Automatic Differentiation of programs and its applications to Scientific Computing

Laurent Hascoët

INRIA Sophia-Antipolis, France http://www-sop.inria.fr/tropics

September 2010

Outline

(1) Quick Introduction to AD

(2) Introduction

(3) Formalization
4. ... Multi-directional
(5) Reverse AD
6) Alternative formalizations
(7) Reverse AD performance issues ; Checkpointing
(8) Static Analyses in AD tools
(9) Reverse AD for Scientific Computing
(10) The Tapenade AD Tool
(11) Tapenade AD Model on Examples
(12) Some AD Tools
(13) Validation methods
(14) Expert-level AD
(15) Conclusion

This is AD!

SUBROUTINE FOO (v1, v2, v4, p1)

REAL v1,v2,v3,v4,p1
$\mathrm{v} 3=2.0 * \mathrm{v} 1+5.0$
$\mathrm{v} 4=\mathrm{v} 3+\mathrm{p} 1 * \mathrm{v} 2 / \mathrm{v} 3$
END

This is AD!

SUBROUTINE FOO(v1,v1d,v2,v2d,v4,v4d,p1)
REAL v1d,v2d,v3d,v4d
REAL v1,v2,v3,v4,p1

$$
\begin{aligned}
& \mathrm{v} 3 \mathrm{~d}=2.0 * \mathrm{v} 1 \mathrm{~d} \\
& \mathrm{v} 3=2.0 * \mathrm{v} 1+5.0 \\
& \mathrm{v} 4 \mathrm{~d}=\mathrm{v} 3 \mathrm{~d}+\mathrm{p} 1 *(\mathrm{v} 2 \mathrm{~d} * \mathrm{v} 3-\mathrm{v} 2 * \mathrm{v} 3 \mathrm{~d}) /(\mathrm{v} 3 * \mathrm{v} 3) \\
& \mathrm{v} 4=\mathrm{v} 3+\mathrm{p} 1 * \mathrm{v} 2 / \mathrm{v} 3
\end{aligned}
$$

END

Just inserts "differentiated instructions" into FOO

Computer Programs as Functions

See any program P: $\left\{l_{1} ; l_{2} ; \ldots I_{p} ;\right\}$ as:

$$
f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \quad f=f_{p} \circ f_{p-1} \circ \cdots \circ f_{1}
$$

Define for short:

$$
W_{0}=X \quad \text { and } \quad W_{k}=f_{k}\left(W_{k-1}\right)
$$

The chain rule yields:

$$
f^{\prime}(X)=f_{p}^{\prime}\left(W_{p-1}\right) \cdot f_{p-1}^{\prime}\left(W_{p-2}\right) \ldots . f_{1}^{\prime}\left(W_{0}\right)
$$

Tangent mode and Reverse mode

Full $f^{\prime}(X)$ is expensive and often useless.
We'd better compute useful "projections".
tangent AD :
$\dot{Y}=f^{\prime}(X) \cdot \dot{X}=f_{p}^{\prime}\left(W_{p-1}\right) \cdot f_{p-1}^{\prime}\left(W_{p-2}\right) \ldots f_{1}^{\prime}\left(W_{0}\right) \cdot \dot{X}$
reverse AD:
$\bar{X}=f^{\prime t}(X) \cdot \bar{Y}=f_{1}^{\prime t}\left(W_{0}\right) \ldots f_{p-1}^{\prime t}\left(W_{p-2}\right) \cdot f_{p}^{\prime t}\left(W_{p-1}\right) \cdot \bar{Y}$

Evaluate both from right to left:
\Rightarrow always matrix \times vector
Theoretical cost is about 4 times the cost of P

Costs of Tangent and Reverse AD

$F: \quad R^{m} \rightarrow R^{n}$

- $f^{\prime}(X)$ costs $(m+1) * P$ using Divided Differences
- $f^{\prime}(X)$ costs $m * 4 * \mathrm{P}$ using the tangent mode Good if $m<=n$
- $f^{\prime}(X)$ costs $n * 4 * P$ using the reverse mode Good if $m \gg n$ (e.g $n=1$ in optimization)

Focus on the Reverse mode (Gradients)

$$
\bar{X}=f^{\prime t}(X) \cdot \bar{Y}=f_{1}^{\prime t}\left(W_{0}\right) \ldots f_{p-1}^{\prime t}\left(W_{p-2}\right) \cdot f_{p}^{\prime t}\left(W_{p-1}\right) \cdot \bar{Y}
$$

$$
\begin{aligned}
& I_{1} ; \\
& \vdots \\
& i_{p-2} ; \\
& I_{p=1} ; \bar{Y} ; \\
& \frac{W}{W}=f_{p}^{\prime t}\left(W_{p-1}\right) * \bar{W} ;
\end{aligned}
$$

Focus on the Reverse mode (Gradients)

$$
\bar{X}=f^{\prime t}(X) \cdot \bar{Y}=f_{1}^{\prime t}\left(W_{0}\right) \ldots f_{p-1}^{\prime t}\left(W_{p-2}\right) \cdot f_{p}^{\prime t}\left(W_{p-1}\right) \cdot \bar{Y}
$$

$$
\begin{aligned}
& I_{1} ; \\
& \cdots \\
& i_{p-2} ; \\
& l_{p-1} ; \bar{Y} ; \\
& W={ }^{\prime}=\bar{Y} ; \\
& W=W_{p}^{\prime t}\left(W_{p-1}\right) * \bar{W} ;
\end{aligned}
$$

$$
\frac{\text { Restore }}{W}=f_{p-1}^{\prime \prime}\left(W_{p-2}\right) * W^{\prime} ;
$$

Focus on the Reverse mode (Gradients)

$$
\begin{aligned}
& \bar{X}=f^{\prime t}(X) \cdot \bar{Y}=f_{1}^{\prime t}\left(W_{0}\right) \ldots f_{p-1}^{\prime t}\left(W_{p-2}\right) \cdot f_{p}^{\prime t}\left(W_{p-1}\right) \cdot \bar{Y} \\
& I_{1} ; \\
& \dot{P}_{p-2} ; \\
& P_{p-1}=\bar{Y} ; \\
& \bar{W}=f_{p}^{\prime t}\left(W_{p-1}\right) * \bar{W} ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { Restore } W_{p-2} \text { before } I_{p-2} ; \\
& W=f_{p-1}^{\prime \prime}\left(W_{p-2}\right) * W^{\prime} ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { 民̈estore } W_{0} \text { before } I_{1} ; \\
& \begin{array}{l}
W=\frac{t_{1}^{\prime t}}{W}\left(W_{0}\right) * \mathscr{W} ; \\
\bar{X}=
\end{array},
\end{aligned}
$$

Instructions differentiated in the reverse order !

Reverse mode: graphical interpretation

- A Forward sweep followed by Backward sweep
- Bottleneck: Uses a large memory "Tape"
- Trade-off strategy: "Checkpointing"

Outline

Quick Introduction to AD

(2) Introduction

(3) Formalization
(4) Multi-directional
(5) Reverse AD
6) Alternative formalizations
(7) Reverse AD performance issues; Checkpointing
(8) Static Analyses in AD tools
(9) Reverse AD for Scientific Computing
(10) The Tapenade AD Tool
(11) Tapenade AD Model on Examples
(12) Some AD Tools

13 Validation methods
14) Expert-level $A D$
(15) Conclusion

So you need derivatives ?...

Given a program P computing a function F

$$
\begin{aligned}
F: \quad \boldsymbol{R}^{m} & \rightarrow R^{n} \\
X & \mapsto
\end{aligned}
$$

we want to build a program that computes the derivatives of F.

Specifically, we want the derivatives of the dependent, i.e. some variables in Y, with respect to the independent, i.e. some variables in X.

Which derivatives do you want?

Derivatives come in various shapes and flavors:

- Jacobian Matrices: $J=\left(\frac{\partial y_{j}}{\partial x_{i}}\right)$
- Directional or tangent derivatives, differentials:

$$
d Y=\dot{Y}=J \times d X=J \times \dot{X}
$$

- Gradients:
- When $n=1$ output : gradient $=J=\left(\frac{\partial y}{\partial x_{i}}\right)$
- When $n>1$ outputs: gradient $=\bar{Y}^{t} \times J$
- Higher-order derivative tensors
- Taylor coefficients
- Intervals ?

Divided Differences

Given \dot{X}, run P twice, and compute \dot{Y}

$$
\dot{Y}=\frac{\mathrm{P}(X+\varepsilon \dot{X})-\mathrm{P}(X)}{\varepsilon}
$$

- Pros: immediate; no thinking required !
- Cons: approximation; what ε ?
\Rightarrow Not so cheap after all !
Optimization wants inexpensive and accurate derivatives.
\Rightarrow Let's go for exact, analytic derivatives !

AD Example: analytic tangent differentiation by Program transformation

SUBROUTINE FOO(v1, v2, v4, p1)

REAL v1,v2,v3,v4,p1
$\mathrm{v} 3=2.0 * \mathrm{v} 1+5.0$
$\mathrm{v} 4=\mathrm{v} 3+\mathrm{p} 1 * \mathrm{v} 2 / \mathrm{v} 3$
END

AD Example: analytic tangent differentiation by Program transformation

SUBROUTINE FOO(v1, v2, v4, p1)

REAL v1,v2,v3,v4,p1
v3d $=2.0 * v 1 d$
$\mathrm{v} 3=2.0 * \mathrm{v} 1+5.0$
v4d $=v 3 d+p 1 *(v 2 d * v 3-v 2 * v 3 d) /(v 3 * v 3)$
v4 = v3 + p1*v2/v3
END

AD Example: analytic tangent differentiation by Program transformation

SUBROUTINE FOO (v1,v1d,v2,v2d,v4,v4d,p1)
REAL v1d,v2d,v3d,v4d
REAL v1,v2,v3,v4,p1

$$
\begin{aligned}
& \mathrm{v} 3 \mathrm{~d}=2.0 * \mathrm{v} 1 \mathrm{~d} \\
& \mathrm{v} 3=2.0 * \mathrm{v} 1+5.0 \\
& \mathrm{v} 4 \mathrm{~d}=\mathrm{v} 3 \mathrm{~d}+\mathrm{p} 1 *(\mathrm{v} 2 \mathrm{~d} * \mathrm{v} 3-\mathrm{v} 2 * \mathrm{v} 3 \mathrm{~d}) /(\mathrm{v} 3 * \mathrm{v} 3) \\
& \mathrm{v} 4=\mathrm{v} 3+\mathrm{p} 1 * \mathrm{v} 2 / \mathrm{v} 3
\end{aligned}
$$

END

Just inserts "differentiated instructions" into FOO

Outline

Quick Introduction to AD
(2) Introduction

(3) Formalization

(4) Multi-directional
(5) Reverse AD
(6) Alternative formalizations
(7) Reverse AD performance issues ; Checkpointing
(8) Static Analyses in AD tools
(9) Reverse AD for Scientific Computing
(10) The Tapenade AD Tool
(11) Tapenade AD Model on Examples
(12) Some AD Tools
(13) Validation methods
(14) Expert-level $A D$
(15) Conclusion

Take control away!

We differentiate programs. But control \Rightarrow non-differentiability!
Freeze the current control:
\Rightarrow the program becomes a simple sequence of instructions
$\Rightarrow \mathrm{AD}$ differentiates these sequences:

Caution: the program is only piecewise differentiable !

Computer Programs as Functions

- Identify sequences of instructions

$$
\left\{I_{1} ; I_{2} ; \ldots I_{p-1} ; I_{p} ;\right\}
$$

with composition of functions.

- Each simple instruction

$$
I_{k}: \quad \mathrm{v} 4=\mathrm{v} 3+\mathrm{v} 2 / \mathrm{v} 3
$$

is a function $f_{k}: R^{q} \rightarrow R^{q}$ where

- The output v4 is built from the input v2 and v3
- All other variable are passed unchanged
- Thus we see P : $\left\{I_{1} ; I_{2} ; \ldots I_{p-1} ; I_{p} ;\right\}$ as

$$
f=f_{p} \circ f_{p-1} \circ \cdots \circ f_{1}
$$

Using the Chain Rule

$$
f=f_{p} \circ f_{p-1} \circ \cdots \circ f_{1}
$$

We define for short:

$$
W_{0}=X \quad \text { and } \quad W_{k}=f_{k}\left(W_{k-1}\right)
$$

The chain rule yields:

$$
f^{\prime}(X)=f_{p}^{\prime}\left(W_{p-1}\right) \cdot f_{p-1}^{\prime}\left(W_{p-2}\right) \ldots . f_{1}^{\prime}\left(W_{0}\right)
$$

Tangent mode and Reverse mode

Full J is expensive and often useless.
We'd better compute useful projections of J.
tangent AD :
$\dot{Y}=f^{\prime}(X) \cdot \dot{X}=f_{p}^{\prime}\left(W_{p-1}\right) \cdot f_{p-1}^{\prime}\left(W_{p-2}\right) \ldots f_{1}^{\prime}\left(W_{0}\right) \cdot \dot{X}$
reverse AD:
$\bar{X}=f^{\prime t}(X) \cdot \bar{Y}=f_{1}^{\prime t}\left(W_{0}\right) \ldots f_{p-1}^{\prime t}\left(W_{p-2}\right) \cdot f_{p}^{\prime t}\left(W_{p-1}\right) \cdot \bar{Y}$

Evaluate both from right to left:
\Rightarrow always matrix \times vector
Theoretical cost is about 4 times the cost of P

Costs of Tangent and Reverse AD

$F: R^{m} \rightarrow R^{n}$
m inputs
noutputs $\left|\begin{array}{cccccc|c|c}\bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & & & \\ \text { Tangent }\end{array}\right|$ Gradient

- J costs $m * 4 * \mathrm{P}$ using the tangent mode Good if $m<=n$
- J costs $n * 4 * \mathrm{P}$ using the reverse mode Good if $m \gg n$ (e.g $n=1$ in optimization)

Back to the Tangent Mode example

$$
\begin{aligned}
& \mathrm{v} 3=2.0 * \mathrm{v} 1+5.0 \\
& \mathrm{v} 4=\mathrm{v} 3+\mathrm{p} 1 * \mathrm{v} 2 / \mathrm{v} 3
\end{aligned}
$$

Elementary Jacobian matrices:

$$
\begin{aligned}
f^{\prime}(X) & =\ldots\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & 1 & \\
0 & \frac{p_{1}}{v_{3}} & 1-\frac{p_{1} * v_{2}}{v_{3}^{2}} & 0
\end{array}\right)\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
2 & & 0 & \\
& & & 1
\end{array}\right)\left(\begin{array}{l}
\dot{v}_{1} \\
\dot{v}_{2} \\
\dot{v}_{3} \\
\dot{v}_{4}
\end{array}\right) \\
& \\
\dot{v}_{3} & =2 * \dot{v}_{1} \\
\dot{v}_{4} & =\dot{v}_{3} *\left(1-p_{1} * v_{2} / v_{3}^{2}\right)+\dot{v}_{2} * p_{1} / v_{3}
\end{aligned}
$$

Tangent Mode example continued

Tangent AD keeps the structure of P :

$$
\begin{aligned}
& \mathrm{v} 3 \mathrm{~d}=2.0 * \mathrm{v} 1 \mathrm{~d} \\
& \mathrm{v} 3=2.0 * \mathrm{v} 1+5.0 \\
& \mathrm{v} 4 \mathrm{~d}=\mathrm{v} 3 \mathrm{~d} *(1-\mathrm{p} 1 * \mathrm{v} 2 /(\mathrm{v} 3 * \mathrm{v} 3))+\mathrm{v} 2 \mathrm{~d} * \mathrm{p} 1 / \mathrm{v} 3 \\
& \mathrm{v} 4=\mathrm{v} 3+\mathrm{p} 1 * \mathrm{v} 2 / \mathrm{v} 3
\end{aligned}
$$

Differentiated instructions inserted into P's original control flow.

Outline

o
 Quick Introduction to AD

(2) Introduction
(3) Formalization
4) Multi-directional
(5) Reverse AD
6) Alternative formalizations
(7) Reverse AD performance issues; Checkpointing
(8) Static Analyses in AD tools
(9) Reverse AD for Scientific Computing
(10) The Tapenade AD Tool
(11) Tapenade AD Model on Examples
(12) Some AD Tools
(13) Validation methods
(14) Expert-level AD
(15) Conclusion

Multi-directional mode and Jacobians

If you want $\dot{Y}=f^{\prime}(X) \cdot \dot{X}$ for the same X and several \dot{X}

- either run the tangent differentiated program several times, evaluating f several times.
- or run a "Multi-directional" tangent once, evaluating f once.

Same for $\bar{X}=f^{\prime t}(X) . \bar{Y}$ for several \bar{Y}.
In particular, multi-directional tangent or reverse is good to get the full Jacobian.

Sparse Jacobians with seed matrices

When sparse Jacobian, use "seed matrices" to propagate fewer \dot{X} or \bar{Y}

- Multi-directional tangent mode:

$$
\left(\begin{array}{llll}
a & & b & \\
& c & & \\
& & d & \\
e & f & & g
\end{array}\right) \times\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& 1 & \\
& & 1
\end{array}\right)=\left(\begin{array}{lll}
a & b & \\
& c & \\
& d & \\
e & f & g
\end{array}\right)
$$

- Multi-directional reverse mode:

$$
\left(\begin{array}{llll}
1 & 1 & & \\
& & 1 & 1
\end{array}\right) \times\left(\begin{array}{llll}
a & & b & \\
& c & & \\
& & d & \\
e & f & & g
\end{array}\right)=\left(\begin{array}{llll}
a & c & b & \\
e & f & d & g
\end{array}\right)
$$

Outline

 Quick Introduction to AD

(2) Introduction
(3) Formalization
(4) Multi-directional
(5) Reverse AD
(6) Alternative formalizations
(7) Reverse AD performance issues ; Checkpointing
(8) Static Analyses in AD tools
(9) Reverse AD for Scientific Computing
(10) The Tapenade AD Tool
(11) Tapenade AD Model on Examples
(12) Some AD Tools

13 Validation methods
14 Expert-level $A D$
(15) Conclusion

Focus on the Reverse mode

$$
\bar{X}=f^{\prime t}(X) \cdot \bar{Y}=f_{1}^{\prime t}\left(W_{0}\right) \ldots f_{p-1}^{\prime t}\left(W_{p-2}\right) \cdot f_{p}^{\prime t}\left(W_{p-1}\right) \cdot \bar{Y}
$$

$$
\begin{aligned}
& I_{1} ; \\
& i . \\
& i_{p-2} ; \\
& I_{p=1} ; \bar{Y} ; \\
& \frac{W}{W}=f_{p}^{\prime t}\left(W_{p-1}\right) * \bar{W} ;
\end{aligned}
$$

Focus on the Reverse mode

$$
\bar{X}=f^{\prime t}(X) \cdot \bar{Y}=f_{1}^{\prime t}\left(W_{0}\right) \ldots f_{p-1}^{\prime t}\left(W_{p-2}\right) \cdot f_{p}^{\prime t}\left(W_{p-1}\right) \cdot \bar{Y}
$$

$$
\begin{aligned}
& I_{1} ; \\
& \cdots \\
& i_{p-2} ; \\
& I_{p-1} ; \bar{Y} ; \\
& W=f_{p}^{\prime t}\left(W_{p-1}\right) * \bar{W} ;
\end{aligned}
$$

$$
\frac{\text { Restore }}{W}=f_{p-1}^{\prime \prime}\left(W_{p-2}\right) * W^{\prime} ;
$$

Focus on the Reverse mode

$$
\begin{aligned}
& \bar{X}=f^{\prime t}(X) \cdot \bar{Y}=f_{1}^{\prime t}\left(W_{0}\right) \ldots f_{p-1}^{\prime t}\left(W_{p-2}\right) \cdot f_{p}^{\prime t}\left(W_{p-1}\right) \cdot \bar{Y} \\
& I_{1} ; \\
& i_{p-2} ; \\
& \\
& P_{p-1}=\bar{Y} ; \\
& \bar{W}=f_{p}^{\prime t}\left(W_{p-1}\right) * \bar{W} ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { Restore } W_{p-2} \text { before } I_{p-2} ; \\
& W=f_{p-1}^{\prime \prime}\left(W_{p-2}\right) * W^{\prime} ;
\end{aligned}
$$

$$
\ddot{\text { Restore }} W_{0} \text { before } I_{1} \text {; }
$$

$$
\frac{\bar{W}}{\bar{X}}=\frac{f_{1}^{\prime t}}{W}\left(W_{0}\right) * \bar{W} ;
$$

Instructions differentiated in the reverse order !

Reverse mode: graphical interpretation

Bottleneck: memory usage ("Tape").
Still searching for optimal combinations of storage, recomputation and even inversion.

Back to the example

$$
\begin{aligned}
& \mathrm{v} 3=2.0 * \mathrm{v} 1+5.0 \\
& \mathrm{v} 4=\mathrm{v} 3+\mathrm{p} 1 * \mathrm{v} 2 / \mathrm{v} 3
\end{aligned}
$$

Transposed Jacobian matrices:

$$
f^{\prime t}(X)=\ldots\left(\begin{array}{cccc}
1 & & 2 & \\
& 1 & & \\
& & 0 & \\
& & & 1
\end{array}\right)\left(\begin{array}{ccccc}
1 & & & 0 \\
& 1 & & \frac{p_{1}}{\bar{v}_{1}} \\
& & 1 & 1-\frac{\bar{p}_{3} * v_{2}}{v_{3}} \\
& & & & 0
\end{array}\right)\left(\begin{array}{c}
\bar{v}_{1} \\
\bar{v}_{2} \\
\bar{V}_{2} \\
\bar{V}_{3} \\
\bar{v}_{4}
\end{array}\right)
$$

$$
\begin{aligned}
& \bar{v}_{2}=\bar{v}_{2}+\bar{v}_{4} * p_{1} / v_{3} \\
& \bar{v}_{1}={\underset{\bar{v}}{1}}+2 * \bar{v}_{3} \\
& \bar{v}_{3}=0
\end{aligned}
$$

Reverse Mode example continued

Reverse AD inverses the structure of P :

$$
\begin{aligned}
& \mathrm{v} 3=2.0 * \mathrm{v} 1+5.0 \\
& \mathrm{v} 4=\mathrm{v} 3+\mathrm{p} 1 * \mathrm{v} 2 / \mathrm{v} 3
\end{aligned}
$$

$$
\cdots \mathrm{v} 2 \mathrm{~b}=\mathrm{v} 2 \mathrm{~b}+\mathrm{p} 1 * \mathrm{v} 4 \mathrm{~b} / \mathrm{v} 3
$$

$$
\mathrm{v} 2 \mathrm{~b}=\mathrm{v} 2 \mathrm{~b}+\mathrm{p} 1 * \mathrm{v} 4 \mathrm{~b} / \mathrm{v} 3
$$

$$
\mathrm{v} 3 \mathrm{~b}=\mathrm{v} 3 \mathrm{~b}+(1-\mathrm{p} 1 * \mathrm{v} 2 /(\mathrm{v} 3 * \mathrm{v} 3)) * \mathrm{v} 4 \mathrm{~b}
$$

$$
v 4 b=0.0
$$

$$
\text { vib }=\text { vib }+2.0 * \mathrm{v} 3 \mathrm{br}
$$

$$
\mathrm{v} 3 \mathrm{~b}=0.0
$$

/*restore previous state*/

Differentiated instructions inserted into the inverse of P's original control flow.

Control Flow Inversion : conditionals

The control flow of the forward sweep is mirrored in the backward sweep.
if (T(i).lt.0.0) then $\mathrm{T}(\mathrm{i})=\mathrm{S}(\mathrm{i}) * \mathrm{~T}(\mathrm{i})$
endif
if (...) then

$$
\begin{aligned}
& \mathrm{Sb}(\mathrm{i})=\mathrm{Sb}(\mathrm{i})+\mathrm{T}(\mathrm{i}) * \mathrm{~Tb}(\mathrm{i}) \\
& \mathrm{Tb}(\mathrm{i})=\mathrm{S}(\mathrm{i}) * \mathrm{~Tb}(\mathrm{i}) \\
& \text { endif }
\end{aligned}
$$

Control Flow Inversion : loops

Reversed loops run in the inverse order

$$
\begin{aligned}
& \text { Do } i=1, N \\
& \mathrm{~T}(\mathrm{i})=2.5 * \mathrm{~T}(\mathrm{i}-1)+3.5
\end{aligned}
$$

Enddo

Do i $=\mathrm{N}, 1,-1$

$$
\begin{aligned}
& \mathrm{Tb}(\mathrm{i}-1)=\mathrm{Tb}(\mathrm{i}-1)+2.5 * \mathrm{~Tb}(\mathrm{i}) \\
& \mathrm{Tb}(\mathrm{i})=0.0
\end{aligned}
$$

Enddo

Control Flow Inversion : spaghetti

Remember original Control Flow when it merges

Data Flow Inversion: message-passing parallelism

Consider the Data Dependence Graph of an MPI communication.

Data Flow Inversion: message-passing parallelism

Consider the Data Dependence Graph of an MPI communication.

The reversed communication pattern is designed to inverse data-flow \Rightarrow and therefore does not introduce deadlocks.

Outline

Quick Introduction to AD

(2) Introduction
(3) Formalization
(4) Multi-directional
(5) Reverse AD
6) Alternative formalizations
(7) Reverse AD performance issues ; Checkpointing
(8) Static Analyses in AD tools
(9) Reverse AD for Scientific Computing
(10) The Tapenade AD Tool
(11) Tapenade AD Model on Examples
(12) Some AD Tools
(13) Validation methods
(14) Expert-level $A D$
(15) Conclusion

Yet another formalization using computation graphs

A sequence of instructions corresponds to a computation graph
DO $\mathbf{i}=\mathbf{1}, \mathbf{n}$
IF $(\mathbf{B}(\mathbf{i})$. .gt.0.0) THEN
$\mathbf{r}=\mathbf{A}(\mathbf{i}) * \mathbf{B}(\mathbf{i})+\mathbf{y}$
$\mathbf{X}(\mathbf{i})=\mathbf{3} * \mathbf{r}-\mathbf{B}(\mathbf{i}) * \mathbf{X}(\mathbf{i}-\mathbf{3})$
$\mathbf{y}=\operatorname{SIN}(\mathbf{X}(\mathbf{i}) * \mathbf{r})$
ENDIF
ENDDO

Source program

Computation Graph

Jacobians by Vertex Elimination

Jacobian Computation Graph

Bipartite Jacobian Graph

- Forward vertex elimination \Rightarrow tangent $A D$.
- Reverse vertex elimination \Rightarrow reverse AD.
- Other orders ("cross-country") may be optimal.

Yet another formalization: Lagrange multipliers

$$
\begin{aligned}
& \mathrm{v} 3=2.0 * \mathrm{v} 1+5.0 \\
& \mathrm{v} 4=\mathrm{v} 3+\mathrm{p} 1 * \mathrm{v} 2 / \mathrm{v} 3
\end{aligned}
$$

Can be viewed as constrains. We know that the Lagrangian $\mathcal{L}\left(v_{1}, v_{2}, v_{3}, v_{4}, \overline{v_{3}}, \overline{v_{4}}\right)=$ $v_{4}+\overline{v_{3}} \cdot\left(-v_{3}+2 \cdot v_{1}+5\right)+\overline{v_{4}} \cdot\left(-v_{4}+v_{3}+p_{1} * v_{2} / v_{3}\right)$ is such that:

$$
\overline{v_{1}}=\frac{\partial v_{4}}{\partial v_{1}}=\frac{\partial \mathcal{L}}{\partial v_{1}} \quad \text { and } \quad \overline{v_{2}}=\frac{\partial v_{4}}{\partial v_{2}}=\frac{\partial \mathcal{L}}{\partial v_{2}}
$$

provided

$$
\frac{\partial \mathcal{L}}{\partial v_{3}}=\frac{\partial \mathcal{L}}{\partial v_{4}}=\frac{\partial \mathcal{L}}{\partial \overline{v_{3}}}=\frac{\partial \mathcal{L}}{\partial \overline{v_{4}}}=0
$$

The $\overline{v_{i}}$ are the Lagrange multipliers associated to the instruction that sets v_{i}.

For instance, equation $\frac{\partial \mathcal{L}}{\partial v_{3}}=0$ gives us:

$$
\overline{v_{4}} \cdot\left(1-p_{1} \cdot v_{2} /\left(v_{3} \cdot v_{3}\right)\right)-\overline{v_{3}}=0
$$

To be compared with instruction $\mathrm{v} 3 \mathrm{~b}=\mathrm{v} 3 \mathrm{~b}+(1-\mathrm{p} 1 * \mathrm{v} 2 /(\mathrm{v} 3 * \mathrm{v} 3)) * \mathrm{v} 4 \mathrm{~b}$ (initial v3b is set to 0.0)

Outline

Quick Introduction to AD

(2) Introduction
(3) Formalization
(4) Multi-directional
(5) Reverse AD
(6) Alternative formalizations
(7) Reverse AD performance issues; Checkpointing
(8) Static Analyses in AD tools
(9) Reverse AD for Scientific Computing
(10) The Tapenade AD Tool
(11) Tapenade AD Model on Examples
(12) Some AD Tools
(13) Validation methods
(14) Expert-level AD
(15) Conclusion

Time/Memory tradeoffs for reverse AD

From the definition of the gradient \bar{X}

$$
\bar{X}=f^{\prime t}(X) \cdot \bar{Y}=f_{1}^{\prime t}\left(W_{0}\right) \ldots f_{p}^{\prime t}\left(W_{p-1}\right) \cdot \bar{Y}
$$

we get the general shape of reverse AD program:

\Rightarrow How can we restore previous values?

Restoration by recomputation (RA: Recompute-All)

Restart execution from a stored initial state:

Memory use low, CPU use high \Rightarrow trade-off needed !

Restoration by storage (SA: Store-All)

Progressively undo the assignments made by the forward sweep

Memory use high, CPU use low \Rightarrow trade-off needed!

Checkpointing (SA strategy)

On selected pieces of the program, possibly nested, don't store intermediate values and re-execute the piece when values are required.

Memory and CPU grow like $\log (\operatorname{size}(\mathrm{P}))$

Checkpointing on calls (SA)

A classical choice: checkpoint procedure calls !

Memory and CPU grow like $\log (\operatorname{size}(\mathrm{P}))$ when call tree well balanced.

III-balanced call trees require not checkpointing some calls
Careful analysis keeps the snapshots small.

Outline

(1)
 Quick Introduction to AD

(2) Introduction
(3) Formalization
(4) Multi-directional
(5) Reverse AD
6. Alternative formalizations
(7) Reverse AD performance issues; Checkpointing
(8) Static Analyses in AD tools
(9) Reverse AD for Scientific Computing
(10) The Tapenade AD Tool
(11) Tapenade AD Model on Examples
(12) Some AD Tools

13 Validation methods
14 Expert-level $A D$
(15) Conclusion

Activity analysis

Finds out the variables that, at some location

- do not depend on any independent,
- or have no dependent depending on them.

Derivative either null or useless \Rightarrow simplifications

orig. prog	tangent mode	w/activity analysis
$\begin{aligned} & c=a * b \\ & a=5.0 \\ & d=a * c \\ & e=a / c \\ & e=f l o o r(e) \end{aligned}$	$\begin{aligned} & c d=a * b d+a d * b \\ & c=a * b \\ & a d=0.0 \\ & a=5.0 \\ & d d=a * c d+a d * c \\ & d=a * c \\ & e d=a d / c-a * c d / c * * 2 \\ & e=a / c \\ & e d=0.0 \\ & e=f l o o r(e) \end{aligned}$	$\begin{aligned} & c d=a * b d+a d * b \\ & c=a * b \\ & a=5.0 \\ & d d=a * c d \\ & d=a * c \\ & e=a / c \\ & e d=0.0 \\ & e=f l o o r(e) \end{aligned}$

Adjoint Liveness

The important result of the reverse mode is in \bar{X}. The original result Y is of no interest.

- The last instruction of the program P can be removed from $\overline{\mathrm{P}}$.
- Recursively, other instructions of P can be removed too.

orig. program	reverse mode	Adjoint Live code
$\begin{gathered} \text { IF (a.GT.O.) THEN } \\ \mathrm{a}=\operatorname{LOG}(\mathrm{a}) \end{gathered}$	```IF(a.GT.0.)THEN CALL PUSH(a) a = LOG(a) CALL POP(a) ab = ab/a```	IF (a.GT.0.) THEN $a b=a b / a$
$\begin{aligned} & \text { ELSE } \\ & \quad a=\operatorname{LOG}(\mathrm{c}) \\ & \quad \operatorname{CALL} \operatorname{SUB}(\mathrm{a}) \\ & \text { ENDIF } \\ & \text { END } \end{aligned}$	```ELSE a = LOG(c) CALL PUSH(a) CALL SUB(a) CALL POP(a) CALL SUB_B(a,ab) cb = cb + ab/c ab = 0.0 END IF```	ELSE $\begin{aligned} & \mathrm{a}=\text { LOG }(\mathrm{c}) \\ & \\ & \text { CALL SUB_B }(\mathrm{a}, \mathrm{ab}) \\ & \mathrm{cb}=\mathrm{cb}+\mathrm{ab} / \mathrm{c} \\ & \mathrm{ab}=0.0 \\ & \text { END } \mathrm{IF} \end{aligned}$

"To Be Restored" analysis

In reverse AD, not all values must be restored during the backward sweep.

Variables occurring only in linear expressions do not appear in the differentiated instructions.
\Rightarrow not To Be Restored.

$$
\begin{aligned}
& x=x+\operatorname{EXP}(a) \\
& y=x+a * * 2 \\
& a=3 * z
\end{aligned}
$$

reverse mode: naive backward sweep	reverse mode: backward sweep with TBR
CALL POP (a)	CALL POP (a)
$z b=z b+3 * a b$	$z b=z b+3 * a b$
$a b=0.0$	$a b=0.0$
CALL POP (y)	$a b=a b+2 * a * y b$
$a b=a b+2 * a * y b$	$x b=x b+y b$
$x b=x b+y b$	$y b=0.0$
$y b=0.0$	$a b=a b+\operatorname{EXP}(a) * x b$
$C A L L P O P(x)$	
$a b=a b+\operatorname{EXP}(a) * x b$	

Aliasing

In reverse AD, it is important to know whether two variables in an instruction are the same.

$\mathrm{a}[\mathrm{i}]=3 * \mathrm{a}[\mathrm{i}+1]$	$\mathrm{a}[\mathrm{i}]=3 * \mathrm{a}[\mathrm{i}]$	$\mathrm{a}[\mathrm{i}]=3 * \mathrm{a}[\mathrm{j}]$
variables certainly different	variables certainly equal	$\mathrm{tmp}=3 * \mathrm{a}[\mathrm{j}]$ $\mathrm{a}[\mathrm{i}]=\mathrm{tmp}$
$\mathrm{ab}[\mathrm{i}+1]=\mathrm{ab}[\mathrm{i}+1]$ $+3 * \mathrm{ab}[\mathrm{i}]$	$\mathrm{ab}[\mathrm{i}]=3 * \mathrm{ab}[\mathrm{i}]$	$\mathrm{tmpb}=\mathrm{ab}[\mathrm{i}]$ $\mathrm{ab}[\mathrm{i}]=0.0$ $\mathrm{ab}[\mathrm{i}]=0.0$
		$\mathrm{ab}[j]=\mathrm{ab}[j]$ $+3 * \mathrm{tmpb}$

Snapshots

Taking small snapshots saves a lot of memory:

$\operatorname{Snapshot}(\mathrm{C})=\operatorname{Use}(\overline{\mathrm{C}}) \cap(\operatorname{Out}(\mathrm{C}) \cup \operatorname{Out}(\overline{\mathrm{D}}))$

Undecidability

- Analyses are static: operate on source, don't know run-time data.
- Undecidability: no static analysis can answer yes or no for every possible program : there will always be programs on which the analysis will answer "I can't tell"
- \Rightarrow all tools must be ready to take conservative decisions when the analysis is in doubt.
- In practice, tool "laziness" is a far more common cause for undecided analyses and conservative transformations.

Outline

 Quick Introduction to AD

(2) Introduction
(3) Formalization
(4) Multi-directional
(5) Reverse AD
6) Alternative formalizations
(7) Reverse AD performance issues ; Checkpointing
(8) Static Analyses in AD tools
(9) Reverse AD for Scientific Computing
(10) The Tapenade AD Tool
(11) Tapenade AD Model on Examples
(12) Some AD Tools
(13) Validation methods

14 Expert-level $A D$
(15) Conclusion

Applications to Optimization

From a simulation program P :

$$
\mathrm{P}:(\text { design parameters }) \gamma \mapsto(\text { cost function }) J(\gamma)
$$

it takes a gradient $J^{\prime}(\gamma)$ to obtain an optimization program.

Reverse mode AD builds program $\overline{\mathrm{P}}$ that computes $J^{\prime}(\gamma)$
Optimization algorithms (Gradient descent, SQP, ...) may also use 2nd derivatives. AD can provide them too.

Taking advantage of Steady-State

If J is defined on a state W, and W results from an implicit steady state equation

$$
\Psi(W, \gamma)=0
$$

which is solved iteratively: $W_{0}, W_{1}, W_{2}, \ldots, W_{\infty}$
then pure reverse $A D$ of P may prove too expensive (memory...)

Solutions exist:

- reverse AD on the final steady state only.
- Andreas Griewank's "Piggy-backing"
- reverse AD on Ψ alone + hand-coding

CFD optimization: color pictures...

AD gradient of the cost function on the skin geometry:

Sonic boom under the plane after 8 optimization cycles:

CFD optimization: figures

- Cost function: sonic boom below + lift + drag
- Design parameters: plane skin, (2000 REAL*8)
- Specific strategy for a stationnary simulation: assembly of the adjoint linear system through AD, then specific solver.
- Performances:
- Differentiation time: 2 s .
- Reverse AD slowdown: 7
- Adjoint slowdown: 4
- Reverse AD memory use: 58 REAL*8 per mesh node

Data Assimilation (OPA 9.0/GYRE)

Influence of T at - $\mathbf{3 0 0}$ metres on heat flux 20 days later across North section

Data Assimilation (OPA 9.0/NEMO)

2° grid cells, one year simulation

Data Assimilation: figures

- Code: OPA 9.0. 120000 lines of FORTRAN 95
- Cost function: e.g. heat flux at the end vs. temperature, salinity. . . at initial state
- Standard reverse AD of complete simulation
- Differentiation time: 20 s .
- Reverse AD slowdown: 7

Outline

(1)
 Quick Introduction to AD

(2) Introduction
(3) Formalization
(4) Multi-directional
(5) Reverse AD
6) Alternative formalizations
(7) Reverse AD performance issues ; Checkpointing
(8) Static Analyses in AD tools
(9) Reverse AD for Scientific Computing
(10) The Tapenade AD Tool
(11) Tapenade AD Model on Examples
(12) Some AD Tools
(13) Validation methods
(14) Expert-level AD
(15) Conclusion

TAPENADE support and directions

- Team's website, tutorial, FAQ: http://www-sop.inria.fr/tropics
- Tapenade download site: ftp://ftp-sop.inria.fr/tropics/tapenade
- TAPENADE 2.1 user's guide: http://www.inria.fr/rrrt/rt-0300.html
- Mailing list:
tapenade-users@lists-sop.inria.fr

Tapenade Web Interface

Tapenade Architecture

- Language-independent kernel
- Written in Java (100 000 lines)
- Accepts Fortran (77 and 95) and C (August 2008)

Outline

(1)
 Quick Introduction to AD

(2) Introduction
(3) Formalization
(4) Multi-directional
(5) Reverse AD
6. Alternative formalizations
(7) Reverse AD performance issues ; Checkpointing
(8) Static Analyses in AD tools
(9) Reverse AD for Scientific Computing
(10) The Tapenade AD Tool
(11) Tapenade AD Model on Examples
(12) Some AD Tools
(13) Validation methods

14 Expert-level $A D$
(15) Conclusion

A very simple program

Control structures

Original program	Tapenade reverse: fwd sweep
```SUBROUTINE S1(a, n, x) DO i=2,n,7 IF (a(i).GT.1.0) THEN a(i) = LOG(a(i)) + a(i-1) END IF ENDDO```	```DO i=2,n,7 IF (a(i).GT.1.0) THEN CALL PUSHREAL4(a(i)) a(i) = LOG(a(i))+a(i-1) CALL PUSHINTEGER4(1) ELSE```
Tapenade tangent	Tapenade reverse: bwd sweep
```SUBROUTINE S1_D(a,ad,n,x) ... DO i=2,n,7 IF (a(i).GT.1.0) THEN ad(i)=ad(i)/a(i)+ad(i-1) a(i) = LOG(a(i)) + a(i-1) END IF```	CALL POPINTEGER4 (adTo)   DO i=adTo,2,-7   CALL POPINTEGER4 (branch)   IF (branch .GE. 1) THEN CALL POPREAL4 (a(i))   $a b(i-1)=a b(i-1)+a b(i)$   $a b(i)=a b(i) / a(i)$

Procedure calls and Checkpointing

Original program	Tapenade reverse: fwd sweep
$\begin{aligned} & \mathrm{x}=\mathrm{x} * * 3 \\ & \operatorname{CALL} \operatorname{SUB}(\mathrm{a}, \mathrm{x}, 1.5, \mathrm{z}) \\ & \mathrm{x}=\mathrm{x} * \mathrm{y} \end{aligned}$	CALL PUSHREAL4 (x) $\mathrm{x}=\mathrm{x} * * 3$ CALL PUSHREAL4 (x) CALL $\operatorname{SUB}(\mathrm{a}, \mathrm{x}, 1.5, \mathrm{z})$ $\mathrm{x}=\mathrm{x} * \mathrm{y}$
Tapenade tangent	Tapenade reverse: bwd sweep
$\begin{aligned} & \mathrm{xd}=3 * \mathrm{x} * * 2 * \mathrm{xd} \\ & \mathrm{x}=\mathrm{x} * * 3 \\ & \text { CALL SUB_D }(\mathrm{a}, \mathrm{ad}, \mathrm{x}, \mathrm{xd}, \\ & \mathrm{xd}=\mathrm{y} * \mathrm{xd} \\ & \mathrm{x}=\mathrm{x} * \mathrm{y} \end{aligned}$	$\mathrm{xb}=\mathrm{y} * \mathrm{xb}$ CALL POPREAL4 (x) CALL SUB_B (a, ab, $x, x b$, $1.5, \arg 2 b, z)$ CALL POPREAL4 (x) $\mathrm{xb}=3 * \mathrm{x} * * 2 * \mathrm{xb}$

Snapshots for Checkpointing

Snapshots must be as small as possible:

Snapshot $(\mathrm{SUB}) \subseteq \mathbf{U s e}(\overline{\mathrm{SUB}}) \cap(\mathbf{O u t}(\mathrm{SUB}) \cup \mathbf{O u t}(\overline{\mathrm{D}}))$

Activity analysis

Finds out the variables that, at some location

- do not depend on any independent,
- or have no dependent depending on them.

Derivative either null or useless \Rightarrow simplifications

orig. prog	tangent mode	w/activity analysis
$\begin{aligned} & c=a * b \\ & a=5.0 \\ & d=a * c \\ & e=a / c \\ & e=f l o o r(e) \end{aligned}$	$\begin{aligned} & c d=a * b d+a d * b \\ & c=a * b \\ & a d=0.0 \\ & a=5.0 \\ & d d=a * c d+a d * c \\ & d=a * c \\ & e d=a d / c-a * c d / c * * 2 \\ & e=a / c \\ & e d=0.0 \\ & e=f l o o r(e) \end{aligned}$	$\begin{aligned} & c d=a * b d+a d * b \\ & c=a * b \\ & a=5.0 \\ & d d=a * c d \\ & d=a * c \\ & e=a / c \\ & e d=0.0 \\ & e=f l o o r(e) \end{aligned}$

"To Be Recorded" analysis

In reverse AD, not all values must be restored during the backward sweep.

Variables occurring only in linear expressions do not appear in the differentiated instructions.
\Rightarrow not To Be Recorded.

$$
\begin{aligned}
& \mathrm{y}=\mathrm{y}+\operatorname{EXP}(\mathrm{a}) \\
& \mathrm{y}=\mathrm{y}+\mathrm{a} * * 2 \\
& \mathrm{a}=3 * \mathrm{z}
\end{aligned}
$$

```
reverse mode:
naive backward sweep
CALL POP(a)
zb = zb + 3*ab
ab = 0.0
CALL POP(y)
ab = ab + 2*a*yb
CALL POP(y)
ab = ab + EXP(a)*yb
reverse mode:
backward sweep with TBR
CALL POP(a)
zb = zb + 3*ab
ab}=0.
ab = ab + 2*a*yb
ab = ab + EXP(a)*xb
```


Tapenade does/doesn't

Tapenade does handle

- modules, overloading, renaming, interfaces
- structured types ("records")
- pointers and allocation

Tapenade does not handle

- fpp or cpp keys, templates
- deallocation in reverse more
- checkpointing of non-reentrant code
- classes and objects

Outline

(1)
 Quick Introduction to AD

(2) Introduction
(3) Formalization
(4) Multi-directional
(5) Reverse AD

6 Alternative formalizations
(7) Reverse AD performance issues ; Checkpointing
(8) Static Analyses in AD tools
(9) Reverse AD for Scientific Computing
(10) The Tapenade AD Tool
(11) Tapenade AD Model on Examples
(12) Some AD Tools
(13) Validation methods
(14) Expert-level $A D$
(15) Conclusion

Tools for source-transformation AD

http://www.autodiff.org

AD tools are based on overloading or source transformation.

Source transformation requires complex tools, but offers more room for optimization.

parsing	\rightarrow analysis	\rightarrow differentiation
F77	type-checking	tangent
F9X	use/kill	reverse
C	dependencies	multi-directional
MATLAB	activity	\ldots
\ldots	\ldots	

Some AD tools

- NAGWARE F95 Compiler: Overloading, tangent, reverse
- ADOL-C : Overloading+Tape; tangent, reverse, higher-order
- ADIFOR/Open-AD : Transformation ; tangent, reverse?, Store-All + Checkpointing
- TAPENADE : Transformation ; tangent, reverse, Store-All + Checkpointing
- TAF : Transformation ; tangent, reverse, Recompute-All + Checkpointing

Some Limitations of AD tools

Fundamental problems:

- Piecewise differentiability
- Convergence of derivatives
- Reverse AD of large codes

Technical Difficulties:

- Pointers and memory allocation
- Objects
- Inversion or Duplication of random control (communications, random,...)

Outline

(1)
 Quick Introduction to AD

(2) Introduction
(3) Formalization
(4) Multi-directional
(5) Reverse AD
6) Alternative formalizations
(7) Reverse AD performance issues ; Checkpointing
(8) Static Analyses in AD tools
(9) Reverse AD for Scientific Computing
(10) The Tapenade AD Tool
(11) Tapenade AD Model on Examples
(12) Some AD Tools
(13) Validation methods
(14) Expert-level AD
(15) Conclusion

Validation methods

From a program P that evaluates

$$
\begin{aligned}
F: \quad R^{m} & \rightarrow R^{n} \\
X & \mapsto
\end{aligned}
$$

tangent AD creates

$$
\dot{\mathrm{P}}: \quad X, \dot{X} \mapsto Y, \dot{Y}
$$

and reverse AD creates

$$
\overline{\mathrm{P}}: \quad X, \bar{Y} \mapsto \bar{X}
$$

Wow can we validate these programs ?

- Tangent wrt Divided Differences
- Reverse wrt Tangent

Validation of Tangent wrt Divided Differences

For a given \dot{X}, set $g(h \in R)=F(X+h . X d)$:

$$
g^{\prime}(0)=\lim _{\varepsilon \rightarrow 0} \frac{F(X+\varepsilon \times \dot{X})-F(X)}{\varepsilon}
$$

Also, from the chain rule:

$$
g^{\prime}(0)=F^{\prime}(X) \times \dot{X}=\dot{Y}
$$

So we can approximate \dot{Y} by running P twice, at points X and $X+\varepsilon \times \dot{X}$

Validation of Reverse wrt Tangent

For a given \dot{X}, tangent code returned \dot{Y}
Initialize $\bar{Y}=\dot{Y}$ and run the reverse code, yielding \bar{X}. We have :

$$
\begin{aligned}
(\bar{X} \cdot \dot{X}) & =\left(F^{\prime t}(X) \times \dot{Y} \cdot \dot{X}\right) \\
& =\dot{Y}^{t} \times F^{\prime}(X) \times \dot{X} \\
& =\dot{Y}^{t} \times \dot{Y} \\
& =(\dot{Y} \cdot \dot{Y})
\end{aligned}
$$

Often called the "dot-product test"

Outline

(1)
 Quick Introduction to AD

(2) Introduction
(3) Formalization
(4) Multi-directional
(5) Reverse AD
6) Alternative formalizations
(7) Reverse AD performance issues ; Checkpointing
(8) Static Analyses in AD tools
(9) Reverse AD for Scientific Computing
(10) The Tapenade AD Tool
11) Tapenade AD Model on Examples
(12) Some AD Tools

13 Validation methods
(14) Expert-level $A D$
(15) Conclusion

Black-box routines

If the tool permits, give dependency signature (sparsity pattern) of all external procedures \Rightarrow better activity analysis \Rightarrow better diff program.

After AD, provide required hand-coded derivative (FOO_D or FOO_B)

Linear or auto-adjoint procedures

Make linear or auto-adjoint procedures "black-box".
Since they are their own tangent or reverse derivatives, provide their original form as hand-coded derivative.

In many cases, this is more efficient than pure AD of these procedures

Independent loops

If a loop has independent iterations, possibly terminated by a sum-reduction, then

Standard:

In the Recompute-All context, this reduces the memory consumption by a factor N

Outline

 Quick Introduction to AD

(2) Introduction
(3) Formalization
(4) Multi-directional
(5) Reverse AD
6) Alternative formalizations
(7) Reverse AD performance issues ; Checkpointing
(8) Static Analyses in AD tools
(9) Reverse AD for Scientific Computing
(10) The Tapenade AD Tool
(11) Tapenade AD Model on Examples
(12) Some AD Tools
(13) Validation methods
(14) Expert-level AD
(15) Conclusion

AD: Context

AD: To Bring Home

- If you want the derivatives of an implemented math function, you should seriously consider AD.
- Divided Differences aren't good for you (nor for others...)
- Especially think of AD when you need higher order (taylor coefficients) for simulation or gradients (reverse mode) for optimization.
- Reverse AD is a discrete equivalent of the adjoint methods from control theory: gives a gradient at remarkably low cost.

AD tools: To Bring Home

- AD tools provide you with highly optimized derivative programs in a matter of minutes.
- AD tools are making progress steadily, but the best $A D$ will always require end-user intervention.

Thank you for your attention!

(2) Introduction
(3) Formalization
(4) Multi-directional
(5) Reverse AD

6 Alternative formalizations
(7) Reverse AD performance issues ; Checkpointing
(8) Static Analyses in AD tools
(9) Reverse AD for Scientific Computing
(10) The Tapenade AD Tool
(11) Tapenade AD Model on Examples
(12) Some AD Tools
(13) Validation methods
(4) Expert-level AD
(15) Conclusion

