Une méthode de pénalisation par face pour l'approximation des équations de Navier-Stokes à nombre de Reynolds élevé

Erik Burman

CMCS/IACS Ecole Polytechnique Federale de Lausanne Erik.Burman@epfl.ch

Méthodes Numériques pour les Fluides, Paris 19 Décembre 2005

Introduction

- Ø Brief history
- Stabilized methods by scale separation
- A priori error estimation
- Monitoring artificial diffusion
- O Numerical results
- Onsclusions

State of the art: face penalty methods

The addition of a term penalizing the jump of the gradient over element edges

$$J(u_h, v_h) = \sum_{K} \int_{\partial K \setminus \partial \Omega} \gamma h_{\partial K}^{\alpha} [\nabla u_h \cdot n] [\nabla v_h \cdot n] \, \mathrm{d}s$$

to the standard Galerkin formulation may be used to stabilize

- transport operators
- Stokes like systems
- symmetric Friedrichs systems

Error analysis for linear problems leads to (quasi) optimal apriori error estimates for continuous finite element spaces

$$V_h = \{ v : v \in C^0(\Omega); v |_{\mathcal{K}} \in P_k(\mathcal{K}), \forall \mathcal{K} \in \mathcal{T}_h \}.$$

State of the art: face penalty methods

The addition of a term penalizing the jump of the gradient over element edges

$$J(u_h, v_h) = \sum_{K} \int_{\partial K \setminus \partial \Omega} \gamma h_{\partial K}^{\alpha} [\nabla u_h \cdot n] [\nabla v_h \cdot n] \, \mathrm{d}s$$

to the standard Galerkin formulation may be used to stabilize

- transport operators
- Stokes like systems
- symmetric Friedrichs systems

Theorem (Burman-Fernández-Hansbo (2004))

There exists an interpolation operator π_h^* on V_h^k such that

$$\|h^{\frac{1}{2}}(I-\pi_h^*)\nabla \mathbf{v}_h\|_{0,\Omega}^2 \leq \gamma \sum_{K\in\mathcal{T}_h} \int_{\partial K} h_K^2 [\![\nabla \mathbf{v}_h \cdot n]\!]^2,$$

with $\llbracket v \rrbracket \stackrel{\text{def}}{=} v^+ - v^-$ if $\partial K \subset \Omega$ and $\llbracket v \rrbracket \stackrel{\text{def}}{=} 0$ if $\partial K \subset \partial \Omega$.

- Babuska & Zlamal, biharmonic operator, (1972).
- Douglas & Dupont, second order elliptic and parabolic problems, (1976).
- Burman & Hansbo, convection dominated limit, (2003).
- Burman & Ern, discrete maximum principle, (2004).
- Burman & Fernández & Hansbo, the Oseen's problem, (2004).
- Burman & Ern, *hp*-FEM for transport operators, (2005).
- Burman & Fernández, the incompressible Navier-Stokes equations, semidiscretization in space (2005).

Important related work:

- Guermond, subgrid viscosity, 1999.
- Codina, orthogonal subscale stabilization, 2000.
- Brezzi & Fortin, "A minimal stabilisation procedure", 2001.
- Becker & Braack, local projection stabilization, 2001.

- Knowing the exact solution (\mathbf{u}, p) we could compute the *ideal* projection $(\pi_h \mathbf{u}, \pi_h p) \in [V_h]^d \times V_h$.
- Since the exact solution is unknown we have to do with a *working projection* given by a discrete scheme (typically Galerkin FEM).
- The working projection should be *stable* and *accurate* uniformly in the Reynolds number: *standard Galerkin has to be modified*.
- Assumption:
 - the Bernoulli hypothesis: all fine to coarse interaction is dissipative.
- We choose π_h , (the ideal projection) to be the L^2 -projection.

Stabilized methods based on scale separation, the Euler equations

• Let
$$W = H(\operatorname{div}) \times L_0^2$$
, $U = (\mathbf{u}, p)$, $L(\mathbf{w})U = (\mathbf{w} \cdot \nabla)\mathbf{u} + \nabla p$,
 $\pi^{\perp} = (I - \pi_h^*)$. Assume $\mathbf{f} \in [V_h]^d$. Find $U \in W$ such that

$$(\partial_t \mathbf{u} + L(\mathbf{u})U, \mathbf{v}) + (\nabla \cdot \mathbf{u}, q) = (\mathbf{f}, \mathbf{v}), \, \forall (\mathbf{v}, q) \in W.$$

Stabilized methods based on scale separation, the Euler equations

• Find $U \in W$ such that

$$(\partial_t \mathbf{u} + L(\mathbf{u})U, \mathbf{v}) + (\nabla \cdot \mathbf{u}, q) = (\mathbf{f}, \mathbf{v}), \, \forall (\mathbf{v}, q) \in W.$$

2 Scale separation $U = U_h + \widetilde{U}$, $U_h = \pi_h U$

- $\pi_h U$ is the L^2 -projection of U onto $W_h = [V_h]^d \times V_h$
- \widetilde{U} orthogonal to the finite element space (c.f. Codina).

Stabilized methods based on scale separation, the Euler equations

• Find $U \in W$ such that

$$(\partial_t \mathbf{u} + L(\mathbf{u})U, \mathbf{v}) + (\nabla \cdot \mathbf{u}, q) = (\mathbf{f}, \mathbf{v}), \, \forall (\mathbf{v}, q) \in W.$$

2 Scale separation
$$U = U_h + \widetilde{U}$$
, $U_h = \pi_h U$

③ Inserting $U_h + \widetilde{U}$ yields the formulation

$$\begin{aligned} (\partial_t \mathbf{u}_h + \mathcal{L}(\mathbf{u}_h) \mathcal{U}_h, \mathbf{v}_h) + (\nabla \cdot \mathbf{u}_h, q_h) &= (\mathbf{f}, \mathbf{v}_h) \\ + (\mathcal{T}^{-1}(\pi^{\perp} \mathcal{L}(\mathbf{u}_h) \mathcal{U}_h, \pi^{\perp} \nabla \cdot \mathbf{u}_h), (\pi^{\perp} \mathcal{L}(\mathbf{u}_h) \mathcal{V}_h, \pi^{\perp} \nabla \cdot \mathbf{v}_h)) \\ + ((\mathbf{\tilde{u}} \cdot \nabla) \mathbf{u}, \mathbf{v}_h) \quad \forall \mathcal{V} &= (\mathbf{v}, q) \in \mathcal{W}. \end{aligned}$$

• T^{-1} is the solution operator for the fine scale equation

$$egin{aligned} (\partial_t ilde{\mathbf{u}} + (\mathbf{u} \cdot
abla) ilde{\mathbf{u}} + (ilde{\mathbf{u}} \cdot
abla) \mathbf{u}_h +
abla ilde{p}, ilde{\mathbf{v}}) + (
abla \cdot ilde{\mathbf{u}}, ilde{q}) \ &= (\pi^\perp L(\mathbf{u}_h) U_h, ilde{\mathbf{v}}) + (\pi^\perp
abla \cdot \mathbf{u}_h, ilde{q}). \end{aligned}$$

Simplifications leading to edge oriented stabilization

- **(**) We drop the fine to coarse interaction terms $((\tilde{\mathbf{u}} \cdot \nabla)\mathbf{u}, \mathbf{v}_h)$
- Bernoulli hypothesis: approximate T⁻¹ with a scaled diagonal matrix.
- **③** Stabilized FEM based on the projected residual: Find $U_h \in W_h$ such that

$$\begin{aligned} (\partial_t \mathbf{u}_h + L(\mathbf{u}_h) U_h, \mathbf{v}_h) + (\nabla \cdot \mathbf{u}_h, q_h) &= (\mathbf{f}, \mathbf{v}_h) \\ - (\delta_u \pi^{\perp} L(\mathbf{u}_h) U_h, \pi^{\perp} L(\mathbf{u}_h) V_h)) - (\delta_{div} \pi^{\perp} \nabla \cdot \mathbf{u}_h, \pi^{\perp} \nabla \cdot \mathbf{v}_h)) \\ \forall V_h &= (\mathbf{v}_h, q_h) \in W_h. \end{aligned}$$

Sequivalent dissipation (recall $\pi^{\perp} = (I - \pi_h^*)$):

$$\begin{split} \|\pi^{\perp} L(\mathbf{u}_{h}) U_{h}\|_{K}^{2} &\leq \sum_{e \in \mathcal{E}(K)} \int_{e} \gamma h_{K} [L(\mathbf{u}_{h}) U_{h}]^{2} \, \mathrm{d}s \\ &\leq \sum_{e \in \mathcal{E}(K)} \int_{e} \gamma h_{K} \left\{ [(\mathbf{u}_{h} \cdot \nabla) \mathbf{u}_{h}]^{2} + [\nabla p_{h}]^{2} \right\} \, \, \mathrm{d}s \end{split}$$

Edge Stabilized FE, Navier-Stokes: Space Semi-Discretization

For all $t \in (0, T)$, find $(\mathbf{u}_h(t), p_h(t)) \in [V_h]^d \times V_h$ such that $\begin{cases} (\partial_t \mathbf{u}_h, \mathbf{v}_h) + a(\mathbf{u}_h; \mathbf{u}_h, \mathbf{v}_h) + b(p_h, \mathbf{v}_h) &= (\mathbf{f}, \mathbf{v}_h), \\ -b(q_h, \mathbf{u}_h) &= 0, \\ \mathbf{u}_h(0) = \pi_h \mathbf{u}_0, \end{cases}$

for all $(\mathbf{v}_h, q_h) \in [V_h]^d imes V_h$, with

$$a(\mathbf{u}_h;\mathbf{u}_h,\mathbf{v}_h) \stackrel{\text{def}}{=} (\mathbf{u}_h \cdot \nabla \mathbf{u}_h,\mathbf{v}_h) + (\nu \nabla \mathbf{u}_h,\nabla \mathbf{v}_h) + \frac{1}{2} (\nabla \cdot \mathbf{u}_h,\mathbf{u}_h \cdot \mathbf{v}_h) + \text{bd terms}$$
$$b(p_h,\mathbf{v}_h) \stackrel{\text{def}}{=} -(p_h,\nabla \cdot \mathbf{v}_h) + \text{bd terms}$$

Edge Stabilized FE, Navier-Stokes: Space Semi-Discretization

For all
$$t \in (0, T)$$
, find $(\mathbf{u}_h(t), p_h(t)) \in [V_h]^d \times V_h$ such that

$$\begin{cases}
(\partial_t \mathbf{u}_h, \mathbf{v}_h) + a(\mathbf{u}_h; \mathbf{u}_h, \mathbf{v}_h) + b(p_h, \mathbf{v}_h) + j_{\mathbf{u}_h}(\mathbf{u}_h, \mathbf{v}_h) = (\mathbf{f}, \mathbf{v}_h), \\
-b(q_h, \mathbf{u}_h) + j(p_h, q_h) = 0, \\
\mathbf{u}_h(0) = \pi_h \mathbf{u}_0,
\end{cases}$$

for all $(\mathbf{v}_h, q_h) \in [V_h]^d imes V_h$, with

$$\begin{split} j_{\mathbf{u}_h}(\mathbf{u}_h,\mathbf{v}_h) &\stackrel{\text{def}}{=} \sum_{K\in\mathcal{T}_h} \int_{\partial K} \gamma h_K^2 (1+|\mathbf{u}_h\cdot n|^2) \llbracket \nabla \mathbf{u}_h \rrbracket : \llbracket \nabla \mathbf{v}_h \rrbracket, \\ j(p_h,q_h) &\stackrel{\text{def}}{=} \sum_{K\in\mathcal{T}_h} \int_{\partial K} \gamma h_K^2 \llbracket \nabla p_h \rrbracket \cdot \llbracket \nabla q_h \rrbracket. \end{split}$$

Convergence (selected results)

•
$$\mathbf{J}[\mathbf{u}_h; (\mathbf{u}_h, p_h), (\mathbf{v}_h, q_h)] = j_{\mathbf{u}_h}(\mathbf{u}_h, \mathbf{v}_h) + j(p_h, q_h)$$

• Triple-norm: $\|| (\mathbf{v}_h, q_h) \||_{\mathbf{w}_h}^2 \stackrel{\text{def}}{=} \| \nu^{\frac{1}{2}} \nabla \mathbf{v}_h \|_{0,\Omega}^2 + \mathbf{J} [\mathbf{w}_h; (\mathbf{v}_h, q_h), (\mathbf{v}_h, q_h)].$

Theorem (Velocity convergence, Burman & Fernández, 2005)

The following estimates hold (when $\nu < h$)

$$\begin{aligned} \|\pi_{h}\mathbf{u}-\mathbf{u}_{h}\|_{L^{\infty}((0,T);L^{2}(\Omega))} &\leq h^{\frac{3}{2}}C(\mathbf{u},p)\mathrm{e}^{\boldsymbol{c}(\mathbf{u})}\mathcal{T},\\ \left(\int_{0}^{T}\|\|(\pi_{h}\mathbf{u}-\mathbf{u}_{h},\pi_{h}p-p_{h})\|_{\mathbf{u}_{h}}^{2}\,\mathrm{d}t\right)^{\frac{1}{2}} &\leq h^{\frac{3}{2}}C(\mathbf{u},p,T)\mathrm{e}^{\boldsymbol{c}(\mathbf{u})}\mathcal{T},\\ \int_{0}^{T}\mathbf{J}[\mathbf{u}_{h},(\mathbf{u}_{h},p_{h}),(\mathbf{u}_{h},p_{h})]\,\mathrm{d}t &\leq h^{3}C(\mathbf{u},p)\mathrm{e}^{\boldsymbol{c}(\mathbf{u})}\mathcal{T} \end{aligned}$$

with $c(\mathbf{u})$ depending on $\|\mathbf{u}\|_{L^{\infty}(0,T;W^{1,\infty}(\Omega))}$ and $C(\mathbf{u},p)$ depending on $\|\mathbf{u}\|_{L^{2}(0,T;H^{2}(\Omega))}$, $\|p\|_{L^{2}(0,T;H^{2}(\Omega))}$, $\|\mathbf{u}\|_{L^{\infty}(0,T;W^{1,\infty}(\Omega))}$.

Energy consistency: monitoring artificial dissipation

For the Navier-Stokes equations there holds

$$\|\mathbf{u}(\mathcal{T})\|^2 + \int_0^{\mathcal{T}} \|\nu^{\frac{1}{2}} \nabla \mathbf{u}\|^2 \mathrm{d}t = \|\mathbf{u}(0)\|^2 + (\mathbf{f}, \mathbf{u}).$$

Any reasonable numerical method will satisfy

$$\|\mathbf{u}_h(T)\|^2 + \int_0^T \left\{ \|\nu^{\frac{1}{2}} \nabla \mathbf{u}_h\|^2 + S(\mathbf{u}_h, p_h) \right\} dt = \|\mathbf{u}_h(0)\|^2 + (\mathbf{f}, \mathbf{u}_h).$$

 $S(\mathbf{u}_h, p_h)$ the artificial dissipation added for the method to remain stable.

• Define
$$D = \frac{\int_0^T S(\mathbf{u}_h, p_h) \, \mathrm{d}t}{\int_0^T \|\nu^{\frac{1}{2}} \nabla \mathbf{u}_h\|^2 \, \mathrm{d}t}$$
:

$$\|\mathbf{u}_h(T)\|^2 + (1+D)\int_0^T \|\nu^{\frac{1}{2}}\nabla \mathbf{u}_h\|^2 \mathrm{d}t = \|\mathbf{u}_h(0)\|^2 + (\mathbf{f},\mathbf{u}_h).$$

- The interior penalty operator can be seen as a subgrid viscosity: starting from polynomial order 3 and onward the kernel is a C¹ space with approximation properties.
- **2** Scale separation by polynomial order instead of hierarchic meshes.
- The dissipation ratio D measures the energy consistency and is (related to) an a posteriori error estimator.
- For high Reynolds number flow theory predicts (P1 elements and sufficiently regular solution):

computational error \leq numerical dissipation = stabilization $\leq Ch^3$

Let us now assume $\mathbf{f}=\mathbf{0}$ and consider the projection on mesh \mathcal{T}_h of the exact solution

$$\|\pi_h \mathbf{u}(T)\|^2 + \|(I - \pi_h)\mathbf{u}(T)\|^2 + \int_0^T \|\nu^{\frac{1}{2}} \nabla \mathbf{u}\|^2 \mathrm{d}t = \|\mathbf{u}(0)\|^2,$$

but $(I - \pi_h)\mathbf{u}(T)$ represents the unresolved scales and hence

$$\|(I-\pi_h)\mathbf{u}(T)\|^2 \approx \int_{\xi_h}^{\infty} E(\xi) \,\mathrm{d}\xi$$

(where $E(\xi)$ denotes the energy distribution over the wave numbers)

Let us now assume $\mathbf{f}=\mathbf{0}$ and consider the projection on mesh \mathcal{T}_h of the exact solution

$$\|\pi_h \mathbf{u}(T)\|^2 + \|(I - \pi_h)\mathbf{u}(T)\|^2 + \int_0^T \|\nu^{\frac{1}{2}} \nabla \mathbf{u}\|^2 \mathrm{d}t = \|\mathbf{u}(0)\|^2,$$

but $(I - \pi_h)\mathbf{u}(T)$ represents the unresolved scales and hence

$$\|(I-\pi_h)\mathbf{u}(\mathcal{T})\|^2 \approx \int_{\xi_h}^{\infty} E(\xi) \,\mathrm{d}\xi$$

(where $E(\xi)$ denotes the energy distribution over the wave numbers) leading to

$$\frac{\|\mathbf{u}(0)\|^2 - \|\pi_h \mathbf{u}(T)\|^2}{\int_0^T \|\nu^{\frac{1}{2}} \nabla \mathbf{u}\|^2 \mathrm{d}t} \approx 1 + \frac{\int_{\xi_h}^\infty E(\xi) \, \mathrm{d}\xi}{\int_0^T \|\nu^{\frac{1}{2}} \nabla \mathbf{u}\|^2 \mathrm{d}t}$$

• The continuous case:

$$\frac{\|\mathbf{u}(0)\|^2 - \|\pi_h \mathbf{u}(T)\|^2}{\int_0^T \|\nu^{\frac{1}{2}} \nabla \mathbf{u}\|^2 \mathrm{d}t} \approx 1 + \frac{\int_{\xi_h}^\infty E(\xi) \, \mathrm{d}\xi}{\int_0^T \|\nu^{\frac{1}{2}} \nabla \mathbf{u}\|^2 \mathrm{d}t}$$

The discrete case:

$$\frac{\|\mathbf{u}_{h}(0)\|^{2} - \|\mathbf{u}_{h}(T)\|^{2}}{\int_{0}^{T} \|\nu^{\frac{1}{2}} \nabla \mathbf{u}_{h}\|^{2} \mathrm{d}t} = 1 + D$$

• The continuous case:

$$\frac{\|\mathbf{u}(0)\|^2 - \|\pi_h \mathbf{u}(T)\|^2}{\int_0^T \|\nu^{\frac{1}{2}} \nabla \mathbf{u}\|^2 \mathrm{d}t} \approx 1 + \frac{\int_{\xi_h}^\infty E(\xi) \, \mathrm{d}\xi}{\int_0^T \|\nu^{\frac{1}{2}} \nabla \mathbf{u}\|^2 \mathrm{d}t}$$

• The discrete case:

$$\frac{\|\mathbf{u}_{h}(0)\|^{2} - \|\mathbf{u}_{h}(T)\|^{2}}{\int_{0}^{T} \|\nu^{\frac{1}{2}} \nabla \mathbf{u}_{h}\|^{2} \mathrm{d}t} = 1 + D$$

• We conclude that if $\mathbf{u}_h \approx \pi_h \mathbf{u}$ is to hold then

$$D \approx \frac{\int_{\xi_h}^{\infty} E(\xi) \, \mathrm{d}\xi}{\int_0^T \|\nu^{\frac{1}{2}} \nabla \mathbf{u}\|^2 \mathrm{d}t}$$

• The continuous case:

$$\frac{\|\mathbf{u}(0)\|^2 - \|\pi_h \mathbf{u}(T)\|^2}{\int_0^T \|\nu^{\frac{1}{2}} \nabla \mathbf{u}\|^2 \mathrm{d}t} \approx 1 + \frac{\int_{\xi_h}^\infty E(\xi) \, \mathrm{d}\xi}{\int_0^T \|\nu^{\frac{1}{2}} \nabla \mathbf{u}\|^2 \mathrm{d}t}$$

• The discrete case:

$$\frac{\|\mathbf{u}_{h}(0)\|^{2} - \|\mathbf{u}_{h}(T)\|^{2}}{\int_{0}^{T} \|\nu^{\frac{1}{2}} \nabla \mathbf{u}_{h}\|^{2} \mathrm{d}t} = 1 + D$$

• We conclude that if $\mathbf{u}_h \approx \pi_h \mathbf{u}$ is to hold then

$$D \approx \frac{\int_{\xi_h}^{\infty} E(\xi) \, \mathrm{d}\xi}{\int_0^T \|\nu^{\frac{1}{2}} \nabla \mathbf{u}\|^2 \mathrm{d}t}$$

Remark: for standard Galerkin D = 0 !

- Definition in 2D: $E(\xi) \sim \xi |\hat{\mathbf{u}}(\xi)|^2$
- In 2D there holds for isotropic decaying turbulence: $E(\xi) \sim \xi^{-3}$ (Kraichnan, 1967).
- If $\xi_h \approx h^{-1}$ is in the inertial range where $E(\xi) \approx \xi^{-3}$ then

$$D \approx C \frac{\int_{\xi_h}^{\xi_v} \xi^{-3} \, \mathrm{d}\xi}{\int_0^T \|\nu^{\frac{1}{2}} \nabla \mathbf{u}\|^2 \mathrm{d}t} \approx C \frac{\xi_h^{-2} - \xi_v^{-2}}{\int_0^T \|\nu^{\frac{1}{2}} \nabla \mathbf{u}\|^2 \mathrm{d}t}$$

• Assuming ξ_v^{-2} negligeable we expect

 $D \sim h^2$

Numerical Results: Turek benchmark Re = 100 flow around a cylinder, P1/P1

NoDOFs	dt	$C_{D_{max}}$	$C_{L_{max}}$	St	ΔP	D	$O(h^{lpha})$
8667	0.01	3.2518	1.0438	0.2994	2.4989	0.1031	-
33132	0.005	3.2390	1.0377	0.3016	2.4875	0.0230	2.16
131784	0.0025	3.2308	1.0262	0.3008	2.4697	0.0035	2.72
lower	-	3.22	0.99	0.2950	2.46	-	-
upper	-	3.24	1.01	0.3050	2.50	-	-

Numerical Results: Re = 10000 mixing layer

- Unit square, $\mathbf{u}_{\infty} = 1$, $\sigma = \frac{1}{28}$, $\nu = 3.571 \cdot 10^{-6} \rightarrow \textit{Re}_{\sigma} = 10000$.
- Lesieur et al. proposed this problem as a model case for decaying 2D turbulence.
- They showed numerically that $E(\xi)$ decays between ξ^{-4} and ξ^{-3} for the streamwise velocity component (Fourier transform only in the x-variable).
- we expect: $c_1 h^3 < D < c_2 h^2$ to be consistent with Lesieur and $D \sim h^2$ to be consistent with Kraichnan.

Numerical Results: Re = 10000 mixing layer

P1 el.	D	$O(h^{\alpha_D})$	$J(\mathbf{u}_h, p_h)$	P2 el.	D	$O(h^{\alpha_D})$	$J(\mathbf{u}_h, p_h)$
80	5.6	-	6E-4	40	0.38	-	5E-5
160	1.4	2.0	2E-4	80	0.1098	1.79	1.5E-5
320	0.3	2.22	4E-5	160	0.025	2.0	3.6E-6

The convergence of D implies $E(\xi) \sim \xi^{-3}$ coherent with the scaling law of Kraichnan and with the numerical results of Lesieur.

- Face oriented interior penalty methods work for incompressible flow at high Reynolds number.
- Interaction with turbulence?
- Future work focuses on complex flow problems such as:
 - Incompressible flow in 3D at high Reynolds number (turbulence)
 - Viscoelastic flow
 - Freesurface flow
 - Compressible flow

Mixing layer, Reynolds 10000, P1/80 \times 80, P2/32 \times 32, P2/160 \times 160, t=50,80,100

Mixing layer, Reynolds 10000, P1/320 \times 320, P2/32 \times 32, P2/160 \times 160, t=50,80,100

P2/P2, 32×32 , t=20,30,50,70,80,100,120,140,200

P2/P2, 160 × 160, t=20,30,50,70,80,100,120,140,200

P1/P1, 40 × 40, t=20,30,50,70,80,100,120,140,200

P1/P1, 80 × 80, t=20,30,50,70,80,100,120,140,200

P1/P1, 320 × 320, t=20,30,50,70,80,100,120,140,200

