Euler-characteristic boundary conditions for lattice Boltzmann methods

Salvador Izquierdo, Norberto Fueyo

Salvador.Izquierdo@unizar.es

Fluid Mechanics Group (University of Zaragoza - Spain)

CEMAGREF - Antony (France) December 2008

2 Euler-characteristic boundary conditions for LB

Fluid Mechanics Group (UZ)

イロト イロト イヨト イ

Table of contents

1 Introduction

Euler-characteristic boundary conditions for LB

Motivation: open boundaries

- Open boundary conditions (constant pressure, far-field environment)
- Non-reflecting open boundaries

・ロン ・回 と ・ ヨン・

Motivation: examples

Microcantilever

- **Microcantilever**: fluid-structure interaction where small pressure perturbations modify the behavior.
- Industrial boiler: flames generate pressure waves which have influence on the combustion.

Review of solutions

- Zero-gradient boundary conditions at outlet (Incompressible!?)
 - [Yu et al. (2005)]
 - [Yang's Thesis (2007)]
- Non-reflecting boundary conditions (thermodynamical consistency?)
 - Absorbing layers [Ricot et al. (2008), Tekitek et al. (2008), da Silva (2007)]
 - Characteristic BC [Kam et al. (2007), Dehee (2008)] (without details of the implementation)

<ロト </p>

Table of contents

2 Euler-characteristic boundary conditions for LB

イロト イロト イヨト イ

Lattice Boltzmann method

LBM with **MRT** collision operator

$$\mathbf{f}(x_i + \mathbf{e}_i \delta t, t + \delta t) - \mathbf{f}(x_i, t) = -\mathbf{M}^{-1} \mathbf{S}[\mathbf{m}(x_i, t) - \mathbf{m}^{eq}(x_i, t)]$$

Transformation matrix D2Q9

/	ρ	$\mathbf{\lambda}$		1	1	1	1	1	1	1	1	1	1	\	$\int f_0 $
	ϵ	- 1		1	-4	-1	-1	-1	- 1	2	2	2	2	1	$\int f_1 $
	ε			1	4	-2	-2	-2	-2	1	1	1	1		f_2
	jx			ſ.	0	1	0	-1	0	1	-1	-1	1	1	f_3
	qx		=		0	-2	0	2	0	1	-1	-1	1		f_4
	jų				0	0	1	0	- 1	1	1	-1	-1		f_5
	q_u			1	0	0	-2	0	2	1	1	-1	-1		f_6
1	$\hat{x}x$	- 1		1	0	1	-1	1	- 1	0	0	0	0	1	$\int f_7 I$
1	^{o}xy	/		1	0	0	0	0	0	1	-1	1	-1	/	f_8 /

Relaxation matrix

- MRT: $\mathbf{S} = diag(0, s_e, s_e, 0, s_q, 0, s_q, s_{\nu}, s_{\nu}) \rightarrow \text{related to transport properties}$
- SRT: $\tau = 1/s_{\nu} \rightarrow \text{viscosity}$ (and stability)

• TRT:
$$s_
u = s_e = s_\epsilon$$
 , s_q

イロト イヨト イヨト イヨト

Euler-characteristic boundary conditions for LB

LB boundary conditions: velocity

UBB – velocity bounce-back APPROACH: reflection rule + Dirichlet BC (+ correction) $f_{\bar{\alpha}}(\mathbf{x}_{f}, t+1) = \tilde{f}_{\alpha}(\mathbf{x}_{f}, t) - 2f_{\alpha}^{eq-}(\mathbf{x}_{b}, \hat{t})$

where:

$$f_{\alpha}^{eq-} = \omega_{\alpha} \rho_0 c_s^{-2} (\mathbf{e}_{\alpha} \cdot \mathbf{u})$$

is the anti-symmetric part of the $f^{\,e\,q}_{lpha}$

イロト イヨト イヨト イ

Euler-characteristic boundary conditions for LB

LB boundary conditions: pressure

PAB – pressure anti-bounce-back

APPROACH: reflection rule + Dirichlet BC + correction

$$\begin{split} f_{\tilde{\alpha}}(\mathbf{x}_f, t+1) &= -\tilde{f}_{\alpha}(\mathbf{x}_f, t) \\ &+ 2f_{\alpha}^{eq+}(\mathbf{x}_b, \hat{t}) \\ &+ (2-s_{\nu}) \left(f_{\alpha}^+(\mathbf{x}_f, t) - f_{\alpha}^{eq+}(\mathbf{x}_f, t)\right) \end{split}$$

where:

$$f_{\alpha}^{eq+} = \omega_{\alpha}\rho + \frac{1}{2}\omega_{\alpha}\rho_{0}c_{s}^{-4}\left[(\mathbf{e}_{\alpha}\cdot\mathbf{u})^{2} - c_{s}^{2}(\mathbf{u}\cdot\mathbf{u})\right]$$
$$f_{\alpha}^{+} = \frac{1}{2}\left(f_{\alpha} + f_{\bar{\alpha}}\right)$$

are the symmetric part of $f^{\,eq}_{lpha}$ and f_{lpha}

イロト イヨト イヨト イヨ

LODI – Local One-Dimensional Inviscid equations

Objective

To find the ρ or u_i to set the Dirichlet boundary condition in the open boundary, extracting the pressure-wave reflection component. Based on [Poinsot and Lelle (1992)]

Solving in the boundary the 2D Euler equations in x-direction:

$$\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial u}{\partial x} = 0$$
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} = 0$$
$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} = 0$$
$$\frac{\partial \rho E}{\partial t} + \frac{\partial \left[u(\rho E + p)\right]}{\partial x} = 0$$

Eigenvalues!

イロト イヨト イヨト イヨ

Euler-characteristic boundary conditions for LB

LODI with wave amplitudes

Wave amplitudes: (isothermal! $ightarrow p = c_s^2
ho$)

$$\mathbf{L} = \left\{ egin{array}{c} L_1 \ L_2 \ L_3 \ L_4 \end{array}
ight\} = \left\{ egin{array}{c} (u - c_s) \left(rac{\partial p}{\partial x} -
ho c_s rac{\partial u}{\partial x}
ight) \ u rac{\partial v}{\partial x} \ u \left(c_s^2 rac{\partial p}{\partial x} - rac{\partial p}{\partial x}
ight) \ (u + c_s) \left(rac{\partial p}{\partial x} +
ho c_s rac{\partial u}{\partial x}
ight) \end{array}
ight\}$$

LODI equation using L (without the energy equation):

$$\frac{\partial \rho}{\partial t} + \frac{1}{2c_s^2} \left(L_4 + L_1 \right) + \frac{1}{c_s^2} L_3 = 0$$

$$\frac{\partial u}{\partial t} + \frac{1}{2\rho c_s} \left(L_4 - L_1 \right) = 0$$

$$\frac{\partial v}{\partial t} + L_2 = 0$$

$$L_4(u_x + c_s) \longrightarrow L_4(u_x + c_s)$$

$$L_2(u_s) \longrightarrow L_2(u_s)$$

$$L_1(u_x - c_s) \longrightarrow L_1(u_x - c_s)$$
Inlet Outlet

Euler-characteristic boundary conditions for LB

Equilibrium distribution functions

Modified m_{lpha}^{eq} at the boundary: ($\kappa
ightarrow$ heat capacity ratio)

$$e^{eq} = -2(2 - \kappa)\rho + \rho_0(u^2 + v^2)$$

$$\epsilon^{eq} = \rho + \rho_0(u^2 + v^2)$$

$$q_x^{eq} = -\rho_0 u$$

$$q_y^{eq} = -\rho_0 v$$

$$p_{xx}^{eq} = \rho_0(u^2 - v^2)$$

$$p_{xy}^{eq} = \rho_0 uv$$

In the continuum limit:

• Speed of sound
$$\rightarrow c_s = \sqrt{\kappa RT} = \sqrt{\kappa \frac{R}{L}}$$

• Viscosity
$$\rightarrow \nu = \frac{1}{3} \left(\frac{1}{s_{\nu}} - \frac{1}{2} \right)$$

• Bulk viscosity
$$\rightarrow \zeta = \frac{2-\kappa}{6} \left(\frac{1}{s_e} - \frac{1}{2} \right)$$

メロト メタト メヨト メヨ

Implementation

Approach: UBB or PAB with computed ρ and u_i from LODI

LODI discretization (OUTLET-PAB)

$$\rho(\hat{t}) \approx \rho(\hat{t}-1) - \frac{\delta t}{2c_s^2} \left(L_4(\hat{t}-1) + \frac{L_1(\hat{t}-1)}{2c_s} \right) - \frac{1}{c_s^2} L_3(\hat{t}-1)$$
$$u(\hat{t}) \approx u(\hat{t}-1) - \frac{\delta t}{2\rho c_s} \left(L_4(\hat{t}-1) - \frac{L_1(\hat{t}-1)}{2\rho c_s} \right)$$
$$v(\hat{t}) \approx v(\hat{t}-1) - \delta t L_2(\hat{t}-1)$$

Models for L_{in}

$$L_1(\mathbf{x}_b, \hat{t} - 1) = k_1(p(\mathbf{x}_b, \hat{t} - 1) - p_b)$$

where:

Table of contents

Euler-characteristic boundary conditions for LB

Results I: 1D wave

- (a) equilibrium distribution functions
- (b) inlet: UBB; outlet:PAB
- (c) characteristic boundary conditions (CBC)
- (d) CBC with corrections

イロト イヨト イヨト イ

Results II: reflection ratio

• Evaluate performance of two parameters:

- bulk viscosity in the fluid domain (s_e)
- heat capacity ratio in the boundary (κ)

イロト イヨト イヨト イ

Results III: mass balance

- Laminar channel
- CBC: (i) avoids pressure reflection + (ii) allows mass conservation (well-posedness of BC)

Results IV: unsteady simulation

- Flow around a square cylinder
- UBB-PAB: resonance has effects on the solution
- CBC is the solution

イロン イ部ン イヨン イヨ

Results IV: unsteady simulation

Table of contents

Euler-characteristic boundary conditions for LB

Conclusions

Conclusions

- No previous implementation description of CBC for LB (isothermal)
- Characteristic boundary conditions:
 - Presented for 2D open boundaries with Dirichlet conditions
 - Direct application for: 3D, walls and Neumann conditions
 - Reduction of the interaction up to 99%
- Key points:
 - INSCBC by Poinsot and Lele (1992)
 - Multireflection boundary conditions by Ginzburg et al. (2008)

(日) (同) (三) (3)

Conclusions

Bibliography

- T. Colonius, Annu. Rev. Fluid Mech. 36, 315 (2004)
- T. Poinsot and S. K. Lele, J. Comput. Phys. 101, 104 (1992)
- I. Ginzburg, F. Verhaeghe, and D. d'Humières, *Commun. Comput. Phys.*, 3(2),427478, (2008).
- S. Izquierdo and N. Fueyo, Phys. Rev. E. 78, 046707 (2008)