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The lattice Boltzmann scheme in his actual form has been developed with the contributions of Lallemand,
Succi, d’Humières, Luo [1, 2, 3, 4] and many others. In order to derive the equivalent partial differential
equations, a classical of the Chapman Enskog expansion is popular in the lattive Boltzmann community
(see e.g. [4]). A main drawback of this approach is the fact that multiscale expansions are used without a
clear mathematical signification of the various variables and functions. Independently of this framework,
we have proposed in [5, 6] the Taylor expansion method to obtain formally equivalent partial differential
equations. The infinitesimal variable is simply the time step (proportional to the space step with the
acoustic scaling). This approach has been experimentaly validated in various contributions [7, 8]. A
third order extension for fluid flow has been proposed in [9] and an efficient implementation up to fourth
order accuracy is presented in [10].
In this contribution, we consider a regular lattice L composed by vertices x separated by distances that
are simple expressions of the space step ∆x. A discrete time t is supposed to be an integer multiple of a
time step ∆t > 0. A very general lattice Boltzmann scheme with q discrete velocities of the form

f j(x, t +∆t) = f ∗j (x− v j ∆t, t) ,0 ≤ j < q .

The distribution f ∗ after relaxation is defined with moments m such that

mk = ∑
j

Mk` f j .

The d’Humières matrix [3] M is invertible and we decompose the moments in the following way:

m ≡
(

W
Y

)
.

The conserved variables W are not modified after relaxation: W ∗ = W . The microscopic variables Y
are changed in a nonlinear way by the relaxationprocess:

Y ∗ = Y +S (Φ(W )−Y ) .

The matrix S is invertible, and ofter chosen as diagonal. It is supposed to be fixed in the asymptotic
process presented hereafter. The equilibrium values Y eq = Φ(W ) are given smooth functions of the
conserved variables. When ∗∗ is evaluated, we have simply

f ∗ = M−1 m∗ .

With this general framework, we determine in this contribution an asymptotic system of partial differen-
tial equations for the conserved variables:

∂tW +Γ1(W )+∆t Γ2(W )+∆t2
Γ3(W ) = O(∆t3)
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and an asymptotic expansion for the microscopic variables as a differential nonlinear function of the
conserved variables:

Y = Φ(W )+∆t Φ1(W )+∆t2
Φ2(W )+O(∆t3) .

The coefficients Γ1, Φ1, Γ2, Φ2 and Γ3 of this expansion are recursively determined as a function of the
data v j, M, Φ(W ) and S. We compare our new result with the particular third order expansion proposed
in [9] and the linear approach presented in [10].
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