

La simulation numérique en aéroacoustique aéronautique : quelle place pour la LBM ?

E. Manoha - ONERA - Département Aéroacoustique Groupe de travail « Schémas de Boltzmann sur réseau » Institut Henri Poincaré - 06.05.2015

retour sur innovation

Plan

- Domaine d'activité, besoins en simulation numérique
 - L'Onera et l'aéroacoustique en aéronautique
 - Bruit aérodynamique et effets d'installation
- Simulation numérique aéroacoustique : les outils classiques
 - Méthodes hybrides CFD/CAA
 - Les codes aerodynamiques et acoustiques à l'Onera
 - La LBM : l'Onera dans LaBS
- Exemple : bruit de train d'atterrissage
 - Géométries disponibles pour la validation
 - Cas du train d'atterrissage simplifié LAGOON
 - Simulations numériques basées sur elsA et CEDRE
 - Simulations numériques basée sur PowerFLOW et LaBS
- Bilan

Onera : centre français de recherche aéronautique et spatiale

Force d'innovation, d'expertise et de prospective pour l'industrie, l'État et l'Europe

- Un portefeuille d'activités équilibré
- 1/3 civil
- 1/3 défense
- 1/3 dual

- Épic créé en 1946
- Tutelle du ministère de la Défense
- 2 101 personnes
- 220 doctorants et post-doctorants
- 210 M€ de budget
- 38 M€ d'investissements
- 62 % d'activité contractuelle
- 1^{er} parc de souffleries en Europe
- Un institut labellisé Carnot

Retour sur innovation : avance technologique et succès industriels

- Toute la gamme Airbus (A380, A350, A320 Neo) et Falcon (7X)
- Moteurs (Safran)
- Hélicoptères (Airbus Helicopters
- Ariane $5 \rightarrow 6$
- Missions spatiales

Retour sur innovation : progrès des connaissances et enjeux sociétaux

Les enjeux de l'environnement

- Réduction du bruit
- Réduction des émissions polluantes
- Carburants alternatifs

Organisation

Département Aéroacoustique (DAAC)

Sources de bruit d'un avion civil

Bruit externe = Bruit de propulsion + Bruit aérodynamique + Effets d'installation

Bruit de propulsion JET Turbofan SOUFFLANTE, Double flux TURBINE, SOUFFLANTE Haut taux de dilution COMBUSTION, COMPRESSEUR A330 Bruit aérodynamique Système hypersustentateurs ; Becs de bord d'attaque Volets de bord de fuite Trains d'atterrissage Fentes, Cavités, etc

Effets d'installation Masquage du bruit de propulsion par la structure

Sources de bruit aérodynamique sur une aile hypersustentée

Sources de bruit aérodynamique sur un train d'atterrissage

Les méthodes de simulation numérique

- Aérodynamique
- Acoustique

Principales méthodes en aéroacoustique numérique

Méthodes hybrides : CFD + acoustique

Simulation écoulement turbulent local :

□ RANS + instabilités, RANS + modèle stochastique

- □ URANS, LES, NLDE, DNS
- Lattice Boltzmann Method

Les codes Onera

- Aérodynamique
- Acoustique
- ... LBM

Unsteady CFD based on LES (DES) elsA solver

Block-structured, finite volume

DES : Attached boundary layers solved by RANS, large structures solved by LES

Aeroacoustic applications : airfoil, high-lift wing, jet, landing gear

Unsteady CFD and CAA *FUNk* research solver

Navier-Stokes / Euler, Block-structured grids, finite volume and high order finite difference Full or perturbed variables (NLDE / CAA)

Adapted to industrial cases and developement of new functionalities

Unsteady CFD based on LES/DES CEDRE solver

Unstructured grids Unsteady CFD : Monotonic Integrated Large Eddy Simulation Aeroacoustic applications : jet, landing gear

Integral methods : Ffowcs Williams – Hawkings, Kirchhoff Solvers : KIM, MIA

- Multi-purpose integral formulations for acoustic radiation
- Several available formulations (FW-H, Kirchhoff)
- Tonal and large band noise ٠
- **Time/frequency domains** ۲
- Moving, porous, supersonic grids
- Hybrid structured / unstructured grids
- **Parallelised**

Boundary Element Method Solver : Bemuse

- Boundary Element Method
- Solution of Helmholtz equation with condition limits on surfaces
- Acceleration method A.C.A. (Adaptive Crossing Approximation)
- Parallelisation under progress

- → Other exemple of recent computation : A320 aircraft :
- f = 1000 Hz
- Mesh : 630 000 cells
- RAM size : 54 Go
- CPU : 84 hours (single processor)

ONERA

THE PRENCH AFROSPACE LA

21

Computational AeroAcoustics Solver : sAbrinA-V0

- Non-linear Euler equations in perturbation
- Finite-Difference high-order schemes
- Block-structured grids
- Acoustic scattering on surfaces (hard walls / liners)
- Acoustic propagation in inhomogeneous flows

Airframe noise

Aft fan noise (isolated or installed)

LaBS (Lattice Boltzmann Solver) : l'Onera dans le projet

HE PRENCH ARROSPACE LA

- LaBS : évaluation du code sur des cas-tests aéroacoustiques : cavité, cylindre, profil hypersustenté .
- CLIMB : Poursuite de l'évaluation du code sur des cas-tests "aéroacoustigues (profil hypersustenté, atterrisseur) et aérodynamiques basse vitesse
- Développements dans le code : conditions de raccords 2:1 pour l'acoustique, • couplage aéro-thermique, portage sur GPU

Simulation du bruit de train d'atterrissage

- Géométries disponibles pour la validation
- Calculs sur la géométrie LAGOON avec elsA, CEDRE, PowerFLOW, LaBS

Bruit de train d'atterrissage : géométries disponibles pour la validation

THE FRENCH AREOSPACE LA

LAGOON : ZDES (elsA) Maillage structuré multiblocs, raccords conformes

LAGOON : ZDES (elsA) Maillage structuré multiblocs, technique Chimère

Développement Chimère / IBC (Immersed Boundary Conditions) dans *FUNk* (objectif : implémentation *elsA*)

Valeurs instantanées de Vx

Génération du maillage octree :

- Blocs cartésiens recouvrants
- Raffinement dans le sillage
- Environ 15 M cellules
- Cylindre amont : IBC
- Cylindre aval : « body-fitted » Chimère

Deux types d'interpolation (Cassiopée) :

- Interpolations Chimère : raccords entre blocs cartésiens et blocs body-fitted
- Interpolations dans le fluide : valeurs aux cellules fictives au sens IBC

ONERA

LAGOON : ZDES mode II (CEDRE) Maillage non-structuré

Maillage non structuré hybride : 20 M. prisms + 41 M. tetras First cell size 10µm. Y+ around 1.5 - 7.5 25 prismatic layers with 6% growth rate

Q criterion (colours) **Dilatation** (greys)

10 9.5 9

8.5 8 7.5 7

6.5 6 5.5 5

4.5

4 3.5 3

2.5 2

1.5

1

0.5 0

Cas-test BANC résolus avec PowerFLOW (EXA)

LAGOON : LBM (LaBS) Calcul Airbus-France

31 A. Sengissen (Airbus-France)

LAGOON : LBM (LaBS) Calcul Airbus-France

Travaux Onera avec LaBS (Version 1193 – Juillet 2014) Landing gear configurations

THE FRENCH AEROSPACE LAB

33

Travaux Onera avec LaBS (Version 1373) High-lift wing (LEISA2)

Bilan LBM (LaBS) pour l'aéroacoustique

• Poins positifs

- Efficacité/simplicité de la mise en donnée de problèmes complexes (IHM, Cassiopée)
- En l'état, appplicable à de nombreux problèmes de bruit aérodynamique
- Potentiel de performance CPU (et GPU ...)
- Perspectives Onera hors aéroacoustique : aérodynamique, aérothermique, plasmas, dispersion pollution, optique

• Améliorations nécessaires à court/moyen terme

- Difficultés de calculs avec reprises (checkpoints) → très gros fichiers
- Problèmes de déséquilibre de charge entre processeurs
- Extraction de données en champ proche pour le calcul du bruit en champ lointain (FW-H)
- Performance CPU encore en deça de PowerFLOW

• A plus long terme

- Gestion des interfaces de résolution pour l'acoustique (activités ECL/Onera/Airbus)
- Nouvelles fonctionalités nécessaires pour étendre le champ d'application de l'aéroacoustique (→ jet, voilures tournantes) : Mach élevés, maillages en rotation / translation, formulation en perturbation
- Possibilité de « seeding » (calcul à partir d'un champ et d'une mise en donnée existants)