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Introduction: the development of DG methods

The development of DG methods

@ Introduced in the 1970s
@ Two somewhat parallel routes: hyperbolic or elliptic PDE’s
@ Time evolution of DG related papers

L. | I L L I I
1975 1980 1985 1990 1995 2000
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Introduction: the development of DG methods

Hyperbolic PDE’s

@ Neutron transport simulation (Reed & Hill, '73)

@ First abstract analysis (Lesaint & Raviart, '75)

@ based on Friedrichs’ systems
9 analysis improvement (Johnson et al., '84)

@ Recent developments (00 onwards)

@ numerical fluxes, approximate Riemann solvers; Cockburn, Shu et al.
@ hp-adaptive DGFEM; Houston, Schwab, Siili et al.
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: the development of DG methods

Elliptic PDE'’s

@ Interior Penalty (IP) to enforce continuity conditions

@ Nitsche, '71; Babuska & Zlamal, '73; Douglas & Dupont, '76; Baker, '77;
Wheeler, '78; Arnold, '82

@ Elliptic PDE’s in mixed form

@ DG for primal variable only (Dawson, '93, '98)
@ DG for primal variable and flux (Bassi & Rebay, '97)
9 Local Discontinuous Galerkin (LDG) (Cockburn & Shu, '98)

@ Non-symmetric variant of IP: NIPG (Baumann & Oden, '99; Oden et al.,
'98; Riviére et al., '99)
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Introduction: the development of DG methods

Towards a unified analysis of DG/IP methods

@ Many methods share similar analysis tools

@ First important step

@ Arnold, Brezzi, Cockburn, Marini, ‘00

@ Laplacian with homogeneous Dirichlet BC's
@ define numerical fluxes on mixed form

@ eliminate locally the flux
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Introduction: the development of DG methods

Goal of the present work
@ Wider framework for unified analysis
@ Encompass elliptic and hyperbolic PDE’s

— Friedrichs’ systems (FS) '58

@ advection—reaction, advection—diffusion—reaction, Maxwell equations in diffusive
regime, linear elasticity, wave equation, ...
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Friedrichs’ systems

@ The setting
@ The well-posedness theory

@ Examples of FS
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Friedrichs’ systems The setting
The well-posedness theory

Examples of FS

The setting

@ FS are systems of first-order PDE'’s endowed with a symmetry
and a positivity property

@ The ingredients
@ Q: bounded, open, connected, Lipschitz domain in RY
@ m > 1 (number of dependent variables)
) (d = 1) R™M-valued fields: X and {Ak}lgkgd

@ Friedrichs’ operator

d
Ty =Ky + Z A
k=1
—_———
A
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Friedrichs’ systems The setting
The well-posedness theory
Examples of FS

The four properties of FS

K e [L=@)™" (A1)

d

A e (@)™ and ) oA € [L(Q)]™" (A2)
k=1

Ak = (A ae. inQ (A3)

d
Jpo >0, K+K' = oA > 2p0Tn, (A4)
k=1
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Friedrichs’ systems The setting

The well-posedness theory
Examples of FS

@ Set L = [L?(Q2)]™ and define the graph space
W={wel Awel} [wlw = [[Aw[L + [lwl

® W is a Hilbert space and T € £(W;L)
@ Formal adjoint T* € £(W;L)

d
T =K' — Z(’)k(.Akzﬁ))

k=1

Find a closed subspace V. ¢ W suchthatT :V — Lis an
isomorphism

@ This amounts to specifying BC's for the Friedrichs operator
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Friedrichs’ systems The setting
The well-posedness theory
Examples of FS

The well-posedness theory

@ Define D € L(W;W') s.t.

(Du,Vv)w'w = (Tu,v)L — (u, T*v)_

@ Assume: IM € L(W; W) s.t.

M is positive, i.e., (Mw, W)y w > 0, Yw € W (M1)
W = Ker(D — M) + Ker(D + M) (M2)

@ LetV = Ker(D — M) and V* = Ker(D + M*)
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Friedrichs’ systems The setting
The well-posedness theory
Examples of FS

Main result

@ Define

a(u,v) = (Tu,v)L + 3((M — D)u,V)w-w

@ The following system is well-posed

Seek u € W such that
a(u,v)=(f,v)L Wew

@ The unique solution satisfies Tu =f andu € V.

@ Basis for designing the DG method
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Friedrichs’ systems The setting
The well-posedness theory
Examples of FS

Examples of FS

@ Advection—reaction
@ Advection—diffusion—reaction

@ Simplified 3D Maxwell's equations
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Friedrichs’ systems The setting
The well-posedness theory
Examples of FS

Advection—reaction

uu + 6-Vu = f

0 peLl>(Q), 5 e L>(Q) V-4 eL>(Q)
Q1 — %Vyaf)’ > o >0
om=1

K= L Ak _ 6k
@ The graph space is

W = {w € L3(Q); 3-Vw € L3(Q)}
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Friedrichs’ systems The setting
The well-posedness theory
Examples of FS

Advection—reaction (cont'd)
@ Let 90T = {x € 9Q; +H(x)-n(x) < 0}
@ Assume C1(Q) dense in W and dist(0Q~,0Q") > 0

@ Trace theorem

(Du,V)w'w = /;Q uv(4-n)

@ Suitable boundary operator M

<MU,V>W/‘W :/ UV“‘S'n‘
' o0
yielding
V:{VEW;V|BQ—:O}
V*:{VEW; V|aQ+:O}

-

Alexandre Ern — MOMAS, 19/12/2005 DG methods for Friedrichs’ systems



Friedrichs’ systems The setting
The well-posedness theory
Examples of FS

Advection—diffusion—reaction
—Au + -Vu + pu = f in mixed form

c+Vu=0
i + V.o + 3-Vu = f

@ Keep assumptions on p and
om=d+1

@ The graph space is W = H(div; Q) x H(Q)
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Friedrichs’ systems The setting

The well-posedness theory
Examples of FS

Advection—diffusion—reactio

o <D(Ua U), (Tav)>W/,W - <O"n,V>7%’% + <T'n7 u>—
@ Suitable boundary operator M for Dirichlet BC’

11+ [o(Bn)uv
S
<M(O’,U),(T,V)>W/7W - <O’~n,V>7

11— (T-n,u)
yielding V = V* = {(o,u) € W; u|sq = 0}

@ Neumann and Robin BC’s can be treated as well

11
252
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Friedrichs’ systems The setting
The well-posedness theory
Examples of FS

Simplified 3D Maxwell's equations

vH+ VXE =f
ocE —VxH =g

@ v, o € L*=°(Q) uniformly bounded away from zero
O@m=6

[R¥ € R33)
@ The graph space is

W = H(curl; Q)xH(curl; Q)
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Friedrichs’ systems The setting
The well-posedness theory
Examples of FS

Simplified 3D Maxwell's equations (cont'd)

<D( ) (h e)>W/ w = (VXE h)[Lz QR — (E VXh)[Lz
(H ; VXG)[LZ(Q)]s = (VXH ; e)[LZ(Q)]s

@ Assume [H1(Q)]® dense in H(curl; Q)
@ Suitable boundary operator M to enforce E xn|gg =0

(M(H, E), (h,&))wrw = — (VXE, W)@y + (E, Vxh)ize
(H,VXE‘)[LZ(Q)P — (VXH,E)[LZ(Q)]3

yielding V = V* = H(curl; Q) xHo(curl; )
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Design and analysis of DG methods

@ The discrete setting
@ Design of the DG method
@ Convergence analysis

@ Applications
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The discrete setting
Design of the DG method
Convergence analysis
Applications

Design and analysis of DG methods

The discrete setting

@ Shape-regular affine mesh family {7 }h~o
@ No matching assumption at interfaces
@ Integerp >0
Wh = {Vh € [L2(Q)]™; VK € Tn, Vh|k € [Pp]™}

W (h) = [H}(Q)]™ + Wh,

@ Set of interfaces 7, = 7 U FY
@ jump [] and mean-value {-}
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The discrete setting

. . Design of the DG method
Design and analysis of DG methods esign of the Memos

Convergence analysis
Applications

@ There exist two matrix-valued boundary fields s.t.

(Du, Viw w :/

d
viDu  with D= Z N AX
20 —

(Mu,V)w:w = / viMu
o0
provided u,v are smooth enough

@ Extend matrix-valued field D to Fj,
@ D is two-valued on F}

d
D= Z nk A< a.e. on oK
k=1
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The discrete setting
. " Design of the DG method
Design and analysis of DG methods 9 ~
Convergence analysis
Applications

Design of the DG method

Two design ingredients
@ boundary operators to enforce BC’s weakly

VE e, Mg e L([L2(F)™ [L2(F)™)

@ interface operators to control jumps

VF e A, Sk e L(LAF)™, [LA(F)™)

Simpler setting based on matrix-valued fields Mg, S € R™M

MF(V):MFV SF(V):SFV
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The discrete setting

Design and analysis of DG methods E=TE e D6 el

Convergence analysis
Applications

@ General design conditions on Mg and Sg can be formulated
@ Set of simpler conditions

Design of Sg

@ Sr self-adjoint
@ Sk ~ 1... more precisely, Vv € [L2(F)]™

[ DviEe < (Sk(v).V)Lr <callviie
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The discrete setting
. " Design of the DG method
Design and analysis of DG methods 9 ~
Convergence analysis
Applications

Design of Mg
@ Consistency condition: Vv € [L2(F)]™,

(Mv —Dv =0) = (Mg(v) —Dv =0)
@ (Me(v),V)LF = 0;set V|5 - = (Me(v), V) r

@ [(Me(v) = Dv,W)Le| < c|V|ur|w|Lr

9 |((Me(V) +Dv,w) el <cViLrlwmr
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The discrete setting
Design of the DG method
Convergence ana
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Design and analysis of DG methods

The DG bilin rm
an(u,v) = > (Tu,v)ik + Y 3 —Du,V)_r

K€eTy FeF?
- Z 2({Du} Av})Lr + Z (Se[ull; [vI)LF
FeF FeF)

The discrete problem: Forf € L

Seek u, € W;, s.t.
an(un,vn) = (F,vn)L  Vvh € Wy,
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The discrete setting
. " Design of the DG method
Design and analysis of DG methods 9 ~
Convergence analysis
Applications

Local problems and the notion of flux
@ VK € Ty, Vv € Py(K)

(Un, T*Vh)Lk + (¢ak (Un), Vh)L,ok = (F,Vn)Lk
@ Element flux

$Me(V|g) + 3Dv F coK?

®0K(V)|F B SF(HV]](‘ﬂK‘F) + Dok {V} F c oK!

with cell-oriented jump

[z1ok (x) = 2'(x) — 2°(x)
SM~— Y~
interior  exterior
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The discrete setting
Design of the DG method
Convergence analysis
Applications

Design and analysis of DG methods

Convergence analysis

@ Stability norm
1
IVIna = [IVIL+ V]s + VIm + (Ckeghk [AVIIE ¢ )2
with

VI =Yren Me(vV), V)Le VI3 = Ceem (SeIV), IVDLr

® Assume A¥ € [COz(Q)]™™
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The discrete setting

. " Design of the DG method
Design and analysis of DG methods gno cho

Convergence analysis
Applications

@ (Stability) 9c > 0 s.t.

. an(Vh, W,
inf sup 20V Wn)
Vh €W\ {0} wyewi\ {0} |[VhllhallWh(lna

@ (Continuity) 9c s.t.
Y(v,w) € W(h) x W(h),  an(v,w) < c V] [wina
with

— 1
IVlIng = IVlina + (Cken i IVIE K + IVIE kD)2
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The discrete setting
Design of the DG method
Convergence analysis
Applications

Design and analysis of DG methods

Assume the exact solution u is in [H(Q)]™. Then,

|u = unllh,a <c inf|lu— vyl 2
Vh EWp 2

@ If u € W only, provided [H}(Q)]™ NV is dense in V

lim |jlu—u =0
lim [|u — unl.
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The discrete setting

. . Design of the DG method
Design and analysis of DG methods esign of the memog

Convergence analysis
Applications

@ Classical interpolation properties of DG space Wy,
@ Ifu e [HPHL(Q)™

lu — Un|lha < c(u)hP*z

@ Convergence in L? of order p + %

@ Optimal convergence in broken graph norm if mesh is
guasi-uniform

(Cke IAU = un)l2 )2 < c(u)h?
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The discrete setting
Design of the DG method
Convergence analysis
Applications

Design and analysis of DG methods

Applications

Advection—reaction
@ Dok = fB-ng, M = |3-n|
@ Suitable choice: Mg = |3-n| and for any « > 0, S = «|S-Ng|
@ Element flux ¢ax (V)|r

{ LMy + 3DV = 4[| + 3(Bn)v = (Bn)v
SeIVlok + Dok {v} = alFne (V' —v®) + §(Bne)(v! +v°)

@ Particular case (« = %): recover well-known upwind flux
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The discrete setting
. " Design of the DG method
Design and analysis of DG methods 9 ~ .
Convergence analysis
Applications

Advection—reaction—diffusion
@ For Dirichlet BC’s

Dok =

@ Foraa>0,n>0

@ Penalizes jumps of o-n and of uy,
@ Neumann and Robin BC’s can be treated as well
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The discrete setting
. " Design of the DG method
Design and analysis of DG methods 9 ~ .
Convergence analysis
Applications

Simplified 3D Maxwell's equations
@ Setting E xn|sq = 0 yields

Do = [l B e [ 2B
5

with R¢ € R3,3, RV = Nk XV
@ Foraa>0,n>0

M ”Q”,”ii]?f,, (YRIF RF O
F F o= |
R : NR'R 0 7RERF

@ Penalizes jumps of tangential components of Hy and Ej;,
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Block FS and Local DG

@ The setting
@ Design of the LDG method
@ Convergence analysis

@ Applications
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The setting
Design of the LDG method

oo Convergence analysis
Block Friedrichs’ systems and Local DG ~ 9 -
Applications

The setting

@ Friedrichs’ systems endowed with 2x2 block structure

@ Partition of dependent variable z = (z°,z")
@ 27 can be eliminated
@ second-order (elliptic) PDE for z"

@ Examples

@ advection—diffusion-reaction z° = o
9 simplified 3D Maxwell’s equationsz® = H orz° = E
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The setting

Design of the LDG method
Convergence analysis
Applications

Block Friedrichs’ systems and Local DG

@ Mm=m,+ Mmy, LO’ = [LZ(Q)]mai LU = [LZ(Q)]mu

oo 1 ou
P {/c >0iK ]

@ Set §
B =2k B0

B = > .[B'ak
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The setting

Design of the LDG method
Convergence analysis

Block Friedrichs’ systems and Local DG _ e
Applications

@ Elimination of z
20 — [,Cfm]fl(fa _ fcouzu _ Bz”)
@ Second-order PDE for z“
—B[K°?]7'Bz" + l.o.t. = r.h.s.

@ The above PDE is of elliptic type
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The setting
Design of the LDG method

I Convergence ana
Block Friedrichs’ systems and Local DG L 9 _ L, “
Applications

Design of the LDG method

@ Local DG method: eliminate discrete o-component

@ Polynomial degrees

pu—1<p; <py 1<py

@ Approximation spaces

Un = [Php,]™ Th = [Php, 1™ W = UpxZg

Alexandre Ern — MOMAS, 19/12/2005 DG methods for Friedrichs’ systems



The setting
Design of the LDG method

Convergence analysis

Block Friedrichs’ systems and Local DG _ e
Applications

@ Local problems

Seek z, € Wy, s.t. Vg = (97,9") € [Pp, (K)]™ X [Pp, (K)]™
(zn, T*A)Lk + (2ak (zn),d)Lox = (f,a)Lk

Element fluxes

@ dok (zn) = (05k (21), D3k (2, 27))

@ Elimination of zZ by solving local problems

y u
@ — ¢2, only depends on z;
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The setting
Design of the LDG method

Convergence ana

Block Friedrichs’ systems and Local DG _ e
Applications

@ Boundary operator to weakly enforce BC'’s

OO ey 2(E\M. 1| 2(E Y|
Mr = [Zaavicy € LL2(F)I™ [L2(F)I™)

@ The jumps and boundary values of z? are no longer controlled
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The setting
Design of the LDG method
Convergence analysis

Block Friedrichs’ systems and Local DG
Applications

Convergence analysis

@ General design conditions on Sg and Mg can be formulated
@ Set of simpler conditions

@ SZ7=0
@ S =0and Sg' =0
@ SpY self-adjoint

@ S ~ h:" ... more precisely, Vv € [L?(F)]™

ca(he || DUVIIE, ¢ +he [D7VIE, £) < (SE'(V), V)L, F
(SF* (V). V)L,F < C2hIVIIE, ¢
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The setting
Design of the LDG method

Convergence analysis
Applications

Block Friedrichs’ systems and Local DG

Design of Mg (Dirichlet BC'’s)

@ Consistency conditions: Yy € [L2(F)]™

(My =Dy =0) = (Me(y) - Dy =0)
(M'y + Dy =0) = (Mg(y) +Dy =0)

° M2 =0

@ MgY(v) = —D%"v and Mg7 = —(Mg")*

@ Mg self-adjoint

@ M ~ h-* ... more precisely, Vv € [L2(F)]™

c1(hel|DVIIE, £ +he ID7VIE, ) < (ME'(V), V)Lr
(ME“(V), V)L r < C2he IV IIE, ¢
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The setting
Design of the LDG method
Convergence analysis

Block Friedrichs’ systems and Local DG
Applications

Design of Mg (Neumann or Robin BC's)

@ Consistency conditions: Vy € [L2(F)]™

(My —Dy =0) = (Mr(y) —Dy =0)
(M'y + Dy =0) = (M{(Y) + Dy =0)

@ MZ7 =0

© Mg!(v) = D?"v and M¢” = —(Mg")’

@ Mg self-adjoint

@ M ~ 1 ... more precisely, Vv € [L2(F)]™

caDMVIIE £ < (M), V)L F < ColVIIE ¢
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The setting

Design of the LDG method
Convergence analysis
Applications

Block Friedrichs’ systems and Local DG

@ Stability norm

1
1Zllna = [127lle, + 129Ie, + 125 + 2Im + (CkeglIB2UIE, «)?

with 243 = 3¢ i (SE([2V]), [2' D

@ Assume B¥ ¢ [CO1(Q)]me M.
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The setting
Design of the LDG method
Convergence analysis

Block Friedrichs’ systems and Local DG - -
Applications

Main result

Assume the exact solution z is in [H1(Q)]™. Then,
1z = zn[lna < c inf Iz —ynllna
Yn€Wh
with

IZlIna = I1zllna + (ke 12708, k +h 12812, o

1
+hK||ZU||EU,8K])Z

@ If z € W only, provided [H(Q)]™ NV is dense in V

o 1
iz - 0]l + (S, 1BE" —28)IE, ) =0
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The setting

Design of the LDG method
Convergence analysis
Applications

Block Friedrichs’ systems and Local DG

® If z € [HP=+H(Q)]M x [HP (@)™,

1Z = Znlln.a < c(z)h®

@ p, = py: suboptimal for ||z7 — zZ||., and ||z" — z}||.,
@ p, = py — 1: optimal for ||z7 — z7||., and suboptimal ||z" — z/||.,

@ Improve ||z" — z/!||, by duality argument
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The setting
Design of the LDG method
Convergence analysis

Block Friedrichs’ systems and Local DG - -
Applications

The duality argument

@ Lety e V*solve T* = (0,z" —z{) inL
@ Assume elliptic regularity

9" [z @yme + 197 2 @)me < €llZ" — 4 I,

zY—z". <ch inf ||z —
| hll, < yhewhH Yhllh,1+

with [[y[ln,1+ = 1Y lIn1 + (Ckez DRIV 1R isgeme + Dilly 12, oc])?
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The setting

Design of the LDG method
Convergence analysis
Applications

Block Friedrichs’ systems and Local DG

Applications

Advection—diffusion—reaction

@ For Dirichlet BC’s

20Nk 0i—-n
Pox (nk)* { B-nk {nti 0 ]
@ Fory >0
0 =n_ o |20
Sl = ntinh,;l F- Oinhgl

@ Penalizes jumps of u, by h*
@ LDG method by Cockburn and Shu '98
@ Neumann and Robin BC’s can be treated as well

-
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The setting
Design of the LDG method
Convergence analysis

Block Friedrichs’ systems and Local DG L
Applications

The Laplacian

@ Comparison with the unified analysis of Arnold, Brezzi, Cockburn
and Marini, ‘02

@ Lifting re : [L2(F)]? — Zp s.t. |[re(mh)l|L, ~ he 2 |mllu, £
@ IP (Douglas & Dupont, '76) [¢ and ~ large enough]

ME(V) = v —re(vne)-ne SEU(V) = &V — {re (Ve )} ne
@ Brezzi et al., '99 [¢ and « positive]

Mg (v) = Cre (Vng )-ng SEY(v) = s {re(vng)} -ng
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The setting
Design of the LDG method

oo Convergence analysis
Block Friedrichs’ systems and Local DG " g_ ce analysis
Applications

Simplified 3D Maxwell's equations
@ Setting E xn|sq = 0 yields

5 0 Rk | 0 =Rk
X (R0 (R0
@ Forn >0
0: —R 0! 0
Me = | STy Se= |G i s

@ Penalizes jumps of tangential components of E;, by hF‘l
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Conclusions

Conclusions

Friedrichs’ systems

@ The notion of symmetric systems goes beyond the traditional
elliptic/hyperbolic classification of PDE’s

@ Boundary operators in FS are the natural way to enforce BC'’s in
DG methods

@ Extension of FS to the situation of partial coercivity

@ Theory also applicable to linear elasticity, Stokes, and Oseen
equations
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Conclusions

DG methods

@ Unified analysis for a large class of PDE’s

@ Design through operators Mg and Sk complying with a few
general properties

@ DG methods are stabilization techniques

@ Natural link with cell-centered FV methods through the notion of
fluxes
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@ Consistency. If u € [HY(Q)]™,

YWh € Wy, ah(u—uh,vh):o
@ Second Strang Lemma

an(Vh — Uh, Wh
[Vh — Unllna <C  sup B{Vh — Un, W)
whewn\{0}  |[Whl

an(Vh — U, W)

h,A

<c sup

<cju—Vhllh1
whewn\ {0} [[Whlln,a 3
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