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The development of DG methods

Introduced in the 1970s

Two somewhat parallel routes: hyperbolic or elliptic PDE’s

Time evolution of DG related papers
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Hyperbolic PDE’s

Neutron transport simulation (Reed & Hill, ’73)

First abstract analysis (Lesaint & Raviart, ’75)

based on Friedrichs’ systems
analysis improvement (Johnson et al., ’84)

Recent developments (’00 onwards)

numerical fluxes, approximate Riemann solvers; Cockburn, Shu et al.
hp-adaptive DGFEM; Houston, Schwab, Süli et al.
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Elliptic PDE’s

Interior Penalty (IP) to enforce continuity conditions
Nitsche, ’71; Babuška & Zlámal, ’73; Douglas & Dupont, ’76; Baker, ’77;
Wheeler, ’78; Arnold, ’82

Elliptic PDE’s in mixed form
DG for primal variable only (Dawson, ’93, ’98)
DG for primal variable and flux (Bassi & Rebay, ’97)
Local Discontinuous Galerkin (LDG) (Cockburn & Shu, ’98)

Non-symmetric variant of IP: NIPG (Baumann & Oden, ’99; Oden et al.,

’98; Rivière et al., ’99)
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Towards a unified analysis of DG/IP methods

Many methods share similar analysis tools

First important step
Arnold, Brezzi, Cockburn, Marini, ’00
Laplacian with homogeneous Dirichlet BC’s
define numerical fluxes on mixed form
eliminate locally the flux
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Goal of the present work

Wider framework for unified analysis

Encompass elliptic and hyperbolic PDE’s

=⇒ Friedrichs’ systems (FS) ’58

advection–reaction, advection–diffusion–reaction, Maxwell equations in diffusive

regime, linear elasticity, wave equation, . . .
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Friedrichs’ systems

The setting

The well–posedness theory

Examples of FS
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The setting

FS are systems of first-order PDE’s endowed with a symmetry
and a positivity property

The ingredients
Ω: bounded, open, connected, Lipschitz domain in R

d

m ≥ 1 (number of dependent variables)
(d + 1) R

m,m-valued fields: K and {Ak}1≤k≤d

Friedrichs’ operator

Tψ = Kψ +

d∑

k=1

Ak∂kψ

︸ ︷︷ ︸

Aψ
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The four properties of FS

K ∈ [L∞(Ω)]m,m (A1)

Ak ∈ [L∞(Ω)]m,m and
d∑

k=1

∂kA
k ∈ [L∞(Ω)]m,m (A2)

Ak = (Ak )t a.e. in Ω (A3)

∃µ0 > 0, K + Kt −
d∑

k=1

∂kA
k ≥ 2µ0Im (A4)
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Set L = [L2(Ω)]m and define the graph space

W = {w ∈ L; Aw ∈ L} ‖w‖W = ‖Aw‖L + ‖w‖L

W is a Hilbert space and T ∈ L(W ; L)

Formal adjoint T ∗ ∈ L(W ; L)

T ∗ψ = Ktψ −

d∑

k=1

∂k (Akψ)

Goal

Find a closed subspace V ⊂ W such that T : V → L is an
isomorphism

This amounts to specifying BC’s for the Friedrichs operator
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The well–posedness theory

Define D ∈ L(W ; W ′) s.t.

〈Du, v〉W ′,W = (Tu, v)L − (u,T ∗v)L

Assume: ∃M ∈ L(W ; W ′) s.t.

M is positive, i.e., 〈Mw ,w〉W ′,W ≥ 0, ∀w ∈ W (M1)

W = Ker(D − M) + Ker(D + M) (M2)

Let V = Ker(D − M) and V ∗ = Ker(D + M∗)
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Main result

Define

a(u, v) = (Tu, v)L + 1
2 〈(M − D)u, v〉W ′,W

The following system is well-posed
{

Seek u ∈ W such that

a(u, v) = (f , v)L ∀v ∈ W

The unique solution satisfies Tu = f and u ∈ V .

Basis for designing the DG method
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Examples of FS

Advection–reaction

Advection–diffusion–reaction

Simplified 3D Maxwell’s equations
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Advection–reaction

µu + β·∇u = f

µ ∈ L∞(Ω), β ∈ [L∞(Ω)]d , ∇·β ∈ L∞(Ω)

µ− 1
2∇·β ≥ µ0 > 0

m = 1
K = µ Ak = βk

The graph space is

W = {w ∈ L2(Ω); β·∇w ∈ L2(Ω)}
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Advection–reaction (cont’d)

Let ∂Ω± = {x ∈ ∂Ω; ±β(x)·n(x) < 0}

Assume C1(Ω) dense in W and dist(∂Ω−, ∂Ω+) > 0

Trace theorem

〈Du, v〉W ′,W =

∫

∂Ω

uv(β·n)

Suitable boundary operator M

〈Mu, v〉W ′,W =

∫

∂Ω

uv |β·n|

yielding

V = {v ∈ W ; v |∂Ω− = 0}

V ∗ = {v ∈ W ; v |∂Ω+ = 0}
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Advection–diffusion–reaction

−∆u + β·∇u + µu = f in mixed form
{

σ + ∇u = 0

µu + ∇·σ + β·∇u = f

Keep assumptions on µ and β

m = d + 1

K =

[

Id 0

0 µ

]

Ak =

[

0 ek

(ek )t βk

]

The graph space is W = H(div; Ω) × H1(Ω)

Alexandre Ern – MOMAS, 19/12/2005 DG methods for Friedrichs’ systems



Introduction: the development of DG methods
Friedrichs’ systems

Design and analysis of DG methods
Block Friedrichs’ systems and Local DG

Conclusions

The setting
The well–posedness theory
Examples of FS

Advection–diffusion–reaction (cont’d)

〈D(σ, u), (τ, v)〉W ′ ,W = 〈σ·n, v〉− 1
2 ,

1
2
+ 〈τ ·n, u〉− 1

2 ,
1
2
+

∫

∂Ω(β·n)uv

Suitable boundary operator M for Dirichlet BC’s

〈M(σ, u), (τ, v)〉W ′ ,W = 〈σ·n, v〉− 1
2 ,

1
2
− 〈τ ·n, u〉− 1

2 ,
1
2

yielding V = V ∗ = {(σ, u) ∈ W ; u|∂Ω = 0}

Neumann and Robin BC’s can be treated as well
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Simplified 3D Maxwell’s equations
{

νH + ∇×E = f

σE −∇×H = g

ν, σ ∈ L∞(Ω) uniformly bounded away from zero

m = 6

K =

[

νI3 0
0 σI3

]

Ak =

[

0 Rk

(Rk )t 0

]

[Rk ∈ R
3,3]

The graph space is

W = H(curl; Ω)×H(curl; Ω)
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Simplified 3D Maxwell’s equations (cont’d)

〈D(H,E), (h, e)〉W ′ ,W = (∇×E , h)[L2(Ω)]3 − (E ,∇×h)[L2(Ω)]3

+ (H,∇×e)[L2(Ω)]3 − (∇×H, e)[L2(Ω)]3

Assume [H1(Ω)]3 dense in H(curl; Ω)

Suitable boundary operator M to enforce E×n|∂Ω = 0

〈M(H,E), (h, e)〉W ′ ,W = − (∇×E , h)[L2(Ω)]3 + (E ,∇×h)[L2(Ω)]3

+ (H,∇×e)[L2(Ω)]3 − (∇×H, e)[L2(Ω)]3

yielding V = V ∗ = H(curl; Ω)×H0(curl; Ω)
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Design and analysis of DG methods

The discrete setting

Design of the DG method

Convergence analysis

Applications
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The discrete setting

Shape-regular affine mesh family {Th}h>0

No matching assumption at interfaces

Integer p ≥ 0

Wh = {vh ∈ [L2(Ω)]m; ∀K ∈ Th, vh|K ∈ [Pp]
m}

W (h) = [H1(Ω)]m + Wh

Set of interfaces Fh = F i
h ∪ F∂

h
jump [[·]] and mean-value {·}
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There exist two matrix-valued boundary fields s.t.

〈Du, v〉W ′,W =

∫

∂Ω

v tDu with D =

d∑

k=1

nkA
k

〈Mu, v〉W ′,W =

∫

∂Ω

v tMu

provided u, v are smooth enough

Extend matrix-valued field D to Fh

D is two-valued on F i
h

D =

d∑

k=1

nK ,kA
k a.e. on ∂K
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Design of the DG method

Two design ingredients

boundary operators to enforce BC’s weakly

∀F ∈ F∂
h , MF ∈ L([L2(F )]m, [L2(F )]m)

interface operators to control jumps

∀F ∈ F i
h, SF ∈ L([L2(F )]m, [L2(F )]m)

Simpler setting based on matrix-valued fields MF ,SF ∈ R
m,m

MF (v) = MF v SF (v) = SF v
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General design conditions on MF and SF can be formulated

Set of simpler conditions

Design of SF

SF self-adjoint

SF ∼ 1 . . . more precisely, ∀v ∈ [L2(F )]m

c1‖Dv‖2
L,F ≤ (SF (v), v)L,F ≤ c2‖v‖2

L,F
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Design of MF

Consistency condition: ∀v ∈ [L2(F )]m,

(Mv −Dv = 0) =⇒ (MF (v) −Dv = 0)

(MF (v), v)L,F ≥ 0; set |v |2M,F = (MF (v), v)L,F

|(MF (v) −Dv ,w)L,F | ≤ c|v |M,F‖w‖L,F

|(MF (v) + Dv ,w)L,F | ≤ c‖v‖L,F |w |M,F
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The DG bilinear form

ah(u, v) =
∑

K∈Th

(Tu, v)L,K +
∑

F∈F∂

h

1
2 (MF (u) −Du, v)L,F

−
∑

F∈F i
h

2({Du} , {v})L,F +
∑

F∈F i
h

(SF [[u]], [[v ]])L,F

The discrete problem: For f ∈ L
{

Seek uh ∈ Wh s.t.

ah(uh, vh) = (f , vh)L ∀vh ∈ Wh
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Local problems and the notion of flux

∀K ∈ Th, ∀vh ∈ Pp(K )

(uh,T
∗vh)L,K + (φ∂K (uh), vh)L,∂K = (f , vh)L,K

Element flux

φ∂K (v)|F =

{
1
2 MF (v |F ) + 1

2Dv F ⊂ ∂K ∂

SF ([[v ]]∂K |F ) + D∂K {v} F ⊂ ∂K i

with cell-oriented jump

[[z]]∂K (x) = z i(x)
︸ ︷︷ ︸

interior

− ze(x)
︸ ︷︷ ︸

exterior
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Convergence analysis

Stability norm

‖v‖h,A = ‖v‖L + |v |J + |v |M + (
∑

K∈Th
hK‖Av‖2

L,K )
1
2

with

|v |2M =
∑

F∈F i
h
(MF (v), v)L,F |v |2J =

∑

F∈F i
h
(SF ([[v ]]), [[v ]])L,F

Assume Ak ∈ [C0, 1
2 (Ω)]m,m
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(Stability) ∃c > 0 s.t.

inf
vh∈Wh\{0}

sup
wh∈Wh\{0}

ah(vh,wh)

‖vh‖h,A‖wh‖h,A
≥ c

(Continuity) ∃c s.t.

∀(v ,w) ∈ W (h) × W (h), ah(v ,w) ≤ c ‖v‖h, 1
2
‖w‖h,A

with

‖v‖h, 1
2

= ‖v‖h,A + (
∑

K∈Th
[h−1

K ‖v‖2
L,K + ‖v‖2

L,∂K ])
1
2

Alexandre Ern – MOMAS, 19/12/2005 DG methods for Friedrichs’ systems



Introduction: the development of DG methods
Friedrichs’ systems

Design and analysis of DG methods
Block Friedrichs’ systems and Local DG

Conclusions

The discrete setting
Design of the DG method
Convergence analysis
Applications

Main result

Assume the exact solution u is in [H1(Ω)]m. Then,

‖u − uh‖h,A ≤ c inf
vh∈Wh

‖u − vh‖h, 1
2

proof DG

If u ∈ W only, provided [H1(Ω)]m ∩ V is dense in V

lim
h→0

‖u − uh‖L = 0
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Classical interpolation properties of DG space Wh

If u ∈ [Hp+1(Ω)]m

‖u − uh‖h,A ≤ c(u)hp+ 1
2

Convergence in L2 of order p + 1
2

Optimal convergence in broken graph norm if mesh is
quasi-uniform

(
∑

K∈Th
‖A(u − uh)‖

2
L,K )

1
2 ≤ c(u)hp
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Applications

Advection–reaction

D∂K = β·nK , M = |β·n|

Suitable choice: MF = |β·n| and for any α > 0, SF = α|β·nF |

Element flux φ∂K (v)|F
{

1
2Mv + 1

2Dv = 1
2 |β·n| +

1
2 (β·n)v = (β·n)+v

SF [[v ]]∂K + D∂K {v} = α|β·nF |(v i − ve) + 1
2 (β·nF )(v i + ve)

Particular case (α = 1
2 ): recover well-known upwind flux
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Advection–reaction–diffusion

For Dirichlet BC’s

D∂K =

[

0 nK

(nK )t β·nK

]

M =

[
0 −n

nt 0

]

For α > 0, η > 0

MF =

[

0 −n

nt η

]

SF =

[
αnF⊗nF 0

0 η

]

Penalizes jumps of σh·n and of uh

Neumann and Robin BC’s can be treated as well
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Simplified 3D Maxwell’s equations

Setting E×n|∂Ω = 0 yields

D∂K =

[

0 RK

(RK )t 0

]

M =

[

0 −RK

(RK )t 0

]

with RK ∈ R
3,3, RK v = nK×v

For α > 0, η > 0

MF =

[

0 −R

Rt ηRtR

]

SF =




αRt

FRF 0

0 ηRt
FRF





Penalizes jumps of tangential components of Hh and Eh
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Block FS and Local DG

The setting

Design of the LDG method

Convergence analysis

Applications

Alexandre Ern – MOMAS, 19/12/2005 DG methods for Friedrichs’ systems



Introduction: the development of DG methods
Friedrichs’ systems

Design and analysis of DG methods
Block Friedrichs’ systems and Local DG

Conclusions

The setting
Design of the LDG method
Convergence analysis
Applications

The setting

Friedrichs’ systems endowed with 2×2 block structure

Partition of dependent variable z = (zσ, zu)

zσ can be eliminated
second-order (elliptic) PDE for zu

Examples
advection–diffusion–reaction zσ = σ

simplified 3D Maxwell’s equations zσ = H or zσ = E
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m = mσ + mu , Lσ = [L2(Ω)]mσ , Lu = [L2(Ω)]mu

K =

[

Kσσ > 0 Kσu

Kuσ Kuu

]

Ak =

[

0 Bk

(Bk)t Ck

]

Set
B =

∑d
k=1 B

k∂k

B̃ =
∑d

k=1[B
k ]t∂k
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Elimination of zσ

zσ = [Kσσ ]−1
(

fσ −Kσuzu − Bzu
)

Second-order PDE for zu

−B̃[Kσσ ]−1Bzu + l.o.t. = r.h.s.

The above PDE is of elliptic type
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Design of the LDG method

Local DG method: eliminate discrete σ-component

Polynomial degrees

pu − 1 ≤ pσ ≤ pu 1 ≤ pu

Approximation spaces

Uh = [Ph,pu ]
mu Σh = [Ph,pσ

]mσ Wh = Uh×Σh
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Local problems
{

Seek zh ∈ Wh s.t. ∀q = (qσ , qu) ∈ [Ppσ
(K )]mσ×[Ppu (K )]mu

(zh,T ∗q)L,K + (φ∂K (zh), q)L,∂K = (f , q)L,K

Element fluxes

φ∂K (zh) = (φσ∂K (zu
h ), φu

∂K (zu
h , z

σ
h ))

Elimination of zσh by solving local problems

=⇒ φσ∂K only depends on zu
h
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Boundary operator to weakly enforce BC’s

MF =

[

0 Mσu
F

Muσ
F Muu

F

]

∈ L([L2(F )]m; [L2(F )]m)

Interface operator to penalize jumps

SF =

[

0 Sσu
F

Suσ
F Suu

F

]

∈ L([L2(F )]m; [L2(F )]m)

The jumps and boundary values of zσ are no longer controlled
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Convergence analysis

General design conditions on SF and MF can be formulated

Set of simpler conditions

Design of SF

SσσF = 0

Suσ
F = 0 and Sσu

F = 0

Suu
F self-adjoint

Suu
F ∼ h−1

F . . . more precisely, ∀v ∈ [L2(F )]mu

c1(hF‖D
uuv‖2

Lu,F + h−1
F ‖Dσuv‖2

Lσ,F ) ≤ (Suu
F (v), v)Lu ,F

(Suu
F (v), v)Lu,F ≤ c2h−1

F ‖v‖2
Lu,F

Alexandre Ern – MOMAS, 19/12/2005 DG methods for Friedrichs’ systems



Introduction: the development of DG methods
Friedrichs’ systems

Design and analysis of DG methods
Block Friedrichs’ systems and Local DG

Conclusions

The setting
Design of the LDG method
Convergence analysis
Applications

Design of MF (Dirichlet BC’s)

Consistency conditions: ∀y ∈ [L2(F )]m

(My −Dy = 0) =⇒ (MF (y) −Dy = 0)

(Mt y + Dy = 0) =⇒ (M∗
F (y) + Dy = 0)

Mσσ
F = 0

Mσu
F (v) = −Dσuv and Muσ

F = −(Mσu
F )∗

Muu
F self-adjoint

Muu
F ∼ h−1

F . . . more precisely, ∀v ∈ [L2(F )]mu

c1(hF‖D
uuv‖2

Lu,F + h−1
F ‖Dσuv‖2

Lσ,F ) ≤ (Muu
F (v), v)Lu,F

(Muu
F (v), v)Lu ,F ≤ c2h−1

F ‖v‖2
Lu,F
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Design of MF (Neumann or Robin BC’s)

Consistency conditions: ∀y ∈ [L2(F )]m

(My −Dy = 0) =⇒ (MF (y) −Dy = 0)

(Mt y + Dy = 0) =⇒ (M∗
F (y) + Dy = 0)

Mσσ
F = 0

Mσu
F (v) = Dσuv and Muσ

F = −(Mσu
F )∗

Muu
F self-adjoint

Muu
F ∼ 1 . . . more precisely, ∀v ∈ [L2(F )]mu

c1‖D
uuv‖2

Lu,F ≤ (Muu
F (v), v)Lu ,F ≤ c2‖v‖2

Lu,F
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Stability norm

‖z‖h,A = ‖zσ‖Lσ
+ ‖zu‖Lu + |zu |J + |zu |M + (

∑

K∈Th
‖Bzu‖2

Lσ,K
)

1
2

with |zu |2J =
∑

F∈F i
h
(Suu

F ([[zu]]), [[zu]])Lu ,F

Assume Bk ∈ [C0,1(Ω)]mσ ,mu
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Main result

Assume the exact solution z is in [H1(Ω)]m. Then,

‖z − zh‖h,A ≤ c inf
yh∈Wh

‖z − yh‖h,1

with

‖z‖h,1 = ‖z‖h,A + (
∑

K∈Th
[h−2

K ‖zu‖2
Lu ,K + h−1

K ‖zu‖2
Lu ,∂K

+ hK ‖zσ‖2
Lσ ,∂K ])

1
2

If z ∈ W only, provided [H1(Ω)]m ∩ V is dense in V

lim
h→0

[‖z − zh‖L + (
∑

K∈Th
‖B(zu − zu

h )‖2
Lσ ,K )

1
2 ] = 0
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If z ∈ [Hpσ+1(Ω)]mσ×[Hpu+1(Ω)]mu ,

‖z − zh‖h,A ≤ c(z)hpu

pσ = pu : suboptimal for ‖zσ − zσh ‖Lσ
and ‖zu − zu

h ‖Lu

pσ = pu − 1: optimal for ‖zσ − zσh ‖Lσ
and suboptimal ‖zu − zu

h ‖Lu

Improve ‖zu − zu
h ‖Lu by duality argument
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The duality argument

Let ψ ∈ V ∗ solve T ∗ψ = (0, zu − zu
h ) in L

Assume elliptic regularity

‖ψu‖[H2(Ω)]mu + ‖ψσ‖[H1(Ω)]mσ ≤ c‖zu − zu
h ‖Lu

Main result

‖zu − zu
h ‖Lu ≤ ch inf

yh∈Wh

‖z − yh‖h,1+

with ‖y‖h,1+ = ‖y‖h,1 + (
∑

K∈Th
[h2

K‖yσ‖2
[H1(K )]mσ

+ hK‖yσ‖2
Lσ,∂K ])

1
2
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Applications

Advection–diffusion–reaction

For Dirichlet BC’s

D∂K =

[

0 nK

(nK )t β·nK

]

M =

[
0 −n

nt 0

]

For η > 0

MF =

[

0 −n

nt ηh−1
F

]

SF =

[

0 0

0 ηh−1
F

]

Penalizes jumps of uh by h−1
F

LDG method by Cockburn and Shu ’98

Neumann and Robin BC’s can be treated as well
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The Laplacian

Comparison with the unified analysis of Arnold, Brezzi, Cockburn
and Marini, ’02

Lifting rF : [L2(F )]d −→ Σh s.t. ‖rF (τh)‖Lσ
∼ h

− 1
2

F ‖τh‖Lσ,F

IP (Douglas & Dupont, ’76) [ζ and κ large enough]

Muu
F (v) = ζ

hF
v − rF (vnF )·nF Suu

F (v) = κ
hF

v − {rF (vnF )} ·nF

Brezzi et al., ’99 [ζ and κ positive]

Muu
F (v) = ζrF (vnF )·nF Suu

F (v) = κ {rF (vnF )} ·nF
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Simplified 3D Maxwell’s equations

Setting E×n|∂Ω = 0 yields

D∂K =

[

0 RK

(RK )t 0

]

M =

[

0 −RK

(RK )t 0

]

For η > 0

MF =

[

0 −R

Rt ηh−1
F RtR

]

SF =

[

0 0

0 ηh−1
F Rt

FRF

]

Penalizes jumps of tangential components of Eh by h−1
F
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Friedrichs’ systems

The notion of symmetric systems goes beyond the traditional
elliptic/hyperbolic classification of PDE’s

Boundary operators in FS are the natural way to enforce BC’s in
DG methods

Extension of FS to the situation of partial coercivity

Theory also applicable to linear elasticity, Stokes, and Oseen
equations
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DG methods

Unified analysis for a large class of PDE’s

Design through operators MF and SF complying with a few
general properties

DG methods are stabilization techniques

Natural link with cell-centered FV methods through the notion of
fluxes
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Consistency. If u ∈ [H1(Ω)]m,

∀vh ∈ Wh, ah(u − uh, vh) = 0

Second Strang Lemma

‖vh − uh‖h,A ≤ c sup
wh∈Wh\{0}

ah(vh − uh,wh)

‖wh‖h,A

≤ c sup
wh∈Wh\{0}

ah(vh − u,wh)

‖wh‖h,A
≤ c ‖u − vh‖h, 1

2
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