

Groupe de travail: Schémas de Boltzmann sur réseau, March 24th, 2021

OpenLB -- Fluid Flow Simulation and Control on High Performance Computers

Fedor Bukreev, Julius Jeßberger, Nicolas Hafen, <u>Mathias J. Krause</u>, Adrian Kummerländer, Jan E. Marquardt, Stephan Simonis, Robin Trunk, Mathilde Wu

Lattice Boltzmann Research Group (LBRG) Institute for Applied and Numerical Mathematics (IANM) Institute of Mechanical Process Engineering an Mechanics (MVM) Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

www.openlb.net

Challenges in (Computational) Fluid Mechanics

Challenge 1: Turbulence

- capture small scales
- models inaccurate or expensive

Challenge 2: Suspensions

- capture effects of small particles
- models inaccurate or expensive

Challenge 3: Optimal Control / Optimization

- enable model calibration & optimization
- formulation problem dependent, expensive

Kwak, D., Kiris, C., Kim, C. S. (2005) Comput Fluids, 34(3), pp.283-299

Slotnick, J., Khodadoust, A., Alonso, J. et al. (2014). NASA TR, no. NASA/CR-2014-218178

Mathias J. Krause

Facing the Challenges: Compute Power Available

3

Mathias J. Krause

Facing the Challenges: LBRG's Solution Approach

Parallel Lattice Boltzmann Methods (LBM)

- physical mesoscopic model
- algorithmic properties / parallelism
- LB approach as PDE solver

Sustainable Research & Education

- beyond one PhD cycle
- open (source) community
- method AND application view
- interdisciplinary
- modern C++, CI, GIT, ..

Challenge 1:

DNS/LES instead of RANS

Challenge 2:

resolve particles' shape, force, ...

Challenge 3:

algorithmic differentiation & adjoints, combine measurement & simulation

Mathias J. Krause

Overview OpenLB

Challenge I -- Turbulence

Challenge II -- Suspensions

Challenge III -- Optimization

Summary

24/03/2021

Mathias J. Krause

Overview OpenLB

Challenge I -- Turbulence

Challenge II -- Suspensions

Challenge III -- Optimization

Summary

24/03/2021

Mathias J. Krause

Modelling Flows of Incompressible Newtonian Fluids

7

Lattice Boltzmann Methods (LBM)

Idea: coupling model parameter $h \in \mathbb{R}_{>0}$ with discretisation parameter: Lattice DdQq

Macroscopic moments:

density
$$\rho = \sum_{i=0}^{q-1} f_i$$
, velocity $\rho u = \sum_{i=0}^{q-1} v_i f_i$

Time loop
$$t = t_0, t_0 + h^2, t_0 + 2h^2, ..., t_1$$

Position space loop $r \in \Omega_h$

(1) Collision $\tilde{f}_i(t, r) = f_i(t, r) - \frac{1}{3\nu + 1/2} \left(f_i(t, r) - M_{f_i}^{eq}(t, r) \right)$ (2) Streaming $f_i(t + h^2, r + h^2 v_i) = \tilde{f}_i(t, r)$

Facts and Figures

2D and 3D fluid flow and transport simulations based on LBM

Realization

- Started in 2006 by Jonas Latt & Mathias J. Krause
- Open source (GPL2)
- C++, object oriented, template-based, modular, extensible
- Hybrid parallelization (MPI & OpenMP)

Features in latest release 1.4

- Various lattice types: D2Q9, D3Q15, D3Q19, ...
- Local, non-local, on- and off-lattice boundary conditions
- Collision models: BGK, MRT, LES, multiphase, thermal
- Build-in pre-processing from e.g. STL-files
- Unit conversion for problem set-up in SI-units
- XML interface for input parameters
- Visualization (built-in and VTK)

24/03/2021

Mathias J. Krause

Built-in Geometry Creation and Meshing

Parallel Performance @ Magnus, Curtin, Australia

Approximately 80% efficiency 1 node ~ 1 cluster (1366 nodes) 46 days ~ 1 hour

11

Adrian Kummerländer

	Multiphase flows		Flows in con geometries, porous medi	nplex Sector And Secto
Turbulent flows		OpenLB Applicatio	ns	
	Thermal flows	Particle flows		Radiative transport

Krause, M. J., Kummerländer, A., Avis, S. J., Kusumaatmaja, H., Dapelo, D., Klemens, F., Gaedtke, M., Hafen, N., Mink, A., Trunk, R., Marquardt, J. E., Maier, M.-L., Haussmann, M., Simonis, S. (2020). Comput Math Appl, in Press.

Mathias J. Krause

Overview OpenLB

Challenge I -- Turbulence

Challenge II -- Suspensions

Challenge III -- Optimization

Summary

13 24/03/2021

Mathias J. Krause

Aorta Benchmark, DNS

Coriolis Mass Flowmeter Simulation, LES

Goal: Improve measurement accuracy

- Investigation of pressure drop
 - Comparison with experimental data
- Investigation of vortex phenomena
 - LBM Large Eddy Simulation Smagorinsky model
 - LBM wall function

1.300e+0 0.476 0.55 0.325

Haussmann, M., Reinshaus, P., Simonis, S. et al. (2020). Preprint arXiv:2005.04070 physics.comp-ph].

Haussmann, M., Barreto, A. C., Kouyi, G. L. et al. (2019). Comput. Math. with Appl., 78(10),

Mathias J. Krause

Safety Valve Simulation, LES

Goal: avoid chatter

- → vary shape of disk
- 3D transient turbulent simulation
- 1 billion degrees of freedom
- parallelization: 30 days → 1 day
 64 cores → 2.048 cores
- optimize shape of disk

Mathias J. Krause

Lattice Boltzmann Research Group, KIT

۲

Thermal Flow for Thermal Comfort, LES

Goal: Improve thermal comfort

control flow patterns by change of design and flow conditions of

- Heating
- Air condition
- Ventilator

Benchmark study:

- Re=29,000
- Pe=20,600
- LES Smagorinsky type
- 130 mio. grid cells

Siodlaczek, M., Gaedtke, M., Simonis S. et al. (2020). Submitted to Build Environ.

Mathias J. Krause

Turbulent Flows with LBM LES: Applications

- Wall models for LBM LES, e.g.: Near-wall-models (NWM) with SRT LBM
- NWM-LES LBM for Complex turbulent flows relevant to internal combustion engines

• Comparison of OpenFOAM and OpenLB w.r.t.: capability of prediction accuracy, computational cost, ease of use.

Haussmann, M., Barreto, A. C., Kouyi, G. L. et al. (2019). Comput. Math. App. 78, 3285-3302.

Haussmann, M., Ries, F., Jeppener-Haltenhoff, J. B. et al. (2020). Computation 2020, 8(2), 43.

- Similar NWM-LES: Smagorinsky–Lilly, van Driest damping, Musker wall function
- Similar prediction accuracy
- computational cost for the present setup: meshing with OpenLB is 424x faster than with OpenFOAM simulation with OpenLB is 32x faster than with OpenFOAM

Haussmann, M., Ries, F., Jeppener-Haltenhoff, J. B. et al. (2020). Computation 2020, 8(2), 43.

Thermal Flow in Refrigerated Vehicles, LES

Goal: Improve the insulation efficiency

- ➔ exchange insulation material
 - extruded polysterol (XPS) by
 - vacuum insulation panels (VIP)

Convection in vehicle's cooling chamber:

- Air conditioning volume flow of $990 \frac{m^3}{h}$
- Turbulent free jet, Re = 28,000
- Large eddy simulation (LES) Smagorinsky
- Resolved heat flux through insulation walls
- Utilizing conjugated heat transfer implementation

Overview OpenLB

Challenge I -- Turbulence

Challenge II -- Suspensions

Challenge III -- Optimization

Summary

21 24/03/2021

Mathias J. Krause

Micro Filtration, Particle

Goal: design of an efficient filter

- → vary shape of filter and flow conditions
- geometry from μCT scans
- 2D and 3D transient simulation slip flow
 - particles (Lagrange)
 - air as density (Euler)

Augusto, L. D. L. X., Ross-Jones et al. (2018). Commun Comput Phys, 23, 910-931.

Mathias J. Krause

Fine Particle Fractionation, Particle

Krause, M. J., Klemens, F., Henn, T. et al. (2017). Particuology, 34, 1-13.

Mathias J. Krause

Exhaust Treatment by Wall-flow Filters, Particle

Goal: Investigation of particle-layer rearrangement

- → simulation of resolved particulate flows
- Ash accumulates, forms specific deposition patterns
- Patterns evolve due to oxidation during the filter regeneration
- Effect of deposition patterns:
 - change in filter efficiency
 - increase of pressure loss

Hafen, N., Dittler, A., Krause, M. J. (2020). Submitted to Philos. Trans. R. Soc. A.

24 24/03/2021

Mathias J. Krause

Magnetic Spiral Separator, Particle

Goal: basic understanding, increase efficiency 3D simulation with LBM - carrier fluid (Euler) - magnetic field (Euler) - magnetic particles (Lagrange) 0.850 status of activity (-) 0.450 -0.5 0 0.00 -0.450 -0.900

Maier, M. L., Milles, S. et al. (2018). Comput. Math. with Appl., 76(11-12), 2744-2757.

Maier, M. L., Henn, T., Thaeter, G. et al. (2017). Chem Eng Technol, 40(9), 1591-1598.

Mathias J. Krause

Photobioreactor Simulation, Complex System

Mathias J. Krause

Overview OpenLB

Challenge I -- Turbulence

Challenge II -- Suspensions

Challenge III -- Optimization

Summary

27 24/03/2021

Mathias J. Krause

Optimal Control Solution Strategies

[2] Tekitek, M. M., Bouzidi, M., Dubois, F. et al. (2006). Comput Fluids, 35(8-9), 805-813.

[3] <u>Krause, M. J. (2010)., KIT Karlsruhe.</u>

Mathias J. Krause

CFD-MRI: Basic Algorithm, Optimization

CFD-MRI: Applications Sponge & Aorta, Optimization

Klemens, F., Schuhmann, S., Guthausen, G. et al. (2018). Comput Fluids, 166, 218-224.

Klemens, F., Schuhmann, S., Balbierer, R. et al. (2020). Comput Fluids, 197, 104391.

Mathias J. Krause

Overview OpenLB

Challenge I -- Turbulence

Challenge II -- Suspensions

Challenge III -- Optimization

Summary

31 24/03/2021

Mathias J. Krause

Facing challenges in CFD:

LBM & OpenLB: meshing and high performance at your fingertips!

Questions?

33 24/03/2021

www.openlb.net

5th Spring School: LBM with OpenLB Software Lab

5th Spring School

Lattice Boltzmann Methods with OpenLB Software Lab

Kraków, Poland, 21st – 25th March 2022

- for scientists and industry, beginners level
- comprehensive theoretical lectures on LBM
- mentored training on case studies using OpenLB, bring your own problem
- knowledge exchange, networking at poster session, coffee breaks and excursion

350€ academia/1,700€ industry for 5 days course including course material, 5x lunch, 2x dinner, coffee breaks and excursion

Executive committee N. Hafen, M. J. Krause, J. E. Marquardt, P. Madejski, T. Kuś, N. Subramanian, M. Bujalski Invited speakers Timm Krüger, Tim Reis, Halim Kusumaatmaja, Francois Dubois

34