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1. The couplex 1 - benchmark

✤ benchmark definition

✤ our tool: Gascoigne

✤ some thoughts about adaptivity



benchmark definition: couplex 1

1. The radioactive elements leak from the containers, into the clay, over a period that is small

compared with the millions of years over which convection and diffusion are active.

2. The convection and diffusion constants are very different from one layer to another; for

instance, in the clay layer there is almost no convection while, in the other layers, diffusion

and convection are both important.

1.2 The Geometry

In this first test case, the computation is restricted to a 2D section of the disposal site. Thus,

the computational domain is in a rectangle O = (0, 25000) × (0, 695) in meters. The layers of
dogger, clay, limestone, and marl are located as follows (with the origin taken at the bottom left

corner of the rectangle):

• dogger 0 < z < 200

• clay lies between the horizontal line z = 200 and the line from (0, 295) to (25000, 350)

• limestone lies between the line from (0, 295) to (25000, 350) and the horizontal line z =
595

• marl 595 < z < 695.

Figure 1: Geometry of computational domain
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(il manque encore un facteur 3)

The repository, denoted by R, is modeled by a uniform rectangular source in the clay layer:

R = {(x, z) ∈ (18440, 21680)× (244, 250)}

The geometry is summarized on figure 1 below. For this domain the computation should be

carried for t ∈ (0, T ) with T = 107 years.

1.3 The Flow

It is assumed that all rock layers are saturated with water and that boundary loads are stationary

so that the flow is independent of time. Darcy’s law gives the velocity u in terms of the hydro-
dynamic load H = P/ρg + z:

u = −K∇H (1.1)

where the permeability tensor K, assumed constant in each layer is given in Table 1, P is the

pressure and g is Newton’s constant. Conservation of mass (∇ · (ρu) = 0, with the density ρ
assumed constant) implies that

∇ · (K∇H) = 0 in O (1.2)

Marl Limestone Clay Dogger

K (m/year) 3.1536e-5 6.3072 3.1536e-6 25.2288

Table 1: Permeability tensor in the four rock layers

On the boundary, conditions are:

H = 289 on {25000}× (0, 200),

H = 310 on {25000}× (350, 595),

H = 180 + 160x/25000 on (0, 25000)× {695},
H = 200 on {0}× (295, 595),

H = 286 on {0}× (0, 200),

∂H

∂n
= 0 elsewhere.

1.4 The Radioactive Elements

We are considering two species of particular interest, Iodine 129 and Plutonium 242. Both escape

from the repository cave into the water and their concentrations Ci, i = 1, 2 is given by two
independent convection-diffusion equations:

Riω(
∂Ci

∂t
+ λiCi)−∇ · (Di∇Ci) + u ·∇Ci = fi in O × (0, T ) i = 1, 2. (1.3)

where
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+ boundary conditions...

- linear problem
- tremenduous scales
- long-time integration
- rection-diffusion-advection with changing regimes



weak formulation

Find (C,H) in (C0,H0)+V ×W such that:
a(C,φ)+b(C,H,φ)=l(φ) ∀φ ∈V

d(H,ψ)=0 ∀ψ ∈W
a(C,φ):=〈(Ct +λC),φ〉+ 〈K∇C,∇φ〉

b(C,H,φ):=−〈K∇H · ∇C,∇φ〉
d(H,ψ):=〈K∇H,∇ψ〉

u = (C,H), v = (φ,ψ), X = V ×W
u ∈ u0 +X0 : A(u,v) = F(v) ∀v ∈ X



 

✤ adaptive mesh refinement

✤ quad (hex) - meshes with hanging nodes

✤ Newton, multigrid

✤ flexibility / modelling

✤ discretization: Q1, Q2 with stabilization

http://www.numerik.uni-kiel.de/~mabr/gascoigne/index.html



Topics

Application

General framework

Navier-Stokes (Q = {0})

Neumann control

Dirichlet control

Nonstationary control

Parameter estimation

Theoretical aspects

Optimization – . . .

!! ""

! "

Go Back

Close

Quit

Approximation of the weights δx = x− ihx

• Analytic estimate

• More accurate approximation

Th = {K} T2h = {P}

δx ≈ δhxh := i(2)
2h xh − xh

✤ local refinement with hanging nodes

✤ multigrid

✤ LPS - local projection stabilization
✦ similar to the schemes of Guermond, Codina, Burman,...

[1] R. Becker and M. Braack. A finite element pressure gradient stabilization for the Stokes equations based 
on local pro jections. Calcolo, 38(4):173–199, 2001.



starting mesh

which one to chose ?

hydrodynamic load H



adaptive strategy I

What quantity(ies) to compute ?
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Figure 2: Release of Iodine and Plutonium as a function of time

where n is the outward normal to the vertical line {0}× {0, 695}

1.6 Output requirements

The following output quantities are expected from the simulations(both tables and graphical

representations):

• Contour levels of Ci at times 200, 10110, 50110, 106, 107 years (the following level values

should be used: 10−12, 10−10, 10−8, 10−6, 10−4);

• Pressure field (10 values uniformly distributed between 180 and 340;

• Darcy velocity field, along the 3 vertical lines given by x = 50, x = 12500, x = 20000,
using 100 points along each line;

• Places where the Darcy velocity is zero;

• Cumulative total flux through the top and the bottom clay layer boundaries, as a function
of time;

• Cumulative total fluxes through the left boundaries of the dogger and limestone layers;

• The discretization grid of the domains and the time stepping used in the simulations should
also be given.

2 COUPLEX 2: Near Field Computation

2.1 Introduction

This test case aim is to present a situation, dwelling more on numerical difficulties than on the

physics itself. It still strives to stay close to real situations.
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J(t)



relates the functional to the operator ! 

...

J(t)=
Z

Γ
K

∂C(t)
∂n

ds

=
Z

∂Ω
zK

∂C(t)
∂n

ds (z|∂Ω\Γ = 0)

=
Z

Ω
K∇C ·∇zdx.



stationary problem

✤ suppose we are interested in mean total flux 

✤ equations are linear, stationary coefficients

‣ time-derivative drop out

J :=
1
T

Z T

0
J(t)dt = J(C)

C :=
1
T

Z T

0
C(t)dt

Find (C,H) in (C0,H0)+V ×W such that:
a(C,φ)+b(C,H,φ)=l(φ) ∀φ ∈V

d(H,ψ)=0 ∀ψ ∈W



stationary problem

✤ simplify notation: drop overline

z ∈ z0 +X
A′(u)(v,z) = 0 ∀v ∈ X .

z = (D,G)
a(φ,D)+bC(φ,H,D) = 0,
bH(C,ψ,D)+d(ψ,G) = 0.

influence sur G

J(u) = A′(u)(u,z)≈ F(z)−A(u)(z)



time-averaged
solution

dual 
concentration

dual pressure



sequence of meshes
time-averaged pb



back to the full problem

✤ static adapted meshes
✤ compute dynamic problem on the meshes as 

above...

✤ what can be said ? how to improve ?

✤ dynamic meshes
✤ needs space-time (finite element) discretization

✤ H needs to be recomputed

✤ adjoint problem is backward in time !!



2. The DWR-method

✤ Task: estimate the (discretization) error 
with respect to a given quantity

✤ Task: automatically construct efficient 
meshes to compute this quantity

idea (1):   the quantity is a functional on the solution space



u ∈V :
A(u,v) = F(v) ∀v ∈V

idea (2):   represent the functional by duality 
(c.f.  Aubin-Nitsche, Lagrange,...)

z ∈V :
A(v,z) = G(v) ∀v ∈V

estimate G(u)−G(uh) (G ∈V ∗)

G(u)−G(uh) = A(u−uh,z) = A(u−uh,z− zh)

suppose linear...

uh ∈Vh :
A(uh,v) = F(v) ∀v ∈Vh



error estimation

✤ many standard techniques can be used
✤ residual estimators

✤ hierarchical estimators

✤ recovery

✤ our proposal: use hierarchy
✤ I  patchwise higher order interpolation (B/R,...)

✤ II compute the finer solution(s) 

G(u)−G(uh)≈ G(uh/2)−G(uh) = A(uh/2−uh,zh/2− zh)



mesh adaptation

✤ needs to capture influence of local 
residuals on quantity of interest

✤ error density

G(u)−G(uh) =
Z

Ω
η(x)dx



example

model problem:

J(u) =
∂u

∂x
(x0)

dual problem:

−∆u = f in Ω,

u = 0 on ∂Ω.

−∆z = Jε in Ω,

z = 0 on ∂Ω.



J(u) − J(uh) =

(∇(u − uh),∇z) =

(∇(u − uh),∇z − vh) =

. . .∑

K

(∆uh + f, z − vh)K +

∑

K

1

2
([∂nuh], z − vh)∂K ≤

∑

K∈Th

ρKωK

ωK = ‖z − vh‖K

ρK = max(‖f + ∆uh‖K , h
−1/2

K ‖[∂nuh]‖∂K)

behaves like r−3



z

DWR=dual weighted residual

for comparison: energy estimator

behaves like second-order !!



J(u) − J(uh) =
1

2
L
′(uh, zh)(u − φh, z − ψh) + R,

L(u, z) = J(u) + f(z) − a(u)(z).

{

ρ(uh)(ψ) := f(ψ) − a(uh)(ψ)
ρ∗(zh)(φ) := J ′(uh)(φ) − a′(uh)(φ, zh)

J(u) − J(uh) = 1

2
ρ(uh)(z−ψh)
︸ ︷︷ ︸

primal

+ 1

2
ρ∗(zh)(u−φh)
︸ ︷︷ ︸

dual

+R.

a general approach

[1] R. Becker and R. Rannacher. Weighted a posteriori error control in FE methods. In e. a. H. G. Bock, 
editor, ENUMATH’97. World Sci. Publ., Singapore, 1995. 
[2] R. Becker and R. Rannacher. A feed-back approach to error control in finite element methods: Basic 
analysis and examples. East-West J. Numer. Math., 4:237–264, 1996. 
[3] R. Becker and R. Rannacher. An optimal control approach to a-posteriori error estimation. In A. Iserles, 
editor, Acta Numerica 2001, pages 1–102. Cambridege University Press, 2001.



pour Couplex

J(u)− J(uh) =
1
2

ρ(uh)(z−ψh)+
1
2

ρ∗(uh,zh)(u−φh)

✤ no linearization error

✤ approximation of weights



algorithm

✤ standard adaptive algorithm:         
SOLVE-ESTIMATE-MARK-REFINE

✤ patched meshes 

✤ approximation of weights
✤ ActaNumerica

✤ gendarmes

Vh ≈ Q1
h Wh ≈ Q2

2h
Ih : Vh→Wh natural

Topics

Application

General framework

Navier-Stokes (Q = {0})

Neumann control

Dirichlet control

Nonstationary control

Parameter estimation

Theoretical aspects

Optimization – . . .
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Approximation of the weights δx = x− ihx

• Analytic estimate

• More accurate approximation

Th = {K} T2h = {P}

δx ≈ δhxh := i(2)
2h xh − xh

z−ψh ≈ Ihzh− zh

do the mesh refinement on 2h
z−ψ2h ≈ zh− i2hzh



3. Time-dependent problems

with D. Meidner, M. Schmich, B. Vexler

✤ need all the data in space and time
✤ even for evaluation of estimator

✤ known problem in optimal control

✤ windowing/checkpointing for storage reduction

✤ generalization of DWR to time-dependent 
problems



storage reduction

✤ divide and conquer: replace storage by 
computation

✤ can be done optimally up to logs

✤ see Griewank/Walther for AD

✤ for optimization of parabolic equations
[1] R.  Becker, D.  Meidner, and B.  Vexler. Efficient numerical solution of parabolic optimization 

problems by finite element methods. Technical report, UPPA, 2005.



DWR for parabolic problems

✤ variational framework:
✤ space-time finite elements

✤ requires special care !

✤ use ‘patched time-steps’

✤ we need to distinguish between space and 
time

[1] M.  Schmich and B.  Vexler. Adaptivity with dynamic 
meshes for space-time finite element discretizations of 
parabolic equations. Technical report, RICAM, 2006.
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Fig. 4.1: Interpolation operators

Fig. 4.2: Mesh with patch structure

To give an impression of the terms which have to be evaluated for the presented
error estimators, we present for the cG(1)dG(0) discretization the explicit form of
the primal and dual residuals. With the notation U0 := ukh(0), Um := ukh

∣∣
Im

and

Z0 := zkh(0), Zm := zkh

∣∣
Im

, we obtain

ρ̃(ukh)(Πkzkh) =
M∑

m=1

{

(Um − Um−1, Zm − Zm−1)H +
km

2
a(Um)(Zm − Zm−1)

+

∫

Im

t − tm
km

(f, Zm − Zm−1)H dt

}

,

ρ̃∗(ukh, zkh)(Πkukh) =
M∑

m=1

{km

2
a′(Um)(Um − Um−1, Zm)

−
km

2
J ′

1(Um)(Um − Um−1)
}

,

ρ̃(ukh)(Πhzkh) =
M∑

m=1

{∫

Im

(f, i
(2)
2h Zm − Zm)H dt − kma(Um)(i(2)2h Zm − Zm)

− (Um − Um−1, i
(2)
2h Zm − Zm)H

}

− (U0 − u0, i
(2)
2h Z0 − Z0)H ,

Preliminary version – October 30, 2006



an example: reaction-diffusion

Adaptivity with Dynamic Meshes 15

4.2. Adaptive algorithm. Goal of the adaptation of the spatial and temporal
discretization has to be the equilibrated reduction of the corresponding discretization
errors. If a tolerance TOL is given, this can be done by refining each discretization as
long as the corresponding error estimator is larger than TOL

2 . In the sequel, we will
present an adaptive algorithm which balances the spatial and temporal discretization
error and keeps it balanced under refinement of the discretizations without the need
of a given tolerance TOL. We stop the calculation if the discretization has reached
the maximum number of allowed degrees of freedom Nmax.

Aim of the adaptive algorithm is to obtain a discretization such that

|ηh| ≈ |ηk|

and to keep this property during further refinement. To this end, we introduce an
equilibration factor c ≈ 1 − 5 and propose the Algorithm 4.1 presented below. In
every cycle of the algorithm, we select the cells for refinement for each discretization
to be adapted by means of local error indicators as mentioned above.

Algorithm 4.1 Adaptive refinement algorithm

1: Choose an initial space-time discretization Tk0,h0 and set n = 0.
2: loop
3: Compute the primal and dual solution (uknhn , zknhn).

4: if
∑Mn

m=0 Nm ≥ Nmax then

5: break
6: else

7: Evaluate the a posteriori error estimators ηkn and ηhn .
8: if |ηkn | > c|ηhn | then

9: Refine temporal discretization.
10: else if |ηhn | > c|ηkn | then
11: Refine spatial discretization.

12: else { 1
c ≤ |ηkn |

|ηhn | ≤ c}

13: Refine spatial and temporal discretization.
14: end if
15: Increase n.
16: end if
17: end loop

5. Numerical examples. In this section, the adaptive algorithm presented
above is applied to two numerical examples.

5.1. Example 1. The configuration for the first example is taken from [15]. It
describes the major part of combustion under the low Mach number hypothesis. Under
this assumption, the motion of the fluid becomes independent from temperature and
species concentration. Hence, one can solve the temperature and the species equation
alone specifying any solenoidal velocity field.

Introducing the dimensionless temperature θ = T−Tunburnt
Tburnt−Tunburnt

, denoting by Y the
species concentration, and assuming constant diffusion coefficients yields

∂tθ − ∆θ = ω(θ, Y ) in Ω × I,

∂tY −
1

Le
∆Y = −ω(θ, Y ) in Ω × I,

(5.1)

Preliminary version – October 30, 2006
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Fig. 5.4: Example 1: Reaction rate ω at t = 1.0, 20.0, 40.0, 60.0

[1] G. Akrivis, C. Makridakis, and R. Nochetto, A posteriori error estimates for the Crank-
Nicolson method for parabolic equations, Math. Comp., 75 (2006), pp. 511–531.

[2] R. Becker, Adaptive Finite Elements for Optimal Control Problems, Habilitationsschrift, In-
stitut für Angewandte Mathematik, Universität Heidelberg, Juni 2003.

[3] R. Becker, D. Meidner, and B. Vexler, Efficient numerical solution of parabolic optimiza-
tion problems by finite element methods, submitted to Optim. Methods Softw., (2005). in
revision.

[4] R. Becker and R. Rannacher, A feed-back approach to error control in finite element meth-
ods: Basic analysis and examples, East-West J. Numer. Math., 4 (1996), pp. 237–264.

[5] , An optimal control approach to a-posteriori error estimation, in Acta Numerica 2001,
A. Iserles, ed., Cambridge University Press, 2001, pp. 1–102.

[6] Z. Chen and J. Feng, An adaptive finite element algorithm with reliable and efficient error
control for linear parabolic problems, Math. Comput., 73 (2004), pp. 1167–1193.

[7] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, vol. 40 of Classics Appl.
Math., SIAM, Philadelphia, 2002.
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using the spaces V and H as given by (1.1). The function û is defined to fulfill the
prescribed Dirichlet boundary conditions as û

∣∣
ΓD

= (1, 0).
We consider the functional

J(u) =
1

60|Ω|

60∫

0

∫

Ω

ω(θ, Y ) dx dt

describing the mean reaction rate (5.2) and focus on reducing the error J(u)−J(ukh).
The corresponding dual equation for z = (zθ, zY ) has the following form:

−∂tz
θ − ∆zθ =

(
1

60|Ω|
+ zθ − zY

)
ω′

θ(θ, Y ) in Ω × I,

−∂tz
Y −

1

Le
∆zY =

(
1

60|Ω|
+ zθ − zY

)
ω′

Y (θ, Y ) in Ω × I,

(5.3)

where

ω′
θ(θ, Y ) =

β2

2Le

β
(
1 + α(θ − 1)

)2 Y e
β(θ−1)

1+α(θ−1) and ω′
Y (θ, Y ) =

β2

2Le
e

β(θ−1)
1+α(θ−1)

denote the derivatives of ω(θ, Y ) with respect to θ and Y , respectively. The “initial”
and boundary conditions for the dual equations are

zθ(60, x) = zY (60, x) = 0 in Ω

and

zθ = 0 on ΓD × I,

zY = 0 on ΓD × I,

∂nzθ = 0 on ΓN × I,

∂nzY = 0 on ΓN × I,

∂nzθ = −kzθ on ΓR × I,

∂nzY = 0 on ΓR × I.

First, we present the results of computation using the cG(1)dG(0) method. In
Table 5.1, we show the development of the discretization error and the a posteriori
error estimators during an adaptive run with local refinement in both types of dis-
cretizations. Here, M denotes the number of time steps and Nmax := maxNm denotes
the maximum number of nodes in the spatial meshes. The effectivity index given in
the last column of this table is defined as usual by

Ieff :=
J(u) − J(ukh)

ηk + ηh
.

It shows that the proposed error estimator provides quantitative information about
the discretization error. Table 5.1 also demonstrates the desired equilibration of the
different discretization errors and the sufficient quality of the error estimators.

A comparison of the relative error |J(u)−J(ukh)|
|J(u)| for the different refinement strate-

gies is depicted in Figure 5.2:

Preliminary version – October 30, 2006
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Fig. 5.5: Example 1: Corresponding meshes at t = 1.0, 20.0, 40.0, 60.0
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Table 5.1: Example 1: Local refinement with equilibration for cG(1)dG(0) discretiza-
tion

M Nmax ηk ηh ηk + ηh J(u) − J(ukh) Ieff

256 985 −7.8·10−04 4.1·10−05
−7.439 · 10−04

−1.703 · 10−03 2.2893
396 985 −7.4·10−04 2.0·10−04

−5.394 · 10−04
−1.413 · 10−03 2.6201

616 1427 −2.5·10−04
−3.3·10−04

−5.782 · 10−04
−8.718 · 10−04 1.5076

872 2309 −1.0·10−04
−1.4·10−04

−2.443 · 10−04
−4.013 · 10−04 1.6426

1370 3927 −5.0·10−05
−6.8·10−05

−1.180 · 10−04
−1.569 · 10−04 1.3300

1528 6927 −4.6·10−05
−2.8·10−05

−7.356 · 10−05
−8.630 · 10−05 1.1731

1772 14683 −4.0·10−05
−1.1·10−06

−5.154 · 10−05
−5.941 · 10−05 1.1527

• “uniform”: Here, we apply uniform refinement of both discretizations after
each run.

• “local fixed equilibration”: Here, we combine local refinement of both dis-
cretizations with the proposed equilibration strategy, but restrict ourselves
to one (locally refined) spatial mesh for the whole time interval.

• “local equilibration”: Here, we additionally allow the spatial meshes to change
in time.

It shows that the uniform refinement needs about 12 times the number of degrees of
freedom the local refinement needs to reach a relative error of 6 ·10−3 and even about
60 times the number of degrees of freedom the local refinement with spatial meshes
changing in time.
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k
h
)|

|J
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)|
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Fig. 5.2: Example 1: Comparison of different refinement strategies for cG(1)dG(0)
discretization

In the following, we present the results for the cG(1)cG(1) discretization. As in
the cG(1)dG(0) case, Table 5.2 shows the development of the discretization error and
the a posteriori error estimators during an adaptive run with local refinement in both
types of discretizations. M , Nmax and Ieff are defined as before. The table again
demonstrates the desired equilibration of the different discretization errors and the
sufficient quality of the error estimators.
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4. Inverse problems

✤ an example problem

✤ a systematic approach

✤ numerical sensitivities
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2.2. A simple example:

Find q ∈ R
1
2|

∫
Ω

ωu dx− C̄|2 −→ inf, ω > 0 (12)

−∆u = qf in Ω = (0, 1)2,

u = 0 on ∂Ω, f > 0
(13)

objective: compute q !
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u = S(q) = qu1, (14)

where u1 is the solution of the state equation (13) for q = 1, i.e.

−∆u1 = f in Ω

u1 = 0 on ∂Ω.
(15)

Therfore the optimal parameter is simply given by:

q = C̄µ, µ :=
1∫

Ω
ωu1 dx

. (16)

By virtue of the maximum principle, µ is well defined. Similarly, the

discrete optimal parameter is given by

qh = C̄µh, µh :=
1∫

Ω
ωu1h dx

, (17)

where u1h ∈ Vh is the solution of the discrte analogue of (15).
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Solution Operator

S : Q → V q "→ u (6)

S(q) ∈ û + V0 : a(S(q), q)(φ) = f (φ) ∀φ ∈ W0,

Reduced Functional

j(q) = J(S(q), q) (7)

Optimality condition for q ∈ Qad = convex closed subset

q ∈ Qad j ′(q)(δq − q) ≥ 0 δq ∈ Qad

solution operator:
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u = S(q) = qu1, (14)

where u1 is the solution of the state equation (13) for q = 1, i.e.

−∆u1 = f in Ω

u1 = 0 on ∂Ω.
(15)

Therfore the optimal parameter is simply given by:

q = C̄µ, µ :=
1∫

Ω
ωu1 dx

. (16)

By virtue of the maximum principle, µ is well defined. Similarly, the

discrete optimal parameter is given by

qh = C̄µh, µh :=
1∫

Ω
ωu1h dx

, (17)

where u1h ∈ Vh is the solution of the discrte analogue of (15).

with

optimal solution:

discrete solution:

Ritz projection:
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Now, the fundamental idea is to introduce the adjoint equation:

−∆y = −µω in Ω

y = 0 on ∂Ω.
(18)

Then we have, using the definitions of q, µ and (18):

q − qh = C̄µ− µ

∫

Ω

ωu1 dxqh

=

∫

Ω

ωuh dxµ + qh(∇u1,∇y)

= −(∇uh,∇y) + (qhf,∇y).

Therefore the error in parameter is realated to the residual ρ of the discrete

equation,

q − qh = ρ(y), ρ(φ) := (qhf, φ)− (∇uh,∇φ). (19)

adjoint problem:
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Now, the fundamental idea is to introduce the adjoint equation:

−∆y = −µω in Ω

y = 0 on ∂Ω.
(18)

Then we have, using the definitions of q, µ and (18):

q − qh = C̄µ− µ

∫

Ω

ωu1 dxqh

=

∫

Ω

ωuh dxµ + qh(∇u1,∇y)

= −(∇uh,∇y) + (qhf,∇y).

Therefore the error in parameter is realated to the residual ρ of the discrete

equation,

q − qh = ρ(y), ρ(φ) := (qhf, φ)− (∇uh,∇φ). (19)

q−qh=Cµ−µ
Z

Ω
ωu1 dxqh

=
Z

Ω
ωuh dxqh +qh(∇u1,∇y)

=−(∇uh,∇y)+(qh f ,y)
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Proposition 1 For the discretization of the simple example (12,13), we

have the a posteriori error estimate:

|q − qh| ≤ η :=
∑

K∈Th

ρKωK, (20)

with the cell residual and cell weights defined by:

ρK = ‖qhf + ∆uh‖K + 1
2h

−1/2
K ‖[∂nuh]‖∂K, (21)

ωK = ‖y − ihy‖K + h1/2
K ‖y − ihy‖∂K, (22)

where the second term in (21) involves the jump of the normal deriva-

tive over the interiori faces of the mesh and is understood to be zero on

boundary faces. The weights are local interpolation errors involving an

arbitrary interpolation operator ih : V → Vh.
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8. Parameter estimation

(with Boris Vexler)

Minimize 1
2‖C(u)− C0‖2

under the constraint a(u, q)(φ) = f (φ) ∀φ ∈ V.

• Functional estimate J − Jh useless

• Few paramaters:Q = Rl, l ≈ 10

• Gauß–Newton

objective: compute E(q) !
(E is a functional on control space)
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Unconstrained least squares formulation

Minimize
1

2
‖c(q)−C0‖2, c(q) := C(u(q)), J := c′(qk)

(JTJ)(qk+1 − qk) = −JT (c(qk) − C0)
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E(q)− E(qh) =
1

2
{ρ(δz) + ρ∗(δu)} + RGN + RNL

a′u(u, q)(φ, z) = − < J(J tJ)−1∇E(q), C ′(u)(φ) >

ρ(φ) := (f, φ)− a(uh, qh)(φ)

ρ∗(φ) := < Jh(J t
hJh)−1∇E(qh), C ′(uh)(φ) > +a′u(uh, qh)(φ, zh)

Remarks

• RNL is cubic

• RGN ≤ C ‖e‖ ‖C(u)‖

[1] R.  Becker and B.  Vexler. A posteriori error 
estimation for finite element discretizations of 
parameter identification problems. Numer. Math., 
96(3):435–459, 2004.
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How does this fit into the framework ?

Au = Bq, ‖Cu− C0‖ → inf

Then

c(q) = Jq − C0, J = CA−1B, (J∗J)q = J∗C0

M(u, z, q, λ) := b(q, z)−a(u, z)+ < Cu−C0, λ > +E(q),

λ ∈ R(J)

We find:

• Au = Bq

• Jq = PR(J)C0

• A∗z = C∗Jµ, λ = Jµ, (J∗J)µ = E
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Example

−q0∆u + q1u = 2 in Ω,

u = 0 on ∂Ω.

C1(u) = u(0.5, 0.5)− u1, C2(u) =

∫

Ω

u− u2
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numerical sensitivities

✤ there is a more general approach:
✤ functionals depending on control and state

✤ inequality constraints

✤ numerical sensitivities

[1] R.   Becker and B.   Vexler. Mesh refinement and numerical 
sensitivity analysis for parameter calibration of partial differential 
equations. J. Comp. Phs., 206(1):95–110, 2005.

[2] R.  Griesse and B.  Vexler. Numerical sensitivity analysis for the 
quantity of interest in pde-constrained optimization. SIAM Journal 
on Scientific Computing, 2007.



an example

J(u, c) =
1

2

n∑

i=1

|Ci(u) − C̄i|
2

Ci = measurements of p, v







−ν∆v + v · ∇v + ∇p = 0,

div v = 0,

v =
∑m

i=1
qigi on Γ

✤ (How to solve this ?)

✤ What are the most 
important modes ?

✤ What are most important 
mesuraments ?

consider modes/mesures as “parameters”...
compute (relaticve) condition numbers



5. Convergence of adaptive 
methods

• few results known for Poisson’s equation

• much less known for NON-Poisson 

• nothing known for DWR

‣ we need more theory !



what is the problem ?

✤ do adaptive FEM-discretizations converge at 
all ?

✤ at what speed ? (what means ‘speed’ ?)

✤ are these questions useful for development 
of algorithms ?



what we have

✤ Dörfler/Verfürth: P1, bulk chasing: 
convergence 

✤ Cohen/Dahmen/de Vore: bulk chasing for 
wavelets: quasi-optimal convergence

✤ Morin/Nochetto /Siebert: P1, newest 
vertex, data oscillation: convergence

✤ Binev/Dahmen/de Vore--Stevenson: bulk 
chasing for P1, newest vertex: quasi-
optimal convergence



what we do not have

✤ non-nested refinement

✤ non-conforming, mixed FEM

✤ hp- methods

✤ DWR-method

✤ non bulk chasing algorithm



A new algorithm: the 
Gendarme Algorithm

✤ as bad as the others, but more complex (nearly)

✤ two estimators

✤ two meshes

✤ nested spaces

✤ quasi-optimal convergence



The Gendarme Algorithm

✤ do a global refinement 

✤ if                                             refine  “osc”

✤ else  use simple estimator to refine

THE GENDARME ALGORITHM FOR ADAPTIVE MESH REFINEMENT 7

Let α > 0, σ < 1, and 0 < θ < 1 be given.
(17)




(0) T 0 given, k = 0,

(1) T k+1 := Rglob(T k), compute uk = RVk
u and uk+1 = RVk+1

u,

(2) if ‖|uk+1 − uk|‖2 ≤ α η(2)(Vk) then

chose an admissible mesh T ⊃ Tk with minimal complexity such that

osc(T ) ≤ σ η(2)(V k)

set T k+1 = T and go to (1);

(3) find a set τI ⊂ δI of minimal cardinality such that
∑
i∈τI

η(1)
i ≥ θ

∑
i∈δI

η(1)
i ,

T k+1 := Rloc(T k,K) with K = ∪i∈τI supp(δφi) and go to (1).

We state a first result about convergence of the algorithm.

Lemma 3. Suppose that α < 1/Cη, θ < 1/(C1C2), and σ < 1/Cη − α.
Then the iterates produced by the gendarme algorithm converge towards
the solution: limn→∞ un = u.

Proof. First, let us suppose that condition (2) is only fulfilled finitely
many times. The refinement condition in step (3) and Lemma 1 lead
to:

‖|uk+1 − uk+1|‖2 = ‖|uk+1 − uk|‖2 − ‖|uk+1 − uk|‖2

≤ (1− θC1C2)‖|uk+1 − uk|‖2,

since

‖|uk+1 − uk|‖2 ≤ C2 η(1)(Vk+1, Vk)

≤ C2θ η(1)(Vk+1, Vk)

≤ C2θC1 ‖|uk+1 − uk|‖2.

Adding the condition of step (3) and setting θ′ := (1 − θC1C2) < 1
gives us:

‖|u− uk+1|‖2 = ‖|u− uk+1|‖2 + ‖|uk+1 − uk+1|‖2

= ‖|u− uk|‖2 − ‖|uk+1 − uk|‖2 + ‖|uk+1 − uk+1|‖2

≤ ‖|u− uk|‖2 − (1− θ)‖|uk+1 − uk|‖2

≤ (1− α(1− θ′))‖|u− uk|‖2

which leads to geometric reduction with factor (1− α(1− θ′)) < 1.
Now suppose the condition in step (2) is fulfilled infinite many times,

say at iterations (kl)l.

. . .⊂Vk−1 ⊂Vk ⊂Vk+1 ⊂ . . .

. . . ∩ . . .

. . .⊂Vk−1 ⊂Vk ⊂Vk+1 ⊂ . . .
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Theorem 6. Let for s > 0 u ∈ As. There exists a constant C such for
ε > 0 the following holds. If the gendarme algorithm terminates with
error ‖|u− uV |‖2 ≤ ε then the dimensions N of V is bounded by:

(28) N ≤ Cε−1/s.

Proof. First we consider an iteration with condition (3) of the algorithm
satisfied.
We have to prove the following. Let Ṽ be a space such that Vk−1 ⊂ Ṽ
and ‖|u− û|‖ ≤ ‖|u− uk|‖. Then

(29) dim Vk ≤ C dim Ṽ .

We set V̂ := Ṽ ∩ Vk. Let us denote by δ̂I and δIk the index sets in the
hierarchical basis of Vk which lead to V̂ and Vk, respectively. Suppose
for a moment that there holds

(30) ‖|uk − û|‖2 ≤ c ‖|uk − uk|‖2.

Then we have with Lemma 1

C2

∑

i∈δI\ bδI

ρ2
i ≤ ‖|uk − û|‖2 ≤ c ‖|uk − uk|‖2 ≤ cC1

∑

i∈δI\δIk

ρ2
i

It follows that

#δ̂I ≥ C#δIk,

which implies (29). It remains to show (30). !

5. Simultanuous control of discretization and iteration
errors

6. Non-conforming finite elements

References
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Ṽk := Vk + Vk. Due to (19) we have that φ(Ṽk) ≤ Cφ φ(Vk) ≤ ρk such

that by construction Ṽk ∈ V̂k. Therfore we have

dim Vk − dim Vk−1 ≤ Calg (dim Ṽk − dim Vk−1)

≤ Calg (dim Vk − dim V0)

≤ C(ρk)−1/s.

The second inequality follows from the fact that a basis function from
Ṽk which is not in Vk−1 has to be in Vk. !

Proof of the theorem. Since n is the first iteration counter such that
(24) is satisfied, we have ρn−1 ≥ ε. Summing up the estimate of the
lemma we have

dim Vn − dim V0 ≤ C
n∑

k=1

ρ−k/s.

Next we estimate by the geometric series

n∑

k=1

ρ−k/s = ρ−n/s
n∑

k=1

ρ(n−k)/s = ρ−n/s
n−1∑

k=0

ρl/s

≤ ρ−(n−1)/s ρ

1− ρ1/s

≤ Cε−1/s.

This completes the proof !

4. Conforming finite elements on quadrilateral meshes

In order to apply Theorem 4 we have to check all the assumptions.
Choosing as error functional

(26) φ(V ) := ‖|u−RV u|‖2,

the monotonicity condition (19) follows from the Galerkin orthogonal-
ity (with constant Cφ = 1). It remains to show that the iterates produce
quasi-optimal complexity in each step, that is that(ON) holds.

The approximability conditions becomes a regularity condition for
the exact solution. We define the approximation class

(27) As := {u ∈ H1
0 (Ω) : sup

N∈N
N s inf

V ∈VN

‖|u− v|‖2 < +∞}.

Since Rv is a projector this definition is equivalent to (21) with the
error functional φ defined by (26).
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2.3. Hierarchical and residual error estimators. Let Ṽ ⊂ V̂ be
nested spaces and Ṽ = V̂ ⊕ δV . For a function ũ ∈ Ṽ we define the
residual

(11) ρi(ũ) :=

∫

Ω

fδφi dx−
∫

Ω

∇ũ ·∇δφi dx.

A natural estimator for the difference of the error between the two
spaces is:

(12) η(1)(Ṽ , V̂ ) :=
∑

i∈δI

ρ2
i (ReV u).

The estimator gives a lower and an upper bound for the error.

Lemma 1. There exist constants C1 and C2 such that for nested spaces
Ṽ ⊂ V̂ there holds:

(13) C1η
(1)(Ṽ , V̂ ) ≤ ‖|û− ũ|‖2 ≤ C2η

(1)(Ṽ , V̂ ).

Proof. We denote by ωi = supp(δφi) the support of the i-the test func-
tion. First we prove the lower bound. We estimate

ρi =

∫

Ω

∇(û− ũ) ·∇δφi dx ≤ ‖|û− ũ|‖ωi ‖|δφi|‖

≤ HB2‖|û− ũ|‖ωi .

It follows with (8) that
∑

i∈δI

ρ2
i ≤ (HB2)

2
∑

i∈δI

‖|û− ũ|‖ωi ≤ (HB2)
2HB3

∑

K∈eT

‖|û− ũ|‖K .

For the upper bound we write

û = πû + δu, δu =
∑

i∈δI

δci δφi.

and proceed as follows:

‖|û− ũ|‖2 =

∫

Ω

∇(û− ũ) ·∇δu dx =
∑

i∈δI

δciρi

≤
(

∑

i∈δI

δc2
i

)1/2 (
∑

i∈δI

ρ2
i

)1/2

.

But we have by (9) and (10) with ṽ = πû− û that
∑

i∈δI

δc2
i ≤ 1/HB4‖|δu|‖2 ≤ 1/(HB4(1− β2)) ‖|û− ũ|‖2.

Combining the last estimates yields the result. !

6 ROLAND BECKER

The bounds of Lemma 1 are local in the sense that only the residuals
with respect to the additional basis functions are needed.

In addition to η(1) we need a second error estimator. We use the
standard residual error estimator defined by

(14) η(2)(Ṽ ) :=
∑

K∈eT

R2
K , R2

K = h2
K‖f + ∆ũ‖2

K +
1

2
hK‖[

∂ũ

∂n
]‖2

∂K\∂Ω.

Lemma 2. The estimator η(2) yields an upper bound for the error:

(15) ‖|u− ũ|‖2 ≤ η(2)(Ṽ ).

Let us denote by PeV f a piecewise polynomial approximation of f . Then
there is constant Cη such that

(16) η(2)(Ṽ ) ≤ Cη‖|u−ũ|‖2+osc(T̃ ), osc(T̃ ) :=
∑

K∈eT

h2
K‖f−PeV f‖2

K .

The proof uses standard arguments of a posteriori error analysis [10].

2.4. The gendarme algorithm. The main idea of the algorithm is
to compare a coarse grid and a fine grid solution in order to optimize
the mesh. Since the fine mesh is used to control the mesh adaptation
we call it gendarme.

There are two possibilities. First, if the fine grid solution is a signi-
facant better approximation to the true solution than the coarse grid
solution, it is save to use a simple error estimator based on the differ-
ence to adapt the mesh. Second, if this is not the case, we need to
control the oscillations, which also yields a simple refinement criterion.
In order to distinguish between both cases, we use standard a posteri-
ori error estimators yielding upper and lower bounds up to oscillation
terms.

The resulting algorithms reads as follows.
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we need:


