Application of Lattice Boltzmann Method in automotive industry

Denis Ricot *Research, Advanced Eng. and Materials Dpt.*

with contributions of : Hervé IIIy, Jean-Luc Adam, *DREAM* Olivier Bailly, Sylvain Parpais, *DPC*

RENAUIT

Introduction

- In automotive industry : commercial codes « only »
- Only one commercial LB code : PowerFLOW (EXA Corp.)
- EXA Corp. created in 1991 by K. Molvig (MIT) and his PhD student (C. Teixeira)
- First commercial version of PowerFLOW around 1997, with support of Ford
- First use at Renault in 1998 for aerodynamics and aeroacoustics benchmarks (comparisons with other commercial CFD codes)
- Today, at Renault
 - Aerodynamics simulation (drag prediction)
 - External and internal aeroacoustics
 - Thermal management (since ~2006)
- Great success in ground transport industry
 - Automotive : Ford, BMW, Audi, Toyota, Nissan, Hyundai, PSA, Volkswagen...
 - Heavy/commercial vehicles : Scania, Volvo Trucks, MAN,...
 - Rail transport industry : Alstom, SNCF, ...

Presentation outline

Specific models in PowerFLOW

- Multiscale mesh
- Immersed boundary model
- Turbulence model
- Numerical stability management

Aerodynamic applications

- Validation on simplified car
- Megane CC without underhood flow
- Scenic with underhood flow

Aeroacoustic applications : direct noise calculations

- Theoretical results
- Noise generated by ventilation outlets
- Noise radiated by a fence-cube academic configuration

Successive LB models in PowerFLOW

First version of PowerFLOW (...2002) : D4Q54 (thermal model)

 \rightarrow 16-bits (integer) variables

→ MRT-like model (variable Prandtl number)

Chen, H. & al., Int. J. Modern Phys. C, 1997

US Patent 5848269, Chen, Hill, Hoch, Molvig, Teixiera, Traub, 1995

Second version of PowerFLOW (2002...2006) : D4Q34 (thermal model)

Fan, H. & al., Phys. Rev. E, 2006

Last version of PowerFLOW (2006...) : D3Q19 (SRT-BGK model)

Li, Y. & al., JFM, 2004

 \rightarrow single precision floating point variables (32 bits)

 \rightarrow convection/diffusion thermal equation solved with Lax-Wendroff FD scheme + Boussinesq approximation

Galilean invariant. In the three-dimensional situation, one of the common choices is the D3Q19 model (Qian et al. 1992; Chen et al. 1997) shown in figure 1 with:

Multiscale mesh

Continuity of speed of sound : $\Delta x_1 = 2\Delta x_2$ $\Delta t_1 = 2\Delta t_2$ Continuity of viscosity : $\tilde{\tau}_2 = \frac{1}{2} + n \left(\tilde{\tau}_1 - \frac{1}{2}\right)$

Lattice Boltzmann scheme; Methods and Applications, CEMAGREF

DREAM/DTAA

05 december 2008

5

Multiscale mesh : volumetric formulation

$$N_{\alpha}^{c}(\bullet) = g_{\alpha}(\bullet) \cdot V^{c}$$

- Fine → Coarse : coalesce the eight fine volumetric distribution functions
- Coarse → Fine : explode the coarse volumetric distribution function
- No rescaling of distribution functions
- No time-interpolation

Chen, H. & al. 2005, *"Grid refinement in Lattice Boltzmann methods based on volumetric formulation"*, Physica A, 362 (1), 2006

Immersed boundary model for complex geometry meshing

RENAULT

7

Boundary condition on complex geometry (volumetric fomulation)

- Chen, H. & al., Int. J. Modern Phys. C, 1997
- WO Patent 97/21195, Chen, Hill, Hoch, Molvig, Teixeira, Traub, 1997
- Outward distribution function flux for surface element i

$$\Gamma_{i}^{\alpha,out}(t) = \sum_{\widetilde{x}_{k}=0} V_{i}^{\alpha}(\widetilde{x}_{k}) g_{\alpha}(\widetilde{x}_{k},t)$$

No-slip boundary condition

 $\Gamma_i^{\alpha,in}(t) = \Gamma_i^{-\alpha,out}(t)$

Wall boundary condition with a prescribed friction force (turbulence wall model)

$$\Gamma_{i}^{\alpha,in}(t) = -\Gamma_{i}^{-\alpha,out}(t) - \frac{1}{2\theta}C'_{f}u_{i}^{i}V_{i}^{\alpha}(\vec{c}_{\alpha}\cdot\vec{n}_{i})(g_{\alpha}^{eq,i}(t) - g_{-\alpha}^{eq,i}(t)) + \dots$$
Friction force : $F_{t}^{i}(t) = -C'_{f}\rho u_{t}^{i^{2}}/2$
 u_{t}^{i} tangential velocity in the first cell above the surface element *i*
 C'_{f} local friction coefficient

Turbulence modeling in PowerFLOW

- Standard approach : $\tau \rightarrow \tau_{mol} + \tau_{turb}$
- Calculation of τ_{turb} using a $k \varepsilon$ model :

$$\begin{cases} \rho \frac{\partial k}{\partial t} + \rho \overline{u}_i \frac{\partial k}{\partial x_i} = \frac{\partial}{\partial x_i} \left[\left(\frac{\mu}{\sigma_k} + \frac{\mu_T}{\sigma_{kT}} \right) \frac{\partial k}{\partial x_i} \right] + \tau_{ij}^r S_{ij} - \rho \varepsilon & \left(\tau_{ij}^r = \overline{\rho u_i' u_j'} = 2\mu_T S_{ij} - \frac{2}{3} \rho k \delta_{ij} \right) \\ \rho \frac{\partial \varepsilon}{\partial t} + \rho \overline{u}_i \frac{\partial \varepsilon}{\partial x_i} = \frac{\partial}{\partial x_i} \left[\left(\frac{\mu}{\sigma_\varepsilon} + \frac{\mu_T}{\sigma_{\varepsilon T}} \right) \frac{\partial \varepsilon}{\partial x_i} \right] + C_{\varepsilon 1} \frac{\varepsilon}{k} \tau_{ij}^r S_{ij} - \left[C_{\varepsilon 2} + C_{\mu} \frac{\widetilde{\eta}^3 (1 - \widetilde{\eta} / \eta_0)}{1 + \beta \widetilde{\eta}^3} \right] \rho \frac{\varepsilon^2}{k} \\ C_{\mu} = 0.085, \quad C_{\varepsilon 1} = 1.42, \quad C_{\varepsilon 2} = 1.68, \quad \sigma_k = \sigma_{\varepsilon T} = \sigma_{\varepsilon T} = 0.719, \quad \eta_0 = 4.38, \quad \beta = 0.012 \\ \widetilde{\eta} = A \frac{k}{\varepsilon} |S| + B \frac{k}{\varepsilon} |\Omega| + C \frac{k}{\varepsilon} \frac{|\vec{u} \cdot \widetilde{\Omega}|}{|\vec{u}|} + \dots \end{cases}$$

Modified (Yakhot & Orszag, not published) $k - \varepsilon$ RNG model (Yakhot & Orszag, 1986)

• « Swirl modification » : $v_T = C_{\mu} \frac{k^2}{\varepsilon} \frac{1}{1+\tilde{\eta}}$

Lattice Boltzmann scheme; Methods and Applications, CEMAGREF

9

Discretization of $k - \varepsilon$ equations

- Lax-Wendroff finite difference scheme on the same mesh
- Explicit time-marching scheme
- Small floor cut-off values and large ceilling values of k and \mathcal{E} to insure realizability of the turbulence quantities (for numerical stability)
- Near the wall : empirical boundary condition

$$k^{+} = \frac{k}{u_{*}^{2}} = \frac{1}{\sqrt{C_{\mu}}} - e^{-0.1y^{+}} \left(\frac{1}{\sqrt{C_{\mu}}} + 0.29y^{+} \right)$$
$$\varepsilon^{+} = \frac{\varepsilon v}{u_{*}^{4}} = 0.04y^{+} - 0.0033y^{+2} + \frac{1.04y^{+3}}{10^{4}} - \frac{1.04y^{+4}}{10^{6}}$$

Pervaiz, M.M. & Teixeira, C.M., « Two equation turbulence modeling with the lattice Boltzmann method », 2nd Int. Symposium on Comput. Tech. For Fluid/Thermal/Chemical Systems with Industrial Applications. ASME PVP Division Conference, August 1-5 1999, Boston, MA.

Turbulence wall model

1. Extrapolation of the tangential fluid velocity u_t from the inner domain variables

2. Calculation of u_* with a modified log-law

$$\frac{u_t}{u_*} = \frac{1}{\kappa} \ln\left(\frac{y^+}{\xi}\right) + B \qquad \qquad \xi = 1 + g\left(L_{char}, \frac{\partial p}{\partial x_t}\right) \quad \xi > 1 \text{ if } \frac{\partial p}{\partial x_t} > 0$$

$$B = 5.0 \quad \kappa = 0.41 \qquad \qquad \text{(adverse pressure gradient effect)}$$

3. Definition of a local friction coefficient and friction force

$$C'_{f} = \frac{\rho u_{*}^{2}}{\rho u_{t}^{2}/2}$$
 $F_{i} = -C'_{f} \rho \frac{u_{t}^{2}}{2}$

4. Inject the incoming particle flux in order to obtain the friction force on each surface element i

$$\Gamma_i^{\alpha,in}(t) = f(C_f' u_t)$$

Numerical stability management

« Base viscosity » approach

Imposed minimum value of the non-dimensional relaxation time

- The base viscosity depends on the local mesh size Δx
- In high turbulent viscosity region

 $V_{eff} \approx V_T > V_{base}$

But in low turbulent viscosity region (near wall separation for example)

 $v + v_T < v_{base}$ $v_{eff} = v_{base}$ unphysical high level of viscosity

12

Numerical stability management

Sunroof buffeting simulation (D. Ricot, ECL, 2002)

Standard base viscosity $v_{eff} = v_{base} >> v + v_T$ near flow separation

"Manually" reduced base viscosity

$$\nu_{eff} = \nu + \nu_T > \nu_{base}$$

13

Presentation outline

- Specific models in PowerFLOW
 - Multiscale mesh
 - Immersed boundary model
 - Turbulence model
 - Numerical stability management

Aerodynamic applications

- Validation on simplified car
- Megane CC without underhood flow
- Scenic with underhood flow
- Aeroacoustic applications : direct noise calculations
 - Theoretical results
 - Noise generated by ventilation outlets
 - Noise radiated by a fence-cube academic configuration

Aerodynamic drag simulation

Objectives

- Drag and lift coefficient calculation \rightarrow design choice to minimize CO₂ emission
- Shape and detail optimizations

"3D" wake (strong longitudinal vortices)
→ High drag

"2D" wake
→ Low drag

S. Parpais, Renault R&D mag., 2003

Validation of aerodynamic drag simulation

Total pressure loss 10 mm downstream the simplified car

Lattice Boltzmann scheme; Methods and Applications, CEMAGREF

Validation of aerodynamic drag simulation

Validation on Megane CC

- No underhood flow
- Fully detailed underbody

PowerFLOW

Measurements

Normalized (Ux / U0) longitudinal mean velocity in the symetry plane

Validation of aerodynamic drag simulation

Validation on Megane CC

Drag and lift coefficients are well recovered within few percents

Total pressure loss in the Megane CC wake

Underhood flow

- Heat exhanger are modeled with equivalent porous media
- Fan model
 - Fixed fan .
 - Rotating fan using Multiple Reference Frame approach

Experimental validation based on PIV measurements

19

RENAUL

Validation of aerodynamic drag simulation with underhood

Validation on Scenic

- Fully detailed underbody
- Underhood flow

Validation of aerodynamic drag simulation with underhood flow

Total pressure loss in the Scenic wake

Presentation outline

- Specific models in PowerFLOW
 - Multiscale mesh
 - Immersed boundary model
 - Turbulence model
 - Numerical stability management
- Aerodynamic applications
 - Validation on simplified car
 - Megane CC without underhood flow
 - Scenic with underhood flow

Aeroacoustic applications : direct noise calculations

- Theoretical results
- Noise generated by ventilation outlets
- Noise radiated by a fence-cube academic configuration

Aeroacoustic simulations

External aeroacoustics

 Both aerodynamic (incompressible) and acoustic (compressible) pressure fluctuations contribute to interior wind noise

Internal aeroacoustics

- Source and propagation in duct (HVAC)
- Aerodynamic noise generated by flow through ventilation outlets

Acoustic propagation with LBM : theoretical study

- Von Neumann analysis of the LB models
- Comparison with optimized finite difference Navier-Stokes schemes (DRP : Dispersion Preserving Relation)
 - Lower numerical dissipation than all aeroacoustic-optimized schemes
 - Lower dispersion error than FD of order 2 in space and 3 in time (Runge-Kutta)
 - Higher dispersion error than FD of order 3 in space and 4 in time (Runge-Kutta)
 - ... but much lower computational effort in term of number of floating point operations + compact scheme

Example of direct noise calculation with LBM

- In-house D2Q9 model
- Non-reflecting boundary conditions
- Selective viscosity filter

Direct noise computation of a flow over cavity

Ricot D., Maillard V., Bailly C., AIAA paper 2002-2532

Mach = 0.25 $Re_{L} = 8 \cdot 10^{3}$ $St = fL/U_{0} = 0.89$ (Rossiter mode 2)

In agreement with other CAA simulations performed with optimized finite difference Navier-Stokes codes (Gloerfelt, 2001, Rowley, 2002)

Acoustic impedance of outlets, without mean flow

Noise generated by HVAC vents

DREAM/DTAA

Fence-cube configuration (MIMOSA Project)

Measurements in the aeroacoustic wind tunnel of LMFA using a microphone array

28

PowerFLOW

- U₀= 50 m/s
- dx_mini = 1 mm
- 50 millions of cells

(H. Illy et al., DLES 2008)

Snapshot of the Ux velocity in the symmetry plane

Lattice Boltzmann scheme; Methods and Applications, CEMAGREF

DREAM/DTAA

Fence-cube configuration (MIMOSA Project)

Snapshot of the pressure field (101328 < P < 101334 Pa)

Lattice Boltzmann scheme; Methods and Applications, CEMAGREF

29

Concluding remarks

Other application fields

- Thermal management (underhood) : two-way coupling between PowerFLOW (forced and natural convection) and RadTherm (solid conduction, radiation)
- External aeroacoustics : simulation of wall pressure fluctuations (excitation of lateral windows and windshield by aerodynamic and acoustic pressure field)
- Sunroof buffeting, effect of wind deflectors

Too dissipative turbulence model

- Frequency limitation for wall pressure fluctuation simulation
- Better approach ? : sub-grid model based on LES theory (Dong et al., Phys. Fluid 2008)

Numerical stabilization management with numerical viscosity

- Unphysical effective viscosity in some regions
- Better approaches ? : selective viscosity filter (*Ricot et al., ICMMES 2007*), MRT models, regularization method...

Single precision variable

- too high background noise in high frequency
- ... totally closed code
- In licence cost

