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Aim

Construct a relaxation operator R(f) = �(G � f) ⇡ Q(f , f)

- Go beyond the BGK model,

- As close as possible of Q(f , f),

Generalization to polyatomic gases : f(t , x, v , I), I : Internal energy

Generalization to mixtures : f

i

(t , x, v) ( f := (f1, · · · , fp))

@f

i

@t

(t , x, v) + v · r
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f
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(t , x, v) =
k=pX

k=1

Q
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Notations

Macroscopic quantities
⇢, u et T : mass, velocity and temperature

⇢ =

Z

R3
f dv , u =

1
⇢

Z

R3
vf dv , T =

1
3 ⇢

Z

R3
|v � u|2f dv .

Stress tensor

⇥ =
1
⇢

Z

R3
(v � u) ⌦ (v � u) fdv , f =M) ⇢⇥ = ⇢T Id

Boltzmann entropy

H(g) =

Z
(g ln g � g)dv .

Space of invariants
K = {1, v , |v |2}. PK : projection on K
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Chapman-Enskog expansion

Parameter " Knudsen number. When "! 0) fluid model
Rescaled Boltzmann equation

@
t

f + v · r
x

f =
1
"

Q(f , f).

Chapman-Enskog expansion
Equilibrium state : Q(f , f) = 0 , f =M
Choice of the Maxwellian

Z

R3

0
BBBBBBBB@

1
v

v

2

1
CCCCCCCCAM dv =

Z

R3

0
BBBBBBBB@

1
v

v

2

1
CCCCCCCCA f dv

f =M + moments extraction w.r.t. (1, v , v2)
) Euler system
f =M+ "f1 + moments extraction w.r.t. (1, v , v2)
) Navier-Stokes system
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Euler system

Order 0
✓ @
@t

+ v · r
x

◆
M = 0 (1)

Integration of (1) w.r.t (1, v , |v |2)) Euler system
Euler system

@
t

⇢+ div(⇢u) = 0
@

t

(⇢ u) + div

x

(⇢ u ⌦ u) + r
x

(⇢T) = 0

@
t

✓
⇢(

1
2
|u|2 + 3

2
T)

◆
+ div

x

✓
⇢u(

1
2
|u|2 + 5

2
T)

◆
= 0.
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Computation of f1

Expression of times derivatives w.r.t space derivatives.
✓ @
@t

+ v · r
x

◆
M = (A(V) : D(u) � B(V)

r
x

Tp
T

)M = L(f1)

V =
v � up

T

, L(g) = Q(M,Mg) + Q(Mg,M)

Inversion of the relation) f1

Sonine polynomials

A(v) = v ⌦ v � 1
3
|v |2Id, B(v) =

v

2
(v2 � 5

2
).

D(u) (viscosity tensor) :

D(u) =
1
2
(r

x

u + r
x

u

t) � 1
3

div(u)Id.
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Navier-Stokes system

Integration of
✓
@
@t

+ v · r
x

◆
(M+ "f1) w.r.t (1, v , |v |2),

@
t

⇢+ div

x

(⇢u) = 0
@

t

(⇢ u) + div

x

(⇢ u ⌦ u + ⇢T Id � "µD(u)) = 0

@
t

✓
⇢(

1
2
|u|2 + 3

2
T)

◆
+ div

x

✓
⇢(

1
2
|u|2 + 5

2
T) � "r

x

T � "µD(u) · u
◆
= 0.

Transport Coefficients

µ = µ(T , ⇢,A,L�1) : Viscosity,  = (T , ⇢,B,L�1) : Heat flux

Prandtl number

Pr =
5
2
µ


⇡ 2

3
.
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Monoatomic case
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BGK Models

Relaxation operator

Q(f , f) ⇠ R(f) =
1
⌧
(M � f), ⌧ > 0

whereM is defined by

M(v) =
⇢

(2⇡T)3/2 exp
 
� |v � u|2

2T

!
.

M = min
g2C

f

H(g)

where

C
f

= {g � 0 s.t.
Z

R3

0
BBBBBBBB@

1
v

v

2

1
CCCCCCCCA g dv =

Z

R3

0
BBBBBBBB@

1
v

v

2

1
CCCCCCCCA f dv}
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Properties of the BGK operator

Conservation laws
Z

R3
(M � f)(1, v , |v |2)dv = (0, 0, 0),

Equilibrium states
Z

R3
⇢(M � f) ln f dv = 0, f =M,

H Theorem
Z

R3
(M � f) ln f dv  0.

Trend to equilibrium

lim
t!+1 f(t) =M.

Problem : Prandtl number not correct ⇡ 1
Remark : Model coming from an entropy minimization problem
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Minimization principle

Aim : Methodology to construct BGK models) correct transport
coefficients up to Navier-Stokes.
The models are researched on the form �(G � f)

Minimization problem
G is researched as

H(G) = min
g2C

f

H(g),

C

f

= {g � 0 /
Z

m(v)gdv = V(

Z
m(v)fdv)}

span(m(v)) = P

G = exp(↵ ·m(v)) is expected.
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Realisability problems

LetV 2 RN. Is there G � 0 2 L

1 s.t.

H(G) = minH(g)

under the constraints
Z

R3
g m(v)dv = V?

NC :V corresponds to a nonnegative L

1 function

Characterisation of realisability [M.Junk, 98], [J.Schneider, 2004 ]

Pb : G is not always equal to exp(↵ ·m(v))
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Approach by relaxation coefficients

Relaxation coefficents :

R(f) = ⌃
i

�
i

(G
i

� f)

[Levermore, J.S.P., 1996]
Problem : We obtain only Pr � 1.

New approach : One unique relaxation coefficient � > 0 and different
relaxation rates (�)

i=1···N � 0 s.t.
Z

�(G � f)m

i

(v)dv = ��
i

Z
f m

i

(v)dv , 8m

i

2 P

Conserved quantities : �
i

= 0.
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Explanation of the constraints

Assume P = P0 �? Vect [m
n+1 . . .mN

] for the scalar product

h', i =
Z
M' dv .

Hence for �
i

> 0, and i > n

@
t

Z
f m

i

dv =

Z
�(G � f)m

i

dv = ��
i

Z
f m

i

dv

)
Z

f m

i

dv ! 0, 8i > n when t ! +1.
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P = P0 + v ⌦ v

P = P0 �? A(c), for the scalar product h', i = R M' dv

Aim : Derive a relaxation operator �(G � f), where

G = min
g2C

f

H(g). (2)

C
f

= {g � 0 s.t.
Z

R3
(1, v , |v |2) gdv =

Z

R3
(1, v , |v |2) fdv , (3)

Z

R3
�(g � f)A(c) dv = ��1

Z

R3
fA(c)dv , c = v � u}. (4)

Setting ⌫ = 1 � �1
� ) (4) can be written

1
⇢

Z

R3
c ⌦ c gdv = ⌫⇥+ (1 � ⌫)TId = T (5)
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Main result

Theorem

Let f , 0, f � 0 s.t.

R
(1 + |v |2) f < +1 and ⌫ 2 [�1

2 , 1[,) the problem (2, 3, 4) has a unique solution G

G(v) =
⇢

p
det(2⇡T ) exp

 
�1

2
hc,T �1

ci
!
.

Conversely, if the problem (2, 3, 4) has a solution for any f � 0 s.t.R
f (1 + |v |)2 < +1, then ⌫ 2 [�1

2 , 1[.

Arguments : C
f

, ;. Ex : G

ES

2 C
f

.
M.Junk, J.Schneider) 9 a solution to the minimization problem.

G(v) = exp (↵ ·m(v))

↵ Lagrange multipliers associated to constraints
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Chapman-Enskog expansion

 
@

@t

+ v · r
x

!
f =

�

"
(G � f),

f is expanded as

f =M(1 + "f (1)).

Computation of � and �1 ) exact expansion up to Navier-Stokes

�1 =
⇢T

µ
, � =

5
2
⇢T


.

Prandtl number

Pr =
5
2
µ


=

�

�1
=

1
1 � ⌫ . Pr =

2
3
! ⌫ = �1

2

) Result : Ellipsoidal Statistical Model ([Holway, 1964]).
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H Theorem

Theorem
For any �1

2  ⌫ < 1,

D(f) =

Z
(G⌫ � f) ln f dv  0

Moreover D(f) < 0 for �1
2  ⌫ < 1 equality iff f =M.

[Andries-Le Tallec-Perlat-Perthame 1999].
[Brull-Schneider 2008].
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Polyatomic case
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Borgnakke-Larsen model

Microscopic model : [Borgnakke-Larsen, 1975]
Distribution function! f = f(t,x,v,I)
I = internal energy parameter (I � 0) with "(I) = I

2
� = internal energy

Discrete energy parameter : Giovangigli

Collision operator : [Bourgat-Desvillettes-Le Tallec-Perthame, 1994].
Conserved moments : (1, v , 1

2 |v |2 + I

2
� )

� = number of internal degrees of freedom.
Link between � and �

� =
�+ 5
�+ 3

, � = 2) � =
7
5

Polyatomic Maxwellian distribution

M =
⇢⇤�

(2⇡T

eq

)
3
2 (T

eq

)
�
2

exp

0
BBBBB@�
|v � u|2

2T

eq

� I

2
�

T

eq

1
CCCCCA , ⇤�1

� =

Z

R+

e

�I

2
�
dI.
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Macroscopic quantities

⇢, u defined as in the monoatomic case
Specific internal energy

e =
1
⇢

Z

R3⇥R+
(
1
2
|v � u|2 + I

2
� ) f dvdI.

e = e

tr

+ e

int

e

tr

=
1
2⇢

Z

R3⇥R+
|v � u|2f dvdI, e

int

=
1
⇢

Z

R3⇥R+
I

2
�
f dvdI.

Temperatures are associated to these energies

e =
3 + �

2
T

eq

, e

tr

=
3
2

T

tr

, e

int

=
�

2
T

int

.
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1
⇢

Z

R3⇥R+
(
1
2
|v � u|2 + I

2
� ) f dvdI.

e = e

tr

+ e

int

e

tr

=
1
2⇢

Z

R3⇥R+
|v � u|2f dvdI, e

int

=
1
⇢

Z

R3⇥R+
I

2
�
f dvdI.

Temperatures are associated to these energies

e =
3 + �

2
T

eq

, e

tr

=
3
2

T

tr

, e

int

=
�

2
T

int

.
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P = {1, v , v ⌦ v , I
2
� }

R(f) = �(G � f), where G is solution of the minimization problem

G = min
g2C

f

H(g). (6)

C
f

= {g � 0 s.t.
Z

R3⇥R+
g (1, v ,

1
2
|c |2 + I

2
� ) dvdI =

Z

R3⇥R+
f (1, v ,

1
2
|c |2 + I

2
� ) dvdI, (7)

Z

R3⇥R+

⇣1
3
|c |2 � 2

3 + �
(
|c |2
2

+ I

2
� )

⌘
�(g � f) dvdI

= ��2

Z

R3⇥R+

✓1
3
|c |2 � 2

3 + �
(
|c |2
2

+ I

2
� )

◆
f dvdI, (8)

Z

R3⇥R+

⇣
c ⌦ c � 1

3
|c |2Id

⌘
�(g � f) dvdI = ��1

Z

R3⇥R+

⇣
c ⌦ c � 1

3
|c |2Id

⌘
f dvdI} (9)
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Construction of G

✓ = 1 � �2

�
,

�1

�
= 1 � ⌫(1 � ✓).

T =
1
⇢

Z

R3
c ⌦ c g dv dI = (1 � ✓) ((1 � ⌫)T

tr

Id + ⌫⇥) + ✓ T

eq

Id

Stress tensor

⇥ =
1
⇢

Z
c ⌦ c f dv dI.

Interpretation : T is a “double convex combinaison”.
Comparison with the Ellipsoidal Statistical Model in the polyatomic case
[P.Andries-P.LeTallec-J.P.Perlat-B.Perthame, 2000]
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Main theorem

Relaxation temperature :T
rel

= ✓T
eq

+ (1 � ✓)T
int

,

Theorem

Let f (f , 0), f � 0 s.t.

R
f (1 + |v |2 + I

2
� ) dvdI < +1, ⌫ 2 [�1

2 , 1[ and

✓ 2 [0, 1]. Then the problem (6, 7, 8, 9 ) has a unique solution G,

G =
⇢⇤�p

det(2⇡T )(T
eq

)
�
2

exp
✓
� 1

2
hc,T �1

ci � I

2
�

T

rel

◆
.

Conversely, if (6, 7, 8, 9) has a unique solutio for any f � 0 s.t.R
f (1 + |v |2 + I

2
� ) dvdI < +1, then ⌫ 2 [�1

2 , 1[ and ✓ 2 [0, 1].

[S.B-J.Schneider], 2009
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Definition of �, �1, �2.

Tensor for polyatomic Navier-Stokes

�
ij

= µ (@
x

j

u

i

+ @
x

i

u

j

� ↵div(u)�
ij

).

Chapman-Enskog expansion
) Definition of �(⇢,T , ), �1(⇢,T , µ) et �2(⇢,T , µ,↵).

Result : Ellipsoidal Statistical Model for polyatomic gases
[P.Andries-P.LeTallec-J.P.Perlat-B.Perthame, 2000]
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Generalization to gas mixtures
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Setting of the problem

Aim : Construct a relaxation operator for multi-species basing on (true)
hydrodynamic limit and right kinetic coefficients
(Fick, Soret, Duffour, Fourier, Newton).
) [Brull-Pavan-Schneider, 2012] Fick law.
[Brull, 2015] ES-BGK

Up to now : Approx. of moments exchanges of Boltzmann equation
[Garzò-Santos-Brey, 1989]
[Kosuge, 2009] (approximation on the Grad 13 moments).

Pb : loss of positivity, no H theorem, uncorrect transport coefficients.

One particular model : [Andries-Aoki-Perthame, 2002]
Good mathematical properties : H theorem, positivity.
Valid only for Maxwellian molecules) uncorrect transport coefficients.
Application to reacting mixtures (Bisi, Groppi, Spiga).
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Navier-Stokes system for a mixture

Navier-Stokes system :

8i 2 [1, p] , @
t

n

i + r · (niu + J
i

) = 0,
@

t

(⇢u) + r · (P+ ⇢u ⌦ u + Ju) = 0,
@

t

E + r · (Eu + P [u] + Ju [u] + J
q

) = 0,

J
i

, Ju Jq : mass, momentum and heat fluxes.
Thermodynamics of Irreversible Processes assumptions.

J
i

=
P

j=p

j=1 L

ij

r
⇣�µ

j

T

⌘
+ L

iqr
⇣

1
T

⌘
,

Jq =
P

j=p

j=1 Lqj

r
⇣�µ

j

T

⌘
+ Lqqr

⇣
1
T

⌘
,

Ju = LuuD (u) ,

µ
i

: chemical potential :
µ

i

T

= k

B

 
ln (n

i

) � 3
2

ln
 
2⇡k

B

T

m

i

!!
.
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Fick, Dufour, Soret, Fourier coefficients

Phenomenological point of view :
[Chapman-Cowling], [Kurochkin-Makarenko-Tirskii]

J

i

=
j=pX

j=1

D

ij

rn

j

+ D

iT

rT , Jq =
j=pX

j=1

Dqj

rn

j

� DqqrT .

D

ij

: Fick coefficient : Diffusion
D

iT

: Soret coefficient : Thermal diffusion
Dqj

: Duffour coefficient : Diffusion thermo-effect
Dqq : Fourier coefficient

Relation between diffusion and Onsager matrixes

D

ij

= �nk

B

L

ij

n

i

n

j
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Notations

Distribution function : f := (f1, · · · , fp)! n

i , u

i , T

i .
Maxwellians distributions : M := (M1, · · · ,Mp

).

Scalar product hf,gi =
i=pX

i=1

Z

R3
f

i

g

i

M
i

dv ) Euclidiean norm : k k.

Collision invariants K de L2 (M) spanned by :

0
BBBBBBBBBBBBBBB@

1
0
...
0

1
CCCCCCCCCCCCCCCA
, · · · ,

0
BBBBBBBBBBBBBBB@

0
0
...
1

1
CCCCCCCCCCCCCCCA
,

0
BBBBBBBBBBBBBBB@

m1v

x

m2v

x

...
m

p

v

x

1
CCCCCCCCCCCCCCCA
,

0
BBBBBBBBBBBBBBB@

m1v

y

m2v

y

...
m

p

v

y

1
CCCCCCCCCCCCCCCA
,

0
BBBBBBBBBBBBBBB@

m1v

z

m2v

z

...
m

p

v

z

1
CCCCCCCCCCCCCCCA
,

0
BBBBBBBBBBBBBBB@

m1v2

m2v2

...
m

p

v2

1
CCCCCCCCCCCCCCCA

denoted �l , l 2 {1, . . . , p + 4}.
Notation : (C

i

)
j

= �
ij

(v � u).
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Chapman-Enskog expansion

PK = Orthogonal projection on K and I unit operator

L
B

(g) =
1
k

B

j=pX

j=1

(I � PK) (Cj

) · r
✓
�µj

T

◆
+ A : D (u) + eB · r

 
1
T

!
,

(A)
i

= m

i

"
(v � u) ⌦ (v � u) � 1

3
(v � u)2 I

#
,

(B)
i

= (v � u)
"
1
2

m

i

(v � u)2 � 5
2

k

B

T

#
,

⇣
eB
⌘
i

= m

i

(v � u)
"
1
2
(v � u)2 � 5n

2⇢
k

B

T

#
.

New space C = span (I � PK) (Ci

) , i 2 [1, p].
(I � PK) (Ci

) , i 2 [1, p � 1] basis of C =) dim(C) = 3 (p � 1).
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Fluxes and transport coefficients

[Chapman, Cowling], [Brull, Pavan, Schneider]

L
B

(g) =
1
k

B

j=pX

j=1

(I � PK) (Cj

) · r
✓
�µj

T

◆
+ A : D (u) + eB · r

 
1
T

!
.

Fluxes :

J
i

= hg,C
i

i = ⌦
g, (I � PK) (Ci

)
↵
, J

u

= hg,Ai , Jq =
D
g,eB

E
.

Transport coefficients :

L

ij

=
1

3k

B

D
L�1

B

[(I � PK) (Ci

)] , (I � PK) (Cj

)
E

L

iq = Lqi

=
1
3

D
L�1

B

⇣
eB
⌘
, (I � PK) (Ci

)
E

Luu =
1
10

D
L�1

B

(A) ,A
E

Lqq =
1
3

D
L�1

B

⇣
eB
⌘
,eB

E
.
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Properties of the matrix L

i,j.

Casimir-Onsager relations :

L :=

2
666666664

L

ij

L

iq 0
Lqi

Lqq 0
0 0 Luu

3
777777775 is symmetric and non negative.

Total mass conservation :

i=pX

i=1

m

i

J
i

= 0) 8j 2 [1, p] ,
i=pX

i=1

m

i

L

ij

= 0 ) rank( L

ij

) = p � 1.

Ker(L) = Vect(m1, . . . ,mp

, 0)) Rank(L) = p � 1
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Idea of the relaxation

Idea : Linear relaxation of non conserved moments
1 Aim : New constraint in the space C) Fick law.

⌫
j=pX

j=1

Z

R3
(G

j

� f

j

)w

r

j

= ��
r

j=pX

j=1

Z

R3
f

j

w

r

j

, (w
r

)
r2{1,...,p�1} basis of C.

Important coefficients : Fick, viscosity.

Choice of �
r

and of w

r 2 C) correct Fick coefficients.
Choice of ⌫) correct viscosity if ⌫ � max

r

�
r

.

2 Resolution of an entropy minimization problem

Entropy H(f) =
pX

i=1

Z

R3
(f

i

ln(f
i

) � f

i

) dv.
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Entropy minimization principle.

(���l)
l2{1,p+4} basis of K.

Space of constraints : Cf.

g 2 Cf ,
8>>>><
>>>>:

8l 2 [1, p + 4] ,
P

i=p

i=1

R
R3 �

l

i

(g
i

� f

i

) dv = 0,

8r 2 [1, p � 1] ,
P

i=p

i=1

R
R3 wr

i

(g
i

� f

i

)dv = ��
r

P
i=p

i=1

R
R3 wr

i

f

i

dv.

) 9! G = min
g2Cf(f)

H(f) s.t .

8i 2 [1, p] , G

i

=
n

i

(2⇡k

B

T

⇤/m
i

)3/2 exp

0
BBBBB@�

m

i

(v � u
i

)2

2k

B

T

⇤

1
CCCCCA.

u
i

: linear combinations of ui , u

i

: velocity of g

i

Choice of T

⇤ ) Energy conservation : T

⇤ � 0 if ⌫ � max
r

�
r

.
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Computation of the relaxation coefficients

Introduction of L

⇤
ij

(L
ij

)
i,j2[1,p] ) 8i, j 2 [1, p] , L

⇤
ij

=
L

ij

kC
i

k kC
j

k .

Diagonalization of L

⇤ : spectrum of L

⇤ : (l⇤
r

, w
r

)
r2{1,...,p�1} [ (0,w

p

)

Theorem

�
r

= l

⇤
r

�1 ) Fick laws , �
p

= 0 ) Conservation of impulsion.

Density fluxes : J
i

=
j=pX

j=1

L

ij

r
✓�µ

j

T

◆
+ L

iq

r( 1
T

)
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Properties of the BGK model

The Fick relaxation operator satisfies the fundamental properties :

8f, f
i

� 0,8���,
i=pX

i=1

Z

R3
R

i

(f) �
i

dv = 0, ��� 2 K,

8f, f
i

� 0,
i=pX

i=1

Z

R3
R

i

(f) ln (f
i

) dv  0,

R (f) = 0, 9n

i ,u,T s.t . 8i 2 [1, p] , f
i

=M
i

,

L = ⌫ (PK + ⇤ � PC � I) , ⇤ (w
r

) =
✓
1 � �r

⌫

◆
w

r

, r 2 {1, p � 1}

is self adjoint and negative on K? and KerL = K.
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Computation of transport coefficients

L

ij

(R) = L

ij

(Boltzmann or experimental)

=
1
3

D
L�1 (I � PK) (Ci

) , (I � PK) (Cj

)
E
,

1
3

D
L�1(eB), (I � PK) (Ci

)
E
= L

iq

= L

qi

=
5
2

k

B

T

pX

j=1

L

ij

,

1
10

D
L�1 (A) ,A

E
=

1
10⌫
hA,Ai = Luu =

nk

B

T

⌫

) correct viscosity if ⌫ � max
r

�
r

D
L�1(eB), (I � PK) (Ci

)
E
= L

qq

= �5k

2
B

T

3

2⇢

pX

i=1

n

i

m

i

+ (
5k

2
B

T

2⇢
)2

pX

i,j=1

L

ij
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Conclusions and perspectives

Stéphane Brull Construction of BGK models 7th january 2020 41 / 45



Conclusion

New way to derive BGK models

Methodology based on the hydrodynamic limit (exact up to order 1)

Based on the relaxation of some appropriate moments

Resolution of an entropy minimization problem under moments
constraints

Application to complex gases (polyatomic, gas mixtures, . . . )

Related results
Fick relaxation model for slow reactive mixtures
Derivation of an ESBGK model for gas mixtures [Brull, 2015].
Existence theorems (see Seok-Bae Yun)
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Perspectives

Fit other laws : Pb of realisability (See Junk, Schneider)
) Higher moments constraints
) phi divergence approach based on an approach entropy : see
[Abdel Malik, Van Brummelen]
Application to BGK models : Pavan, Schneider

Generalize BGK models to mixture of polyatomic setting (ESBGK,
. . . ). [Brull], in redaction

Reacting gas mixture

Numerical implementation of the BGK models : [Brull, Prigent], in
revision

Existence theorems in bounded domains : [Brull, Yun], submitted
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