\rho(\vec{r},t+\delta t)-\rho(\vec{r},t)=\sum_{q}(\boldsymbol{e}_{q}(\vec{r}-\vec{c}_{q}\delta x,t)-\boldsymbol{e}_{q}(\vec{r},t)),$$

イロト イポト イヨト イヨト

BGK model for $\lambda = 1$. Stability condition for $\lambda^* = 1$.

For models with only mass conservation (advection-diffusion), the linearized equilibrium can be written: $e_q = E_{q\rho}$, with $\sum_q E_q = 1$. The growth rate Ω is solution of

$$\Omega = \sum_{q} e_{q} e^{-k_{q}} = \mathbf{A} + i\mathbf{B},$$

with

$$A = \sum_{q} E_q^+ \cos(k_q), \qquad B = \sum_{q} E_q^- \sin(k_q).$$

It can be shown that for any value of $\delta \lambda \in [-1, 1], |\Omega| \le 1$ iff $A^2 + B^2 \le 1$.

FD co-BGK co-BGK stabilit

Co-BGK LBE. Evolution equation for $\lambda^* = 1$.

The TRT evolution equation is given by

$$f_q(\vec{r}+\vec{c}_q\delta x,t+\delta t)=[(1-\lambda^*)f_q-\delta\lambda\,f_{\bar{q}}+\lambda^*\boldsymbol{e}_q+\delta\lambda\,\boldsymbol{e}_{\bar{q}}](\vec{r},t),$$

ヘロト 人間 とくほとくほとう

FD co-BGK co-BGK stabilit

Co-BGK LBE. Evolution equation for $\lambda^* = 1$.

For $\lambda^* = 1$ the TRT evolution equation becomes

 $f_q(\vec{r} + \vec{c}_q \delta x, t + \delta t) = [-\delta \lambda f_{\bar{q}} + e_q + \delta \lambda e_{\bar{q}}](\vec{r}, t),$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

FD co-BGK co-BGK stabilit

Co-BGK LBE. Evolution equation for $\lambda^* = 1$.

For $\lambda^* = 1$ the TRT evolution equation can also be written

$$f_q(\vec{r}, t + \delta t) = [-\delta \lambda f_{\bar{q}} + e_q + \delta \lambda e_{\bar{q}}](\vec{r} - \vec{c}_q \delta x, t),$$

イロト イポト イヨト イヨト

E DQC

FD co-BGK co-BGK stabilit

Co-BGK LBE. Evolution equation for $\lambda^* = 1$.

For $\lambda^* = 1$ the TRT evolution equation can also be written

$$f_q(\vec{r},t+\delta t) = [-\delta\lambda f_{\bar{q}} + e_q + \delta\lambda e_{\bar{q}}](\vec{r} - \vec{c}_q \delta x, t),$$

or

$$f_{\bar{q}}(\vec{r}-\vec{c}_{q}\delta x,t) = [-\delta\lambda f_{q}+e_{\bar{q}}+\delta\lambda e_{q}](\vec{r},t-\delta t),$$

イロト 不得 とくほ とくほ とう

E DQC

FD co-BGK co-BGK stabilit

Co-BGK LBE. Evolution equation for $\lambda^* = 1$.

For $\lambda^* = 1$ the TRT evolution equation can also be written

$$f_q(\vec{r}, t + \delta t) = [-\delta \lambda f_{\bar{q}} + e_q + \delta \lambda e_{\bar{q}}](\vec{r} - \vec{c}_q \delta x, t),$$

or

$$f_{\bar{q}}(\vec{r}-\vec{c}_q\delta x,t) = [-\delta\lambda f_q + e_{\bar{q}} + \delta\lambda e_q](\vec{r},t-\delta t),$$

then

$$\begin{aligned} f_q(\vec{r}, t + \delta t) &= [\boldsymbol{e}_q + \delta \lambda \, \boldsymbol{e}_{\bar{q}}](\vec{r} - \vec{c}_q \delta x, t) \\ &- \delta \lambda \, [-\delta \lambda \, f_q + \boldsymbol{e}_{\bar{q}} + \delta \lambda \, \boldsymbol{e}_q](\vec{r}, t - \delta t), \end{aligned}$$

イロト 不得 とくほと くほとう

E DQC

FD co-BGK co-BGK stability

Co-BGK LBE. Evolution equation for $\lambda^* = 1$.

Summing over q the equation

$$\begin{aligned} f_q(\vec{r}, t + \delta t) &= [\boldsymbol{e}_q + \delta \lambda \, \boldsymbol{e}_{\bar{q}}](\vec{r} - \vec{c}_q \delta x, t) \\ &- \delta \lambda \, [-\delta \lambda \, f_q + \boldsymbol{e}_{\bar{q}} + \delta \lambda \, \boldsymbol{e}_q](\vec{r}, t - \delta t), \end{aligned}$$

gives

$$\begin{split} \rho(\vec{r}, t + \delta t) &= \sum_{q} [\boldsymbol{e}_{q} + \delta \lambda \, \boldsymbol{e}_{\bar{q}}](\vec{r} - \vec{c}_{q} \delta \boldsymbol{x}, t) \\ &- \delta \lambda \sum_{q} [-\delta \lambda \, \boldsymbol{f}_{q} + \boldsymbol{e}_{\bar{q}} + \delta \lambda \, \boldsymbol{e}_{q}](\vec{r}, t - \delta t), \end{split}$$

ヘロト 人間 とくほとくほとう

FD co-BGK co-BGK stability

Co-BGK LBE. Evolution equation for $\lambda^* = 1$.

Summing over q the equation

$$\begin{aligned} f_q(\vec{r}, t + \delta t) &= [\boldsymbol{e}_q + \delta \lambda \, \boldsymbol{e}_{\bar{q}}](\vec{r} - \vec{\boldsymbol{c}}_q \delta \boldsymbol{x}, t) \\ &- \delta \lambda \, [-\delta \lambda \, \boldsymbol{f}_q + \boldsymbol{e}_{\bar{q}} + \delta \lambda \, \boldsymbol{e}_q](\vec{r}, t - \delta t), \end{aligned}$$

gives also

$$\rho(\vec{r},t+\delta t) = -\delta\lambda\,\rho(\vec{r},t-\delta t) + \sum_{q} [e_{q}+\delta\lambda\,e_{\bar{q}}](\vec{r}-\vec{c}_{q}\delta x,t),$$

ヘロト 人間 とくほとくほとう

FD co-BGK co-BGK stabilit

Co-BGK LBE. Evolution equation for $\lambda^* = 1$.

Summing over q the equation

$$\begin{aligned} f_q(\vec{r}, t + \delta t) &= [\boldsymbol{e}_q + \delta \lambda \, \boldsymbol{e}_{\bar{q}}](\vec{r} - \vec{\boldsymbol{c}}_q \delta \boldsymbol{x}, t) \\ &- \delta \lambda \, [-\delta \lambda \, \boldsymbol{f}_q + \boldsymbol{e}_{\bar{q}} + \delta \lambda \, \boldsymbol{e}_q](\vec{r}, t - \delta t), \end{aligned}$$

gives also

$$\rho(\vec{r},t+\delta t) = -\delta\lambda \rho(\vec{r},t-dt) \\ + \sum_{q} [(1+\delta\lambda)e_{q}^{+} + (1-\delta\lambda)e_{q}^{-}](\vec{r}-\vec{c}_{q}\delta x,t),$$

ヘロト 人間 とくほとくほとう

FD co-BGK co-BGK stability

Co-BGK LBE. Evolution equation for $\lambda^* = 1$.

Summing over q the equation

$$\begin{aligned} f_q(\vec{r}, t + \delta t) &= [\boldsymbol{e}_q + \delta \lambda \, \boldsymbol{e}_{\bar{q}}](\vec{r} - \vec{c}_q \delta x, t) \\ &- \delta \lambda \, [-\delta \lambda \, f_q + \boldsymbol{e}_{\bar{q}} + \delta \lambda \, \boldsymbol{e}_q](\vec{r}, t - \delta t), \end{aligned}$$

gives finally a du Fort-Frankel scheme ((1 + $\delta\lambda$)/(1 - $\delta\lambda$) = 2 Λ^{-})

$$\frac{1}{2}(\rho(\vec{r},t+\delta t)-\rho(\vec{r},t-\delta t))-\sum_{q}e_{q}^{-}(\vec{r}-\vec{c}_{q}\delta x,t)=\\ 2\Lambda^{-}\sum_{q}(e_{q}^{+}(\vec{r}-\vec{c}_{q}\delta x,t)-\frac{1}{2}(e_{q}^{+}(\vec{r},t+\delta t)+e_{q}^{+}(\vec{r},t-\delta t))),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

FD co-BGK co-BGK stability

Co-BGK LBE. Stability condition for $\lambda^* = 1$.

The growth rate Ω is solution of

$$\Omega^{2} - ((1 + \delta \lambda) \mathbf{A} + i(1 - \delta \lambda) \mathbf{B}) \Omega + \delta \lambda = \mathbf{0},$$

with

$$A = \sum_q E_q^+ \cos(k_q), \qquad B = \sum_q E_q^- \sin(k_q).$$

It can be shown that for any value of $\delta \lambda \in [-1, 1], |\Omega| \le 1$ iff $A^2 + B^2 \le 1$ as for BGK and $\tau = 1$.

イロト イポト イヨト イヨト 一臣

Permeability

Permeability of a porous medium.¹

Introduction

BGK model for relaxation time equal to 1.

co-BGK

Steady Recurrence Equations.

Summary

Permeability

Permeability of a porous medium. Table.

		50^3 , $\phi \approx 0.973$	
ν	$\lambda_{ u}$	k _{xx}	
1/6	1	42.249358	
		$k^{ m rel}$	
		$\Lambda^{2} = 1/4$	BGK
		(10^{-12})	
1/24	8/5	0.1	-0.094
1/6	1	0	0.021
1/2	1/2	1.1	0.356
7/6	1/4	-0.3	1.123
5/2	1/8	0.3	2.946

ヘロト 人間 とくほとくほとう

Introduction

BGK model for relaxation time equal to 1.

co-BGI

Permeability

Steady Recurrence Equations.

Summary

Steady Recurrence Equations Populations.

$$\begin{split} f_q(\vec{r},t) &= [e_q^+ + e_q^- - (\frac{1}{2} + \Lambda^+)g_q^+ - (\frac{1}{2} + \Lambda^-)g_q^-](\vec{r},t), \\ f_q^*(\vec{r},t) &= [e_q^+ + e_q^- + (\frac{1}{2} - \Lambda^+)g_q^+ + (\frac{1}{2} - \Lambda^-)g_q^-](\vec{r},t) \\ \Lambda^+ &= (\frac{1}{\lambda^+} - \frac{1}{2}) > 0, \ \Lambda^- = (\frac{1}{\lambda^-} - \frac{1}{2}) > 0, \ \forall \ q \ . \end{split}$$

ヘロト 人間 とくほとくほとう

Permeability

Steady Recurrence Equations Recurrence equations.

With the help of the following link-wise finite-difference operators,

$$\begin{split} \bar{\Delta}_q \phi(\vec{r}) &= \frac{1}{2} (\phi(\vec{r} + \vec{c}_q \delta x) - \phi(\vec{r} - \vec{c}_q \delta x)), \\ \Delta_q^2 \phi(\vec{r}) &= \phi(\vec{r} + \vec{c}_q \delta x) - 2\phi(\vec{r}) + \phi(\vec{r} - \vec{c}_q \delta x), \end{split}$$

and $\Lambda_q^{\mp} = \Lambda^+ \Lambda^-$, the steady evolution equation gives

$$egin{array}{rcl} g_q^\pm(ec r) &=& [ar\Delta_q e_q^\mp - \Lambda_q^\mp \Delta_q^2 e_q^\pm + (\Lambda^2 - rac{1}{4}) \Delta_q^2 g_q^\pm](ec r), \ 0 &=& [\Delta_q^2 e_q^\pm - \Lambda_q^\pm \Delta_q^2 g_q^\pm - ar\Delta_q g_q^\mp](ec r). \end{array}$$

イロト イポト イヨト イヨト

Introduction

BGK model for relaxation time equal to 1.

Permeability

Steady Recurrence Equations.

co-BGK. Equations. Summary

Steady Recurrence Equations Populations.

$$\begin{aligned} (\Lambda^+ g_q^+)(\vec{r}) &= [\bar{\Delta}_q (\Lambda^+ e_q^-) - \Lambda^2 \Delta_q^2 e_q^+ + (\Lambda^2 - \frac{1}{4}) \Delta_q^2 (\Lambda^+ g_q^+)](\vec{r}), \\ g_q^-(\vec{r}) &= [\bar{\Delta}_q e_q^+ - \Delta_q^2 (\Lambda^+ e_q^-) + (\Lambda^2 - \frac{1}{4}) \Delta_q^2 g_q^-](\vec{r}), \\ 0 &= [\Delta_q^2 e_q^+ - \Delta_q^2 (\Lambda^+ g_q^+) - \bar{\Delta}_q g_q^-](\vec{r}), \\ 0 &= [\Delta_q^2 (\Lambda^+ e_q^-) - \Lambda^2 g_q^- - \bar{\Delta}_q (\Lambda^+ g_q^+)](\vec{r}). \end{aligned}$$

Bounce-back rule, $f_{\bar{q}} = f_q^*$, gives $\Lambda^2 g_q^- = (\Lambda^+ e_q^-) + (\Lambda^+ g_q^+)/2$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Some LBEs are finite-difference schemes.

- The known results for convergence, stability, consistency apply for this class of LBE.
- For suitable boundary conditions, the steady state of TRT models is controlled by the product Λ⁺Λ⁻.

Outlook

- Have we found all the LBEs being FD schemes?
- If it exists a class of LBE not being a FD scheme, does it change the LBE properties?

イロト イヨト イヨト イ

- Some LBEs are finite-difference schemes.
- The known results for convergence, stability, consistency apply for this class of LBE.
- For suitable boundary conditions, the steady state of TRT models is controlled by the product Λ⁺Λ⁻.

Outlook

- Have we found all the LBEs being FD schemes?
- If it exists a class of LBE not being a FD scheme, does it change the LBE properties?

ヘロト ヘアト ヘヨト ヘ

- Some LBEs are finite-difference schemes.
- The known results for convergence, stability, consistency apply for this class of LBE.
- For suitable boundary conditions, the steady state of TRT models is controlled by the product Λ⁺Λ⁻.

Outlook

- Have we found all the LBEs being FD schemes?
- If it exists a class of LBE not being a FD scheme, does it change the LBE properties?

ヘロト ヘアト ヘヨト ヘ

.≣⇒

- Some LBEs are finite-difference schemes.
- The known results for convergence, stability, consistency apply for this class of LBE.
- For suitable boundary conditions, the steady state of TRT models is controlled by the product Λ⁺Λ⁻.

Outlook

- Have we found all the LBEs being FD schemes?
- If it exists a class of LBE not being a FD scheme, does it change the LBE properties?

ヘロト ヘアト ヘヨト

- Some LBEs are finite-difference schemes.
- The known results for convergence, stability, consistency apply for this class of LBE.
- For suitable boundary conditions, the steady state of TRT models is controlled by the product Λ⁺Λ⁻.
- Outlook
 - Have we found all the LBEs being FD schemes?
 - If it exists a class of LBE not being a FD scheme, does it change the LBE properties?

< ロ > < 同 > < 三 >

- Some LBEs are finite-difference schemes.
- The known results for convergence, stability, consistency apply for this class of LBE.
- For suitable boundary conditions, the steady state of TRT models is controlled by the product Λ⁺Λ⁻.
- Outlook
 - Have we found all the LBEs being FD schemes?
 - If it exists a class of LBE not being a FD scheme, does it change the LBE properties?

< ロ > < 同 > < 三 >