Non-Differentiable Embedding of Lagrangian structures

Isabelle Greff Joint work with J. Cresson

Université de Pau et des Pays de l'Adour

CNAM, Paris, April, 22nd 2010

Position of the problem

1. Example We consider particles *moving continuously* along a path x(t), of mass 1, under a potential field U. The trajectory is given by the Newton equation

$$\frac{d^2}{dt^2}x(t) = -\nabla U(x).$$

- 2 Assumption: the trajectories are smooth.
 - Example
- 3 Work in Physics from L. Nottale: no hypothesis concerning the differentiability. → Natural trajectories are everywhere non-differentiable. Nottale's idea: take into account this loss of differentiability on the micro-scale.
- 4 Idea Extension of the notion of derivative.

- 5 Non-differentiable embedding
 - an ODE is the restriction of a more general "differentiable" equation.
 - \rightarrow Non-differentiable embedding of ODE.
 - Conservation of the structure of the original ODE by the embedding procedure ?
- 6 Newton's equation derives from a variational principle associated to a function *L* called Lagrangian and given here by

$$L(t, x, v) = \frac{1}{2}v^2 - U(x).$$

In fact the trajectories solution of the Newton equation are extremals of the Lagrangian functional \mathcal{L} defined by

$$\mathcal{L}(x) = \int_a^b L(t, x(t), x'(t)) dt \,.$$

Lagrangian system is the input of a *Lagrangian* and a variational principle also called *least-action principle*.

Outline

▶ Diagram

- 1. Classical calculus of variations
- 2. Non-differentiable embedding
 - Quantum calculus
 - Non-differentiable embedding of Lagrangian systems
 - Non-differentiable calculus of variations
 - Coherence principle
- 3. Application to Navier-Stokes equation
- 4. Noether's theorem

Notations

Let $d \in \mathbb{N}$, I be an open set in \mathbb{R} , and $a, b \in \mathbb{R}$, a < b, such that $[a,b] \subset I$.

Let $\mathcal{F}(I, \mathbb{R}^d)$ the set of functions defined in I taking value in \mathbb{R}^d . Let $\mathcal{C}^0(I, \mathbb{R}^d)$ (respectively $\mathcal{C}^0(I, \mathbb{C}^d)$) be the set of continuous functions $x : I \to \mathbb{R}^d$ (respectively $x : I \to \mathbb{C}^d$). Let $n \in \mathbb{N}$, and $\mathcal{C}^n(I, \mathbb{R}^d)$ (respectively $\mathcal{C}^n(I, \mathbb{C}^d)$) be the set of functions in $\mathcal{C}^0(I, \mathbb{R}^d)$ (respectively $\mathcal{C}^0(I, \mathbb{C}^d)$) which are differentiable up to order n. Hölderian functions Let $w \in C^0(I, \mathbb{R}^d)$. Let $t \in I$.

1. w is Hölder of Hölder exponent α , $0 < \alpha < 1$, at point t if

 $\exists c>0,\, \exists \eta>0\, s.t.\, \forall t'\in I\mid t-t'\mid\leq\eta\Rightarrow \|w(t)-w(t')\|\leq c\mid t-t'\mid^{\alpha},$

where $\|\cdot\|$ is a norm on \mathbb{R}^d .

2. w is α -Hölder and inverse Hölder with $0 < \alpha < 1$, at point t if

$$\exists c, C \in \mathbb{R}^{+*}, \ c < C, \ \exists \eta > 0 \ s.t. \ \forall t' \in I \ | \ t - t' \ | \le \eta \\ c \ | \ t - t' \ |^{\alpha} \le \|w(t) - w(t')\| \le C \ | \ t - t' \ |^{\alpha}$$

▶ Example

 $H^{\alpha}(I, \mathbb{R}^d) := \{ x \in \mathcal{C}^0(I, \mathbb{R}^d), x \text{ is } \alpha - \text{H\"older and inverse H\"older} \}.$

Let $\mathcal{C}^{k\oplus \alpha}(I, \mathbb{C}^d) \subset \mathcal{C}^0(I, \mathbb{C}^d)$ defined by: • Example

$$\mathcal{C}^{k\oplus\alpha}(I,\mathbb{C}^d) := \{ x \in \mathcal{C}^0(I,\mathbb{C}^d), \, x(t) := u(t) + w(t), \\ u \in \mathcal{C}^k(I,\mathbb{C}^d), \, w \in H^\alpha(I,\mathbb{C}^d) \}.$$

Calculus of variations (1)

We consider admissible Lagrangian functions ${\rm L}$

$$\begin{array}{rcl} {\rm L}: \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^d & \to & \mathbb{C} \\ & (t,x,v) & \mapsto & L(t,x,v) \end{array}$$

such that L(t, x, v) is holomorphic with respect to v, differentiable with respect to x.

Example $L(t, x, v) = \frac{1}{2}v^2 - U(x)$, with *U* is a function of *x*. A Lagrangian function defines a *functional* on $C^1(I, \mathbb{R})$, denoted by

$$\begin{array}{rcl} \mathcal{L}:\mathcal{C}^1(I,\mathbb{R}^d) & \to & \mathbb{R} \\ & x & \longmapsto & \mathcal{L}(x) := \int_a^b \mathrm{L}\big(s,x(s),\frac{dx}{dt}(s)\big) \, ds \, . \end{array}$$

Let V be the space of variations defined by:

$$V := \{ h \in \mathcal{C}^1(I, \mathbb{R}^d), \ h(a) = h(b) = 0 \}.$$

Calculus of variations (2)

A functional \mathcal{L} is differentiable at point $\gamma \in \mathcal{C}^2(I, \mathbb{R}^d)$ if and only if

$$\mathcal{L}(\gamma + \theta h) - \mathcal{L}(\gamma) = \theta D \mathcal{L}(\gamma)(h) + o(\theta),$$

for $\theta > 0$ sufficiently small and any $h \in V$. $D\mathcal{L}(\gamma)(h)$ is the Gâteaux derivative of \mathcal{L} at point γ in the direction h.

An extremal for the functional \mathcal{L} is a function $\gamma \in C^2(I, \mathbb{R}^d)$ such that $D\mathcal{L}(\gamma)(h) = 0$ for any $h \in V$.

Theorem

The extremals of \mathcal{L} coincide with the solutions of the Euler-Lagrange equation denoted by (EL) and defined by

$$\frac{d}{dt} \left[\frac{\partial \mathbf{L}}{\partial v} \left(t, \gamma(t), \frac{d\gamma}{dt}(t) \right) \right] = \frac{\partial \mathbf{L}}{\partial x} \left(t, \gamma(t), \frac{d\gamma}{dt}(t) \right). \tag{EL}$$

Quantum derivative (1)

Idea: Extension of the classical notion of derivative. Let $x \in C^0(I, \mathbb{R}^d)$. For all $\epsilon > 0$, we call ϵ -left and right quantum derivatives the quantities

$$d_{\epsilon}^{+}x(t) := \frac{x(t+\epsilon) - x(t)}{\epsilon}, \quad d_{\epsilon}^{-}x(t) := \frac{x(t) - x(t-\epsilon)}{\epsilon},$$

Definition

For any $\epsilon > 0$, the ϵ -scale derivative of x at point t is the quantity defined for $\mu \in \{1, -1, 0, i, -i\}$ by

$$\frac{\Box_{\epsilon}}{\Box t} : \mathcal{C}^{0}(I, \mathbb{R}^{d}) \to \mathcal{C}^{0}(I, \mathbb{C}^{d})$$
$$x \mapsto \frac{\Box_{\epsilon} x}{\Box t}$$

where $\frac{\Box_{\epsilon} x}{\Box t}(t) := \frac{1}{2} \Big[\left(d_{\epsilon}^{+} x(t) + d_{\epsilon}^{-} x(t) \right) + i \mu \left(d_{\epsilon}^{+} x(t) - d_{\epsilon}^{-} x(t) \right) \Big] \, \forall t \in I.$

Remarks

- If $x \in \mathcal{C}^1(I, \mathbb{R}^d)$, then $\lim_{\epsilon \to 0} \frac{\Box_{\epsilon} x}{\Box t} = \frac{dx}{dt}$ the classical derivative of x.
- For $\mu = i$, $\frac{\square_{\epsilon}}{\square t} = d_{\epsilon}^{-}$
- For $\mu = -i$, $\frac{\Box_{\epsilon}}{\Box t} = d_{\epsilon}^+$
- $\rightarrow\,$ Allows to recover the backward and forward derivatives.
 - Extension for $x \in \mathcal{C}^0(I, \mathbb{C}^d)$ by

$$\frac{\Box_{\epsilon} x}{\Box t}(t) := \frac{\Box_{\epsilon} \operatorname{Re}(x)}{\Box t} + i \frac{\Box_{\epsilon} \operatorname{Im}(x)}{\Box t}, \tag{1}$$

where $\operatorname{Re}(x)$ and $\operatorname{Im}(x)$ are the real and imaginary part of x. \rightarrow composition of $\frac{\Box_{\epsilon}}{\Box t}$

Quantum derivative 2

Idea: Build an analogous of the derivative for "non-differentiable" functions.

Construction

We consider $\mathcal{C}^0(I\times]0,1],\mathbb{R}^d)$ the space of continuous functions

$$\begin{array}{rccc} f: I \times]0,1] & \to & \mathbb{R}^d \\ (t,\epsilon) & \mapsto & f(t,\epsilon) \end{array}$$

Let $\mathcal{C}^0_{conv}(I \times]0,1], \mathbb{R}^d)$ be a subspace of $\mathcal{C}^0(I \times]0,1], \mathbb{R}^d)$:

$$\begin{split} \mathcal{C}^0_{conv}(I\times]0,1],\mathbb{R}^d) &:= & \{f\in\mathcal{C}^0(I\times]0,1],\mathbb{R}^d),\\ & \lim_{\epsilon\to 0}f(t,\epsilon) \text{ exists for any } t\in I\}. \end{split}$$

Let E be a complementary space of $\mathcal{C}^0_{conv}(I \times]0, 1], \mathbb{R}^d)$ in $\mathcal{C}^0(I \times]0, 1], \mathbb{R}^d)$.

Let π be the projection onto $\mathcal{C}^0_{conv}(I\times]0,1],\mathbb{R}^d)$ defined by

$$\pi: \mathcal{C}^0_{conv}(I \times]0, 1], \mathbb{R}^d) \oplus E \quad \to \quad \mathcal{C}^0_{conv}(I \times]0, 1], \mathbb{R}^d)$$
$$f_{conv} + f_E \quad \mapsto \quad f_{conv} .$$

Quantum derivative 3

We can then define the operator $\langle\,.\,\rangle$ by

$$\begin{array}{rcl} \langle \, . \, \rangle : \mathcal{C}^0(I \times]0, 1], \mathbb{R}^d) & \to & \mathcal{F}(I, \mathbb{R}^d) \\ & f & \mapsto & \langle \pi(f) \rangle : t \mapsto \lim_{\epsilon \to 0} \pi(f)(t, \epsilon) \, . \end{array}$$

Definition

Let us introduce the new operator $\Box_{\overline{\Box t}}$ (without ϵ) on the space $\mathcal{C}^0(I, \mathbb{R}^d)$ by:

$$\frac{\Box x}{\Box t} := \langle \pi(\frac{\Box_{\epsilon} x}{\Box t}) \rangle \tag{2}$$

• For
$$x \in \mathcal{C}^1(I, \mathbb{R}^d)$$
, then $\frac{\Box x(t)}{\Box t} = \frac{dx}{dt}(t)$.

• For $w \in H^{\alpha}(I, \mathbb{R}^d)$, then $\frac{\Box w(t)}{\Box t} = 0$. (Since $c.\epsilon^{\alpha-1} \le \|\Box_{\epsilon}w(t)\|$)

• For
$$x \in \mathcal{C}^{1 \oplus \alpha}(I, \mathbb{C}^d)$$
, $0 < \alpha < 1$, with $x := u + w$, then $\frac{\Box x(t)}{\Box t} = u'(t)$.

Quantum derivative 4

Properties

Non-differentiable Leibniz rule
 Let *f* be α-Hölder and *g* be β-Hölder, with α + β > 1,

$$\frac{\Box}{\Box t}(f \cdot g) = \frac{\Box f}{\Box t} \cdot g + f \cdot \frac{\Box g}{\Box t}$$

Composition

Let f be a $C^2(\mathbb{R}^d \times I, \mathbb{R})$ function. Let $\frac{1}{2} \leq \alpha < 1$. Let $x = (x_1, \ldots, x_d) \in C^{1 \oplus \alpha}(I, \mathbb{R}^d)$ written as x := u + w where $u = (u_1, \ldots, u_d) \in C^1(I, \mathbb{R}^d)$ and $w = (w_1, \ldots, w_d) \in H^{\alpha}(I, \mathbb{R}^d)$, then the following formula holds

$$\frac{\Box f(x(t),t)}{\Box t} = \nabla_x f(x(t),t) \cdot \nabla u(t) + \frac{\partial f}{\partial t}(x(t),t) + \sum_{k=1}^d \sum_{l=1}^d \frac{1}{2} \frac{\partial^2 f}{\partial x_k \partial x_l}(x(t),t) a_{k,l}(w(t)),$$

 $a_{k,l}(x(t)) := \langle \pi \Big(\frac{\epsilon}{2} \big((d_{\epsilon}^+ x_k(t)) (d_{\epsilon}^+ x_l(t)) (1+i\mu) - (d_{\epsilon}^- x_k(t)) (d_{\epsilon}^- x_l(t)) (1-i\mu) \big) \Big) \Big\rangle.$

Non-differentiable embedding of operators

 We denote by O the differential operator acting on Cⁿ(I, C^d) defined by

$$\mathbf{O} = \sum_{i=0}^{n} \mathbf{F}_{i} \cdot \left(\frac{d^{i}}{dt^{i}} \circ \mathbf{G}_{i}\right),\tag{3}$$

where \cdot is the standard product of operators and \circ the usual composition, *i.e.* $(A \circ B)(x) = A(B(x))$, with the convention that $\left(\frac{d}{dt}\right)^0 = \text{Id}$, where Id denotes the identity mapping on \mathbb{C} .

2. The non-differentiable embedding of O written as (3), denoted by ${\rm Emb}_{\Box}(O)$ is the operator

$$\operatorname{Emb}_{\Box}(\mathbf{O}) = \sum_{i=0}^{n} F_{i} \cdot \left(\frac{\Box^{i}}{\Box t^{i}} \circ G_{i}\right).$$
(4)

Remark: In the rest of the talk we will consider curves $x \in C^0(I, \mathbb{R}^d)$, such that $\frac{\Box x}{\Box t} \in C^0(I, \mathbb{R}^d)$ or smooth enough.

Non-differentiable embedding of ODE

1. Let the ordinary differential equation associated to O be defined by

$$O\left(x, \frac{dx}{dt}, \dots, \frac{d^k x}{dt^k}\right) = 0, \text{ for any } x \in \mathcal{C}^{k+n}(I, \mathbb{C}).$$
(5)

2. The non-differentiable embedding of equation (5) is defined by

$$\operatorname{Emb}_{\Box}(\mathbf{O})\left(x,\frac{\Box x}{\Box t},\ldots,\frac{\Box^{k}x}{\Box t^{k}}\right) = 0, \ x,\left(\frac{\Box^{i}x}{\Box t^{i}}\right)_{1 \le i \le k} \in \mathcal{C}^{0}(I,\mathbb{C}^{d}).$$
(6)

The non-differentiable embedded Euler-Lagrange equation

1. The Euler-Lagrange equation (EL) is:

$$\frac{d}{dt} \left[\frac{\partial \mathbf{L}}{\partial v} \left(t, \gamma(t), \frac{d\gamma}{dt}(t) \right) \right] = \frac{\partial \mathbf{L}}{\partial x} \left(t, \gamma(t), \frac{d\gamma}{dt}(t) \right). \tag{EL}$$

2. Let $\mathrm{O}_{(\mathit{EL})}$ be the associated non-differentiable embedded operator

$$\mathbf{O}_{(EL)} := \frac{d}{dt} \circ \frac{\partial \mathbf{L}}{\partial v} - \frac{\partial \mathbf{L}}{\partial x}$$

The Euler-Lagrange equation (EL) is

$$\mathbf{O}_{(EL)}((t,\gamma(t),\frac{d\gamma}{dt}(t))=0.$$

3. The non-differentiable Euler-Lagrange associated to (EL) is then:

$$\frac{\Box}{\Box t} \left(\frac{\partial L}{\partial v} \big(t, \gamma(t), \frac{\Box}{\Box t} \gamma(t) \big) \right) - \frac{\partial L}{\partial x} \big(t, \gamma(t), \frac{\Box}{\Box t} \gamma(t) \big) = 0. \ \operatorname{Emb}_{\Box}(EL)$$

Embedding of the Lagrangian functional

The Lagrangian functional associated to *L* is:

$$\mathcal{L}: \mathcal{C}^1(I, \mathbb{R}^d) \to \mathbb{R}, \quad x \in \mathcal{C}^1(I, \mathbb{R}^d) \longmapsto \int_a^b \mathcal{L}\left(s, x(s), \frac{dx}{dt}(s)\right) ds.$$

The natural embedding of the Lagrangian functional \mathcal{L} is given by

$$\mathcal{L}_{\Box}: \mathcal{C}^{0}(I, \mathbb{R}^{d}) \to \mathbb{R}, \quad x \in \mathcal{C}^{0}(I, \mathbb{R}^{d}) \longmapsto \int_{a}^{b} \mathcal{L}\left(s, x(s), \frac{\Box x(s)}{\Box t}\right) ds \,,$$

always with $\frac{\Box x}{\Box t} \in \mathcal{C}^0(I, \mathbb{R}^d)$.

Non-differentiable calculus of variations

Let α, β be real numbers $0 < \alpha, \beta < 1$, s.t. $\alpha + \beta > 1$. Let $V := \{h \in C^0(I, \mathbb{R}^d), \beta$ -Hölder, $h(a) = h(b) = 0\}$, be the space of non-differentiable variations.

Definition

Let $\Phi : C^0(I, \mathbb{R}^d) \to \mathbb{C}$ be a functional. The functional Φ is called *V*-differentiable on a curve $\gamma \in C^0(I, \mathbb{R}^d)$, α -Hölder if and only if its Gâteaux differential

$$\lim_{\epsilon \to 0} \frac{\Phi(\gamma + \epsilon h) - \Phi(\gamma)}{\epsilon}$$

exists in any direction $h \in V$. And then $D\Phi$ is called its differential and is given by

$$D\Phi(\gamma)(h) = \lim_{\epsilon \to 0} \frac{\Phi(\gamma + \epsilon h) - \Phi(\gamma)}{\epsilon}.$$

V-extremal curves

A $V\text{-extremal curve of the functional }\Phi$ on the space V of curves is a curve γ $\alpha\text{-H}$ ölder satisfying

$$D\Phi(\gamma)(h) = 0$$
, for any $h \in V$.

Theorem

The differential of \mathcal{L}_{\Box} on $\gamma \in \mathcal{C}^0(I, \mathbb{R}^d)$, α -Hölder and $\frac{\Box \gamma}{\Box t} \alpha$ -Hölder is given for any $h \in V$ by

$$D\mathcal{L}_{\Box}(\gamma)(h) = \int_{a}^{b} \left(\frac{\partial L}{\partial x} \left(t, \gamma(t), \frac{\Box \gamma(t)}{\Box t} \right) \cdot h(t) + \frac{\partial L}{\partial v} \left(t, \gamma(t), \frac{\Box \gamma(t)}{\Box t} \right) \cdot \frac{\Box h(t)}{\Box t} \right) dt.$$

Theorem (Non-differentiable least-action principle)

Let $0 < \alpha < 1$, $\alpha + \beta > 1$ and $\beta \le \alpha$. Let L be an admissible Lagrangian function of class C^2 . We assume that $\gamma \in C^0(I, \mathbb{R}^d)$ α -Hölder and $\frac{\Box_{\gamma}}{\Box t} \alpha$ -Hölder. The curve γ is an extremal curve of the functional \mathcal{L}_{\Box} on the space of variations V, if and only if it satisfies the following generalized Euler-Lagrange equation

$$\frac{\partial L}{\partial x} \left(t, \gamma(t), \frac{\Box \gamma(t)}{\Box t} \right) - \frac{\Box}{\Box t} \left(\frac{\partial L}{\partial v} (t, \gamma(t), \frac{\Box \gamma(t)}{\Box t}) \right) = 0. \qquad (NDEL)$$

Coherence

- Embedding of the Euler-Lagrange equation denoted by Emb(EL).
- Embedding of the Lagrangian functional \mathcal{L}_{\Box} .
- Non-differentiable calculus of variation → leads to a non-differentiable Euler-Lagrange equation N.D EL.

Conclusion N.D EL = Emb(EL). We preserve the Lagrangian structure passing to the non-differentiable embedding.

Application to the Navier-Stokes equation

Extension of the definition of characteristics

The classical method of characteristics for a PDE is to look for $t \rightarrow x(t)$ satisfying the following ordinary differential equation

$$\frac{d}{dt}\left(u(x(t),t)\right) = F(x(t),t),$$

where *F* is the non homogeneous part of the PDE. Using the operator \Box_{t} one can generalize this method. We say that a curve $t \to x(t)$ is a non-differentiable characteristic for a given PDE if the solution u(x(t), t) satisfies

$$\frac{\Box}{\Box t} \left(u(x(t), t) = F(x(t), t) \right),$$

and x and t satisfy an ordinary differential equation in $\frac{\Box}{\Box t}$.

Let us consider the Navier-Stokes equation

$$\frac{\partial u}{\partial t} + \sum_{k=1}^{d} u_k \frac{\partial u}{\partial x_k} = \nu \Delta_x u - \nabla_x p,$$

where the unknown are the velocity $u(t, x) \in \mathbb{R}^d$, $u = (u_1, \ldots, u_d)$, and the pressure $p(t, x) \in \mathbb{R}$. The constant $\nu \in \mathbb{R}^+$ is the viscosity.

Theorem

The non-differentiable characteristics $x \in C_{nav}^{1\oplus \alpha}$, $\frac{1}{2} \le \alpha < 1$ of the Navier-Stokes equations correspond to $C_{nav}^{1\oplus \alpha}$ extremals of the Lagrangian

$$L(t, x, v) = \frac{1}{2}v^2 - p(x, t),$$

$$\mathcal{C}_{\text{nav}}^{1\oplus\alpha} := \{ x = (x_1, \dots, x_d) \in \mathcal{C}^{1\oplus\alpha}(I, \mathbb{R}^d), \ x_i(t) = \int_0^t u_i(x(s), s) \, ds + W_i(t), \\ W_i \in H^{\alpha}, \frac{1}{2} \le \alpha < 1, \ i = 1, \dots, d \},$$

where u is a solution of the Navier-Stokes equation and W satisfies

$$a_{l,l}(W(t)) = -2\nu$$
 and $a_{k,l}(W(t)) = 0$ if $k \neq l$.

Idea of the proof

For $x \in \mathcal{C}_{nav}^{1 \oplus \alpha}(I, \mathbb{R}^d)$ we have $\frac{\Box x}{\Box t}(t) = u(x(t), t)$, and for any $i = 1, \dots, d$ $\frac{\Box u_i(x(t), t)}{\Box t} = \nabla_x u_i(x(t), t) \cdot u_i(x(t), t) + \frac{\partial u_i}{\partial t}(x(t), t) + \sum_{k=1}^d \sum_{l=1}^d \frac{1}{2} \frac{\partial^2 u_i}{\partial x_k \partial x_l}(x(t), t) a_{k,l}(w(t)).$

The non-differentiable caracteristics are curve $t \rightarrow x(t)$ such that

$$\frac{\Box}{\exists t} \left(u(x(t), t) \right) = -\nabla_x p.$$

this equation can be rewritten as

$$\frac{\Box}{\Box t} \left(\frac{\Box x}{\Box t} \right) = -\nabla_x p.$$

which is the non-differentiable Euler-Lagrange equation associated to *L*.

Noether's theorem (1)

 We call {φ_s}_{s∈ℝ} a one parameter group of diffeomorphisms φ_s : ℝ^d → ℝ^d, of class C¹ satisfying

 $\phi_0 = \text{Id}, \quad \phi_s \circ \phi_u = \phi_{s+u}, \quad \phi_s \text{ is of class } \mathcal{C}^1 \text{ with respect to } s.$

Invariance

Let $\Phi = \{\phi_s\}_{s \in \mathbb{R}}$ a one parameter group of diffeomorphisms. An admissible Lagrangian L is said to be invariant under the action of Φ if

$$L\left(t, x(t), \frac{dx}{dt}(t)\right) = L\left(t, \phi_s(x(t)), \frac{d}{dt}\left(\phi_s(x(t))\right)\right), \ \forall s \in \mathbb{R}, \forall t \in \mathbb{R},$$

for any solution x of the Euler-Lagrange equation.

Noether's theorem (2)

First Integral

A first integral for the Euler-Lagrange equation is a function $J : \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ such that for any solution x of the Euler-Lagrange equation,

$$rac{d}{dt}ig(J(t,x(t),\dot{x}(t))ig) = 0 \quad ext{for any } t \in \mathbb{R}.$$

Noether's theorem Let *L* be an admissible Lagrangian of class C^2 invariant under $\Phi = {\phi_s}_{s \in \mathbb{R}}$, a one parameter group of diffeomorphisms. Then, the function

$$J: (t, x, v) \mapsto \frac{\partial L}{\partial v}(t, x, v) \cdot \frac{d\phi_s(x)}{ds} \mid_{s=0}$$

is a first integral of the Euler-Lagrange equation (EL).

Passage to the non-differentiable case?

invariance of Lagrangian Noether's thm.↓ First integral

Passage to the non-differentiable case?

Passage to the non-differentiable case?

Non-differentiable Noether's theorem (1)

□-invariance Let Φ = {φ_s}_{s∈ℝ} be a one parameter group of diffeomorphisms. An admissible Lagrangian L is said to be □-invariant under the action of Φ if

$$L(t, x(t), \frac{\Box x}{\Box t}(t)) = L(t, \phi_s(x(t)), \frac{\Box}{\Box t}(\phi_s(x(t)))), \quad \forall s \in \mathbb{R}, \quad \forall t \in I.$$

for any solution $x \in C^1_{\Box}$ of the non-differentiable Euler-Lagrange equation (NDEL).

- Persistence of invariance?
- Sufficient condition:

Let $\Phi = \{\phi_s\}_{s \in \mathbb{R}}$ be a one parameter group of diffeomorphisms, such that $\phi_s : \mathbb{C}^d \to \mathbb{C}^d$ satisfies the \Box -commutation property:

$$\frac{\Box}{\Box t}(\phi_s(x)) = \phi_s\left(\frac{\Box x}{\Box t}\right), \quad \forall s \in \mathbb{R}.$$
(7)

If L is strongly invariant i.e:

 $L(t,x,v) = L(t,\phi_s(x),\phi_s(v)), \ \forall s \in \mathbb{R}, \ \forall t \in I, \ \forall x \in \mathbb{R}^d, \ \forall v \in \mathbb{R}^d.$

Then, *L* is \Box -invariant under the action of $\Phi = \{\phi_s\}_{s \in \mathbb{R}}$.

Non-differentiable Noether's theorem (2)

- Let ϕ be a linear map, then ϕ satisfies the property of \Box -commutation.
- A generalized first integral associated to the non-differentiable Euler-Lagrange equation is a function J : ℝ × ℝ^d × ℂ^d → ℂ such that for any solution x of (NDEL), we have

$$\frac{\Box}{\Box t} \left(J\left(t, x(t), \frac{\Box x(t)}{\Box t}\right) \right) = 0 \qquad \forall t \in \mathbb{R}.$$

Non-differentiable Noether's theorem Let L be a Lagrangian of class $C^2 \square$ -invariant under $\Phi = \{\phi_s\}_{s \in \mathbb{R}}$, a one parameter group of diffeomorphisms, such that $\phi_s : \mathbb{C}^d \to \mathbb{C}^d$, for any $s \in \mathbb{R}$. Then, the function

$$J: (t, x, v) \mapsto \frac{\partial L}{\partial v}(t, x, v) \cdot \frac{d\phi_s(x)}{ds} \mid_{s=0}$$
(8)

is a generalized first integral of the non-differentiable Euler-Lagrange equation (NDEL) on $H^{\alpha}(I, \mathbb{R}^d)$ with $\frac{1}{2} < \alpha < 1$.

Conclusion

- The non-differential embedding preserves the Lagrangian structure
- Solutions of the Navier-Stokes seen as extremals of a non-differentiable Lagrangian
- Coherence for the Hamiltonian systems
- Persistence of the invariance of the Lagrangian under special conditions.
- Non-differentiable Noether theorem

Example of inverse-Hölder function: Tagaki-Knopp

Retour

Example of smooth curve

▶ Retour

Example of non-smooth curve

▶ Retour

Non-Diff. Embedding of Lagrangian structures

3 →

Lagrangian functional \mathcal{L}

least-action principle

Newton's equation

Retour

Non-Diff. Embedding of Lagrangian structures

伺 ト イヨ ト イヨ ト

크

