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Position of the problem

1. Example We consider particles moving continuously along a
path x(t), of mass 1, under a potential field U . The trajectory is
given by the Newton equation

d2

dt2
x(t) = −∇U(x).

2 Assumption: the trajectories are smooth.
Example

3 Work in Physics from L. Nottale: no hypothesis concerning the
differentiability. → Natural trajectories are everywhere
non-differentiable.
Nottale’s idea: take into account this loss of differentiability on
the micro-scale.

4 Idea Extension of the notion of derivative.
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5 Non-differentiable embedding

• an ODE is the restriction of a more general “differentiable”
equation.
→ Non-differentiable embedding of ODE.

• Conservation of the structure of the original ODE by the embedding
procedure ?

6 Newton’s equation derives from a variational principle associated
to a function L called Lagrangian and given here by

L(t, x, v) =
1
2
v2 − U(x).

In fact the trajectories solution of the Newton equation are
extremals of the Lagrangian functional L defined by

L(x) =
∫ b

a

L(t, x(t), x′(t))dt .

Lagrangian system is the input of a Lagrangian and a variational
principle also called least-action principle.
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Outline

Diagram

1. Classical calculus of variations

2. Non-differentiable embedding
• Quantum calculus

• Non-differentiable embedding of Lagrangian systems

• Non-differentiable calculus of variations

• Coherence principle

3. Application to Navier-Stokes equation

4. Noether’s theorem
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Notations

Let d ∈ N, I be an open set in R, and a, b ∈ R, a < b, such that
[a, b] ⊂ I.
Let F(I,Rd) the set of functions defined in I taking value in Rd.
Let C0(I,Rd) (respectively C0(I,Cd)) be the set of continuous
functions x : I → Rd (respectively x : I → Cd).
Let n ∈ N, and Cn(I,Rd) (respectively Cn(I,Cd)) be the set of
functions in C0(I,Rd) (respectively C0(I,Cd)) which are differentiable
up to order n.
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Hölderian functions Let w ∈ C0(I,Rd). Let t ∈ I.

1. w is Hölder of Hölder exponent α, 0 < α < 1, at point t if

∃c > 0, ∃η > 0 s.t.∀t′ ∈ I | t−t′ |≤ η ⇒ ‖w(t)−w(t′)‖ ≤ c | t−t′ |α ,

where ‖ · ‖ is a norm on Rd.
2. w is α-Hölder and inverse Hölder with 0 < α < 1, at point t if

∃c, C ∈ R+∗, c < C, ∃η > 0 s.t.∀t′ ∈ I | t− t′ |≤ η
c | t− t′ |α≤ ‖w(t)− w(t′)‖ ≤ C | t− t′ |α

Example

Hα(I,Rd) := {x ∈ C0(I,Rd), x is α− Hölder and inverse Hölder}.

Let Ck⊕α(I,Cd) ⊂ C0(I,Cd) defined by: Example

Ck⊕α(I,Cd) := {x ∈: C0(I,Cd), x(t) := u(t) + w(t),

u ∈ Ck(I,Cd), w ∈ Hα(I,Cd)}.
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Calculus of variations (1)
We consider admissible Lagrangian functions L

L : R× Rd × Rd → C
(t, x, v) 7→ L(t, x, v)

such that L(t, x, v) is holomorphic with respect to v, differentiable with
respect to x.
Example L(t, x, v) = 1

2v
2 − U(x), with U is a function of x.

A Lagrangian function defines a functional on C1(I,R), denoted by

L : C1(I,Rd) → R

x 7−→ L(x) :=
∫ b

a

L
(
s, x(s),

dx

dt
(s)
)
ds .

Let V be the space of variations defined by:

V := {h ∈ C1(I,Rd), h(a) = h(b) = 0}.
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Calculus of variations (2)

A functional L is differentiable at point γ ∈ C2(I,Rd) if and only if

L(γ + θh)− L(γ) = θDL(γ)(h) + o(θ),

for θ > 0 sufficiently small and any h ∈ V . DL(γ)(h) is the Gâteaux
derivative of L at point γ in the direction h.
An extremal for the functional L is a function γ ∈ C2(I,Rd) such that
DL(γ)(h) = 0 for any h ∈ V .

Theorem
The extremals of L coincide with the solutions of the Euler-Lagrange
equation denoted by (EL) and defined by

d

dt

[
∂L
∂v

(
t, γ(t),

dγ

dt
(t)
)]

=
∂L
∂x

(
t, γ(t),

dγ

dt
(t)
)
. (EL)
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Quantum derivative (1)

Idea: Extension of the classical notion of derivative. Let x ∈ C0(I,Rd).
For all ε > 0, we call ε-left and right quantum derivatives the quantities

d+
ε x(t) :=

x(t+ ε)− x(t)
ε

, d−ε x(t) :=
x(t)− x(t− ε)

ε
,

Definition
For any ε > 0, the ε-scale derivative of x at point t is the quantity
defined for µ ∈ {1,−1, 0, i,−i} by

�ε

�t
: C0(I,Rd) → C0(I,Cd)

x 7→ �εx

�t

where
�εx

�t
(t) :=

1
2

[(
d+
ε x(t) + d−ε x(t)

)
+ iµ

(
d+
ε x(t)− d−ε x(t)

)]
∀t ∈ I.
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Remarks

• If x ∈ C1(I,Rd), then lim
ε→0

�εx

�t
=
dx

dt
the classical derivative of x.

• For µ = i, �ε

�t = d−ε

• For µ = −i, �ε

�t = d+
ε

→ Allows to recover the backward and forward derivatives.

• Extension for x ∈ C0(I,Cd) by

�εx

�t
(t) :=

�εRe(x)
�t

+ i
�εIm(x)

�t
, (1)

where Re(x) and Im(x) are the real and imaginary part of x.
→ composition of �ε

�t
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Quantum derivative 2
Idea: Build an analogous of the derivative for “non-differentiable”
functions.
Construction
We consider C0(I×]0, 1],Rd) the space of continuous functions

f : I×]0, 1] → Rd

(t, ε) 7→ f(t, ε)

Let C0conv(I×]0, 1],Rd) be a subspace of C0(I×]0, 1],Rd):

C0conv(I×]0, 1],Rd) := {f ∈ C0(I×]0, 1],Rd),
lim
ε→0

f(t, ε) exists for any t ∈ I}.

Let E be a complementary space of C0conv(I×]0, 1],Rd) in
C0(I×]0, 1],Rd).
Let π be the projection onto C0conv(I×]0, 1],Rd) defined by

π : C0conv(I×]0, 1],Rd)⊕ E → C0conv(I×]0, 1],Rd)
fconv + fE 7→ fconv .
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Quantum derivative 3
We can then define the operator 〈 . 〉 by

〈 . 〉 : C0(I×]0, 1],Rd) → F(I,Rd)
f 7→ 〈π(f)〉 : t 7→ lim

ε→0
π(f)(t, ε) .

Definition
Let us introduce the new operator �

�t (without ε) on the space
C0(I,Rd) by:

�x
�t

:= 〈π(
�εx

�t
)〉 (2)

• For x ∈ C1(I,Rd), then �x(t)
�t = dx

dt (t).

• For w ∈ Hα(I,Rd), then �w(t)
�t = 0. (Since c.εα−1 ≤ ‖�εw(t)‖)

• For x ∈ C1⊕α(I,Cd), 0 < α < 1, with x := u+ w, then
�x(t)

�t = u′(t).

I. Greff Non-Diff. Embedding of Lagrangian structures



Quantum derivative 4
Properties
• Non-differentiable Leibniz rule

Let f be α-Hölder and g be β- Hölder, with α+ β > 1,

�
�t

(f · g) =
�f
�t
· g + f · �g

�t
.

• Composition
Let f be a C2(Rd × I,R) function. Let 1

2 ≤ α < 1. Let
x = (x1, . . . , xd) ∈ C1⊕α(I,Rd) written as x := u+ w where
u = (u1, . . . , ud) ∈ C1(I,Rd) and w = (w1, . . . , wd) ∈ Hα(I,Rd),
then the following formula holds

�f(x(t), t)
�t

= ∇xf(x(t), t) · ∇u(t) +
∂f

∂t
(x(t), t)

+
d∑
k=1

d∑
l=1

1
2

∂2f

∂xk∂xl
(x(t), t) ak,l(w(t)) ,

ak,l(x(t)) := 〈π
“
ε
2

`
(d+
ε xk(t))(d

+
ε xl(t))(1+ iµ)− (d−ε xk(t))(d

−
ε xl(t))(1− iµ)

´”
〉.
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Non-differentiable embedding of operators

1. We denote by O the differential operator acting on Cn(I,Cd)
defined by

O =
n∑
i=0

Fi ·
( di
dti
◦Gi

)
, (3)

where · is the standard product of operators and ◦ the usual
composition, i.e. (A ◦B)(x) = A(B(x)), with the convention that(
d

dt

)0

= Id, where Id denotes the identity mapping on C.

2. The non-differentiable embedding of O written as (3), denoted by
Emb�(O) is the operator

Emb�(O) =
n∑
i=0

Fi ·
( �i

�ti
◦Gi

)
. (4)

Remark: In the rest of the talk we will consider curves x ∈ C0(I,Rd),
such that �x

�t ∈ C
0(I,Rd) or smooth enough.
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Non-differentiable embedding of ODE

1. Let the ordinary differential equation associated to O be defined
by

O
(
x,
dx

dt
, . . . ,

dkx

dtk
)
= 0, for any x ∈ Ck+n(I,C). (5)

2. The non-differentiable embedding of equation (5) is defined by

Emb� (O) (x,
�x
�t

, . . . ,
�kx

�tk
) = 0, x,

(
�ix

�ti

)
1≤i≤k

∈ C0(I,Cd).

(6)
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The non-differentiable embedded Euler-Lagrange
equation

1. The Euler-Lagrange equation (EL) is:

d

dt

[
∂L
∂v

(
t, γ(t),

dγ

dt
(t)
)]

=
∂L
∂x

(
t, γ(t),

dγ

dt
(t)
)
. (EL)

2. Let O(EL) be the associated non-differentiable embedded
operator

O(EL) :=
d

dt
◦ ∂L
∂v
− ∂L
∂x

The Euler-Lagrange equation (EL) is

O(EL)((t, γ(t),
dγ

dt
(t)) = 0 .

3. The non-differentiable Euler-Lagrange associated to (EL) is then:

�
�t

(
∂L

∂v

(
t, γ(t),

�
�t
γ(t)

))
− ∂L
∂x

(
t, γ(t),

�
�t
γ(t)

)
= 0. Emb�(EL)
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Embedding of the Lagrangian functional

The Lagrangian functional associated to L is:

L : C1(I,Rd)→ R, x ∈ C1(I,Rd) 7−→
∫ b

a

L
(
s, x(s),

dx

dt
(s)
)
ds .

The natural embedding of the Lagrangian functional L is given by

L� : C0(I,Rd)→ R, x ∈ C0(I,Rd) 7−→
∫ b

a

L
(
s, x(s),

�x(s)
�t

)
ds ,

always with �x
�t ∈ C

0(I,Rd).
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Non-differentiable calculus of variations

Let α, β be real numbers 0 < α, β < 1, s.t. α+ β > 1.
Let V := {h ∈ C0(I,Rd), β-Hölder , h(a) = h(b) = 0}, be the space of
non-differentiable variations.

Definition
Let Φ : C0(I,Rd)→ C be a functional. The functional Φ is called
V -differentiable on a curve γ ∈ C0(I,Rd), α-Hölder if and only if its
Gâteaux differential

lim
ε→0

Φ(γ + εh)− Φ(γ)
ε

exists in any direction h ∈ V . And then DΦ is called its differential and
is given by

DΦ(γ)(h) = lim
ε→0

Φ(γ + εh)− Φ(γ)
ε

.
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V -extremal curves
A V -extremal curve of the functional Φ on the space V of curves is a
curve γ α-H ölder satisfying

DΦ(γ)(h) = 0, for any h ∈ V.

Theorem
The differential of L� on γ ∈ C0(I,Rd), α-Hölder and �γ

�t α-Hölder is
given for any h ∈ V by

DL�(γ)(h) =
∫ b

a

(
∂L

∂x

(
t, γ(t),

�γ(t)
�t

)
·h(t) +

∂L

∂v

(
t, γ(t),

�γ(t)
�t

)
·�h(t)

�t

)
dt.
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Theorem (Non-differentiable least-action principle)
Let 0 < α < 1, α+ β > 1 and β ≤ α. Let L be an admissible
Lagrangian function of class C2. We assume that γ ∈ C0(I,Rd)
α-Hölder and �γ

�t α-Hölder. The curve γ is an extremal curve of the
functional L� on the space of variations V , if and only if it satisfies
the following generalized Euler-Lagrange equation

∂L

∂x

(
t, γ(t),

�γ(t)
�t

)
− �

�t

(
∂L

∂v
(t, γ(t),

�γ(t)
�t

)
)

= 0 . (NDEL)
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Coherence

• Embedding of the Euler-Lagrange equation denoted by Emb(EL).

• Embedding of the Lagrangian functional L�.

• Non-differentiable calculus of variation→ leads to a
non-differentiable Euler-Lagrange equation N.D EL.

Conclusion N.D EL = Emb(EL). We preserve the Lagrangian
structure passing to the non-differentiable embedding.

I. Greff Non-Diff. Embedding of Lagrangian structures



Application to the Navier-Stokes equation

Extension of the definition of characteristics
The classical method of characteristics for a PDE is to look for
t→ x(t) satisfying the following ordinary differential equation

d

dt
(u(x(t), t)) = F (x(t), t),

where F is the non homogeneous part of the PDE.
Using the operator �

�t one can generalize this method. We say that a
curve t→ x(t) is a non-differentiable characteristic for a given PDE if
the solution u(x(t), t) satisfies

�
�t

(u(x(t), t) = F (x(t), t),

and x and t satisfy an ordinary differential equation in �
�t .
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Let us consider the Navier-Stokes equation

∂u

∂t
+

d∑
k=1

uk
∂u

∂xk
= ν∆xu−∇xp,

where the unknown are the velocity u(t, x) ∈ Rd, u = (u1, . . . , ud), and
the pressure p(t, x) ∈ R. The constant ν ∈ R+ is the viscosity.

Theorem
The non-differentiable characteristics x ∈ C1⊕αnav , 1

2 ≤ α < 1 of the
Navier-Stokes equations correspond to C1⊕αnav extremals of the
Lagrangian

L(t, x, v) =
1
2
v2 − p(x, t),

C1⊕αnav := {x = (x1, . . . , xd) ∈ C1⊕α(I,Rd), xi(t) =
∫ t

0

ui(x(s), s) ds+Wi(t),

Wi ∈ Hα,
1
2
≤ α < 1, i = 1, . . . , d},

where u is a solution of the Navier-Stokes equation and W satisfies

al,l(W (t)) = −2ν and ak,l(W (t)) = 0 if k 6= l.
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Idea of the proof

For x ∈ C1⊕αnav (I,Rd) we have
�x
�t

(t) = u(x(t), t), and for any
i = 1, . . . , d

�ui(x(t), t)
�t

= ∇xui(x(t), t) · ui(x(t), t) +
∂ui
∂t

(x(t), t) +

d∑
k=1

d∑
l=1

1
2

∂2ui
∂xk∂xl

(x(t), t)ak,l(w(t)).

The non-differentiable caracteristics are curve t→ x(t) such that

�
�t

(u(x(t), t)) = −∇xp.

this equation can be rewritten as

�
�t

(
�x
�t

)
= −∇xp.

which is the non-differentiable Euler-Lagrange equation associated to
L.
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Noether’s theorem (1)

• We call {φs}s∈R a one parameter group of diffeomorphisms
φs : Rd → Rd, of class C1 satisfying

φ0 = Id, φs ◦ φu = φs+u, φs is of class C1 with respect to s.

• Invariance
Let Φ = {φs}s∈R a one parameter group of diffeomorphisms. An
admissible Lagrangian L is said to be invariant under the action
of Φ if

L
(
t, x(t),

dx

dt
(t)
)

= L
(
t, φs(x(t)),

d

dt

(
φs(x(t))

))
, ∀s ∈ R, ∀t ∈ R,

for any solution x of the Euler-Lagrange equation.
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Noether’s theorem (2)

• First Integral
A first integral for the Euler-Lagrange equation is a function
J : R× Rd × Rd → R such that for any solution x of the
Euler-Lagrange equation,

d

dt

(
J(t, x(t), ẋ(t))

)
= 0 for any t ∈ R.

Noether’s theorem Let L be an admissible Lagrangian of class C2
invariant under Φ = {φs}s∈R, a one parameter group of
diffeomorphisms. Then, the function

J : (t, x, v) 7→ ∂L

∂v
(t, x, v) · dφs(x)

ds
|s=0

is a first integral of the Euler-Lagrange equation (EL).
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Passage to the non-differentiable case?

invariance of Lagrangian N.D. Embinvariance of N.D Lagrangian

Noether’s thm.

y
First integral
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Passage to the non-differentiable case?

invariance of Lagrangian N.D. Emb−−−−−−→ invariance of N.D Lagrangian

Noether’s thm.

y
First integral N.D. Emb−−−−−−→ N.D. First integral
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Passage to the non-differentiable case?

invariance of Lagrangian N.D. Emb−−−−−−→ invariance of N.D Lagrangian

Noether’s thm.

y y N.D. Noether’s thm.

First integral N.D. Emb−−−−−→ N.D. First integral
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Non-differentiable Noether’s theorem (1)
• �-invariance Let Φ = {φs}s∈R be a one parameter group of

diffeomorphisms. An admissible Lagrangian L is said to be
�-invariant under the action of Φ if

L(t, x(t),
�x
�t

(t)) = L(t, φs(x(t)),
�
�t

(φs(x(t)))), ∀s ∈ R, ∀t ∈ I.

for any solution x ∈ C1� of the non-differentiable Euler-Lagrange
equation (NDEL).

• Persistence of invariance?
• Sufficient condition:

Let Φ = {φs}s∈R be a one parameter group of diffeomorphisms,
such that φs : Cd → Cd satisfies the �-commutation property:

�
�t

(φs(x)) = φs

(�x
�t

)
, ∀s ∈ R. (7)

If L is strongly invariant i.e:

L(t, x, v) = L(t, φs(x), φs(v)), ∀s ∈ R, ∀t ∈ I, ∀x ∈ Rd, ∀v ∈ Rd.

Then, L is �-invariant under the action of Φ = {φs}s∈R.
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Non-differentiable Noether’s theorem (2)

• Let φ be a linear map, then φ satisfies the property of
�-commutation.

• A generalized first integral associated to the non-differentiable
Euler-Lagrange equation is a function J : R× Rd × Cd → C such
that for any solution x of (NDEL), we have

�
�t

(
J
(
t, x(t),

�x(t)
�t

))
= 0 ∀t ∈ R.

Non-differentiable Noether’s theorem Let L be a Lagrangian of class
C2 �-invariant under Φ = {φs}s∈R, a one parameter group of
diffeomorphisms, such that φs : Cd → Cd, for any s ∈ R. Then, the
function

J : (t, x, v) 7→ ∂L

∂v
(t, x, v) · dφs(x)

ds
|s=0 (8)

is a generalized first integral of the non-differentiable Euler-Lagrange
equation (NDEL) on Hα(I,Rd) with 1

2 < α < 1.
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Conclusion

• The non-differential embedding preserves the Lagrangian
structure

• Solutions of the Navier-Stokes seen as extremals of a
non-differentiable Lagrangian

• Coherence for the Hamiltonian systems

• Persistence of the invariance of the Lagrangian under special
conditions.

• Non-differentiable Noether theorem
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Example of inverse-Hölder function: Tagaki-Knopp

Retour
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Example of smooth curve

Retour
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Example of non-smooth curve

Retour
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Outline– Diagram

Lagrangian functional L N.D. EmbN.D. Lagrangian functional

least-action principle
y

Newton’s equation
Retour
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Outline– Diagram
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Retour
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