The DWR method for

 numerical simulations related to nuclear waste disposals Roland BeckerLaboratoire de Mathématiques Appliquées Université de Pau et de Pays de l'Adour

joint work with

Malte Braack (Universität Kiel), Dominik Meidner (Universität Heidelberg), Boris Vexler (RICAM Linz)
I.
2.
3.
4.
5.

The couplex I - benchmark The DWR-method
Time-dependent problems
Inverse problems
Convergence of adaptive methods

ı. The couplex i-benchmark

\& benchmark definition
of our tool: Gascoigne
some thoughts about adaptivity

benchmark definition: couplex I

$$
\begin{gathered}
R_{i} \omega\left(\frac{\partial C_{i}}{\partial t}+\lambda_{i} C_{i}\right)-\nabla \cdot\left(\mathbf{D}_{i} \nabla C_{i}\right)+\mathbf{u} \cdot \nabla C_{i}=f_{i} \\
\mathbf{u}=-K \nabla H \quad \nabla \cdot(K \nabla H)=0
\end{gathered}
$$

+ boundary conditions...
- linear problem
- tremenduous scales
- long-time integration
- rection-diffusion-advection with changing regimes

weak formulation

Find (C, H) in $\left(C_{0}, H_{0}\right)+V \times W$ such that:

$$
\begin{array}{cc}
a(C, \phi)+b(C, H, \phi)=l(\phi) & \forall \phi \in V \\
d(H, \psi)=0 & \forall \psi \in W \\
& a(C, \phi):=\left\langle\left(C_{t}+\lambda C\right), \phi\right\rangle+\langle K \nabla C, \nabla \phi\rangle \\
b(C, H, \phi):=-\langle K \nabla H \cdot \nabla C, \nabla \phi\rangle \\
d(H, \psi):=\langle K \nabla H, \nabla \psi\rangle
\end{array}
$$

$$
\begin{array}{rrr}
u=(C, H), & v=(\phi, \psi), \quad X=V \times W \\
u \in u_{0}+X_{0}: \quad A(u, v)=F(v) \quad \forall v \in X
\end{array}
$$

http://www.numerik.uni-kiel.de/~mabr/gascoigne/index.html
of adaptive mesh refinement
quad (hex) - meshes with hanging nodes
Newton, multigrid
\& flexibility / modelling
of discretization: Qı, Q2 with stabilization

\& local refinement with hanging nodes

multigrid

LPS - local projection stabilization

\downarrow similar to the schemes of Guermond, Codina, Burman,...

[1] R. Becker and M. Braack. A finite element pressure gradient stabilization for the Stokes equations based on local pro jections. Calcolo, 38(4):173-199, 2001.

starting mesh

hydrodynamic load H

adaptive strategy I

What quantity(ies) to compute ?

1.6 Output requirements

The following output quantities are expected from the simulations(both tables and graphical representations):

- Contour levels of C_{i} at times 200, 10110, 50110, $10^{6}, 10^{7}$ years (the following level values should be used: $10^{-12}, 10^{-10}, 10^{-8}, 10^{-6}, 10^{-4}$);
- Pressure field (10 values uniformly distributed between 180 and 340;
- Darcy velocity field, along the 3 vertical lines given by $x=50, x=12500, x=20000$, using 100 points along each line;
- Places where the Darcy velocity is zero;
- Cumulative total flux through the top and the bottom clay layer boundaries, as a function of time;
- Cumulative total fluxes through the left boundaries of the dogger and limestone layers;

2ne discretization grid of the domains and the time stepping used in the simulations should also be given.

$$
\begin{aligned}
J(t) & =\int_{\Gamma} K \frac{\partial C(t)}{\partial n} d s \\
& =\int_{\partial \Omega} z K \frac{\partial C(t)}{\partial n} d s \quad\left(\left.z\right|_{\partial \Omega \backslash \Gamma}=0\right) \\
& =\int_{\Omega} K \nabla C \cdot \nabla z d x .
\end{aligned}
$$

relates the functional to the operator !

stationary problem

suppose we are interested in mean total flux
equations are linear, stationary coefficients

- time-derivative drop out

$$
\begin{array}{r}
\bar{J}:=\frac{1}{T} \int_{0}^{T} J(t) d t=J(\bar{C}) \\
\bar{C}:=\frac{1}{T} \int_{0}^{T} C(t) d t
\end{array}
$$

$\begin{array}{cc}\text { Find }(\bar{C}, \bar{H}) \text { in }\left(\bar{C}_{0}, \bar{H}_{0}\right)+\bar{V} \times \bar{W} \text { such that: } \\ \bar{a}(\bar{C}, \phi)+b(\bar{C}, \bar{H}, \phi)=l(\phi) & \forall \phi \in \bar{V} \\ d(\bar{H}, \psi)=0 & \forall \psi \in \bar{W}\end{array}$

stationary problem

of simplify notation: drop overline

$$
J(u)=A^{\prime}(u)(u, z) \approx F(z)-A(u)(z)
$$

$$
\begin{array}{r}
z \in z_{0}+X \\
A^{\prime}(u)(v, z)=0 \quad \forall v \in X
\end{array}
$$

$$
\begin{array}{r}
z=(D, G) \\
a(\phi, D)+b_{C}(\phi, H, D)=0 \\
b_{H}(C, \psi, D)+d(\psi, G)=0
\end{array}
$$

influence sur G

> time-averaged solution

dual concentration

dual pressure

sequence of meshes time-averaged pb

back to the full problem

of static adapted meshes
compute dynamic problem on the meshes as above...
what can be said ? how to improve ?
dynamic meshes
\% needs space-time (finite element) discretization
\% H needs to be recomputed adjoint problem is backward in time !!

2. The DWR-method

Task: estimate the (discretization) error with respect to a given quantity

Task: automatically construct efficient meshes to compute this quantity
idea (1): the quantity is a functional on the solution space

$$
\begin{array}{ll}
& u \in V: \\
A(u, v)=F(v) & \forall v \in V
\end{array}
$$

$$
\begin{array}{r}
u_{h} \in V_{h}: \\
A\left(u_{h}, v\right)=F(v) \quad \forall v \in V_{h}
\end{array}
$$

suppose linear...
estimate $\quad G(u)-G\left(u_{h}\right) \quad\left(G \in V^{*}\right)$
idea (2): represent the functional by duality (c.f. Aubin-Nitsche, Lagrange,...)

$$
A(v, z)=G(v) \quad \begin{aligned}
& z \in V: \\
& \quad \forall v \in V
\end{aligned}
$$

$$
G(u)-G\left(u_{h}\right)=A\left(u-u_{h}, z\right)=A\left(u-u_{h}, z-z_{h}\right)
$$

error estimation

of many standard techniques can be used
\% residual estimators
$\%$ hierarchical estimators
recovery
our proposal: use hierarchy
\% I patchwise higher order interpolation ($\mathrm{B} / \mathrm{R}, \ldots$)
\% II compute the finer solution(s)

$$
G(u)-G\left(u_{h}\right) \approx G\left(u_{h / 2}\right)-G\left(u_{h}\right)=A\left(u_{h / 2}-u_{h}, z_{h / 2}-z_{h}\right)
$$

mesh adaptation

needs to capture influence of local residuals on quantity of interest
error density

$$
G(u)-G\left(u_{h}\right)=\int_{\Omega} \eta(x) d x
$$

example

model problem:

$$
\begin{array}{rll}
-\Delta u & =f \quad \text { in } \Omega \\
u & =0 & \text { on } \partial \Omega
\end{array}
$$

$$
J(u)=\frac{\partial u}{\partial x}\left(x_{0}\right)
$$

dual problem:

$$
\begin{gathered}
-\Delta z=J_{\varepsilon} \quad \text { in } \Omega \\
z=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

$$
\begin{aligned}
& J(u)-J\left(u_{h}\right)= \\
& \left(\nabla\left(u-u_{h}\right), \nabla z\right)= \\
& \left(\nabla\left(u-u_{h}\right), \nabla z-v_{h}\right)= \\
& \ldots \\
& \sum_{K}\left(\Delta u_{h}+f, z-v_{h}\right)_{K}+ \\
& \sum_{K} \frac{1}{2}\left(\left[\partial_{n} u_{h}\right], z-v_{h}\right)_{\partial K} \leq \\
& \sum_{K \in \mathcal{T}_{h}} \rho_{K} \omega_{K} \\
& \omega_{K}=\left\|z-v_{h}\right\|_{K} \\
& \rho_{K}=\max \left(\left\|f+\Delta u_{h}\right\|_{K}, h_{K}^{-1 / 2}\left\|\left[\partial_{n} u_{h}\right]\right\|_{\partial K}\right)
\end{aligned}
$$

DWR=dual weighted residual

a general approach

$$
\begin{gathered}
J(u)-J\left(u_{h}\right)=\frac{1}{2} \mathcal{L}^{\prime}\left(u_{h}, z_{h}\right)\left(u-\phi_{h}, z-\psi_{h}\right)+R, \\
\mathcal{L}(u, z)=J(u)+f(z)-a(u)(z) . \\
\left\{\begin{array}{l}
\rho\left(u_{h}\right)(\psi):=f(\psi)-a\left(u_{h}\right)(\psi) \\
\rho^{*}\left(z_{h}\right)(\phi):=J^{\prime}\left(u_{h}\right)(\phi)-a^{\prime}\left(u_{h}\right)\left(\phi, z_{h}\right)
\end{array}\right. \\
J(u)-J\left(u_{h}\right)=\frac{1}{2} \underbrace{\rho\left(u_{h}\right)\left(z-\psi_{h}\right)}_{\text {primal }}+\frac{1}{2} \underbrace{\rho^{*}\left(z_{h}\right)\left(u-\phi_{h}\right)}_{\text {dual }}+R .
\end{gathered}
$$

[1] R. Becker and R. Rannacher. Weighted a posteriori error control in FE methods. In e. a. H. G. Bock, editor, ENUMATH'97. World Sci. Publ., Singapore, 1995.
[2] R. Becker and R. Rannacher. A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J. Numer. Math., 4:237-264, 1996.
[3] R. Becker and R. Rannacher. An optimal control approach to a-posteriori error estimation. In A. Iserles, editor, Acta Numerica 2001, pages 1-102. Cambridege University Press, 2001.

pour Couplex

$$
J(u)-J\left(u_{h}\right)=\frac{1}{2} \rho\left(u_{h}\right)\left(z-\psi_{h}\right)+\frac{1}{2} \rho^{*}\left(u_{h}, z_{h}\right)\left(u-\phi_{h}\right)
$$

no linearization error
\& approximation of weights

algorithm

\% standard adaptive algorithm: SOLVE-ESTIMATE-MARK-REFINE

$$
\begin{gathered}
V_{h} \approx Q_{h}^{1} \quad W_{h} \approx Q_{2 h}^{2} \\
I_{h}: V_{h} \rightarrow W_{h} \quad \text { natural }
\end{gathered}
$$

patched meshes

approximation of weights

ActaNumerica

gendarmes

do the mesh refinement on $2 h$

$$
z-\psi_{2 h} \approx z_{h}-i_{2 h} z_{h}
$$

3. Time-dependent problems

with D. Meidner, M. Schmich, B.Vexler

need all the data in space and time

even for evaluation of estimator
known problem in optimal control
windowing/checkpointing for storage reduction generalization of DWR to time-dependent problems

storage reduction

\& divide and conquer: replace storage by computation

of can be done optimally up to logs
\& see Griewank/Walther for AD
\& for optimization of parabolic equations
[1] R. Becker, D. Meidner, and B. Vexler. Efficient numerical solution of parabolic optimization problems by finite element methods. Technical report, UPPA, 2005.

DWR for parabolic problems

[1] M. Schmich and B. Vexler. Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations. Technical report, RICAM, 2006.

of variational framework:

space-time finite elements
requires special care !
use 'patched time-steps'

Fig. 4.1: Interpolation operators
we need to distinguish between space and time

an example: reaction-diffusion

$$
\begin{aligned}
\partial_{t} \theta-\Delta \theta & =\omega(\theta, Y) & \text { in } \Omega \times I \\
\partial_{t} Y-\frac{1}{\mathrm{Le}} \Delta Y & =-\omega(\theta, Y) & \text { in } \Omega \times I
\end{aligned}
$$

compute:

$$
J(u)=\frac{1}{60|\Omega|} \int_{0}^{60} \int_{\Omega} \omega(\theta, Y) d x d t
$$

Fig. 5.5: Example 1: Corresponding meshes at $t=1.0,20.0,40.0,60.0$

4. Inverse problems

of an example problem
of a systematic approach
\& numerical sensitivities

an example problem

Find

$$
q \in \mathbb{R}
$$

$$
\frac{1}{2}\left|\int_{\Omega} \omega u d x-\bar{C}\right|^{2} \quad \longrightarrow \inf , \quad \omega>0
$$

$$
-\Delta u=q f \quad \text { in } \Omega=(0,1)^{2}
$$

$$
u=0 \quad \text { on } \partial \Omega, \quad f>0
$$

objective: compute q!
solution operator: $\quad S: Q \rightarrow V \quad q \mapsto u$

$$
\begin{aligned}
& u=S(q)=q u_{1}, \\
& -\Delta u_{1}=f \quad \text { in } \Omega \\
& \text { with } \\
& u_{1}=0 \quad \text { on } \partial \Omega . \\
& \text { optimal solution: } q=\bar{C} \mu, \quad \mu:=\frac{1}{\int_{\Omega} \omega u_{1} d x} .
\end{aligned}
$$

discrete solution: $\quad q_{h}=\bar{C} \mu_{h}, \quad \mu_{h}:=\frac{1}{\int_{\Omega} \omega u_{1 h} d x}$,
Ritz projection: $\quad u_{1 h} \in V_{h}$
adjoint problem:

$$
\begin{aligned}
-\Delta y & =-\mu \omega & & \text { in } \Omega \\
y & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

$$
\begin{aligned}
q-q_{h} & =\bar{C} \mu-\mu \int_{\Omega} \omega u_{1} d x q_{h} \\
& =\int_{\Omega} \omega u_{h} d x q_{h}+q_{h}\left(\nabla u_{1}, \nabla y\right) \\
& =-\left(\nabla u_{h}, \nabla y\right)+\left(q_{h} f, y\right)
\end{aligned}
$$

$$
q-q_{h}=\rho(y), \quad \rho(\phi):=\left(q_{h} f, \phi\right)-\left(\nabla u_{h}, \nabla \phi\right)
$$

Proposition 1 For the discretization of the simple example (12,13), we have the a posteriori error estimate:

$$
\begin{equation*}
\left|q-q_{h}\right| \leq \eta:=\sum_{K \in \mathcal{T}_{h}} \rho_{K} \omega_{K} \tag{20}
\end{equation*}
$$

with the cell residual and cell weights defined by:

$$
\begin{align*}
\rho_{K} & =\left\|q_{h} f+\Delta u_{h}\right\|_{K}+\frac{1}{2} h_{K}^{-1 / 2}\left\|\left[\partial_{n} u_{h}\right]\right\|_{\partial K} \tag{21}\\
\omega_{K} & =\left\|y-i_{h} y\right\|_{K}+h_{K}^{1 / 2}\left\|y-i_{h} y\right\|_{\partial K} \tag{22}
\end{align*}
$$

where the second term in (21) involves the jump of the normal derivative over the interiori faces of the mesh and is understood to be zero on boundary faces. The weights are local interpolation errors involving an arbitrary interpolation operator $i_{h}: V \rightarrow V_{h}$.

a systematic approach

$$
\begin{gathered}
\text { Minimize } \\
\frac{1}{2}\left\|C(u)-C_{0}\right\|^{2} \\
\text { under the constraint } \\
a(u, q)(\phi)=f(\phi) \quad \forall \phi \in V .
\end{gathered}
$$

- Functional estimate $J-J_{h}$ useless
- Few paramaters: $Q=\mathbb{R}^{l}, l \approx 10$
- Gauß-Newton
objective: compute E(q) !
(E is a functional on control space)

Unconstrained least squares formulation

Minimize $\quad \frac{1}{2}\left\|c(q)-C_{0}\right\|^{2}, \quad c(q):=C(u(q)), \quad J:=c^{\prime}\left(q_{k}\right)$

$$
\left(J^{T} J\right)\left(q_{k+1}-q_{k}\right)=-J^{T}\left(c\left(q_{k}\right)-C_{0}\right)
$$

$$
E(q)-E\left(q_{h}\right)=\frac{1}{2}\left\{\rho(\delta z)+\rho^{*}(\delta u)\right\}+R_{G N}+R_{N L}
$$

$$
a_{u}^{\prime}(u, q)(\phi, z)=-<J\left(J^{t} J\right)^{-1} \nabla E(q), C^{\prime}(u)(\phi)>
$$

$$
\begin{aligned}
\rho(\phi) & :=(f, \phi)-a\left(u_{h}, q_{h}\right)(\phi) \\
\rho^{*}(\phi) & :=<J_{h}\left(J_{h}^{t} J_{h}\right)^{-1} \nabla E\left(q_{h}\right), C^{\prime}\left(u_{h}\right)(\phi)>+a_{u}^{\prime}\left(u_{h}, q_{h}\right)\left(\phi, z_{h}\right.
\end{aligned}
$$

Remarks

- $R_{N L}$ is cubic
- $R_{G N} \leq C\|e\|\|C(u)\|$
[1] R. Becker and B. Vexler. A posteriori error estimation for finite element discretizations of parameter identification problems. Numer. Math., 96(3):435-459, 2004.

How does this fit into the framework ?

$$
A u=B q, \quad\left\|C u-C_{0}\right\| \rightarrow \inf
$$

Then

$$
c(q)=J q-C_{0}, \quad J=C A^{-1} B, \quad\left(J^{*} J\right) q=J^{*} C_{0}
$$

$$
\begin{gathered}
\mathcal{M}(u, z, q, \lambda):=b(q, z)-a(u, z)+<C u-C_{0}, \lambda>+E(q), \\
\lambda \in R(J)
\end{gathered}
$$

We find:

- $A u=B q$
- $J q=P_{R(J)} C_{0}$
- $A^{*} z=C^{*} J \mu, \quad \lambda=J \mu, \quad\left(J^{*} J\right) \mu=E$

Example

$$
\begin{aligned}
-q_{0} \Delta u+q_{1} u & =2 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

$$
C_{1}(u)=u(0.5,0.5)-\bar{u}_{1}, \quad C_{2}(u)=\int_{\Omega} u-\bar{u}_{2}
$$

Vausinole

numerical sensitivities

of there is a more general approach:
\& functionals depending on control and state inequality constraints
\& numerical sensitivities
[1] R. Becker and B. Vexler. Mesh refinement and numerical sensitivity analysis for parameter calibration of partial differential equations. J. Comp. Phs., 206(1):95-110, 2005.
[2] R. Griesse and B. Vexler. Numerical sensitivity analysis for the quantity of interest in pde-constrained optimization. SIAM Journal on Scientific Computing, 2007.

an example

$$
\begin{cases}-\nu \Delta v+v \cdot \nabla v+\nabla p=0, & J(u, c)=\frac{1}{2} \sum_{i=1}^{n}\left|C_{i}(u)-\bar{C}_{i}\right|^{2} \\ \operatorname{div} v=0, & C_{i}=\text { measurements of } p, v \\ v=\sum_{i=1}^{m} q_{i} g_{i} \text { on } \Gamma\end{cases}
$$

\& (How to solve this ?)
\&f What are the most important modes?

What are most important mesuraments?

$$
\begin{aligned}
& \text { consider modes/mesures as "parameters"... } \\
& \text { compute (relaticve) condition numbers }
\end{aligned}
$$

5. Convergence of adaptive methods

- few results known for Poisson's equation
- much less known for NON-Poisson
- nothing known for DWR
- we need more theory!

what is the problem?

do adaptive FEM-discretizations converge at all ?
at what speed ? (what means 'speed' ?)
are these questions useful for development of algorithms ?

what we have

\& Dörfler/Verfürth: Pı, bulk chasing: convergence
\& Cohen/Dahmen/de Vore: bulk chasing for wavelets: quasi-optimal convergence
\& Morin/Nochetto /Siebert: PI, newest vertex, data oscillation: convergence
of Binev/Dahmen/de Vore--Stevenson: bulk chasing for P_{I}, newest vertex: quasioptimal convergence

what we do not have

\& non-nested refinement
of non-conforming, mixed FEM
of hp^{-}methods
DWR-method
non bulk chasing algorithm

A new algorithm: the Gendarme Algorithm

of as bad as the others, but more complex (nearly)
two estimators
two meshes
nested spaces
quasi-optimal convergence

The Gendarme Algorithm

$$
\begin{aligned}
& \ldots \subset V_{k-1} \subset V_{k} \subset V_{k+1} \subset \ldots \\
& \ldots \\
& \ldots \subset \overline{V_{k-1}} \subset \overline{V_{k}} \subset \overline{V_{k+1}} \subset \ldots
\end{aligned}
$$

do a global refinement
if $\left\|\overline{u_{k+1}}-u_{k} \mid\right\|^{2} \leq \alpha \eta^{(2)}\left(V_{k}\right)$ refine "osc"
else use simple estimator to refine

$$
\begin{gathered}
C_{1} \eta^{(1)}(\widetilde{V}, \widehat{V}) \leq\|\mid \widehat{u}-\widetilde{u}\| \|^{2} \leq C_{2} \eta^{(1)}(\widetilde{V}, \widehat{V}) . \\
\|\mid u-\widetilde{u}\|^{2} \leq \eta^{(2)}(\widetilde{V})
\end{gathered}
$$

we need:

$$
\eta^{(2)}(\widetilde{V}) \leq C_{\eta}\||u-\widetilde{u}|\|^{2}+\operatorname{osc}(\widetilde{\mathcal{T}})
$$

$$
\operatorname{osc}(\widetilde{\mathcal{T}}):=\sum_{K \in \widetilde{\mathcal{T}}} h_{K}^{2}\left\|f-P_{\widetilde{V}} f\right\|_{K}^{2} .
$$

$$
\mathcal{A}^{s}:=\left\{u \in H_{0}^{1}(\Omega): \sup _{N \in \mathbb{N}} N^{s} \inf _{V \in \mathcal{V}_{N}}\||u-v|\|^{2}<+\infty\right\} .
$$

Theorem 6. Let for $s>0 u \in \mathcal{A}^{s}$. There exists a constant C such for $\varepsilon>0$ the following holds. If the gendarme algorithm terminates with error $\left\|\left|u-u_{V}\right|\right\|^{2} \leq \varepsilon$ then the dimensions N of V is bounded by:

$$
\begin{equation*}
N \leq C \varepsilon^{-1 / s} . \tag{28}
\end{equation*}
$$

