Turbulence and Micromixing Lattice Boltzmann Method,

L. Djenidi

Discipline of Mechanical Engineering School of Engineering University of Newcastle Australia Lattice Boltzmann Method, Turbulence and Micromixing

Contents:

- Introduction and Motivation
- The Lattice Boltzmann Method
- Application: Turbulence and Micromixing
- Conclusions

Introduction an Motivation

Lattice Boltzmann Method (LBM)

An alternative to classic CFD method (?)

Big progress made over the last decade

Becomes popular (?)

<u>Advantages</u>

Ease of boundary condition implementation

Well adapted for parallel computations

No Poisson equation for the pressure

The lattice Boltzmann Method

Boltzmann's (BGK) equation

$$\frac{df}{dt} + \vec{e} \cdot \nabla_r f + \vec{a} \cdot \nabla_e f = -\frac{f - f^{eq}}{\tau}$$

If we assume: $\nabla_e f \approx \nabla_e f^{eq}$

$$\frac{df}{dt} + \vec{e} \cdot \nabla_r f = -\frac{f - f^{eq}}{\tau} + \frac{\vec{a} \cdot (\vec{e} - \vec{u})}{RT} f^{eq}$$

Lattice Boltzmann equation for D3Q19 (no external force) The lattice Boltzmann Method

Applications of LBM

Treatment of the boundary conditions

No slip condition at the wall

Outlet: Convective boundary condition or zero gradient

Ч

$$\frac{\partial \mathbf{u}}{\partial t} + U_{mean} \frac{\partial \mathbf{u}}{\partial x} = 0 \quad \text{or} \quad \frac{\partial \mathbf{u}}{\partial x} = 0$$

Inlet: Uniform velocity U₀

Lateral sides: Periodic conditions

Applications of LBM

Turbulent flows

3D Transition in a cylinder wake

Cross-bar wake

Grid turbulence

3D box turbulence

Urban Flows

<u>Microfluidics</u>

Micromixer

Passive mixer

Active mixer

Lattice Boltzmann simulation of transitional cylinder wake

Results – 3D transitional wake (Continued) **DNS**, $\omega_x = +/- 0.25$, $\omega_z = +/- 0.25$ Persillon and Braza, JFM, 1998, **365**,23-88 $\omega_{\rm z}/_{\Omega_{\rm z}\,{}_{max}}{=}{+/\text{-}}\,0.1$ × N ← $\omega_{x}/_{\omega_{x\,max}} = +/\text{-} 0.1$ Q N ← *(a)*

Vorticity iso-contours

Results - 3D transitional wake (Continued)

Vorticity iso-contours

Williamson, Ann. Rev. Fluid Mech. 1996, 28,477-539

 $\omega/_{\Theta_{max}}=0.07$

Velocity spectra at x/D = 2.5, y/D = 0

Velocity spectra, DNS, x/D = 1.80, y/D = 0

Results - 3D transitional wake (Continued)

 $\omega_x/\omega_{x,max}$ = +/- 0.1

FTC, 1999, **63**,315-341 DNS, Braza,

Lattice Boltzmann simulation of a crossbar wake

Crossbar and Computational domain

Results - Crossbar wake

Comparison between LBM and LDV

U, u', and w' along the centerline, Symb.: LVD, lines: LBM

Results - Crossbar wake(Continued)

Comparison between LBM and LDV

u'and w' along the centerline, Symb.: LVD, lines :LBM

Results - Crossbar wake (Continued)

Comparison between LBM and PIV

LBM

PI<

Velocity field at z = 3D

Velocity field at z = 0.3D

Results - Crossbar wake (Continued)

Instantaneous contour of ω / ω_{max} = 0.3. Left: front view, right: back view.

Iso-surfaces of ω^2 behind the grid.

FIGURE 8. Decay of the turbulent kinetic energy (solid line) and its components (- -, u^{12} ; ..., v^{12} ; ..., w^{2} ; ..., w^{2}) downstream of the grid. Symbols: experiments (Lavoie *et al.* 2005), \times, u^{12} ; O, v^{12} .

I

FIGURE 17. Longitudinal one dimensional spectra $E_{11}(k)$ in Kolmogorov units at $x/M = 20 (\cdots)$ and $60 (-\cdots)$. —, experiment of Lavoie *et al.* (2005), symbols: experiment of Comte-Bellot & Corrsin (1971).

Lattice Boltzmann simulation of urban flows

North-East side of Newcastle

Passive micromixer (coaxial)

Passive micromixer (coaxial)

Control by Pulsed jet

Active micromixer (channel flow with pulsed jets)

One pulsed jet

Active micromixer (channel flow with pulsed jets)

Two pulsed jets

Conclusions

The presented LBM simulation showed:

1 - LBM is a reliable alternative DNS method to the classical procedure based on the resolution of NS-equations. (at least for incompressible flows)

2 - LBM can be used for research and development.

BUT!

Need to convince more researchers (e.g. turbulence community) to use LBM (How?)