Construction of BGK models from an entropy minimization principle

Stéphane BRULL, Jacques SCHNEIDER, Vincent PAVAN

$7^{\text {th }}$ january 2020

Plan

(1) Introduction
(2) Monoatomic case

- Setting of the problem
- Construction of the model
- Definition of the relaxation coefficients
(3) Polyatomic case
- Borgnakke-Larsen model
- Construction of the model
- Definition of the relaxation coefficients

4 Generalization to gas mixtures

- Setting of the problem
- Navier-Stokes system
- Chapman-Enskog expansion
- Construction and properties of the model
(5) Conclusions and perspectives

Introduction

Aim

- Construct a relaxation operator $R(f)=\lambda(G-f) \approx Q(f, f)$
- Go beyond the BGK model,
- As close as possible of $Q(f, f)$,
- Generalization to polyatomic gases: $f(t, x, v, I), I$: Internal energy
- Generalization to mixtures

Aim

- Construct a relaxation operator $R(f)=\lambda(G-f) \approx Q(f, f)$
- Go beyond the BGK model,
- As close as possible of $Q(f, f)$,
- Generalization to polyatomic gases : $f(t, x, v, I), I$: Internal energy
- Generalization to mixtures

Aim

- Construct a relaxation operator $R(f)=\lambda(G-f) \approx Q(f, f)$
- Go beyond the BGK model,
- As close as possible of $Q(f, f)$,
- Generalization to polyatomic gases : $f(t, x, v, I), I$: Internal energy
- Generalization to mixtures : $f_{i}(t, x, v)\left(\mathbf{f}:=\left(f_{1}, \cdots, f_{p}\right)\right)$

$$
\frac{\partial f_{i}}{\partial t}(t, x, v)+v \cdot \nabla_{x} f_{i}(t, x, v)=\sum_{k=1}^{k=p} Q_{k i}\left(f_{k}, f_{i}\right) \approx \lambda\left(G_{i}-f_{i}\right) .
$$

Notations

Macroscopic quantities

ρ, u et T : mass, velocity and temperature

$$
\rho=\int_{\mathbb{R}^{3}} f d v, \quad u=\frac{1}{\rho} \int_{\mathbb{R}^{3}} v f d v, \quad T=\frac{1}{3 \rho} \int_{\mathbb{R}^{3}}|v-u|^{2} f d v .
$$

Stress tensor

$$
\Theta=\frac{1}{\rho} \int_{\mathbb{R}^{3}}(v-u) \otimes(v-u) f d v, \quad f=\mathcal{M} \Rightarrow \rho \Theta=\rho T / d
$$

Boltzmann entropy

$$
\mathcal{H}(g)=\int(g \ln g-g) d v
$$

Space of invariants
$\mathbb{K}=\left\{1, v,|v|^{2}\right\} . P_{\mathbb{K}}:$ projection on \mathbb{K}

Chapman-Enskog expansion

Parameter ε Knudsen number. When $\varepsilon \rightarrow 0 \Rightarrow$ fluid model Rescaled Boltzmann equation

$$
\partial_{t} f+v \cdot \nabla_{x} f=\frac{1}{\varepsilon} Q(f, f) .
$$

Chapman-Enskog expansion

- Equilibrium state : $Q(f, f)=0 \Leftrightarrow f=\mathcal{M}$
- Choice of the Maxwellian

$$
\int_{\mathbb{R}^{3}}\left(\begin{array}{c}
1 \\
v \\
v^{2}
\end{array}\right) \mathcal{M} d v=\int_{\mathbb{R}^{3}}\left(\begin{array}{c}
1 \\
v \\
v^{2}
\end{array}\right) f d v
$$

- $f=\mathcal{M}+$ moments extraction w.r.t. $\left(1, v, v^{2}\right)$
\Rightarrow Euler system
- $f=\mathcal{M}+\varepsilon f_{1}+$ moments extraction w.r.t. $\left(1, v, v^{2}\right)$
\Rightarrow Navier-Stokes system

Euler system

Order 0

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+v \cdot \nabla_{x}\right) \mathcal{M}=0 \tag{1}
\end{equation*}
$$

Integration of (1) w.r.t $\left(1, v,|v|^{2}\right) \Rightarrow$ Euler system Euler system

Euler system

Order 0

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+v \cdot \nabla_{x}\right) \mathcal{M}=0 \tag{1}
\end{equation*}
$$

Integration of (1) w.r.t $\left(1, v,|v|^{2}\right) \Rightarrow$ Euler system

Euler system

Order 0

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+v \cdot \nabla_{x}\right) \mathcal{M}=0 \tag{1}
\end{equation*}
$$

Integration of (1) w.r.t $\left(1, v,|v|^{2}\right) \Rightarrow$ Euler system
Euler system

$$
\begin{aligned}
\partial_{t} \rho+\operatorname{div}(\rho u) & =0 \\
\partial_{t}(\rho u)+\operatorname{div}_{x}(\rho u \otimes u)+\nabla_{x}(\rho T) & =0 \\
\partial_{t}\left(\rho\left(\frac{1}{2}|u|^{2}+\frac{3}{2} T\right)\right)+\operatorname{div}_{x}\left(\rho u\left(\frac{1}{2}|u|^{2}+\frac{5}{2} T\right)\right) & =0 .
\end{aligned}
$$

Computation of f_{1}

Expression of times derivatives w.r.t space derivatives.

$$
\begin{aligned}
& \left(\frac{\partial}{\partial t}+v \cdot \nabla_{x}\right) \mathcal{M}=\left(\mathbb{A}(V): \mathbb{D}(u)-B(V) \frac{\nabla_{x} T}{\sqrt{T}}\right) \mathcal{M}=\mathcal{L}\left(f_{1}\right) \\
& V=\frac{v-u}{\sqrt{T}}, \quad \mathcal{L}(g)=Q(M, M g)+Q(M g, M)
\end{aligned}
$$

Inversion of the relation $\Rightarrow f_{1}$
Sonine polynomials

$$
\mathbb{A}(v)=v \otimes v-\frac{1}{3}|v|^{2} l d, \quad \mathbf{B}(v)=\frac{v}{2}\left(v^{2}-\frac{5}{2}\right) .
$$

$\underline{\mathbb{D}(u) \text { (viscosity tensor) : }}$

$$
\mathbb{D}(u)=\frac{1}{2}\left(\nabla_{x} u+\nabla_{x} u^{t}\right)-\frac{1}{3} \operatorname{div}(u) / d .
$$

Navier-Stokes system

Integration of $\left(\frac{\partial}{\partial t}+v \cdot \nabla_{X}\right)\left(\mathcal{M}+\varepsilon f_{1}\right)$ w.r.t $\left(1, v,|v|^{2}\right)$,

$$
\begin{aligned}
& \partial_{t} \rho+\operatorname{div}_{x}(\rho u)=0 \\
& \partial_{t}(\rho u)+\operatorname{div}_{x}(\rho u \otimes u+\rho T I d-\varepsilon \mu \mathbb{D}(u))=0 \\
& \partial_{t}\left(\rho\left(\frac{1}{2}|u|^{2}+\frac{3}{2} T\right)\right)+\operatorname{div}_{x}\left(\rho\left(\frac{1}{2}|u|^{2}+\frac{5}{2} T\right)-\varepsilon \kappa \nabla_{x} T-\varepsilon \mu D(u) \cdot u\right)=0 .
\end{aligned}
$$

Navier-Stokes system

Integration of $\left(\frac{\partial}{\partial t}+v \cdot \nabla_{x}\right)\left(\mathcal{M}+\varepsilon f_{1}\right)$ w.r.t $\left(1, v,|v|^{2}\right)$,

$$
\begin{aligned}
& \partial_{t} \rho+\operatorname{div}_{x}(\rho u)=0 \\
& \partial_{t}(\rho u)+\operatorname{div}_{x}(\rho u \otimes u+\rho T I d-\varepsilon \mu \mathbb{D}(u))=0 \\
& \partial_{t}\left(\rho\left(\frac{1}{2}|u|^{2}+\frac{3}{2} T\right)\right)+\operatorname{div}_{x}\left(\rho\left(\frac{1}{2}|u|^{2}+\frac{5}{2} T\right)-\varepsilon \kappa \nabla_{x} T-\varepsilon \mu \mathbb{D}(u) \cdot u\right)=0 .
\end{aligned}
$$

Transport Coefficients
$\mu=\mu\left(T, \rho, \mathbb{A}, \mathcal{L}^{-1}\right):$ Viscosity, $\quad \kappa=\kappa\left(T, \rho, \mathbf{B}, \mathcal{L}^{-1}\right)$: Heat flux

Navier-Stokes system

Integration of $\left(\frac{\partial}{\partial t}+v \cdot \nabla_{x}\right)\left(\mathcal{M}+\varepsilon f_{1}\right)$ w.r.t $\left(1, v,|v|^{2}\right)$,

$$
\begin{aligned}
& \partial_{t} \rho+\operatorname{div}_{x}(\rho u)=0 \\
& \partial_{t}(\rho u)+\operatorname{div}_{x}(\rho u \otimes u+\rho T I d-\varepsilon \mu \mathbb{D}(u))=0 \\
& \partial_{t}\left(\rho\left(\frac{1}{2}|u|^{2}+\frac{3}{2} T\right)\right)+\operatorname{div}_{x}\left(\rho\left(\frac{1}{2}|u|^{2}+\frac{5}{2} T\right)-\varepsilon \kappa \nabla_{x} T-\varepsilon \mu \mathbb{D}(u) \cdot u\right)=0 .
\end{aligned}
$$

Transport Coefficients
$\mu=\mu\left(T, \rho, \mathbb{A}, \mathcal{L}^{-1}\right):$ Viscosity,$\quad \kappa=\kappa\left(T, \rho, \mathbf{B}, \mathcal{L}^{-1}\right)$: Heat flux
Prandtl number

$$
\operatorname{Pr}=\frac{5}{2} \frac{\mu}{\kappa} \approx \frac{2}{3} .
$$

Monoatomic case

BGK Models

Relaxation operator

$$
Q(f, f) \sim R(f)=\frac{1}{\tau}(\mathcal{M}-f), \quad \tau>0
$$

where \mathcal{M} is defined by

$$
\mathcal{M}(v)=\frac{\rho}{(2 \pi T)^{3 / 2}} \exp \left(-\frac{|v-u|^{2}}{2 T}\right)
$$

BGK Models

Relaxation operator

$$
Q(f, f) \sim R(f)=\frac{1}{\tau}(\mathcal{M}-f), \quad \tau>0
$$

where \mathcal{M} is defined by

$$
\mathcal{M}(v)=\frac{\rho}{(2 \pi T)^{3 / 2}} \exp \left(-\frac{|v-u|^{2}}{2 T}\right)
$$

$$
\mathcal{M}=\min _{g \in C_{f}} \mathcal{H}(g)
$$

where

$$
C_{f}=\left\{g \geq 0 \text { s.t. } \int_{\mathbb{R}^{3}}\left(\begin{array}{c}
1 \\
v \\
v^{2}
\end{array}\right) g d v=\int_{\mathbb{R}^{3}}\left(\begin{array}{c}
1 \\
v \\
v^{2}
\end{array}\right) f d v\right\}
$$

Properties of the BGK operator

Conservation laws

$$
\int_{\mathbb{R}^{3}}(\mathcal{M}-f)\left(1, v,|v|^{2}\right) d v=(0,0,0)
$$

Properties of the BGK operator

Conservation laws

$$
\int_{\mathbb{R}^{3}}(\mathcal{M}-f)\left(1, v,|v|^{2}\right) d v=(0,0,0)
$$

Equilibrium states

$$
\int_{\mathbb{R}^{3}} \rho(\mathcal{M}-f) \ln f d v=0 \Leftrightarrow f=\mathcal{M}
$$

Properties of the BGK operator

Conservation laws

$$
\int_{\mathbb{R}^{3}}(\mathcal{M}-f)\left(1, v,|v|^{2}\right) d v=(0,0,0),
$$

Equilibrium states

$$
\int_{\mathbb{R}^{3}} \rho(\mathcal{M}-f) \ln f d v=0 \Leftrightarrow f=\mathcal{M}
$$

H Theorem

$$
\int_{\mathbb{R}^{3}}(\mathcal{M}-f) \ln f d v \leq 0
$$

Properties of the BGK operator

Conservation laws

$$
\int_{\mathbb{R}^{3}}(\mathcal{M}-f)\left(1, v,|v|^{2}\right) d v=(0,0,0),
$$

Equilibrium states

$$
\int_{\mathbb{R}^{3}} \rho(\mathcal{M}-f) \ln f d v=0 \Leftrightarrow f=\mathcal{M}
$$

H Theorem

$$
\int_{\mathbb{R}^{3}}(\mathcal{M}-f) \ln f d v \leq 0 .
$$

Trend to equilibrium

$$
\lim _{t \rightarrow+\infty} f(t)=\mathcal{M}
$$

Properties of the BGK operator

Conservation laws

$$
\int_{\mathbb{R}^{3}}(\mathcal{M}-f)\left(1, v,|v|^{2}\right) d v=(0,0,0),
$$

Equilibrium states

$$
\int_{\mathbb{R}^{3}} \rho(\mathcal{M}-f) \ln f d v=0 \Leftrightarrow f=\mathcal{M}
$$

H Theorem

$$
\int_{\mathbb{R}^{3}}(\mathcal{M}-f) \ln f d v \leq 0
$$

Trend to equilibrium

$$
\lim _{t \rightarrow+\infty} f(t)=\mathcal{M}
$$

Problem : Prandtl number not correct ≈ 1
Remark: Model coming from an entropy minimization problem

Minimization principle

Aim : Methodology to construct BGK models \Rightarrow correct transport coefficients up to Navier-Stokes.
The models are researched on the form $\lambda(G-f)$
Minimization problem
G is researched as
$\operatorname{span}(m(v))=\mathbb{P}$
$G=-\operatorname{con}^{\prime}\left(\alpha \cdot \operatorname{mo}^{\prime}(v)\right.$ is expected

Minimization principle

Aim : Methodology to construct BGK models \Rightarrow correct transport coefficients up to Navier-Stokes.
The models are researched on the form $\lambda(G-f)$
Minimization problem
G is researched as

$$
\begin{aligned}
\mathcal{H}(G) & =\min _{g \in C_{f}} \mathcal{H}(g) \\
C_{f} & =\left\{g \geq 0 / \int \mathbf{m}(v) g d v=\mathcal{V}\left(\int \mathbf{m}(v) f d v\right)\right\}
\end{aligned}
$$

$\operatorname{span}(\mathbf{m}(v))=\mathbb{P}$
$\mathbf{G}=\exp (\alpha \cdot \mathbf{m}(v))$ is expected.

Realisability problems

Let $\mathcal{V} \in \mathbb{R}^{N}$. Is there $G \geq 0 \in L^{1}$ s.t.

$$
\mathcal{H}(G)=\min \mathcal{H}(g)
$$

under the constraints

$$
\int_{\mathbb{R}^{3}} g \mathbf{m}(v) d v=\mathcal{V} ?
$$

$N C: V$ corresponds to a nonnegative L^{1} function
Characterisation of realisability [M.Junk, 98], [J.Schneider, 2004]
G is not alwavs equal to $\operatorname{exn}(n \cdot \mathbf{m}(v))$

Realisability problems

Let $\mathcal{V} \in \mathbb{R}^{N}$. Is there $G \geq 0 \in L^{1}$ s.t.

$$
\mathcal{H}(G)=\min \mathcal{H}(g)
$$

under the constraints

$$
\int_{\mathbb{R}^{3}} g \mathbf{m}(v) d v=\mathcal{V} ?
$$

NC: \mathcal{V} corresponds to a nonnegative L^{1} function
Characterisation of realisability [M.Junk, 98], [J.Schneider, 2004]
G is not always equal to $\exp (\alpha \cdot \mathbf{m}(v))$

Realisability problems

Let $\mathcal{V} \in \mathbb{R}^{N}$. Is there $G \geq 0 \in L^{1}$ s.t.

$$
\mathcal{H}(G)=\min \mathcal{H}(g)
$$

under the constraints

$$
\int_{\mathbb{R}^{3}} g \mathbf{m}(v) d v=\mathcal{V} ?
$$

NC : \mathcal{V} corresponds to a nonnegative L^{1} function
Characterisation of realisability [M.Junk, 98], [J.Schneider, 2004]
$\mathrm{Pb}: \mathrm{G}$ is not always equal to $\exp (\alpha \cdot \mathbf{m}(v))$

Approach by relaxation coefficients

Relaxation coefficents:

$$
R(f)=\Sigma_{i} \lambda_{i}\left(G_{i}-f\right)
$$

[Levermore, J.S.P., 1996]
Problem : We obtain only $\operatorname{Pr} \geq 1$.

New approach : One unique relaxation coefficient $\lambda>0$ and different

relaxation rates $(\lambda)_{i=1 \cdots N} \geq 0$ s.t.

Conserved quantities

Approach by relaxation coefficients

Relaxation coefficents:

$$
R(f)=\Sigma_{i} \lambda_{i}\left(G_{i}-f\right)
$$

[Levermore, J.S.P., 1996]
Problem : We obtain only $\operatorname{Pr} \geq 1$.

New approach : One unique relaxation coefficient $\lambda>0$ and different $\overline{\text { relaxation rates }}(\lambda)_{i=1 \cdots N} \geq 0$ s.t.

$$
\int \lambda(G-f) m_{i}(v) d v=-\lambda_{i} \int f m_{i}(v) d v, \forall m_{i} \in \mathbb{P}
$$

Conserved quantities : $\lambda_{i}=0$.

Explanation of the constraints

Assume $\mathbb{P}=\mathbb{P}_{0} \oplus_{\perp} \mathcal{V e c t}\left[m_{n+1} \ldots m_{N}\right]$ for the scalar product

$$
\langle\varphi, \psi\rangle=\int \mathcal{M} \varphi \psi d v .
$$

Hence for $\lambda_{i}>0$, and $i>n$

$$
\begin{gathered}
\partial_{t} \int f m_{i} d v=\int \lambda(G-f) m_{i} d v=-\lambda_{i} \int f m_{i} d v \\
\Rightarrow \int f m_{i} d v \rightarrow 0, \forall i>n \text { when } t \rightarrow+\infty
\end{gathered}
$$

$\mathbb{P}=\mathbb{P}_{0}+v \otimes v$

$\mathbb{P}=\mathbb{P}_{0} \oplus_{\perp} \mathbb{A}(c)$, for the scalar product $\langle\varphi, \psi\rangle=\int \mathcal{M} \varphi \psi d v$
Aim : Derive a relaxation operator $\lambda(G-f)$, where

$$
\begin{equation*}
G=\min _{g \in C_{f}} \mathcal{H}(g) . \tag{2}
\end{equation*}
$$

$\mathcal{C}_{f}=\{g \geq 0$ s.t.

$$
\begin{array}{r}
\int_{\mathbb{R}^{3}}\left(1, v,|v|^{2}\right) g d v=\int_{\mathbb{R}^{3}}\left(1, v,|v|^{2}\right) f d v, \\
\left.\int_{\mathbb{R}^{3}} \lambda(g-f) \mathbb{A}(c) d v=-\lambda_{1} \int_{\mathbb{R}^{3}} f \mathbb{A}(c) d v, \quad c=v-u\right\} . \tag{4}
\end{array}
$$

$\mathbb{P}=\mathbb{P}_{0}+v \otimes v$
$\mathbb{P}=\mathbb{P}_{0} \oplus_{\perp} \mathbb{A}(c)$, for the scalar product $\langle\varphi, \psi\rangle=\int \mathcal{M} \varphi \psi d v$
Aim : Derive a relaxation operator $\lambda(G-f)$, where

$$
\begin{equation*}
G=\min _{g \in C_{f}} \mathcal{H}(g) \tag{2}
\end{equation*}
$$

$C_{f}=\{g \geq 0$ s.t.

$$
\begin{array}{r}
\int_{\mathbb{R}^{3}}\left(1, v,|v|^{2}\right) g d v=\int_{\mathbb{R}^{3}}\left(1, v,|v|^{2}\right) f d v, \\
\left.\int_{\mathbb{R}^{3}} \lambda(g-f) \mathbb{A}(c) d v=-\lambda_{1} \int_{\mathbb{R}^{3}} f \mathbb{A}(c) d v, \quad c=v-u\right\} . \tag{4}
\end{array}
$$

Setting $v=1-\frac{\lambda_{1}}{\lambda} \Rightarrow(4)$ can be written

$$
\begin{equation*}
\frac{1}{\rho} \int_{\mathbb{R}^{3}} c \otimes c g d v=v \Theta+(1-v) T / d=\mathcal{T} \tag{5}
\end{equation*}
$$

Main result

Theorem

Let $f \neq 0, f \geq 0$ s.t. $\int\left(1+|v|^{2}\right) f<+\infty$ and $v \in\left[-\frac{1}{2}, 1[\right.$,
\Rightarrow the problem $(2,3,4)$ has a unique solution G

$$
G(v)=\frac{\rho}{\sqrt{\operatorname{det}(2 \pi \mathcal{T})}} \exp \left(-\frac{1}{2}\left\langle c, \mathcal{T}^{-1} c\right\rangle\right)
$$

Conversely, if the problem (2,3,4) has a solution for any $f \geq 0$ s.t. $\int f(1+|v|)^{2}<+\infty$, then $v \in\left[-\frac{1}{2}, 1[\right.$.

Arguments : $\mathcal{C}_{f} \neq \emptyset$. Ex : $G_{E S} \in C_{f}$. M.Junk, J.Schneider $\Rightarrow \exists$ a solution to the minimization problem.

$$
\mathbf{G}(v)=\exp (\alpha \cdot \mathbf{m}(v))
$$

α Lagrange multipliers associated to constraints

Chapman-Enskog expansion

$$
\left(\frac{\partial}{\partial t}+v \cdot \nabla_{X}\right) f=\frac{\lambda}{\varepsilon}(G-f)
$$

Computation of λ and $\lambda_{1} \Rightarrow$ exact expansion up to Navier-Stokes

Chapman-Enskog expansion

$$
\left(\frac{\partial}{\partial t}+v \cdot \nabla_{x}\right) f=\frac{\lambda}{\varepsilon}(G-f)
$$

f is expanded as

$$
f=\mathcal{M}\left(1+\varepsilon f^{(1)}\right)
$$

Computation of λ and $\lambda_{1} \Rightarrow$ exact expansion up to Navier-Stokes

Chapman-Enskog expansion

$$
\left(\frac{\partial}{\partial t}+v \cdot \nabla_{X}\right) f=\frac{\lambda}{\varepsilon}(G-f)
$$

f is expanded as

$$
f=\mathcal{M}\left(1+\varepsilon f^{(1)}\right)
$$

Computation of λ and $\lambda_{1} \Rightarrow$ exact expansion up to Navier-Stokes

$$
\lambda_{1}=\frac{\rho T}{\mu}, \quad \lambda=\frac{5}{2} \frac{\rho T}{\kappa} .
$$

Prandtl number

Chapman-Enskog expansion

$$
\left(\frac{\partial}{\partial t}+v \cdot \nabla_{X}\right) f=\frac{\lambda}{\varepsilon}(G-f)
$$

f is expanded as

$$
f=\mathcal{M}\left(1+\varepsilon f^{(1)}\right)
$$

Computation of λ and $\lambda_{1} \Rightarrow$ exact expansion up to Navier-Stokes

$$
\lambda_{1}=\frac{\rho T}{\mu}, \quad \lambda=\frac{5}{2} \frac{\rho T}{\kappa} .
$$

Prandtl number

$$
\operatorname{Pr}=\frac{5}{2} \frac{\mu}{\kappa}=\frac{\lambda}{\lambda_{1}}=\frac{1}{1-v} . \quad \operatorname{Pr}=\frac{2}{3} \rightarrow v=-\frac{1}{2}
$$

Ellipsoidal Statistical Model ([Holway, 1964]).

Chapman-Enskog expansion

$$
\left(\frac{\partial}{\partial t}+v \cdot \nabla_{x}\right) f=\frac{\lambda}{\varepsilon}(G-f)
$$

f is expanded as

$$
f=\mathcal{M}\left(1+\varepsilon f^{(1)}\right)
$$

Computation of λ and $\lambda_{1} \Rightarrow$ exact expansion up to Navier-Stokes

$$
\lambda_{1}=\frac{\rho T}{\mu}, \quad \lambda=\frac{5}{2} \frac{\rho T}{\kappa} .
$$

Prandtl number

$$
\operatorname{Pr}=\frac{5}{2} \frac{\mu}{\kappa}=\frac{\lambda}{\lambda_{1}}=\frac{1}{1-v} . \quad \operatorname{Pr}=\frac{2}{3} \rightarrow v=-\frac{1}{2}
$$

\Rightarrow Result : Ellipsoidal Statistical Model ([Holway, 1964]).

H Theorem

Theorem

For any $-\frac{1}{2} \leq v<1$,

$$
D(f)=\int\left(G_{v}-f\right) \ln f d v \leq 0
$$

Moreover $D(f)<0$ for $-\frac{1}{2} \leq v<1$ equality iff $f=\mathcal{M}$.
[Andries-Le Tallec-Perlat-Perthame 1999].
[Brull-Schneider 2008].

Polyatomic case

Borgnakke-Larsen model

Microscopic model : [Borgnakke-Larsen, 1975]
Distribution function $\rightarrow f=f(t, x, v, I)$
$I=$ internal energy parameter $(I \geq 0)$ with $\varepsilon(I)=I^{\frac{2}{\delta}}=$ internal energy
Discrete energy parameter : Giovangigli
Collision operator : [Bourgat-Desvillettes-Le Tallec-Perthame, 1994].
Conserved moments: $\left(1, v, \frac{1}{2}|v|^{2}+\left.\right|^{\frac{2}{\delta}}\right)$
$\delta=$ number of internal degrees of freedom.
Link between γ and δ

$$
\gamma=\frac{\delta+5}{\delta+3}, \quad \delta=2 \Rightarrow \gamma=\frac{7}{5}
$$

Polyatomic Maxwellian distribution

$$
\mathcal{M}=\frac{\rho \Lambda_{\delta}}{\left(2 \pi T_{e q}\right)^{\frac{3}{2}}\left(T_{e q}\right)^{\frac{\delta}{2}}} \exp \left(-\frac{|v-u|^{2}}{2 T_{e q}}-\frac{l^{\frac{2}{\bar{\delta}}}}{T_{e q}}\right), \quad \Lambda_{\delta}^{-1}=\int_{\mathbb{R}_{+}} e^{-\left.\right|^{\frac{2}{\delta}}} d l .
$$

Macroscopic quantities

ρ, u defined as in the monoatomic case
Specific internal energy

$$
e=\frac{1}{\rho} \int_{\mathbb{R}^{3} \times \mathbb{R}_{+}}\left(\frac{1}{2}|v-u|^{2}+\left.\right|^{\frac{2}{\delta}}\right) f d v d l .
$$

$e=e_{t r}+e_{\text {int }}$

$$
e_{t r}=\frac{1}{2 \rho} \int_{\mathbb{R}^{3} \times \mathbb{R}_{+}}|v-u|^{2} f d v d l, \quad e_{i n t}=\left.\frac{1}{\rho} \int_{\mathbb{R}^{3} \times \mathbb{R}_{+}}\right|^{\frac{2}{\partial}} f d v d l .
$$

Temperatures are associated to these energies

Macroscopic quantities

ρ, u defined as in the monoatomic case
Specific internal energy

$$
e=\frac{1}{\rho} \int_{\mathbb{R}^{3} \times \mathbb{R}_{+}}\left(\frac{1}{2}|v-u|^{2}+\left.\right|^{\frac{2}{\delta}}\right) f d v d l .
$$

$e=e_{t r}+e_{i n t}$

$$
e_{t r}=\frac{1}{2 \rho} \int_{\mathbb{R}^{3} \times \mathbb{R}_{+}}|v-u|^{2} f d v d l, \quad e_{i n t}=\left.\frac{1}{\rho} \int_{\mathbb{R}^{3} \times \mathbb{R}_{+}}\right|^{\frac{2}{\partial}} f d v d l .
$$

Temperatures are associated to these energies

$$
e=\frac{3+\delta}{2} T_{e q}, \quad e_{t r}=\frac{3}{2} T_{t r}, \quad e_{i n t}=\frac{\delta}{2} T_{i n t} .
$$

```
\(\mathbb{P}=\left\{1, v, v \otimes v,\left.\right|^{\frac{2}{\sigma}}\right\}\)
```

$R(f)=\lambda(G-f)$, where G is solution of the minimization problem

$$
\begin{equation*}
G=\min _{g \in C_{f}} \mathcal{H}(g) . \tag{6}
\end{equation*}
$$

$$
C_{f}=\{g \geq 0 \text { s.t. }
$$

$$
\begin{equation*}
\int_{\mathbb{R}^{3} \times \mathbb{R}_{+}} g\left(1, v, \frac{1}{2}|c|^{2}+\left.\right|^{\frac{2}{\delta}}\right) d v d l=\int_{\mathbb{R}^{3} \times \mathbb{R}_{+}} f\left(1, v, \frac{1}{2}|c|^{2}+I^{\frac{2}{\delta}}\right) d v d l, \tag{7}
\end{equation*}
$$

$$
\int_{\mathbb{R}^{3} \times \mathbb{R}_{+}}\left(\frac{1}{3}|c|^{2}-\frac{2}{3+\delta}\left(\frac{|c|^{2}}{2}+\left.\right|^{\frac{2}{\delta}}\right)\right) \lambda(g-f) d v d l
$$

$$
\begin{equation*}
=-\lambda_{2} \int_{\mathbb{R}^{3} \times \mathbb{R}_{+}}\left(\frac{1}{3}|c|^{2}-\frac{2}{3+\delta}\left(\frac{|c|^{2}}{2}+\left.\right|^{\frac{2}{\delta}}\right)\right) f d v d l \tag{8}
\end{equation*}
$$

$\left.\int_{\mathbb{R}^{3} \times \mathbb{R}_{+}}\left(\left.c \otimes c-\frac{1}{3}|c|^{2} \right\rvert\, d\right) \lambda(g-f) d v d l=-\lambda_{1} \int_{\mathbb{R}^{3} \times \mathbb{R}_{+}}\left(\left.c \otimes c-\frac{1}{3}|c|^{2} \right\rvert\, d\right) f d v d l\right\}$

Construction of G

$$
\begin{gathered}
\theta=1-\frac{\lambda_{2}}{\lambda}, \quad \frac{\lambda_{1}}{\lambda}=1-v(1-\theta) \\
\mathcal{T}=\frac{1}{\rho} \int_{\mathbb{R}^{3}} c \otimes c g d v d l=(1-\theta)\left((1-v) T_{t r} l d+v \Theta\right)+\theta T_{e q} l d
\end{gathered}
$$

Stress tensor

$$
\Theta=\frac{1}{\rho} \int c \otimes c f d v d l
$$

Interpretation : \mathcal{T} is a "double convex combinaison".
Comparison with the Ellipsoidal Statistical Model in the polyatomic case [P.Andries-P.LeTallec-J.P.Perlat-B.Perthame, 2000]

Main theorem

Relaxation temperature : $T_{\text {rel }}=\theta T_{\text {eq }}+(1-\theta) T_{\text {int }}$,

Theorem

Let $f(f \neq 0), f \geq 0$ s.t. $\int f\left(1+|v|^{2}+\left.\right|^{\frac{2}{\delta}}\right) d v d l<+\infty, v \in\left[-\frac{1}{2}, 1[\right.$ and $\theta \in[0,1]$. Then the problem (6, 7, 8, 9$)$ has a unique solution G,

$$
G=\frac{\rho \Lambda_{\delta}}{\sqrt{\operatorname{det}(2 \pi \mathcal{T})}\left(T_{\text {eq }}\right)^{\frac{\delta}{2}}} \exp \left(-\frac{1}{2}\left\langle c, \mathcal{T}^{-1} c\right\rangle-\frac{\left.\right|_{\overline{\frac{2}{\delta}}}}{T_{\text {rel }}}\right) .
$$

Conversely, if $(6,7,8,9)$ has a unique solutio for any $f \geq 0$ s.t. $\int f\left(1+|v|^{2}+\left.\right|^{\frac{2}{\delta}}\right) d v d l<+\infty$, then $v \in\left[-\frac{1}{2}, 1[\right.$ and $\theta \in[0,1]$.
[S.B-J.Schneider], 2009

Definition of $\lambda, \lambda_{1}, \lambda_{2}$.

Tensor for polyatomic Navier-Stokes

$$
\sigma_{i j}=\mu\left(\partial_{x_{j}} u_{i}+\partial_{x_{i}} u_{j}-\alpha \operatorname{div}(u) \delta_{i j}\right)
$$

Chapman-Enskog expansion
\Rightarrow Definition of $\lambda(\rho, T, \kappa), \lambda_{1}(\rho, T, \mu)$ et $\lambda_{2}(\rho, T, \mu, \alpha)$.
Result : Ellipsoidal Statistical Model for polyatomic gases [P.Andries-P.LeTallec-J.P.Perlat-B.Perthame, 2000]

Generalization to gas mixtures

Setting of the problem

Aim : Construct a relaxation operator for multi-species basing on (true) hydrodynamic limit and right kinetic coefficients
(Fick, Soret, Duffour, Fourier, Newton).
\Rightarrow [Brull-Pavan-Schneider, 2012] Fick law.
[Brull, 2015] ES-BGK
Up to now : Approx. of moments exchanges of Boltzmann equation

- [Garzò-Santos-Brey, 1989]
- [Kosuge, 2009] (approximation on the Grad 13 moments).

Pb : loss of positivity, no H theorem, uncorrect transport coefficients.
One particular model : [Andries-Aoki-Perthame, 2002]
Good mathematical properties : H theorem, positivity.
Valid only for Maxwellian molecules \Rightarrow uncorrect transport coefficients.
Application to reacting mixtures (Bisi, Groppi, Spiga).

Navier-Stokes system for a mixture

Navier-Stokes system :

$$
\begin{array}{r}
\forall i \in[1, p], \partial_{t} n^{i}+\nabla \cdot\left(n^{i} \mathbf{u}+J_{i}\right)=0, \\
\partial_{t}(\rho \mathbf{u})+\nabla \cdot\left(\mathbb{P}+\rho \mathbf{u} \otimes \mathbf{u}+\mathbb{J}_{\mathbf{u}}\right)=0, \\
\partial_{t} E+\nabla \cdot\left(E \mathbf{u}+\mathbb{P}[\mathbf{u}]+\mathbb{J}_{\mathbf{u}}[\mathbf{u}]+\mathbf{J}_{q}\right)=0,
\end{array}
$$

$\mathbf{J}_{i}, \mathbb{J}_{\mathbf{u}} \mathbf{J}_{\mathbf{q}}$: mass, momentum and heat fluxes.
Thermodynamics of Irreversible Processes assumptions.

$$
\begin{aligned}
& \mathbf{J}_{i}=\sum_{j=1}^{j=p} L_{i j} \nabla\left(\frac{-\mu_{j}}{T}\right)+L_{i \mathbf{q}} \nabla\left(\frac{1}{T}\right), \\
& \mathbf{J}_{\mathbf{q}}=\sum_{j=1}^{j=p} L_{\mathbf{q} j} \nabla\left(\frac{-\mu_{j}}{T}\right)+L_{\mathbf{q q}} \nabla\left(\frac{1}{T}\right), \\
& \mathbb{J}_{\mathbf{u}}=
\end{aligned}
$$

μ_{i} : chemical potential : $\frac{\mu_{i}}{T}=k_{B}\left(\ln \left(n_{i}\right)-\frac{3}{2} \ln \left(\frac{2 \pi k_{B} T}{m_{i}}\right)\right)$.

Fick, Dufour, Soret, Fourier coefficients

Phenomenological point of view :
[Chapman-Cowling], [Kurochkin-Makarenko-Tirskii]

$$
J_{i}=\sum_{j=1}^{j=p} D_{i j} \nabla n_{j}+D_{i T} \nabla T, \quad J_{\mathbf{q}}=\sum_{j=1}^{j=p} D_{\mathbf{q} j} \nabla n_{j}-D_{\mathrm{qq}} \nabla T
$$

$D_{i j}$: Fick coefficient : Diffusion
$D_{i T}$: Soret coefficient : Thermal diffusion
D_{qj} : Duffour coefficient : Diffusion thermo-effect D_{qq} : Fourier coefficient

Relation between diffusion and Onsager matrixes

$$
D_{i j}=-\frac{n k_{B} L_{i j}}{n_{i} n_{j}}
$$

Notations

Distribution function : f:= $\left(f_{1}, \cdots, f_{p}\right) \rightarrow n^{i}, u^{i}, T^{i}$.
Maxwellians distributions : $\boldsymbol{M}:=\left(\mathcal{M}_{1}, \cdots, \mathcal{M}_{p}\right)$.
Scalar product $\langle\mathbf{f}, \mathbf{g}\rangle=\sum_{i=1}^{i=p} \int_{\mathbb{R}^{3}} f_{i} g_{i} \mathcal{M}_{i} d v \Rightarrow$ Euclidiean norm : \|| \|.
Collision invariants \mathbb{K} de $\mathbb{L}^{2}(\boldsymbol{M})$ spanned by :

$$
\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), \cdots,\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right),\left(\begin{array}{c}
m_{1} v_{x} \\
m_{2} v_{x} \\
\vdots \\
m_{p} v_{x}
\end{array}\right),\left(\begin{array}{c}
m_{1} v_{y} \\
m_{2} v_{y} \\
\vdots \\
m_{p} v_{y}
\end{array}\right),\left(\begin{array}{c}
m_{1} v_{z} \\
m_{2} v_{z} \\
\vdots \\
m_{p} v_{z}
\end{array}\right),\left(\begin{array}{c}
m_{1} \mathbf{v}^{2} \\
m_{2} \mathbf{v}^{2} \\
\vdots \\
m_{p} \mathbf{v}^{2}
\end{array}\right)
$$

denoted $\phi^{\prime}, I \in\{1, \ldots, p+4\}$.
Notation : $\left(\mathbf{C}_{i}\right)_{j}=\delta_{i j}(\mathbf{v}-\mathbf{u})$.

Chapman-Enskog expansion

$\mathcal{P}_{\mathbb{K}}=$ Orthogonal projection on \mathbb{K} and I unit operator

$$
\begin{aligned}
& \mathcal{L}_{B}(g)=\frac{1}{k_{B}} \sum_{j=1}^{j=p}\left(\mathcal{I}-\mathcal{P}_{\mathbb{K}}\right)\left(\mathbf{C}_{j}\right) \cdot \nabla\left(-\frac{\mu_{j}}{T}\right)+\mathbb{A}: \mathbb{D}(\mathbf{u})+\widetilde{\mathbf{B}} \cdot \nabla\left(\frac{1}{T}\right), \\
&(\mathbb{A})_{i}=m_{i}\left[(\mathbf{v}-\mathbf{u}) \otimes(\mathbf{v}-\mathbf{u})-\frac{1}{3}(\mathbf{v}-\mathbf{u})^{2} \mathbb{I}\right] \\
&(\mathbf{B})_{i}=(\mathbf{v}-\mathbf{u})\left[\frac{1}{2} m_{i}(\mathbf{v}-\mathbf{u})^{2}-\frac{5}{2} k_{B} T\right] \\
&(\widetilde{\mathbf{B}})_{i}=m_{i}(\mathbf{v}-\mathbf{u})\left[\frac{1}{2}(\mathbf{v}-\mathbf{u})^{2}-\frac{5 n}{2 \rho} k_{B} T\right]
\end{aligned}
$$

New space $\mathbb{C}=\operatorname{span}\left(I-\mathcal{P}_{\mathbb{K}}\right)\left(\mathbf{C}_{i}\right), i \in[1, p]$.
$\left(I-\mathcal{P}_{\mathbb{K}}\right)\left(\mathbf{C}_{i}\right), i \in[1, p-1]$ basis of $\mathbb{C} \Longrightarrow \operatorname{dim}(\mathbb{C})=3(p-1)$.

Fluxes and transport coefficients

[Chapman, Cowling], [Brull, Pavan, Schneider]

$$
\mathcal{L}_{B}(g)=\frac{1}{k_{B}} \sum_{j=1}^{j=p}\left(I-\mathcal{P}_{\mathbb{K}}\right)\left(\mathbf{C}_{j}\right) \cdot \nabla\left(-\frac{\mu_{j}}{T}\right)+\mathbb{A}: \mathbb{D}(\mathbf{u})+\widetilde{\mathbf{B}} \cdot \nabla\left(\frac{1}{T}\right) .
$$

Fluxes:

$$
\mathbf{J}_{i}=\left\langle\mathbf{g}, \mathbf{C}_{i}\right\rangle=\left\langle\mathbf{g},\left(\mathcal{I}-\mathcal{P}_{\mathbb{K}}\right)\left(\mathbf{C}_{i}\right)\right\rangle, \quad J_{u}=\langle\mathbf{g}, \mathbb{A}\rangle, \quad \mathbf{J}_{\mathbf{q}}=\langle\mathbf{g}, \widetilde{\mathbf{B}}\rangle
$$

Transport coefficients :

$$
\begin{aligned}
L_{i j} & =\frac{1}{3 k_{B}}\left\langle\mathcal{L}_{B}^{-1}\left[\left(\mathcal{I}-\mathcal{P}_{\mathbb{K}}\right)\left(\mathbf{C}_{i}\right)\right],\left(\mathcal{I}-\mathcal{P}_{\mathbb{K}}\right)\left(\mathbf{C}_{j}\right)\right\rangle \\
L_{i \mathbf{q}}=L_{\mathbf{q} i} & =\frac{1}{3}\left\langle\mathcal{L}_{B}^{-1}(\widetilde{\mathbf{B}}),\left(\mathcal{I}-\mathcal{P}_{\mathbb{K}}\right)\left(\mathbf{C}_{i}\right)\right\rangle \\
L_{\mathbf{u u}} & =\frac{1}{10}\left\langle\mathcal{L}_{B}^{-1}(\mathbb{A}), \mathbb{A}\right\rangle \\
L_{\mathbf{q q}} & =\frac{1}{3}\left\langle\mathcal{L}_{B}^{-1}(\widetilde{\mathbf{B}}), \widetilde{\mathbf{B}}\right\rangle
\end{aligned}
$$

Properties of the matrix $L_{i, j}$.

Casimir-Onsager relations :

$$
\mathbf{L}:=\left[\begin{array}{ccc}
L_{i j} & L_{i \mathbf{q}} & 0 \\
L_{\mathbf{q} i} & L_{\mathbf{q q}} & 0 \\
0 & 0 & L_{\mathbf{u u}}
\end{array}\right] \text { is symmetric and non negative. }
$$

Total mass conservation :

$$
\sum_{i=1}^{i=p} m_{i} \mathbf{J}_{i}=0 \Rightarrow \forall j \in[1, p], \sum_{i=1}^{i=p} m_{i} L_{i j}=0 \Rightarrow \operatorname{rank}\left(L_{i j}\right)=p-1
$$

$\operatorname{Ker}(\mathbf{L})=\operatorname{Vect}\left(m_{1}, \ldots, m_{p}, 0\right) \Rightarrow \operatorname{Rank}(\mathbf{L})=p-1$

Idea of the relaxation

Idea : Linear relaxation of non conserved moments
(1) Aim : New constraint in the space $\mathbb{C} \Rightarrow$ Fick law.

$$
v \sum_{j=1}^{j=p} \int_{\mathbb{R}^{3}}\left(G_{j}-f_{j}\right) w_{j}^{r}=-\lambda_{r} \sum_{j=1}^{j=p} \int_{\mathbb{R}^{3}} f_{j} w_{j}^{r}, \quad\left(\mathbf{w}_{r}\right)_{r \in\{1, \ldots, p-1\}} \text { basis of } \mathbb{C} .
$$

Important coefficients: Fick, viscosity.
Choice of λ_{r} and of $w^{r} \in \mathbb{C} \Rightarrow$ correct Fick coefficients.
Choice of $v \Rightarrow$ correct viscosity if $v \geq \max _{r} \lambda_{r}$.
(2) Resolution of an entropy minimization problem

$$
\text { Entropy } \quad \mathcal{H}(\mathbf{f})=\sum_{i=1}^{p} \int_{\mathbb{R}^{3}}\left(f_{i} \ln \left(f_{i}\right)-f_{i}\right) d \mathbf{v}
$$

Entropy minimization principle.

$\left(\boldsymbol{\phi}^{\prime}\right)_{\in\{1, p+4\}}$ basis of \mathbb{K}.
Space of constraints : C_{f}.

$$
\begin{aligned}
& \mathbf{g} \in C_{\mathbf{f}} \Leftrightarrow\left\{\begin{array}{l}
\forall I \in[1, p+4], \sum_{i=1}^{i=p} \int_{\mathbb{R}^{3}} \phi_{i}^{\prime}\left(g_{i}-f_{i}\right) d \mathbf{v}=0, \\
\forall r \in[1, p-1], \sum_{i=1}^{i=p} \int_{\mathbb{R}^{3}} \mathbf{w}_{i}^{r}\left(g_{i}-f_{i}\right) d \mathbf{v}=-\lambda_{r} \sum_{i=1}^{i=p} \int_{\mathbb{R}^{3}} \mathbf{w}_{i}^{r} f_{i} d \mathbf{v} . \\
\Rightarrow \exists!\mathbf{G}=\min _{g \in C_{f}(\mathbf{f})} \mathcal{H}(\mathbf{f}) \text { s.t. } \\
\forall i \in[1, p], G_{i}=\frac{n^{i}}{\left(2 \pi k_{B} T^{*} / m_{i}\right)^{3 / 2}} \exp \left(-\frac{m_{i}\left(\mathbf{v}-\mathbf{u}_{i}\right)^{2}}{2 k_{B} T^{*}}\right) .
\end{array} . .\right.
\end{aligned}
$$

\mathbf{u}_{i} : linear combinations of \mathbf{u}^{i}, u_{i} : velocity of g_{i}
Choice of $T^{*} \Rightarrow$ Energy conservation : $T^{*} \geq 0$ if $v \geq \max _{r} \lambda_{r}$.

Computation of the relaxation coefficients

- Introduction of $L_{i j}^{*}$

$$
\left(L_{i j}\right)_{i, j \in[1, p]} \Rightarrow \forall i, j \in[1, p], L_{i j}^{*}=\frac{L_{i j}}{\left\|\mathbf{C}_{i j}\right\|\left\|\mathbf{C}_{j}\right\|}
$$

- Diagonalization of L^{*} : spectrum of $L^{*}:\left(l_{r}^{*}, \mathbf{w}_{r}\right)_{r \in\{1, \ldots, p-1\}} \cup\left(0, w_{p}\right)$

Theorem

$\lambda_{r}=I_{r}^{*-1} \Rightarrow$ Fick laws , $\quad \lambda_{p}=0 \Rightarrow$ Conservation of impulsion.

$$
\text { Density fluxes : } \boldsymbol{J}_{i}=\sum_{j=1}^{j=p} L_{i j} \nabla\left(\frac{-\mu_{j}}{T}\right)+L_{i q} \nabla\left(\frac{1}{T}\right)
$$

Properties of the BGK model

The Fick relaxation operator satisfies the fundamental properties :

$$
\begin{array}{r}
\forall \mathbf{f}, f_{i} \geq 0, \forall \phi, \sum_{i=1}^{i=p} \int_{\mathbb{R}^{3}} \mathcal{R}_{i}(\mathbf{f}) \phi_{i} d \mathbf{v}=0 \Leftrightarrow \boldsymbol{\phi} \in \mathbb{K}, \\
\forall \mathbf{f}, f_{i} \geq 0, \sum_{i=1}^{i=p} \int_{\mathbb{R}^{3}} \mathcal{R}_{i}(\mathbf{f}) \ln \left(f_{i}\right) d \mathbf{v} \leq 0, \\
\mathcal{R}(\mathbf{f})=0 \Leftrightarrow \exists n^{i}, \mathbf{u}, T \text { s.t. } \forall i \in[1, p], f_{i}=\mathcal{M}_{i}, \\
\mathcal{L}=v\left(\mathcal{P}_{\mathbb{K}}+\Lambda \circ \mathcal{P}_{\mathbb{C}}-\mathcal{I}\right), \Lambda\left(\mathbf{w}_{r}\right)=\left(1-\frac{\lambda_{r}}{v}\right) \mathbf{w}_{r}, r \in\{1, p-1\}
\end{array}
$$

is self adjoint and negative on \mathbb{K}^{\perp} and $\operatorname{Ker} \mathcal{L}=\mathbb{K}$.

Computation of transport coefficients

$$
\begin{aligned}
& L_{i j}(\mathcal{R})=L_{i j}(\text { Boltzmann or experimental }) \\
&=\frac{1}{3}\left\langle\mathcal{L}^{-1}\left(\mathcal{I}-\mathcal{P}_{\mathbb{K}}\right)\left(\mathbf{C}_{i}\right),\left(\mathcal{I}-\mathcal{P}_{\mathbb{K}}\right)\left(\mathbf{C}_{j}\right)\right\rangle \\
& \frac{1}{3}\left\langle\mathcal{L}^{-1}(\widetilde{\mathbf{B}}),\left(\mathcal{I}-\mathcal{P}_{\mathbb{K}}\right)\left(\mathbf{C}_{i}\right)\right\rangle=L_{i q}=L_{q i}=\frac{5}{2} k_{B} T \sum_{j=1}^{p} L_{i j} \\
& \frac{1}{10}\left\langle\mathcal{L}^{-1}(\mathbb{A}), \mathbb{A}\right\rangle=\frac{1}{10 v}\langle\mathbb{A}, \mathbb{A}\rangle=L_{\mathrm{uu}}=\frac{n k_{B} T}{v}
\end{aligned}
$$

\Rightarrow correct viscosity if $v \geq \max _{r} \lambda_{r}$

$$
\left\langle\mathcal{L}^{-1}(\widetilde{\mathbf{B}}),\left(\mathcal{I}-\mathcal{P}_{\mathbb{K}}\right)\left(\mathbf{C}_{i}\right)\right\rangle=L_{q q}=-\frac{5 k_{B}^{2} T^{3}}{2 \rho} \sum_{i=1}^{p} \frac{n_{i}}{m_{i}}+\left(\frac{5 k_{B}^{2} T}{2 \rho}\right)^{2} \sum_{i, j=1}^{p} L_{i j}
$$

Conclusions and perspectives

Conclusion

- New way to derive BGK models
- Methodology based on the hydrodynamic limit (exact up to order 1)
- Based on the relaxation of some appropriate moments
- Resolution of an entropy minimization problem under moments constraints
- Application to complex gases (polyatomic, gas mixtures, ...)

Related results

- Fick relaxation model for slow reactive mixtures
- Derivation of an ESBGK model for gas mixtures [Brull, 2015].
- Existence theorems (see Seok-Bae Yun)

Perspectives

- Fit other laws: Pb of realisability (See Junk, Schneider)
\Rightarrow Higher moments constraints
\Rightarrow phi divergence approach based on an approach entropy : see [Abdel Malik, Van Brummelen] Application to BGK models : Pavan, Schneider
- Generalize BGK models to mixture of polyatomic setting (ESBGK, ...). [Brull], in redaction
- Reacting gas mixture
- Numerical implementation of the BGK models : [Brull, Prigent], in revision
- Existence theorems in bounded domains: [Brull, Yun], submitted

Bibliography

- S. Brull, J. Schneider, A new approach of the Ellipsoidal Statistical Model, Cont. Mech. Thermodyn., 20 (2), 63-74, (2008)
- S. Brull, J. Schneider, On the Ellipsoidal Statistical Model for polyatomic gases, Cont. Mech. Thermodyn., 20 (8), 489-508, (2009)
- S. Brull, V. Pavan, J. Schneider, Derivation of BGK models for mixtures, European Journal of Mechanics/B Fluids, 74-86, (2012)
- S. Brull, J. Schneider, Derivation of a BGK model for reacting gas mixtures, Comm. Math. Sci., 12 (7), 1199-1223, (2014)
- S. Brull, An Ellipsoidal Statistical Model for gas mixtures, Comm. Math. Sci., 13 (1), 1-13, (2015)
- C.Baranger, M.Bisi, S.Brull, L.Desvillettes, The Chapman-Enskog asymptotics of mixture of monoatomic and polyatomic rarefied gases, Kin. Rel. Mod., 11, (4), 821-858, (2018)

THANKS FOR YOUR ATTENTION!

