

Optimal hp **Discontinuous Galerkin Method Applications for Computational Aeroacoustics**

Christophe Peyret and Philippe Delorme ONERA/DSNA - 29 ave de la Division Leclerc F92322 Châtillon cedex France

delorme@onera.fr
peyret@onera.fr

Introduction

Why Develop Methods based on DGM to Compute Euler's linearized equations ?

FEM faces difficulties to solve Linearized Euler's equations FDM faces difficulties with complex geometries and boudary conditions

DGM Advantages and **Disavantages**:

High Flexiblility Complex Geometries Variational Formulation Adapted to Parallel Computation

Harder to program (OOP required) CPU and RAM Expensive !

Physical Modeling and Mathematical formulation

Boundary Conditions

Perfectly Matched Layers

Part One Optimal hp DGM principles

"Optimal" Functional Basis

Infinite 2D Duct with constant cross section

Analytical Solution for Rigid Wall No Flow $p(x,y) = \sin(2\pi ft - rac{2\pi}{\lambda}x)$

(CPU are obtained on a Dual Apple G5 21GHz)

Mesh Refinement / Element Order

element	$n(P_i)$	$m(P_i)$	$\alpha(P_i)$	$h_{min} (\leq 5\%)$	$h_{min} (\le 10\%)$
РО	1	0		λ/20	λ/40
P1	3	1	1.0	λ/14	λ/12
P2	6	4	0.5	λ/4	λ/4
Р3	10	9	0.37	λ/3	λ/2
Ρ4	15	16	0.31	λ/2	λ/3
P5	21	25	0.28		λ
P6	28	36	0.26	λ	

Remeshing Tool

Original mesh np: 67 108 nt: 134 212

RINRIA

Adapted mesh np: 9 796 nt: 19 588_{ONERA}

Optimal hp **DGM CAA Meshes**

CFD Mesh: 17024 triangles

Optimal Mesh: 3729 triangles

Optimal hp **DGM CAA Orders**

$f = 2 \,\mathrm{kHz}$

Optimal hp **DGM CAA Results**

$f = 2 \,\mathrm{kHz}$

Optimal hp **DGM CAA Validations**

$$\ell_2 = \frac{\sum_{i=1}^n \left(\bar{p_1}(i) - \tilde{p_1}(i)\right)^2}{\sum_{i=1}^n \left(\bar{p_1}(i)\right)^2} = 0.83\%$$

Optimal hp **DGM CAA**

 $f = 3 \,\mathrm{kHz}$

Part Two High Performance Computing

HPC = High Performance Computing

Simulations for 3D geometries

500 000 Tetraedra Mesh

First Idea for 3D Simulation: HPC or HCC Formal Calculation Vectorization Massively Parallel Computation (MPI+OMP)

High Performance Computing

Massively Parallel Computation

ParMetis: Parallel Graph Partitioning

open mpi 1.0.1 Message Passing Interface

Falcon CAA HPC Computation

TetMesh (INRIA/Simulog)

500 000 Tetras 64 domains

Falcon CAA HPC Computation

HPC Optimal hp DGM

Mesh for Computation 72 Tetra with P5 approx Mesh for Visualization with solution

Part Three Optimal h Adaptation Principles

Gaussian Distribution of Sources

$$TF(e^{-a^2t^2}) = \frac{1}{a\sqrt{2}} e^{\frac{-f^2}{4a^2}}$$

 $a = 10^{3}$

Pulse h-adaptation

2 pulses h-adaptation

DGM

DGM is able to solve most CAA problems (and many others) DGM is expensive (especially for lower order elements)

hp DGM

hp DGM mixes element orders and results a much less expensive cost With hp DGM, CFD and CAA computations are handled on same mesh Introduction of the doppler effect when determining local orders

HPC DGM

Computation on clusters make big configurations possible

(hp + HPC) DGM Balance of the Processes to optimize cluster efficiency