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Position of the problem

. Example We consider particles moving continuously along a
path z(t), of mass 1, under a potential field U. The trajectory is
given by the Newton equation

d2
@w(t) = —VU(x).

Assumption: the trajectories are smooth.

Work in Physics from L. Nottale: no hypothesis concerning the
differentiability. — Natural trajectories are everywhere
non-differentiable.

Nottale’s idea: take into account this loss of differentiability on
the micro-scale.

Idea Extension of the notion of derivative.
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5 Non-differentiable embedding

e an ODE is the restriction of a more general “differentiable”
equation.
— Non-differentiable embedding of ODE.

e Conservation of the structure of the original ODE by the embedding
procedure ?

6 Newton’s equation derives from a variational principle associated
to a function L called Lagrangian and given here by

1
L(t,z,v) = 5112 —Ul(x).

In fact the trajectories solution of the Newton equation are
extremals of the Lagrangian functional £ defined by

b
c(:c):/ L(t,z(t),2'(t))dt .

Lagrangian system is the input of a Lagrangian and a variational
principle also called least-action principle.
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Outline

1. Classical calculus of variations

2. Non-differentiable embedding
e Quantum calculus

¢ Non-differentiable embedding of Lagrangian systems
¢ Non-differentiable calculus of variations

e Coherence principle

3. Application to Navier-Stokes equation

4. Noether’s theorem
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Notations

Letd e N, I beanopensetinR, and a,b € R, a < b, such that

[a,b] C I.

Let F(I,R?) the set of functions defined in I taking value in R

Let CO(1,RY) (respectively C°(1,C%)) be the set of continuous
functions z : I — R? (respectively = : I — C9).

Let n € N, and C"(I,R?) (respectively C"(I,C%)) be the set of
functions in C°(1,R¢) (respectively C°(I,C%)) which are differentiable
up to order n.
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Holderian functions Let w € C°(I,R?). Lett € I.
1. w is Holder of Holder exponent «, 0 < a < 1, at point ¢ if

de>0,3In>0st. V' el |t—t' |<n=||wlt)—wt)| <c|t-t"|¥,

where || - || is a norm on R<.
2. wis a-Hoélder and inverse Holder with 0 < « < 1, at point ¢ if

Je,C e R™ c< C,In>0st.V cl|t—t |<n
clt=t" "< Jw(t) —wE)| <C |t -t |
H*(I,RY) := {x € C°(I,R%), x is a — Holder and inverse Holder}.

Let c*®2(1,C%) c ¢°(1,C?) defined by:

Cko(r,c?) = {xe:C'(I,C%), x(t) := u(t) + w(t),
u € CH(I,CY, we H*(I,CH)}.
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Calculus of variations (1)
We consider admissible Lagrangian functions L
L:RxR!xR* — C
(t7 x? v) = L(t? x’ 7.))

such that L(¢, z, v) is holomorphic with respect to v, differentiable with
respect to x.

Example L(t,z,v) = 2v? — U(z), with U is a function of x.

A Lagrangian function defines a functional on C'(I,R), denoted by

£L:CY(I,RY) — R

b
x — L(z) :z/ L(s,x(s),dm

E(s)) ds.

Let V be the space of variations defined by:

V= {h e C'(I,R%), h(a) = h(b) = 0}.
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Calculus of variations (2)

A functional £ is differentiable at point v € C2(1,R?) if and only if
L(y+6h) — L£(3) = 6DL(3)(R) + o(0),

for 6 > 0 sufficiently small and any h € V. DL(v)(h) is the Gateaux
derivative of £ at point + in the direction h.

An extremal for the functional £ is a function v € C2(I,R%) such that
DL(v)(h) =0forany h € V.

Theorem
The extremals of L coincide with the solutions of the Euler-Lagrange
equation denoted by (EL) and defined by

&5 (tn0. F0)] = 5 (100, Fw) . e
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Quantum derivative (1)

Idea: Extension of the classical notion of derivative. Let = € C°(1,R%).
For all e > 0, we call e-left and right quantum derivatives the quantities
& a(t) = x(t+e) — a:(t), A= (t) = z(t) — z(t — e)’

€ €

Definition
For any e > 0, the e-scale derivative of x at pointt is the quantity
defined for n € {1,—-1,0,4,—i} by

Dﬁ 0 d 0 d
— I R I
Dtc(’ ) — C'(I,C7)
Uex
—
v Ot

where DDEZC (t) = %[(dja:(t) dza(t)) +ip(d z(t) —d;m(t))] Vel
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Remarks
O.x dx
If L1, RY), then 1i ===
o If x € C1(I, ),tenegr(l) = o

the classical derivative of x.

e Forpu =1, %zd;
o ForM:—i,%zdj
— Allows to recover the backward and forward derivatives.

e Extension for » € C°(1,C?) by

ex
Ot

_ OcRe(x) +Z_D€Im(x)

(#): Ot Or

where Re(x) and Im(z) are the real and imaginary part of «.
— composition of &
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Quantum derivative 2
Idea: Build an analogous of the derivative for “non-differentiable”
functions.
Construction
We consider C°(1x]0, 1], R?) the space of continuous functions

f:Ix]0,1] — R4
(t,e) — [f(t€)
Let C0,,,,(Ix]0,1],R?) be a subspace of C°(Ix]0, 1], R?):

Coonn(Ix]0,1,R?) = {f € C°(Ix]0,1],RY),

lir% f(t,e) exists forany t € I}.

Let E be a complementary space of C2 ., (Ix]0,1],R%) in
CO(Ix]0,1],R9).
Let 7 be the projection onto C°. . (Ix]0,1], R%) defined by

conv

. 0
e Ccon'u

(Ix)0,1,RY @ E — C°, . (Ix]0,1],R%)

fcon'u + fE = fconv .
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Quantum derivative 3

We can then define the operator (. ) by

(.):C°(Ix]0,1,RY) — F(I,RY)
o= A(xn(f)):t—limw(f)(te€).

e—0

Definition
Let us introduce the new operator % (without €) on the space
CO(I,R%) by:
L Oex
= € 2
= = (r(5) @)

o Forz € C'(I,R%), then S5l — de (g,
o Forw € H*(I,R?), then Dw“) = 0. (Since c.e! < |Dcw(t)]))
e Forz € C*®(I,C%), 0 < a < 1, with 2 := u + w, then

O
Bt =/ (b).
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Quantum derivative 4

Properties
¢ Non-differentiable Leibniz rule

Let f be a-Hélder and g be - Hélder, with o + 3 > 1,

O af
ﬁt(f 9) = Ot g+f-—=

e Composition

Let f be a C?(R? x I, R) function. Let § < a < 1. Let

= (21,...,74) € C*®2(I,R?) written as z := u + w where
u=(u,...,uq) € CH{I,RY) and w = (wy,...,wy) € H¥(I,RY),
then the following formula holds

Of ((t),t) _ of
g = Vef@(t).t) Vut) + 5@ ().1)
d d 2
e
k=1 1=1
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Non-differentiable embedding of operators

1. We denote by O the differential operator acting on C™(I,C?%)
defined by

0= ZF dtz Gi), (3)

where - is the standard product of operators and o the usual

composition, i.e. (Ao B)(z) = A(B(x)), with the convention that
0
(i) = Id, where 1Id denotes the identity mapping on C.

2. The non-differentiable embedding of O written as (3), denoted by
Embg(O) is the operator

Embg (O ZF th G;) (4)

Remark: In the rest of the talk we will consider curves z € C°(I,R%),
such that % € C°(1,R%) or smooth enough.
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Non-differentiable embedding of ODE

1. Let the ordinary differential equation associated to O be defined
by
dx dFx
Z, a, ey W
2. The non-differentiable embedding of equation (5) is defined by

(o] )=0, foranyz e C*"(1,C). (5)

O i K
Embg (0) (2, 22 z , ( v

= ..., =2)=0, x i) e C(1,C?).
O Ok Ot ) cich
(6)
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The non-differentiable embedded Euler-Lagrange
equation
1. The Euler-Lagrange equation (EL) is:

d [OL dry _JL dy

&5 (0. 50)] = 5 (0. F0). @)

2. Let O(gy) be the associated non-differentiable embedded
operator

o o d oL oL

EL" 3t~ v oz
The Euler-Lagrange equation (EL) is
dy

O(mr)((t, (1), E(t» =0.
3. The non-differentiable Euler-Lagrange associated to (EL) is then:

J (g’;(t,w), DDﬂ(t))) - g—i(t,v(t), %v(t)): 0. Embp(EL)
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Embedding of the Lagrangian functional

The Lagrangian functional associated to L is:

b
d
L:CHI,RY) = R, xECl(I,Rd)b—>/ L(s,x(s),d—f(s))ds.

The natural embedding of the Lagrangian functional £ is given by

b
O
Lo :C(I,RY) - R, zelC,RY) +— / L(s,z(s), é(:)) ds,

always with 22 € CO(I,R9).
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Non-differentiable calculus of variations

Let o, 6 be real numbers 0 < o, < 1,8.t. a+ 3 > 1.

Let V := {h € C°(1,R%), B-Hblder , h(a) = h(b) = 0}, be the space of
non-differentiable variations.

Definition

Let® : C°(I,R%) — C be a functional. The functional ® is called

V -differentiable on a curve v € C°(I,R%), a-Hélder if and only if its
Gateaux differential

lim D(v 4+ €eh) — D(v)

e—0 €

exists in any direction h € V. And then D® is called its differential and
is given by

DO(y)(h) = lim 2O =20

e—0 €
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V-extremal curves
A V-extremal curve of the functional ® on the space V of curves is a
curve v a-H 6lder satisfying

D®(v)(h) =0,forany h e V.

Theorem
The differential of Ly ony € C°(I,RY), a-Hélder and = a-Hélder is
given forany h € V by

b
<8L (m(t% DWi(t))-h(t) + %(m(t), DW))D’“”) it

DLo(M)(h) = / oz Ot or /o

a
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Theorem (Non-differentiable least-action principle)

Llet0<a<1l,a+ B >1and S < «a. Let L be an admissible
Lagrangian function of class C?. We assume that v € C°(I,R%)
a-Hélder and 5t a-Hélder. The curve y is an extremal curve of the
functional Lo on the space of variations V, if and only if it satisfies
the following generalized Euler-Lagrange equation

oL Ov(t)

S0, -5 (Grno. 5 ) 0. wvpp)
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Coherence

o Embedding of the Euler-Lagrange equation denoted by Emb(EL).

o Embedding of the Lagrangian functional £g.

¢ Non-differentiable calculus of variation — leads to a
non-differentiable Euler-Lagrange equation N.D EL.

Conclusion N.D EL = Emb(EL). We preserve the Lagrangian
structure passing to the non-differentiable embedding.
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Application to the Navier-Stokes equation

Extension of the definition of characteristics
The classical method of characteristics for a PDE is to look for
t — x(t) satisfying the following ordinary differential equation

d
7 (u(z(t), 1)) = F(x(t), 1),

where F' is the non homogeneous part of the PDE.

Using the operator % one can generalize this method. We say that a
curve t — z(t) is a non-differentiable characteristic for a given PDE if

the solution u(xz(t), t) satisfies

d

i (u(x(t),t) = F(x(t),t),

and z and ¢ satisfy an ordinary differential equation in %.
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Let us consider the Navier-Stokes equation

d
ou ou
a7 - Az - vz )
It + - uka o =vAzu p
where the unknown are the velocity u(t,z) € R%, u = (uy, ..., uq), and
the pressure p(¢,z) € R. The constant v € R™ is the viscosity.

Theorem
The non-differentiable characteristics © € C}1®*, 1 < o < 1 of the

nav ’7 2

Navier-Stokes equations correspond to CL2* extremals of the
Lagrangian

1
L(t,x,v) = 5112 —p(z, ),

t
c}lgﬁa ={z=(x1,...,2q) € Cl@a(LRd), x;i(t) = / u;(x(s), s) ds + W;(¢),
0

where u is a solution of the Navier-Stokes equation and W satisfies

au(W(t)) =—-2v and akJ(W(t)) =0if -k 74 L



Idea of the proof
0
For z € C12%(1,R%) we have —x(t) = u(z(t),t), and for any

nav I:lt
i=1,....d

Oug(x(t),t)

The non-differentiable caracteristics are curve ¢ — z(t) such that

g

= (). ) = ~.p.

this equation can be rewritten as

O /0Ox
o (m) = ~Vap

which is the non-differentiable Euler-Lagrange equation associated to
L.
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Noether’s theorem (1)

o We call {¢;}scr @ one parameter group of diffeomorphisms
¢s : RY — R?, of class C! satisfying

o =1d, ¢s0 by = dsiu, ¢sis of class C! with respect to s.

e Invariance
Let ® = {¢s}scr @ One parameter group of diffeomorphisms. An
admissible Lagrangian L is said to be invariant under the action
of @ if

L(t,a;(t), %(t)): L(t, s (2(1)), %(qﬁs(x(t)))), Vs €R, Vt € R,

for any solution z of the Euler-Lagrange equation.
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Noether’s theorem (2)

o First Integral
A first integral for the Euler-Lagrange equation is a function
J : R x R% x R¢ — R such that for any solution x of the
Euler-Lagrange equation,

d
%(J(t,x(t),jc(t))): 0 foranyteR.
Noether’s theorem Let L be an admissible Lagrangian of class C?
invariant under ® = {¢; }scr, @ one parameter group of
diffeomorphisms. Then, the function

dos(x)
ds

J (t,x,v) = %(tﬂz7v) : |s:0

is a first integral of the Euler-Lagrange equation (EL).
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Passage to the non-differentiable case?

invariance of Lagrangian
Noether’s thm. l

First integral
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Passage to the non-differentiable case?

. . . N.D.Emb_ . . .
invariance of Lagrangian ——==, invariance of N.D Lagrangian
Noether’s thm.Jr
. . N.D. Emb . f
First integral ==, N.D. First integral
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Passage to the non-differentiable case?

. . . N.D.Emb_ . . .
invariance of Lagrangian ——==, invariance of N.D Lagrangian
Noether’s thm.Jr l N.D. Noether’s thm.
. . N.D. Emb . f
First integral ===, N.D. First integral
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Non-differentiable Noether’s theorem (1)

e [l-invariance Let ® = {¢;}secr be a one parameter group of
diffeomorphisms. An admissible Lagrangian L is said to be
O-invariant under the action of ® if
Lit, (1), 2o(0) = Lit, 6,(a(1)), &
for any solution z € CL, of the non-differentiable Euler-Lagrange
equation (NDEL).

e Persistence of invariance?

o Sufficient condition:
Let ® = {¢s}scr be a one parameter group of diffeomorphisms,
such that ¢, : C? — C¢ satisfies the [J-commutation property:

[
5 (@) = o (
If L is strongly invariant i.e:

L(t,x,v) = L(t, ¢s(x), s(v)), Vs € R, Vt € I, Vo € RY, Vo € RY.

(ps(2(1))), VseR, Vtel.

Lx

ﬁ), Vs € R. (7)

Then, L is O-invariant under the action of ® = {¢;}scr.



Non-differentiable Noether’s theorem (2)

e Let ¢ be a linear map, then ¢ satisfies the property of
O-commutation.

o A generalized first integral associated to the non-differentiable
Euler-Lagrange equation is a function J : R x R? x C? — C such
that for any solution x of (NDEL), we have

O Oz (t)\\
ﬁ(J(t,gc(t), = ))_ 0 VieR.
Non-differentiable Noether’s theorem Let L be a Lagrangian of class
C? O-invariant under ® = {¢,}scr, @ one parameter group of
diffeomorphisms, such that ¢, : C* — C¢, for any s € R. Then, the

function oL du(z)
J:(t,z,0) — %(t,x,v) . ¢;S$ ls=0 (8)

is a generalized first integral of the non-differentiable Euler-Lagrange
equation (NDEL) on H(I,R%) with J < o < 1.
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Conclusion

The non-differential embedding preserves the Lagrangian
structure

Solutions of the Navier-Stokes seen as extremals of a
non-differentiable Lagrangian

Coherence for the Hamiltonian systems

Persistence of the invariance of the Lagrangian under special
conditions.

Non-differentiable Noether theorem
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Example of inverse-Holder function: Tagaki-Knopp

0 0.1 02 03 04 05 06 07 08 09 1
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Example of smooth curve
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Example of non-smooth curve
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Outline— Diagram

Lagrangian functional £
least-action principle l

Newton’s equation
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Outline— Diagram

Lagrangian functional £

least-action principlel

N.D. Emb
_—

Newton’s equation N.D. Newton’s equation
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Outline— Diagram

N.D. Emb
_—

Lagrangian functional £ N.D. Lagrangian functional £

least-action principleJr

N.D. Emb
_—

Newton’s equation N.D. Newton’s equation
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Outline— Diagram

N.D. Emb
_—

Lagrangian functional £ N.D Lagrangian functional £

least-action principlel l N.D. least-action principle

N.D. Emb
—

Newton’s equation N.D. Newton’s equation
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