Multiple Relaxation-Time Lattice Boltzmann Model for advection-diffusion equations and its application to radar image processing.

J. Michelet^{1,2}, M.M. Tekitek², M. Berthier²

¹Bowen Company, Les Ulis 91940, France

²Laboratory MIA, La Rochelle University 17000, France

Jun 23, 2021 : Group of work – Lattice Boltzmann Scheme

Taylor expansion for advection-diffusion problems

Zero-order First-order Second-order

Third order for constant advection case

Equivalent PDE Numerical Validation of third order accuracy

LB method as image processing

Context Methodology Experiments Comparison of SRT and MRT LB scheme

Conclusion

Taylor expansion for advection-diffusion problems

Zero-order First-order Second-order

Third order for constant advection case

Equivalent PDE Numerical Validation of third order accuracy

LB method as image processing

Context Methodology Experiments Comparison of SRT and MRT LB

Conclusion

Let $\vec{x} \in \mathbb{R}^2$ and $t \in \mathbb{R}^+$ be the spatial position and the time respectively. The Boltzmann equation (without force term):

$$\frac{\partial}{\partial t}f(\vec{x},t) + \vec{v}^{T} \cdot \vec{\nabla}f(\vec{x},t) = \mathcal{Q}(f),$$

$$f(\vec{x},\lambda\vec{e_{i}},t+\Delta t) = f^{*}(\vec{x}-\lambda\vec{e_{i}}\Delta t,\lambda\vec{e_{i}},t), \qquad (1)$$

where $\lambda = \frac{\Delta x}{\Delta t}$ is the numerical lattice velocity and f^* the density distribution after collision. Let $\vec{v_i} = \lambda \vec{e_i}$ be the discrete velocity vector. The dynamic is divided in two steps: streaming and collision.

Tools to recover the equivalent PDEs simulated by the LB scheme:

Taylor Expansion [1, 2] and Moments space [3]

F. Dubois, "Une introduction au schéma de Boltzmann sur réseau," in *ESAIM: proceedings*, vol. 18, pp. 181–215, EDP Sciences, 2007.

F. Dubois, "Third order equivalent equation of lattice Boltzmann scheme," *Discrete & Continuous Dynamical Systems-A*, vol. 23, no. 1&2, p. 221, 2009.

D. d'Humières, "Generalized lattice-Boltzmann equations," in *Rarefied Gas Dynamics: Theory and Simulations*, vol. 159, pp. 450–458, AIAA Progress in Aeronautics and Astronautics, 1992.

Let $\vec{x} \in \mathbb{R}^2$ and $t \in \mathbb{R}^+$ be the spatial position and the time respectively. The Boltzmann equation (without force term):

$$\frac{\partial}{\partial t}f(\vec{x},t) + \vec{v}^{T} \cdot \vec{\nabla}f(\vec{x},t) = \mathcal{Q}(f),$$

$$f(\vec{x},\lambda\vec{e_{i}},t+\Delta t) = f^{*}(\vec{x}-\lambda\vec{e_{i}}\Delta t,\lambda\vec{e_{i}},t), \quad (1)$$

where $\lambda = \frac{\Delta x}{\Delta t}$ is the numerical lattice velocity and f^* the density distribution after collision. Let $\vec{v_i} = \lambda \vec{e_i}$ be the discrete velocity vector. The dynamic is divided in two steps: streaming and collision.

1- Taylor expansion of (1) at third order writes:

 $\vec{e}_i, \forall i \in \{0,\ldots,8\}.$

$$\begin{split} f_i(\vec{x},t) + \Delta t \frac{\partial}{\partial t} f_i(\vec{x},t) + \frac{\Delta t^2}{2} \frac{\partial^2}{\partial t^2} f_i(\vec{x},t) + \frac{\Delta t^3}{6} \frac{\partial^3}{\partial t^3} f_i(\vec{x},t) + \mathcal{O}(\Delta t^4) \\ &= f_i^*(\vec{x},t) - \Delta t \vec{v}_i^T \vec{\nabla} f_i^*(\vec{x},t) + \frac{\Delta t^2}{2} \vec{v}_i^T \boldsymbol{H}(f_i^*(\vec{x},t)) \cdot \vec{v}_i \\ &- \frac{\Delta t^3}{6} \vec{v}_i^T \vec{\nabla} \left(\vec{v}_i^T \boldsymbol{H}(f_i^*(\vec{x},t)) \cdot \vec{v}_i \right) + \mathcal{O}(\lambda^4 \Delta t^4), \end{split}$$

Acoustic scale $\iff \frac{\Delta x}{\Delta t} = \mathfrak{c} \Longrightarrow \mathcal{O}(\lambda^n \Delta t^n) = \mathcal{O}(\Delta x^n) = \mathcal{O}(\Delta t^n).$

Let $\vec{x} \in \mathbb{R}^2$ and $t \in \mathbb{R}^+$ be the spatial position and the time respectively. The Boltzmann equation (without force term):

00

$$\frac{\partial}{\partial t}f(\vec{x},t) + \vec{v}^{T} \cdot \vec{\nabla}f(\vec{x},t) = \mathcal{Q}(f),$$

$$f(\vec{x},\lambda\vec{e_{i}},t+\Delta t) = f^{*}(\vec{x}-\lambda\vec{e_{i}}\Delta t,\lambda\vec{e_{i}},t), \quad (1)$$

where $\lambda = \frac{\Delta x}{\Delta t}$ is the numerical lattice velocity and f^* the density distribution after collision. Let $\vec{v_i} = \lambda \vec{e_i}$ be the discrete velocity vector. The dynamic is divided in two steps: streaming and collision.

2- Moments space and moments vector m defined by

$$\vec{m}(\vec{x},t) = \boldsymbol{M}\vec{f}(\vec{x},\vec{v},t) \quad \Longleftrightarrow \quad \vec{f}(\vec{x},\vec{v},t) = \boldsymbol{M}^{-1}\vec{m}(\vec{x},t),$$

where M is the invertible transformation matrix. The collision step in the moment space writes:

$$m_k^* = (1 - s_k)m_k + s_k m_k^{eq}, \quad \forall k \in \{1, 2, \dots, 8\},$$

where s_k is the relaxation time and m_k^{eq} the equilibrium moment as function of the conserved variable T.

Let $\vec{x} \in \mathbb{R}^2$ and $t \in \mathbb{R}^+$ be the spatial position and the time respectively. The Boltzmann equation (without force term):

$$\frac{\partial}{\partial t}f(\vec{x},t) + \vec{v}^{T} \cdot \vec{\nabla}f(\vec{x},t) = \mathcal{Q}(f),$$

$$f(\vec{x},\lambda\vec{e_{i}},t+\Delta t) = f^{*}(\vec{x}-\lambda\vec{e_{i}}\Delta t,\lambda\vec{e_{i}},t), \quad (1)$$

where $\lambda = \frac{\Delta x}{\Delta t}$ is the numerical lattice velocity and f^* the density distribution after collision. Let $\vec{v_i} = \lambda \vec{e_i}$ be the discrete velocity vector. The dynamic is divided in two steps: streaming and collision.

2- Moments space and moments vector \vec{m} defined by

$$\vec{m}(\vec{x},t) = \boldsymbol{M}\vec{f}(\vec{x},\vec{v},t) \quad \Longleftrightarrow \quad \vec{f}(\vec{x},\vec{v},t) = \boldsymbol{M}^{-1}\vec{m}(\vec{x},t),$$

where M is the invertible transformation matrix.

The construction of M is linked with the physical moment used to recover the equivalent PDEs.

moment	T	j _×	jу	Е	p _{xx}	p _{xy}	q_{\times}	q_y	χ
equilibrium	1	$\lambda \phi_{j_X}$	$\lambda \phi_{j_y}$	$\lambda^2 { m t_E}$	$\lambda^2 \phi_{P_{XX}}$	$\lambda^2 \phi_{p_{xy}}$	$\lambda^3 \phi_{j_X} \phi_{q_X}$	$\lambda^3 \phi_{j_y} \phi_{q_y}$	$\lambda^4 \dot{q}_{\chi}$

Let $\vec{x} \in \mathbb{R}^2$ and $t \in \mathbb{R}^+$ be the spatial position and the time respectively. The Boltzmann equation (without force term):

$$\frac{\partial}{\partial t}f(\vec{x},t) + \vec{v}^{T} \cdot \vec{\nabla}f(\vec{x},t) = \mathcal{Q}(f),$$

$$f(\vec{x},\lambda\vec{e_{i}},t+\Delta t) = f^{*}(\vec{x}-\lambda\vec{e_{i}}\Delta t,\lambda\vec{e_{i}},t), \qquad (1)$$

where $\lambda = \frac{\Delta x}{\Delta t}$ is the numerical lattice velocity and f^* the density distribution after collision. Let $\vec{v_i} = \lambda \vec{e_i}$ be the discrete velocity vector. The dynamic is divided in two steps: streaming and collision.

The PDE to be simulated by the LB scheme (1):

$$\frac{\partial}{\partial t}T(\vec{x},t) + \nabla \cdot (\vec{w}(\vec{x})T(\vec{x},t)) - \kappa \Delta T(\vec{x},t) = 0$$

A diffusion and non-constant advection problem

Taylor expansion for advection-diffusion problems Zero-order First-order

Second-order

Third order for constant advection case

Equivalent PDE Numerical Validation of third order accuracy

LB method as image processing

Context Methodology Experiments Comparison of SRT and MRT LB scho

Conclusion

Zero-order

The moment m_k and the density distribution f_i verify

$$\begin{split} m_k &= m_k^* + \mathcal{O}(\Delta t) = m_k^{eq} + \mathcal{O}(\Delta t) \quad \text{and} \\ f_i &= f_i^* + \mathcal{O}(\Delta t) = f_i^{eq} + \mathcal{O}(\Delta t). \end{split}$$

moment	Τ	j _x	j _y	Е	p _{xx}	p _{xy}
equilibrium	1	$\lambda \phi_{j_X}$	λq_{j_V}	$\lambda^2 c_{ m E}$	$\lambda^2 q_{P_{XX}}$	$\lambda^2 \phi_{P_{XY}}$

First-order

The conserved variable T verify:

$$\mathcal{O}(\Delta t) = \frac{\partial}{\partial t} T(\vec{x}, t) + \lambda \nabla \cdot (\vec{w}(\vec{x}) T(\vec{x}, t)).$$

moment	T	j _x	j _y	E	p _{xx}	p _{xy}
equilibrium	1	$\lambda w_{x}(\vec{x})$	$\lambda w_y(\vec{x})$	$\lambda^2 c_{\rm E}$	$\lambda^2 \phi_{Pxx}$	$\lambda^2 \phi_{P_{XY}}$

Second-order

The conserved variable T verify:

$$\mathcal{O}\left(\Delta t^{2}\right) = \frac{\partial}{\partial t} T(\vec{x}, t) + \lambda \nabla \cdot \left(\vec{w}(\vec{x}) T(\vec{x}, t)\right) \\ - \Delta t \lambda^{2} \xi_{E}^{\prime} \sigma_{1} \Delta T(\vec{x}, t) \boxed{-\Delta t \lambda^{2} \sigma_{1} \nabla \cdot \left[T(\vec{x}, t) J(\vec{w}(\vec{x})) \cdot \vec{w}(\vec{x})\right]}$$

where $\sigma_k = \frac{1}{s_k} - \frac{1}{2}$ are coefficient introduced by Hénon [4].The additional term arises from the non-constant advection vector $\vec{w}(\vec{x})$ in $\frac{\partial^2}{\partial t^2}T(\vec{x}, t)$ calculation.

moment	T	j _x	j_y	Е	p _{xx}	p _{xy}
equilibrium	1	$\lambda w_{\rm x}(\vec{x})$	$\lambda w_y(\vec{x})$	$\lambda^2 \left(\mathbf{q}_{\mathrm{E}}' + \frac{\ \vec{w}(\vec{x})\ ^2}{2} \right)$	$\lambda^2 \left(w_x(\vec{x})^2 - w_y(\vec{x})^2 \right)$	$\lambda^2 w_x(\vec{x}) w_y(\vec{x})$

M. Hénon, "Viscosity of a lattice gas," Complex Systems, vol. 1, no. 4, pp. 763-789, 1987.

Second-order

The conserved variable T verify:

$$\mathcal{O}\left(\Delta t^{2}\right) = \frac{\partial}{\partial t}T(\vec{x},t) + \lambda \nabla \cdot \left(\vec{w}T(\vec{x},t)\right) \\ - \Delta t \lambda^{2} d'_{\rm E} \sigma_{1} \Delta T(\vec{x},t),$$

where $\sigma_k = \frac{1}{s_k} - \frac{1}{2}$ are coefficient introduced by Hénon [4]. The constant advection case permits to recover the PDE without additional term.

moment	T	j _x	j _y	Е	p _{xx}	p _{xy}
equilibrium	1	λw _x	λwy	$\lambda^2 \left(\mathbf{q}_{\mathrm{E}}' + \frac{\ \vec{w}\ ^2}{2} \right)$	$\lambda^2 \left(w_x^2 - w_y^2 \right)$	$\lambda^2 w_x w_y$

M. Hénon, "Viscosity of a lattice gas," Complex Systems, vol. 1, no. 4, pp. 763-789, 1987.

Taylor expansion for advection-diffusion problems

Zero-order First-order Second-order

Third order for constant advection case

Equivalent PDE Numerical Validation of third order accuracy

LB method as image processing

Context Methodology Experiments

Comparison of SRT and MRT LB scheme

Conclusion

Third order for constant advection case

Equivalent PDE

For constant advection case, the conserved variable T verify:

$$\mathcal{O}\left(\Delta t^{3}\right) = \frac{\partial}{\partial t} T(\vec{x}, t) + \lambda \nabla \left(\vec{w} T(\vec{x}, t)\right) - \Delta t \lambda^{2} \phi_{\rm E}' \sigma_{1} \Delta T(\vec{x}, t)$$

where $\sigma_k = \frac{1}{s_k} - \frac{1}{2}$.

Third order for constant advection case

Equivalent PDE

For constant advection case, the conserved variable T verify:

$$\begin{split} \mathcal{O}\left(\Delta t^{3}\right) &= \frac{\partial}{\partial t} T(\vec{x},t) + \lambda \nabla \cdot \left(\vec{w} T(\vec{x},t)\right) - \Delta t \lambda^{2} \dot{q}_{E}^{\prime} \sigma_{1} \Delta T(\vec{x},t) \\ &- \Delta t^{2} \lambda^{3} \dot{q}_{E}^{\prime} 2 \left[\sigma_{1}^{2} - \frac{1}{12}\right] \vec{w}^{T} \vec{\nabla} \left(\Delta\left(T\right)\right) \\ &+ \Delta t^{2} \left[\sigma_{1} \sigma_{3} - \frac{1}{12}\right] \left(\begin{matrix} w_{x} \left[\dot{q}_{q_{x}} - \lambda^{3} \dot{q}_{E}^{\prime} - \lambda^{3} \frac{\|\vec{w}\|^{2}}{2} \right] \\ w_{y} \left[\dot{q}_{q_{y}} - \lambda^{3} \dot{q}_{E}^{\prime} - \lambda^{3} \frac{\|\vec{w}\|^{2}}{2} \right] \end{matrix} \right)^{T} \vec{\nabla} \left(\Delta\left(T\right)\right) \\ &+ \Delta t^{2} \left[\sigma_{1} \sigma_{4} - \frac{1}{12} \right] \left(\begin{matrix} w_{x} \left[\frac{\lambda^{3}}{2} w_{y}^{2} - \frac{\lambda^{3}}{2} w_{x}^{2} + \lambda^{3} - \dot{q}_{x} \right] \\ w_{y} \left[\frac{\lambda^{3}}{2} w_{y}^{2} - \frac{\lambda^{3}}{2} w_{x}^{2} - \lambda^{3} + \dot{q}_{q_{y}} \right] \end{matrix} \right)^{T} \vec{\nabla} \left(\frac{\partial^{2}}{\partial x^{2}} - \frac{\partial^{2}}{\partial y^{2}} \right) T \\ &+ 2\Delta t^{2} \left[\sigma_{1} \sigma_{5} - \frac{1}{12} \right] \left(\begin{matrix} w_{y} \left[2 \dot{q}_{q_{y}} - \lambda^{3} - \lambda^{3} \vec{w}_{y}^{2} \right] \\ w_{x} \left[2 \dot{q}_{q_{x}} - \lambda^{3} - \lambda^{3} \vec{w}_{y}^{2} \right] \end{matrix} \right)^{T} \vec{\nabla} \left(\frac{\partial^{2}}{\partial x \partial y} T \right). \end{split}$$

where $\sigma_k = \frac{1}{s_k} - \frac{1}{2}$.

Third order for constant advection case

Equivalent PDE

For constant advection case, the conserved variable T verify:

$$\begin{split} \mathcal{O}\left(\Delta t^{3}\right) &= \frac{\partial}{\partial t} T(\vec{x}, t) + \lambda \nabla \left(\vec{w} T(\vec{x}, t)\right) - \Delta t \lambda^{2} \mathsf{q}_{\mathsf{E}}^{\prime} \sigma_{1} \Delta T(\vec{x}, t) \\ &- \Delta t^{2} \lambda^{3} \mathsf{q}_{\mathsf{E}}^{\prime} 2 \left[\sigma_{1}^{2} - \frac{1}{12}\right] \vec{w}^{T} \vec{\nabla} \left(\Delta \left(T\right)\right) \\ &+ \Delta t^{2} \left[\sigma_{1} \sigma_{3} - \frac{1}{12}\right] \left(\begin{matrix} w_{x} \left[\mathsf{q}_{q_{x}} - \lambda^{3} \mathsf{q}_{\mathsf{E}}^{\prime} - \lambda^{3} \frac{||\vec{w}||^{2}}{2} \right] \\ w_{y} \left[\mathsf{q}_{q_{y}} - \lambda^{3} \mathsf{q}_{\mathsf{E}}^{\prime} - \lambda^{3} \frac{||\vec{w}||^{2}}{2} \right] \end{matrix} \right)^{T} \vec{\nabla} \left(\Delta \left(T\right)\right) \\ &+ \Delta t^{2} \left[\sigma_{1} \sigma_{4} - \frac{1}{12} \right] \left(\begin{matrix} w_{x} \left[\frac{\lambda^{3}}{2} w_{y}^{2} - \frac{\lambda^{3}}{2} w_{x}^{2} + \lambda^{3} - \mathsf{q}_{q_{x}} \right] \\ w_{y} \left[\frac{\lambda^{3}}{2} w_{y}^{2} - \frac{\lambda^{3}}{2} w_{x}^{2} - \lambda^{3} + \mathsf{q}_{q_{y}} \right] \end{matrix} \right)^{T} \vec{\nabla} \left(\frac{\partial^{2}}{\partial x^{2}} - \frac{\partial^{2}}{\partial y^{2}} \right) T \\ &+ 2\Delta t^{2} \left[\sigma_{1} \sigma_{5} - \frac{1}{12} \right] \left(\begin{matrix} w_{y} \left[2\mathsf{q}_{q_{y}} - \lambda^{3} - \lambda^{3} \vec{w}_{x}^{2} \right] \\ w_{x} \left[2\mathsf{q}_{q_{x}} - \lambda^{3} - \lambda^{3} \vec{w}_{y}^{2} \right] \end{matrix} \right)^{T} \vec{\nabla} \left(\frac{\partial^{2}}{\partial x \partial y} T \right). \end{split}$$

where $\sigma_k = \frac{1}{s_k} - \frac{1}{2}$. The proposed set of relaxation time (with MRT hypothesis):

$$\sigma_1 = \sigma_3 = \sigma_4 = \sigma_5 = \frac{1}{\sqrt{12}}$$
 (σ_6 and σ_8 free).

Third order for constant advection case

Numerical Validation of third order accuracy

Initial condition:
$$T(\vec{x}, 0) = \sin\left(2\pi \vec{k}^T \cdot \vec{x}\right), \forall \vec{x} \in \Omega;$$

Analytic solution:
$$T^{th}(\vec{x}, t) = \sin\left(2\pi\vec{k}^T \cdot (\vec{x} - \vec{w}t)\right) e^{-\|2\pi\vec{k}\|\kappa t},$$

 $\forall \vec{x} \in \Omega, \forall t > 0;$

Boundaries Conditions: Periodic for all boundaries (avoid boundary accuracy);

Physical variables: $\kappa = 2.10^{-2}$ and $\vec{w} = (10^{-1}, -5.10^{-2})^T$;

Third order for constant advection case

Numerical Validation of third order accuracy

Initial condition:
$$T(\vec{x}, 0) = \sin\left(2\pi \vec{k}^T \cdot \vec{x}\right), \forall \vec{x} \in \Omega;$$

Analytic solution:
$$T^{th}(\vec{x}, t) = \sin\left(2\pi\vec{k}^T \cdot (\vec{x} - \vec{w}t)\right) e^{-\|2\pi\vec{k}\|\kappa t},$$

 $\forall \vec{x} \in \Omega, \forall t > 0;$

Boundaries Conditions: Periodic for all boundaries (avoid boundary accuracy);

Physical variables: $\kappa = 2 \cdot 10^{-2}$ and $\vec{w} = (10^{-1}, -5 \cdot 10^{-2})^T$;

.B variable:
$$\lambda = 5 \cdot 10^3$$
, $\Delta x = \frac{1}{t \cdot 10^2}$, $\forall \ell \in \{1, 2, \dots, 10\}$,
 $\Delta t = \frac{\Delta x}{\lambda}$, $\mathsf{q}'_E = \frac{-\kappa}{\sigma_1 \Delta t \lambda^2}$, $\mathsf{q}_{q_X} = \mathsf{q}_{q_Y} = \mathsf{q}_{\chi} = 0$,
 $s_6 = 2 \text{ and } s_8 = 1.2$;

Error betwenn numerical and analytic solution:

$$Err\left(T^{LB}-T^{th}\right)=\sqrt{\Delta x^{2}\sum_{\vec{x}\in\mathcal{L}}\left(T^{LB}(\vec{x})-T^{th}(\vec{x})\right)^{2}}.$$

Third order for constant advection case

Numerical Validation of third order accuracy

Initial condition:
$$T(\vec{x}, 0) = \sin\left(2\pi \vec{k}^T \cdot \vec{x}\right), \forall \vec{x} \in \Omega;$$

Analytic solution:
$$T^{th}(\vec{x}, t) = \sin\left(2\pi \vec{k}^T \cdot (\vec{x} - \vec{w}t)\right) e^{-\|2\pi \vec{k}\| \kappa t},$$

 $\forall \vec{x} \in \Omega, \forall t > 0;$

Boundaries Conditions: Periodic for all boundaries (avoid boundary accuracy);

Physical variables:
$$\kappa = 2 \cdot 10^{-2}$$
 and $\vec{w} = (10^{-1}, -5 \cdot 10^{-2})^T$;

B variable:
$$\lambda = 5 \cdot 10^3$$
, $\Delta x = \frac{1}{\epsilon \cdot 10^2}$, $\forall \ell \in \{1, 2, \dots, 10\}$,
 $\Delta t = \frac{\Delta x}{\lambda}$, $\mathsf{q}'_E = \frac{-\kappa}{\sigma_1 \Delta t \lambda^2}$, $\mathsf{q}_{q_X} = \mathsf{q}_{q_Y} = \mathsf{q}_{\chi} = \mathsf{q}_{\chi}$
 $s_6 = 2$ and $s_8 = 1.2$;

LB scheme: $p \simeq 2.98$

Error betwenn numerical and analytic solution:

$$Err\left(T^{LB}-T^{th}\right)=\sqrt{\Delta x^{2}\sum_{\vec{x}\in\mathcal{L}}\left(T^{LB}(\vec{x})-T^{th}(\vec{x})\right)^{2}}$$

Taylor expansion for advection-diffusion problems

Zero-order First-order Second-order

Third order for constant advection case

Equivalent PDE Numerical Validation of third order accuracy

LB method as image processing

Context Methodology Experiments Comparison of SRT and MRT LB scheme

Conclusion

00

Context

Marine radar images: low contrast, weak contours and a strong interference noise (in the Range-Doppler Map: a Fourier domain);

Raw marine radar images (in Range-Doppler Map) with a target at 12 900m.

00

Context

Marine radar images: low contrast, weak contours and a strong interference noise (in the Range-Doppler Map: a Fourier domain);

First noise extraction: by image/signal processing, the signal of interest still contains noise and may lose clarity;

Marine radar images after first noise extraction (in Range-Doppler Map) with a target at 12 900m.

00

Context

Marine radar images: low contrast, weak contours and a strong interference noise (in the Range-Doppler Map: a Fourier domain);

First noise extraction: by image/signal processing, the signal of interest still contains noise and may lose clarity;

The LB scheme goals: enhance the remaining signal + reduce the noise arising from the image processing.

Marine radar images after first noise extraction (in Range-Doppler Map) with a target at 12 900m.

Methodology

The LB scheme goals: enhance the remaining signal + reduce the noise arising from the image processing.

Enhancement: provided by an advection term driven by the remaining information gradient pointing to the maxima $(\vec{w}(\vec{x}))$;

Noise reduction: provided by the Cahn-Hilliard energy [5]:

• diffusion term
$$\left(\kappa = \varepsilon \frac{\mu}{\xi_W}\right);$$

• a double well potential (the force term).

S. M. Allen and J. W. Cahn, "A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening," *Acta metallurgica*, vol. 27, no. 6, pp. 1085–1095, 1979.

Methodology

- The LB scheme goals: enhance the remaining signal + reduce the noise arising from the image processing.
 - Enhancement: provided by an advection term driven by the remaining information gradient pointing to the maxima $(\vec{w}(\vec{x}))$;

Noise reduction: provided by the Cahn-Hilliard energy [5]:

- diffusion term $\left(\kappa = \varepsilon \frac{\mu}{\mathbf{k}w}\right)$;
- a double well potential (the force term).

Boundaries condition: left and right: periodic; top and bottom: homogeneous Neumann.

S. M. Allen and J. W. Cahn, "A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening," *Acta metallurgica*, vol. 27, no. 6, pp. 1085–1095, 1979.

Methodology

- The LB scheme goals: enhance the remaining signal + reduce the noise arising from the image processing.
 - Enhancement: provided by an advection term driven by the remaining information gradient pointing to the maxima $(\vec{w}(\vec{x}))$;

Noise reduction: provided by the Cahn-Hilliard energy [5]:

• diffusion term
$$\left(\kappa = \varepsilon \frac{\mu}{\xi_W}\right)$$
;

• a double well potential (the force term).

Boundaries condition: left and right: periodic; top and bottom: homogeneous Neumann.

The LB scheme simulates the PDE

$$\frac{\partial}{\partial t}T(\vec{x},t) + \nabla \cdot (\vec{w}(\vec{x})T(\vec{x},t)) - \overbrace{\varepsilon \frac{\mu}{\xi_W}}^{\kappa} \Delta T(\vec{x},t) = \underbrace{-\frac{\mu}{\varepsilon \xi_W}W'(T)}^{\text{force term}},$$

where the double well potential $W(x) = 0.5x^2(1-x)^2$ and

$$\varphi_W = \int_0^1 W(x) \, \mathrm{d}x \simeq \frac{1}{60}.$$

Experiments

LB variables:
$$\Delta x = 10^{-1}$$
, $\Delta t = 10^{-2}$, $q'_{\rm E} = \frac{-\kappa}{\sigma_1 \Delta t \lambda^2}$, $q_x = q_y = 10^{-3}$, $q_\chi = 0$,
 $\vec{c}_{\vec{i}} = \vec{w}$ and $s_6 = s_8 = 1$.

The temporal iterations are stopped when the relative error

00

$$\frac{\|T^{LB}(\vec{x}, t + \Delta t) - T^{LB}(\vec{x}, t)\|_{L^2}}{\|T^{LB}(\vec{x}, t + \Delta t)\|_{L^2}} \le \text{tol}.$$

Figure: Terms of the equivalent PDE at second order after scheme convergence, induced by the non-constant advection of an advection-diffusion equation.

Experiments

LB variables:
$$\Delta x = 10^{-1}$$
, $\Delta t = 10^{-2}$, $\varphi'_{E} = \frac{-\kappa}{\sigma_{1}\Delta t\lambda^{2}}$, $\varphi_{q_{x}} = \varphi_{q_{y}} = 10^{-3}$, $\varphi_{\chi} = 0$,
 $\vec{c_{i}} = \vec{w}$ and $s_{6} = s_{8} = 1$.

• Additional term: lowest numerical influence in the temporal evolution of the temperature $\mathcal{T} \to$ negligible;

• Previous setting for relaxation time to suppress certain second order terms;

Figure: Temperature T after scheme convergence, seen in the RDM and following an advection-diffusion LB scheme with non-constant advection.

Experiments

LB variables:
$$\Delta x = 10^{-1}$$
, $\Delta t = 10^{-2}$, $q'_{\rm E} = \frac{-\kappa}{\sigma_1 \Delta t \lambda^2}$, $q_x = q_y = 10^{-3}$, $q_\chi = 0$,
 $\vec{c_i} = \vec{w}$ and $s_6 = s_8 = 1$.

- Additional term: lowest numerical influence in the temporal evolution of the temperature $T \rightarrow$ negligible;
- Previous setting for relaxation time to suppress certain second order terms;

• Result improvement by correction of s_1 .

Figure: Temperature ${\cal T}$ after scheme convergence, seen in the RDM and following an advection-diffusion LB scheme with non-constant advection.

Comparison of SRT and MRT LB scheme

SRT or BGK: few LB parameters but lack of stability [6, 7];

-	-	

T. Gebäck and A. Heintz, "A lattice Boltzmann method for the advection-diffusion equation with Neumann boundary conditions," *Communications in Computational Physics*, vol. 15, no. 2, pp. 487–505, 2014.

L. Li, R. Mei, and J. F. Klausner, "Lattice Boltzmann Models for the convection-diffusion equation: D2Q5 vs D2Q9," *International Journal of Heat and Mass Transfer*, vol. 108, pp. 41–62, 2017.

Comparison of SRT and MRT LB scheme

SRT or BGK: few LB parameters but lack of stability [6, 7];

MRT: significant number of parameters. Higher order calculations drive the choice of certain parameters;

For the stability study, the relative error:

$$\frac{\|T^{LB}(\vec{x},t+\Delta t)-T^{LB}(\vec{x},t)\|_{L^2}}{\|T^{LB}(\vec{x},t+\Delta t)\|_{L^2}}$$

T. Gebäck and A. Heintz, "A lattice Boltzmann method for the advection-diffusion equation with Neumann boundary conditions," *Communications in Computational Physics*, vol. 15, no. 2, pp. 487–505, 2014.

L. Li, R. Mei, and J. F. Klausner, "Lattice Boltzmann Models for the convection-diffusion equation: D2Q5 vs D2Q9," *International Journal of Heat and Mass Transfer*, vol. 108, pp. 41–62, 2017.

• A set of relaxation time to have third order accuracy for advection

00

- A set of relaxation time to have third order accuracy for advection-diffusion problem;
- Simulated PDE of a diffusion and non constant advection problem (MRT-LB scheme to D2Q9 lattice);
 - The additional term may negligible up to the context;
- 8 Efficient signal enhancement (real time) for marine radar images;

F. Dubois, "Une introduction au schéma de Boltzmann sur réseau," in ESAIM: proceedings, vol. 18, pp. 181–215, EDP Sciences, 2007.

F. Dubois, "Third order equivalent equation of lattice Boltzmann scheme," *Discrete & Continuous Dynamical Systems-A*, vol. 23, no. 1&2, p. 221, 2009.

D. d'Humières, "Generalized lattice-Boltzmann equations," in *Rarefied Gas Dynamics: Theory and Simulations*, vol. 159, pp. 450–458, AIAA Progress in Aeronautics and Astronautics, 1992.

M. Hénon, "Viscosity of a lattice gas," Complex Systems, vol. 1, no. 4, pp. 763-789, 1987.

S. M. Allen and J. W. Cahn, "A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening," *Acta metallurgica*, vol. 27, no. 6, pp. 1085–1095, 1979.

T. Gebäck and A. Heintz, "A lattice Boltzmann method for the advection-diffusion equation with Neumann boundary conditions," *Communications in Computational Physics*, vol. 15, no. 2, pp. 487–505, 2014.

L. Li, R. Mei, and J. F. Klausner, "Lattice Boltzmann models for the convection-diffusion equation: D2q5 vs d2q9," *International Journal of Heat and Mass Transfer*, vol. 108, pp. 41–62, 2017.

$$m_{k} + \Delta t \frac{\partial}{\partial t} m_{k} + \frac{\Delta t^{2}}{2} \frac{\partial^{2}}{\partial t^{2}} m_{k}^{eq} = m_{k}^{*} - \Delta t \sum_{i=0}^{8} M_{k,i} \vec{v}_{i}^{T} \cdot \vec{\nabla} f_{i}^{*} + \frac{\Delta t^{2}}{2} \sum_{i=0}^{8} M_{k,i} \vec{v}_{i}^{T} \cdot \boldsymbol{H} \left(f_{i}^{eq} \right) \cdot \vec{v}_{i} + \mathcal{O}(\Delta t^{3}).$$

For k = 0, the moment $m_0 = m_0^* = m_0^{eq} = T$.

$$m_k + \Delta t \frac{\partial}{\partial t} m_k + \frac{\Delta t^2}{2} \frac{\partial^2}{\partial t^2} m_k^{eq} = m_k^* - \Delta t \sum_{i=0}^8 M_{k,i} \vec{v}_i^T \cdot \vec{\nabla} f_i^* + \frac{\Delta t^2}{2} \sum_{i=0}^8 M_{k,i} \vec{v}_i^T \cdot \boldsymbol{H}\left(f_i^{eq}\right) \cdot \vec{v}_i + \mathcal{O}(\Delta t^3).$$

For k = 0, the moment $m_0 = m_0^* = m_0^{eq} = T$.

$$T + \Delta t \frac{\partial}{\partial t} T + \frac{\Delta t^2}{2} \frac{\partial^2}{\partial t^2} T = T - \Delta t \sum_{i=0}^8 \vec{v}_i^T \cdot \vec{\nabla} f_i^* + \frac{\Delta t^2}{2} \sum_{i=0}^8 \vec{v}_i^T \cdot \boldsymbol{H} \left(f_i^{eq} \right) \cdot \vec{v}_i + \mathcal{O}(\Delta t^3)$$

$$m_{k} + \Delta t \frac{\partial}{\partial t} m_{k} + \frac{\Delta t^{2}}{2} \frac{\partial^{2}}{\partial t^{2}} m_{k}^{eq} = m_{k}^{*} - \Delta t \sum_{i=0}^{8} M_{k,i} \vec{v}_{i}^{T} \cdot \vec{\nabla} f_{i}^{*} + \frac{\Delta t^{2}}{2} \sum_{i=0}^{8} M_{k,i} \vec{v}_{i}^{T} \cdot \boldsymbol{H} \left(f_{i}^{eq} \right) \cdot \vec{v}_{i} + \mathcal{O}(\Delta t^{3}) \cdot \vec{v}_{i} + \mathcal{O}(\Delta t$$

For k = 0, the moment $m_0 = m_0^* = m_0^{eq} = T$.

$$T + \Delta t \frac{\partial}{\partial t} T + \frac{\Delta t^2}{2} \frac{\partial^2}{\partial t^2} T = T - \Delta t \sum_{i=0}^8 \vec{v_i}^T \cdot \vec{\nabla} f_i^* + \frac{\Delta t^2}{2} \sum_{i=0}^8 \vec{v_i}^T \cdot \mathbf{H} \left(f_i^{eq} \right) \cdot \vec{v_i} + \mathcal{O}(\Delta t^3)$$

The term $\sum_{i=0}^8 \vec{v_i^T} \cdot \vec{\nabla} f_i^*$ is decomposed by the formula

$$\sum_{i=0}^{8} z_i f_i(\vec{x}, t) = \sum_{i,k=0}^{8} \frac{\langle M_{k,i}, z_i \rangle}{\|M_{k,i}\|^2} m_k.$$

Appendix

$$\mathcal{O}(\Delta t^{3}) = \Delta t \frac{\partial}{\partial t} T + \Delta t \nabla \cdot \vec{j}^{*} - \frac{\Delta t^{2}}{2} \left[\sum_{i=0}^{8} \vec{v}_{i}^{T} \cdot \boldsymbol{H} \left(f_{i}^{eq} \right) \cdot \vec{v}_{i} - \frac{\partial^{2}}{\partial t^{2}} T \right]$$

$$\mathcal{O}(\Delta t^{3}) = \Delta t \frac{\partial}{\partial t} T + \Delta t \nabla \vec{j}^{*} - \frac{\Delta t^{2}}{2} \left[\sum_{i=0}^{8} \vec{v}_{i}^{T} \cdot \boldsymbol{H} \left(f_{i}^{eq} \right) \cdot \vec{v}_{i} - \frac{\partial^{2}}{\partial t^{2}} T \right]$$

The use of previous approximation of non-conserved moment (for $\vec{j}^{\,\ast}$) leads to

$$\mathcal{O}(\Delta t^{3}) = \Delta t \frac{\partial}{\partial t} T + \Delta t \nabla \vec{j^{\text{teq}}} - \Delta t^{2} \left(\frac{1}{s_{1}} - \frac{1}{2}\right) \left[\sum_{i=0}^{8} \vec{v_{i}^{T}} \mathcal{H}\left(f_{i}^{\text{eq}}\right) \cdot \vec{v_{i}} - \frac{\partial^{2}}{\partial t^{2}} T\right]$$

$$\mathcal{O}(\Delta t^{3}) = \Delta t \frac{\partial}{\partial t} T + \Delta t \nabla \vec{j}^{*} - \frac{\Delta t^{2}}{2} \left[\sum_{i=0}^{8} \vec{v}_{i}^{T} \cdot \boldsymbol{H} \left(f_{i}^{eq} \right) \cdot \vec{v}_{i} - \frac{\partial^{2}}{\partial t^{2}} T \right]$$

The use of previous approximation of non-conserved moment (for $\vec{j}^{\,\ast}$) leads to

$$\mathcal{O}(\Delta t^{3}) = \Delta t \frac{\partial}{\partial t} T + \Delta t \nabla \cdot \vec{j}^{eq} - \Delta t^{2} \left(\frac{1}{s_{1}} - \frac{1}{2}\right) \left[\sum_{i=0}^{8} \vec{v_{i}}^{T} \cdot \boldsymbol{H}\left(f_{i}^{eq}\right) \cdot \vec{v_{i}} - \frac{\partial^{2}}{\partial t^{2}} T\right].$$

For second order terms and using the same decomposition formula, one obtains

$$\sum_{i} \vec{v}_{i}^{T} \cdot \boldsymbol{H} \left(f_{i}^{eq} \right) \cdot \vec{v}_{i} = \lambda^{2} \left[\frac{\partial^{2}}{\partial x^{2}} \left(\boldsymbol{\xi}_{\mathrm{E}} + \frac{1}{2} \boldsymbol{\xi}_{\mathsf{P}_{\mathsf{XX}}} \right) T + 2 \frac{\partial^{2}}{\partial x \partial y} \left(\boldsymbol{\xi}_{\mathsf{P}_{\mathsf{XY}}} T \right) + \frac{\partial^{2}}{\partial y^{2}} \left(\boldsymbol{\xi}_{\mathrm{E}} - \frac{1}{2} \boldsymbol{\xi}_{\mathsf{P}_{\mathsf{XX}}} \right) T \right]$$

$$\mathcal{O}(\Delta t^{3}) = \Delta t \frac{\partial}{\partial t} T + \Delta t \nabla \vec{j}^{*} - \frac{\Delta t^{2}}{2} \left[\sum_{i=0}^{8} \vec{v}_{i}^{T} \cdot \boldsymbol{H} \left(f_{i}^{eq} \right) \cdot \vec{v}_{i} - \frac{\partial^{2}}{\partial t^{2}} T \right]$$

The use of previous approximation of non-conserved moment (for $\vec{j^*}$) leads to

$$\mathcal{O}(\Delta t^{3}) = \Delta t \frac{\partial}{\partial t} T + \Delta t \nabla \cdot \vec{j}^{eq} - \Delta t^{2} \left(\frac{1}{s_{1}} - \frac{1}{2}\right) \left[\sum_{i=0}^{8} \vec{v_{i}}^{T} \cdot \boldsymbol{H}\left(f_{i}^{eq}\right) \cdot \vec{v_{i}} - \frac{\partial^{2}}{\partial t^{2}} T\right].$$

For second order terms and using the same decomposition formula, one obtains

$$\sum_{i} \vec{v}_{i}^{T} \cdot \boldsymbol{H}\left(f_{i}^{eq}\right) \cdot \vec{v}_{i} = \lambda^{2} \left[\frac{\partial^{2}}{\partial x^{2}} \left(\boldsymbol{\xi}_{E} + \frac{1}{2} \boldsymbol{\xi}_{\mathsf{P}_{XX}} \right) T + 2 \frac{\partial^{2}}{\partial x \partial y} \left(\boldsymbol{\xi}_{\mathsf{P}_{XY}} T \right) + \frac{\partial^{2}}{\partial y^{2}} \left(\boldsymbol{\xi}_{E} - \frac{1}{2} \boldsymbol{\xi}_{\mathsf{P}_{XX}} \right) T \right]$$

For second derivative in time, one obtains

$$\begin{split} \frac{\partial^2}{\partial t^2} \, T &= -\lambda \nabla \cdot \left(\vec{w}(\vec{x}) \frac{\partial}{\partial t} T \right) + \mathcal{O}(\Delta t) = \lambda^2 \nabla \cdot \left[\vec{w}(\vec{x}) \nabla \cdot \left(\vec{w}(\vec{x}) T(\vec{x},t) \right) \right] + \mathcal{O}(\Delta t) \\ &= \lambda^2 \left(\frac{\partial^2}{\partial x^2} \left(w_x^2(\vec{x}) T(\vec{x},t) \right) + 2 \frac{\partial^2}{\partial x \partial y} \left(w_x(\vec{x}) w_y(\vec{x}) T(\vec{x},t) \right) \\ &+ \frac{\partial^2}{\partial y^2} \left(w_y^2(\vec{x}) T(\vec{x},t) \right) - \nabla \cdot \left[T(\vec{x},t) J(\vec{w}(\vec{x})) \cdot \vec{w}(\vec{x}) \right] \right) + \mathcal{O}(\Delta t). \end{split}$$

For second order terms and using the same decomposition formula, one obtains

$$\sum_{i} \vec{v}_{i}^{T} \cdot \boldsymbol{H} \left(f_{i}^{eq} \right) \cdot \vec{v}_{i} = \lambda^{2} \left[\frac{\partial^{2}}{\partial x^{2}} \left(\boldsymbol{\varphi}_{\mathrm{E}} + \frac{1}{2} \boldsymbol{\varphi}_{\mathrm{pxx}} \right) T + 2 \frac{\partial^{2}}{\partial x \partial y} \left(\boldsymbol{\varphi}_{\mathrm{pxy}} T \right) + \frac{\partial^{2}}{\partial y^{2}} \left(\boldsymbol{\varphi}_{\mathrm{E}} - \frac{1}{2} \boldsymbol{\varphi}_{\mathrm{pxx}} \right) T \right]$$

For second derivative in time, one obtains

$$\begin{split} \frac{\partial^2}{\partial t^2} T &= -\lambda \nabla \cdot \left(\vec{w}(\vec{x}) \frac{\partial}{\partial t} T \right) + \mathcal{O}(\Delta t) = \lambda^2 \nabla \cdot \left[\vec{w}(\vec{x}) \nabla \cdot \left(\vec{w}(\vec{x}) T(\vec{x}, t) \right) \right] + \mathcal{O}(\Delta t) \\ &= \lambda^2 \left(\frac{\partial^2}{\partial x^2} \left(w_x^2(\vec{x}) T(\vec{x}, t) \right) + 2 \frac{\partial^2}{\partial x \partial y} \left(w_x(\vec{x}) w_y(\vec{x}) T(\vec{x}, t) \right) \\ &+ \frac{\partial^2}{\partial y^2} \left(w_y^2(\vec{x}) T(\vec{x}, t) \right) - \nabla \cdot \left[T(\vec{x}, t) J(\vec{w}(\vec{x})) \cdot \vec{w}(\vec{x}) \right] \right) + \mathcal{O}(\Delta t). \end{split}$$

Therefore, the following system has to be solved:

$$\begin{cases} \varphi_{\mathrm{E}} + \frac{1}{2}\varphi_{\mathrm{Pxx}} - w_{x}^{2} &= \alpha \\ \varphi_{\mathrm{Pxy}} - w_{x}w_{y} &= 0 \iff \\ \varphi_{\mathrm{E}} - \frac{1}{2}\varphi_{\mathrm{Pxx}} - w_{y}^{2} &= \alpha \end{cases} \begin{cases} \varphi_{\mathrm{E}} &= \alpha + \frac{\|\vec{w}\|^{2}}{2} = \varphi_{\mathrm{E}}' + \frac{\|\vec{w}\|^{2}}{2} \\ \varphi_{\mathrm{Pxy}} &= w_{x}w_{y} \\ \varphi_{\mathrm{Pxx}} &= w_{x}^{2} - w_{y}^{2} \end{cases}$$

For second order terms and using the same decomposition formula, one obtains

$$\sum_{i} \vec{v}_{i}^{T} \cdot \boldsymbol{H} \left(f_{i}^{eq} \right) \cdot \vec{v}_{i} = \lambda^{2} \left[\frac{\partial^{2}}{\partial x^{2}} \left(\boldsymbol{\varphi}_{\mathrm{E}} + \frac{1}{2} \boldsymbol{\varphi}_{\mathrm{pxx}} \right) T + 2 \frac{\partial^{2}}{\partial x \partial y} \left(\boldsymbol{\varphi}_{\mathrm{pxy}} T \right) + \frac{\partial^{2}}{\partial y^{2}} \left(\boldsymbol{\varphi}_{\mathrm{E}} - \frac{1}{2} \boldsymbol{\varphi}_{\mathrm{pxx}} \right) T \right]$$

For second derivative in time, one obtains

$$\begin{split} \frac{\partial^2}{\partial t^2} T &= -\lambda \nabla \cdot \left(\vec{w}(\vec{x}) \frac{\partial}{\partial t} T \right) + \mathcal{O}(\Delta t) = \lambda^2 \nabla \cdot \left[\vec{w}(\vec{x}) \nabla \cdot \left(\vec{w}(\vec{x}) T(\vec{x}, t) \right) \right] + \mathcal{O}(\Delta t) \\ &= \lambda^2 \left(\frac{\partial^2}{\partial x^2} \left(w_x^2(\vec{x}) T(\vec{x}, t) \right) + 2 \frac{\partial^2}{\partial x \partial y} \left(w_x(\vec{x}) w_y(\vec{x}) T(\vec{x}, t) \right) \\ &+ \frac{\partial^2}{\partial y^2} \left(w_y^2(\vec{x}) T(\vec{x}, t) \right) - \nabla \cdot \left[T(\vec{x}, t) J(\vec{w}(\vec{x})) \cdot \vec{w}(\vec{x}) \right] \right) + \mathcal{O}(\Delta t). \end{split}$$

Therefore, the following system has to be solved:

$$\begin{cases} \varphi_{\mathrm{E}} + \frac{1}{2}\varphi_{\mathrm{Pxx}} - w_{x}^{2} &= \alpha \\ \varphi_{\mathrm{Pxy}} - w_{x}w_{y} &= 0 \iff \\ \varphi_{\mathrm{E}} - \frac{1}{2}\varphi_{\mathrm{Pxx}} - w_{y}^{2} &= \alpha \end{cases} \begin{cases} \varphi_{\mathrm{E}} &= \alpha + \frac{\|\vec{w}\|^{2}}{2} = \varphi_{\mathrm{E}}^{\prime} + \frac{\|\vec{w}\|^{2}}{2} \\ \varphi_{\mathrm{Pxy}} &= w_{x}w_{y} \\ \varphi_{\mathrm{Pxx}} &= w_{x}^{2} - w_{y}^{2} \end{cases}$$

$$\mathcal{O}\left(\Delta t^{2}\right) = \frac{\partial}{\partial t}T(\vec{x},t) + \lambda \nabla \cdot \left(\vec{w}(\vec{x})T(\vec{x},t)\right) - \Delta t\lambda^{2} \mathsf{q}'_{\mathrm{E}}\sigma_{1}\Delta T(\vec{x},t) - \Delta t\lambda^{2}\sigma_{1}\nabla \cdot \left[T(\vec{x},t)\boldsymbol{J}(\vec{w}(\vec{x}))\cdot\vec{w}(\vec{x})\right]$$