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Introduction



Introduction

If we had met before1,2

• Time adaptive mesh built by multiresolution.

• Fully adaptive lattice Boltzmann method.

• Error control by a small threshold 0 < ε� 1.

Ok . . . but is the method reliable independently of ε?
• What about the actual physics we simulate, besides the control by ε?

∂tu +∇ · (ϕ(u))−∇ · (D∇u) = H.O.Ts.

• Could we rely on the same scheme for fixed adapted meshes or AMR (Adaptive
Mesh Refinement) meshes?

Today3

Devising an asymptotic analysis for the adaptive LBM-MR scheme.

1Bellotti, Gouarin, Graille, Massot - Multiresolution-based mesh adaptation and error control for lattice Boltzmann
methods with applications to hyperbolic conservation laws - Submitted to SIAM SISC - 2021 -
https://arxiv.org/abs/2102.12163.
2Bellotti, Gouarin, Graille, Massot - Multidimensional fully adaptive lattice Boltzmann methods with error control based

on multiresolution analysis - Submitted to JCP - 2021 - https://arxiv.org/abs/2103.02903.
3Bellotti, Gouarin, Graille, Massot - Accuracy analysis of adaptive multiresolution-based lattice Boltzmann schemes via

the equivalent equations - Submitted to SMAI JCM - 2021 - https://arxiv.org/abs/2105.13816
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Lattice Boltzmann schemes



Lattice Boltzmann schemes: collide and stream

The ingredients

• Precise scaling between space and time: ∆t = ∆x/λ (also ∆t ∼ ∆x2 is possible).

• Finite family of compatible velocities: (eα)
q−1
α=0 ⊂ λZd. Call the logical velocity

cα = eα/λ ∈ Zd.

• A change of basis: M ∈ Rq×q.

• A diagonal relaxation matrix: S = diag(0, . . ., s, . . . ).

• The equilibria: meq(. . . ), functions on the conserved moments.

We denote f α the distribution of the particles moving with velocity eα.

The recipe

• Collide
m(t,x) =Mf (t,x)

f ?(t,x) =M−1
(
(I −S)m(t,x) +Smeq(m0(t,x), . . .)

)
,

• Stream
f α(t + ∆t,x) = f α,?(t,x− cα∆x).

3/43



Lattice Boltzmann schemes: collide and stream

The ingredients

• Precise scaling between space and time: ∆t = ∆x/λ (also ∆t ∼ ∆x2 is possible).

• Finite family of compatible velocities: (eα)
q−1
α=0 ⊂ λZd. Call the logical velocity

cα = eα/λ ∈ Zd.

• A change of basis: M ∈ Rq×q.

• A diagonal relaxation matrix: S = diag(0, . . ., s, . . . ).

• The equilibria: meq(. . . ), functions on the conserved moments.

We denote f α the distribution of the particles moving with velocity eα.

The recipe

• Collide
m(t,x) =Mf (t,x)

f ?(t,x) =M−1
(
(I −S)m(t,x) +Smeq(m0(t,x), . . .)

)
,

• Stream
f α(t + ∆t,x) = f α,?(t,x− cα∆x).

3/43



Lattice Boltzmann schemes: collide and stream

The ingredients

• Precise scaling between space and time: ∆t = ∆x/λ (also ∆t ∼ ∆x2 is possible).

• Finite family of compatible velocities: (eα)
q−1
α=0 ⊂ λZd. Call the logical velocity

cα = eα/λ ∈ Zd.

• A change of basis: M ∈ Rq×q.

• A diagonal relaxation matrix: S = diag(0, . . ., s, . . . ).

• The equilibria: meq(. . . ), functions on the conserved moments.

We denote f α the distribution of the particles moving with velocity eα.

The recipe

• Collide
m(t,x) =Mf (t,x)

f ?(t,x) =M−1
(
(I −S)m(t,x) +Smeq(m0(t,x), . . .)

)
,

• Stream
f α(t + ∆t,x) = f α,?(t,x− cα∆x).

3/43



Lattice Boltzmann schemes: collide and stream

The ingredients

• Precise scaling between space and time: ∆t = ∆x/λ (also ∆t ∼ ∆x2 is possible).

• Finite family of compatible velocities: (eα)
q−1
α=0 ⊂ λZd. Call the logical velocity

cα = eα/λ ∈ Zd.

• A change of basis: M ∈ Rq×q.

• A diagonal relaxation matrix: S = diag(0, . . ., s, . . . ).

• The equilibria: meq(. . . ), functions on the conserved moments.

We denote f α the distribution of the particles moving with velocity eα.

The recipe

• Collide
m(t,x) =Mf (t,x)

f ?(t,x) =M−1
(
(I −S)m(t,x) +Smeq(m0(t,x), . . .)

)
,

• Stream
f α(t + ∆t,x) = f α,?(t,x− cα∆x).

3/43



Lattice Boltzmann schemes: collide and stream

The ingredients

• Precise scaling between space and time: ∆t = ∆x/λ (also ∆t ∼ ∆x2 is possible).

• Finite family of compatible velocities: (eα)
q−1
α=0 ⊂ λZd. Call the logical velocity

cα = eα/λ ∈ Zd.

• A change of basis: M ∈ Rq×q.

• A diagonal relaxation matrix: S = diag(0, . . ., s, . . . ).

• The equilibria: meq(. . . ), functions on the conserved moments.

We denote f α the distribution of the particles moving with velocity eα.

The recipe

• Collide
m(t,x) =Mf (t,x)

f ?(t,x) =M−1
(
(I −S)m(t,x) +Smeq(m0(t,x), . . .)

)
,

• Stream
f α(t + ∆t,x) = f α,?(t,x− cα∆x).

3/43



Lattice Boltzmann schemes: collide and stream

The ingredients

• Precise scaling between space and time: ∆t = ∆x/λ (also ∆t ∼ ∆x2 is possible).

• Finite family of compatible velocities: (eα)
q−1
α=0 ⊂ λZd. Call the logical velocity

cα = eα/λ ∈ Zd.

• A change of basis: M ∈ Rq×q.

• A diagonal relaxation matrix: S = diag(0, . . ., s, . . . ).

• The equilibria: meq(. . . ), functions on the conserved moments.

We denote f α the distribution of the particles moving with velocity eα.

The recipe

• Collide
m(t,x) =Mf (t,x)

f ?(t,x) =M−1
(
(I −S)m(t,x) +Smeq(m0(t,x), . . .)

)
,

• Stream
f α(t + ∆t,x) = f α,?(t,x− cα∆x).

3/43



Lattice Boltzmann schemes: collide and stream

The ingredients

• Precise scaling between space and time: ∆t = ∆x/λ (also ∆t ∼ ∆x2 is possible).

• Finite family of compatible velocities: (eα)
q−1
α=0 ⊂ λZd. Call the logical velocity

cα = eα/λ ∈ Zd.

• A change of basis: M ∈ Rq×q.

• A diagonal relaxation matrix: S = diag(0, . . ., s, . . . ).

• The equilibria: meq(. . . ), functions on the conserved moments.

We denote f α the distribution of the particles moving with velocity eα.

The recipe

• Collide
m(t,x) =Mf (t,x)

f ?(t,x) =M−1
(
(I −S)m(t,x) +Smeq(m0(t,x), . . .)

)
,

• Stream
f α(t + ∆t,x) = f α,?(t,x− cα∆x).

3/43



Lattice Boltzmann schemes: collide and stream

The ingredients

• Precise scaling between space and time: ∆t = ∆x/λ (also ∆t ∼ ∆x2 is possible).

• Finite family of compatible velocities: (eα)
q−1
α=0 ⊂ λZd. Call the logical velocity

cα = eα/λ ∈ Zd.

• A change of basis: M ∈ Rq×q.

• A diagonal relaxation matrix: S = diag(0, . . ., s, . . . ).

• The equilibria: meq(. . . ), functions on the conserved moments.

We denote f α the distribution of the particles moving with velocity eα.

The recipe

• Collide
m(t,x) =Mf (t,x)

f ?(t,x) =M−1
(
(I −S)m(t,x) +Smeq(m0(t,x), . . .)

)
,

• Stream
f α(t + ∆t,x) = f α,?(t,x− cα∆x).

3/43



Lattice Boltzmann schemes: collide and stream

The ingredients

• Precise scaling between space and time: ∆t = ∆x/λ (also ∆t ∼ ∆x2 is possible).

• Finite family of compatible velocities: (eα)
q−1
α=0 ⊂ λZd. Call the logical velocity

cα = eα/λ ∈ Zd.

• A change of basis: M ∈ Rq×q.

• A diagonal relaxation matrix: S = diag(0, . . ., s, . . . ).

• The equilibria: meq(. . . ), functions on the conserved moments.

We denote f α the distribution of the particles moving with velocity eα.

The recipe

• Collide
m(t,x) =Mf (t,x)

f ?(t,x) =M−1
(
(I −S)m(t,x) +Smeq(m0(t,x), . . .)

)
,

• Stream
f α(t + ∆t,x) = f α,?(t,x− cα∆x).

3/43



How to devise the scheme

Most of the schemes follow these principles:

• The discrete velocities are generally isotropic.

• The lines of the matrixM are in general low order polynomials of the discrete
velocities, for example 1, X, X2/2, . . . , [D’HUMIÈRES, 1992].

• The relaxation matrix S and the equilibria are selected by Chapman-Enskog
expansions [CHAPMAN AND COWLING, 1991] or using the equivalent equations [DUBOIS,

2008].

This latter technique is based on the Taylor expansion of the stream phase (we do the
1D for simplicity)

f α(t + ∆t, x) =
+∞

∑
s=0

∆ts

s!
∂s

t f α(t, x) = f α,?(t, x− cα∆x) =
+∞

∑
s=0

(−cα∆x)s

s!
∂s

x f α,?(t, x).

We call this formula (especially the right hand side) target expansion. Then, one
changes the basis withM and identify powers of ∆x order by order.
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The most simple example of LBM scheme

Probably the most simple LBM scheme is [GRAILLE, 2014]

q = 2, c0 = 1, c1 = −1, M =

(
1 1
λ −λ

)
, S = diag(0, s).

Expanding the stream phase

f± +
∆x
λ

∂t f± +
∆x2

2λ
∂tt f± + O(∆x3) = f±,? ∓ ∆x∂x f±,? +

∆x2

2
∂xx f±,? + O(∆x3)

Writing the moments: u is the conserved one and v is the non-conserved

u +
∆x
λ

∂tu +
∆x2

2λ
∂ttu + O(∆x3)= u? − ∆x

λ
∂xv? +

∆x2

2
∂xxu? + O(∆x3),

v +
∆x
λ

∂tv + O(∆x2)= v? − λ∆x∂xu? + O(∆x2).

By conservation of u

∂tu +
∆x
2

∂ttu + O(∆x2)= −∂xv? +
λ∆x

2
∂xxu + O(∆x2),

v +
∆x
λ

∂tv + O(∆x2)= v? − λ∆x∂xu + O(∆x2).
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Equivalent equations

• Leading order ∆x0

∂tu + ∂xv? = O(∆x), v = v? + O(∆x) = (1− s)v + sveq(u) + O(∆x),

Therefore v = veq(u) + O(∆x) as well as v? = veq(u) + O(∆x). Assuming that
∂xv? = ∂xveq(u) + O(∆x), we are consistent with a conservation law with flux
veq(u). We call this order of development inertial order.

• Linear order ∆x1.

v +
∆x
λ

∂tv + O(∆x2) = v +
∆x
λ

∂tveq(u) + O(∆x2) = v? − λ∆x∂xu + O(∆x2),

= (1− s)v + sveq(u)− λ∆x∂xu + O(∆x2)

= v +
∆x
λ

∂uveq(u)∂tu + O(∆x2)

= v− ∆x
λ

∂uveq(u)∂xveq(u) + O(∆x2)

= v− ∆x
λ

(∂uveq(u))2∂xu + O(∆x2)

This yields

v = veq(u)− λ∆x
s

(1− (∂uveq(u))2)∂xu + O(∆x2),

v? = veq(u)− λ∆x(1− s)
s

(
1− (∂uveq(u))2)

λ2

)
∂xu + O(∆x2)
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Equivalent equations

On the other hand

∂ttu = ∂t(−∂xveq(u) + O(∆x)) = −∂x(∂uveq(u)∂tu) + O(∆x)

= ∂x(∂uveq(u)∂xveq(u) + O(∆x)) + O(∆x) = ∂x((∂uveq(u))2∂xu) + O(∆x),

hence

∂tu + ∂xveq(u)− ∆x
λ

(
1
s
− 1

2

)
∂x((λ

2 − (∂uveq(u))2)∂xu) = O(∆x2).

We call this order of development diffusive order. For this simple scheme, there are
not enough DOF to impose a diffusion structure independently of the hyperbolic
structure.

Remark
A key role is played by the stream phase which make flux-like terms showing up.
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Adaptive LBM-MR method



Adaptive grids

Consider a bounded domain Ω = [0, 1]d.
We can build a hybrid partition of such a
domain formed by cells at different levels
of resolution between L and L.

A cell is
given by

C`,k =
d

∏
a=1

[2−`ka, 2−`(ka + 1)],

for ` = L, . . . , L and k ∈ {0, . . . , 2∆` − 1}.
• x`,k := 2−`(k+ 1/2): cell center

• ∆x` = 2∆`∆x: edge length

• ∆x = 2−L: finest space-step

• ∆` = L− `: distance between the
current level ` and the finest level L
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Generate the adaptive grid

Introduce the prediction operator [HARTEN, 1994], [COHEN et al., 2003]

ℓ

ℓ

f
∧

α
`+1,2k+δ = f

α

`,k + (−1)δQγ
1 (k;f `), with Qγ

1 (k;f `) =
γ

∑
π=1

wπ

(
f

α

`,k+π − f
α

`,k−π

)
,

It is constructed in the following way. Take πα
`,k(x) = ∑m=2γ

m=0 Aα,m
`,k xm such that for

δ = −γ, . . . , 0, . . . , γ

1
∆x`

∫
C`,k+δ

πα
`,k(x)dx = f

α

`,k+δ, =⇒ T (Aα,m
`,k )m=2γ

m=0 = ( f
α

`,k+δ)
δ=+γ
δ=−γ.

Then
f
∧

α
`+1,2k+δ =

1
∆x`+1

∫
C`+1,2k+δ

πα
`,k(x)dx, δ = 0, 1.

Remark
The prediction operator exactly recovers the average on the cell C`+1,2k+δ when the
function f α is polynomial of degree at most 2γ + 1.
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Generate the adaptive grid

coarsen keep refine

2−d∆`ε 2−d(∆`−1)+µε

maxα

(
| f
∧

α
`,k − f

α

`,k|
)

Given a threshold 0 < ε� 1, the mesh is adapted [B., GOUARIN, GRAILLE, MASSOT, 2021] at
each time step using

Coarsen C`,k if max
α

(
| f
∧

α
`,k − f

α

`,k|
)
≤ 2−d∆`ε,

Refine C`,k if max
α

(
| f
∧

α
`,k − f

α

`,k|
)
≥ 2−d(∆`−1)+µε

Remark
This stretegy grants a control of the additional error introduced by the adaptation by
ε.

Fixed mesh
In this work, we are not primarly interested by the quality of the whole process in ε,
which was the subject of previous works. Thus, most of the time, we consider
uniform coarsened meshes at level L.
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Adaptive method

COLLISION
ADAPTIVE MESH generated by 
MULTIRESOLUTION ANALYSIS

We [B., GOUARIN, GRAILLE, MASSOT, 2021] have introduced:

• Collide f ?
`,k(t) =M−1

(
(I −S)m`,k(t) +Smeq(m0

`,k(t), . . . )
)

.

• Stream f
α

`,k(t + ∆t) = f
α,?
`,k(t) +

1
2d∆`

(
∑k∈Eα

`,k
f
∧∧

α,?
L,k

(t)−∑k∈Aα
`,k

f
∧∧

α,?
L,k

(t)
)

,

where we have taken

B`,k = {k2∆` + δ : δ ∈ {0, . . . , 2∆` − 1}d},
Eα
`,k = (B`,k − cα)r B`,k, Aα

`,k = B`,k r (B`,k − cα).

In the figure, cα = (1, 1). Why is it interesting???

11/43



Adaptive method

COLLISION
ADAPTIVE MESH generated by 
MULTIRESOLUTION ANALYSIS

We [B., GOUARIN, GRAILLE, MASSOT, 2021] have introduced:

• Collide f ?
`,k(t) =M−1

(
(I −S)m`,k(t) +Smeq(m0

`,k(t), . . . )
)

.

• Stream f
α

`,k(t + ∆t) = f
α,?
`,k(t) +

1
2d∆`

(
∑k∈Eα

`,k
f
∧∧

α,?
L,k

(t)−∑k∈Aα
`,k

f
∧∧

α,?
L,k

(t)
)

,

where we have taken

B`,k = {k2∆` + δ : δ ∈ {0, . . . , 2∆` − 1}d},
Eα
`,k = (B`,k − cα)r B`,k, Aα

`,k = B`,k r (B`,k − cα).

In the figure, cα = (1, 1). Why is it interesting???

11/43



Adaptive method

COLLISION
ADAPTIVE MESH generated by 
MULTIRESOLUTION ANALYSIS

We [B., GOUARIN, GRAILLE, MASSOT, 2021] have introduced:

• Collide f ?
`,k(t) =M−1

(
(I −S)m`,k(t) +Smeq(m0

`,k(t), . . . )
)

.

• Stream f
α

`,k(t + ∆t) = f
α,?
`,k(t) +

1
2d∆`

(
∑k∈Eα

`,k
f
∧∧

α,?
L,k

(t)−∑k∈Aα
`,k

f
∧∧

α,?
L,k

(t)
)

,

where we have taken

B`,k = {k2∆` + δ : δ ∈ {0, . . . , 2∆` − 1}d},
Eα
`,k = (B`,k − cα)r B`,k, Aα

`,k = B`,k r (B`,k − cα).

In the figure, cα = (1, 1). Why is it interesting???

11/43



Adaptive method

COLLISION
ADAPTIVE MESH generated by 
MULTIRESOLUTION ANALYSIS

We [B., GOUARIN, GRAILLE, MASSOT, 2021] have introduced:

• Collide f ?
`,k(t) =M−1

(
(I −S)m`,k(t) +Smeq(m0

`,k(t), . . . )
)

.

• Stream f
α

`,k(t + ∆t) = f
α,?
`,k(t) +

1
2d∆`

(
∑k∈Eα

`,k
f
∧∧

α,?
L,k

(t)−∑k∈Aα
`,k

f
∧∧

α,?
L,k

(t)
)

,

where we have taken

B`,k = {k2∆` + δ : δ ∈ {0, . . . , 2∆` − 1}d},
Eα
`,k = (B`,k − cα)r B`,k, Aα

`,k = B`,k r (B`,k − cα).

In the figure, cα = (1, 1). Why is it interesting???

11/43



Example of result - Non-isothermal Euler system

We consider the non-isothermal Euler system with the well-known Lax-Liu problem
[LAX AND LIU, 1998] simulated using a vectorial D2Q4 scheme4:

4Bellotti, Gouarin, Graille, Massot - Multidimensional fully adaptive lattice Boltzmann methods with error control based
on multiresolution analysis - Submitted to JCP - 2021 - https://arxiv.org/abs/2103.02903.
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Example of result - Navier Stokes

We consider the von Karman vortex shedding simulated using a D2Q9 scheme5:

5Bellotti, Gouarin, Graille, Massot - Multidimensional fully adaptive lattice Boltzmann methods with error control based
on multiresolution analysis - Submitted to JCP - 2021 - https://arxiv.org/abs/2103.02903.
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Equivalent equation analysis on
the LBM-MR adaptive scheme



Target expansion

Remark
We analyze the stream phase without taking the different models for the collision
phase into account. This is totally justified as long as the equilibria are linear but we
shall numerically verify that the study applies to non-linear situations.

We want to find the maximum order of accuracy of our adaptive strategies according
to the size of the prediction stencil γ. We adopt the point of view of Finite Differences
[LEVEQUE, 2002]. When considered at the finest level L

f α(t + ∆t, xL,k) = f α,?(t, xL,k−cα
) = f α,?(t, xL,k − cα∆x).

Thus we can apply a Taylor expansion to both sides of the equation, yielding
+∞

∑
s=0

∆ts

s!
∂s

t f α(t, xL,k) =
+∞

∑
s=0

(−cα∆x)s

s!
∂s

x f α,?(t, xL,k)

= f α,? − cα∆x∂x f α,?︸ ︷︷ ︸
Inertial term

+
c2

α∆x2

2
∂xx f α,?︸ ︷︷ ︸

Diffusive term

− c3
α∆x3

6
∂3

x f α,?︸ ︷︷ ︸
Dispersive term

+ . . . ,

The right hand side is called target expansion. Indeed, the left hand side shall always
be the same because the time-step ∆t is fixed by the finest mesh.

How to analyze our scheme? Assume, without loss of generality, that maxα |cα| ≤ 2
and γ ≤ 1.

14/43



Target expansion

Remark
We analyze the stream phase without taking the different models for the collision
phase into account. This is totally justified as long as the equilibria are linear but we
shall numerically verify that the study applies to non-linear situations.

We want to find the maximum order of accuracy of our adaptive strategies according
to the size of the prediction stencil γ. We adopt the point of view of Finite Differences
[LEVEQUE, 2002]. When considered at the finest level L

f α(t + ∆t, xL,k) = f α,?(t, xL,k−cα
) = f α,?(t, xL,k − cα∆x).

Thus we can apply a Taylor expansion to both sides of the equation, yielding
+∞

∑
s=0

∆ts

s!
∂s

t f α(t, xL,k) =
+∞

∑
s=0

(−cα∆x)s

s!
∂s

x f α,?(t, xL,k)

= f α,? − cα∆x∂x f α,?︸ ︷︷ ︸
Inertial term

+
c2

α∆x2

2
∂xx f α,?︸ ︷︷ ︸

Diffusive term

− c3
α∆x3

6
∂3

x f α,?︸ ︷︷ ︸
Dispersive term

+ . . . ,

The right hand side is called target expansion. Indeed, the left hand side shall always
be the same because the time-step ∆t is fixed by the finest mesh.

How to analyze our scheme? Assume, without loss of generality, that maxα |cα| ≤ 2
and γ ≤ 1.

14/43



Target expansion

Remark
We analyze the stream phase without taking the different models for the collision
phase into account. This is totally justified as long as the equilibria are linear but we
shall numerically verify that the study applies to non-linear situations.

We want to find the maximum order of accuracy of our adaptive strategies according
to the size of the prediction stencil γ. We adopt the point of view of Finite Differences
[LEVEQUE, 2002]. When considered at the finest level L

f α(t + ∆t, xL,k) = f α,?(t, xL,k−cα
) = f α,?(t, xL,k − cα∆x).

Thus we can apply a Taylor expansion to both sides of the equation, yielding
+∞

∑
s=0

∆ts

s!
∂s

t f α(t, xL,k) =
+∞

∑
s=0

(−cα∆x)s

s!
∂s

x f α,?(t, xL,k)

= f α,? − cα∆x∂x f α,?︸ ︷︷ ︸
Inertial term

+
c2

α∆x2

2
∂xx f α,?︸ ︷︷ ︸

Diffusive term

− c3
α∆x3

6
∂3

x f α,?︸ ︷︷ ︸
Dispersive term

+ . . . ,

The right hand side is called target expansion. Indeed, the left hand side shall always
be the same because the time-step ∆t is fixed by the finest mesh.

How to analyze our scheme? Assume, without loss of generality, that maxα |cα| ≤ 2
and γ ≤ 1.
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Recursion flattening

k k + 1 k + 2k− 1k− 2
`

`+ 1

`+ 2

`+ 3

`+ 4 = L
Eα
`,k Aα

`,k

With a set of weights (Cα
∆`,m)

m=+2
m=−2 ⊂ R

f
α

`,k(t + ∆t) = f
α,?
`,k (t) +

1
2∆`

 ∑
k∈Eα

`,k

f
∧∧

α,?
L,k

(t)− ∑
k∈Aα

`,k

f
∧∧

α,?
L,k

(t)


= f

α,?
`,k (t) +

1
2∆`

+2

∑
m=−2

Cα
∆`,m f

α,?
`,k+m(t),

The advantage is that the pseudo-flux term can be developed using Taylor expansions
adopting a Finite Difference point of view.
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Expansion of the LBM-MR scheme

+∞

∑
s=0

∆ts

s!
∂s

t f α(t, x`,k) = f α,?(t, x`,k) +
+∞

∑
s=0

(
(∆x`)s

2∆`s!

(
+2

∑
m=−2

msCα
∆`,m

)
∂s

x f α,?(t, x`,k)

)
,

= f α,?(t, x`,k) +
+∞

∑
s=0

(
2∆`(s−1)(∆x)s

s!

(
+2

∑
m=−2

msCα
∆`,m

)
∂s

x f α,?(t, x`,k)

)
,

=

(
1 +

1
2∆`

+2

∑
m=−2

Cα
∆`,m

)
f α,? +

Inertial term︷ ︸︸ ︷(
+2

∑
m=−2

mCα
∆`,m

)
∆x∂x f α,?

+

(
2∆`

+2

∑
m=−2

m2Cα
∆`,m

)
∆x2

2
∂xx f α,?

︸ ︷︷ ︸
Diffusive term

+

(
22∆`

+2

∑
m=−2

m3Cα
∆`,m

)
∆x3

6
∂3

x f α,?

︸ ︷︷ ︸
Dispersive term

+ . . .

The goal of this game is to match as much terms as possible of the target expansion:
approximated physics and stability conditions as close as possible to that of the
reference scheme at level L for the adaptive scheme at the local level of refinement `.
These conditions are checked locally: we request them for any possible level.

+2

∑
m=−2

Cα
∆`,m = 0, and

+2

∑
m=−2

msCα
∆`,m =

(−cα)s

2∆`(s−1)
, for s ∈ {1, 2, 3, . . . } = N?,

. . . of course for every α and for every ∆`!!!

16/43



Expansion of the LBM-MR scheme

+∞

∑
s=0

∆ts

s!
∂s

t f α(t, x`,k) = f α,?(t, x`,k) +
+∞

∑
s=0

(
(∆x`)s

2∆`s!

(
+2

∑
m=−2

msCα
∆`,m

)
∂s

x f α,?(t, x`,k)

)
,

= f α,?(t, x`,k) +
+∞

∑
s=0

(
2∆`(s−1)(∆x)s

s!

(
+2

∑
m=−2

msCα
∆`,m

)
∂s

x f α,?(t, x`,k)

)
,

=

(
1 +

1
2∆`

+2

∑
m=−2

Cα
∆`,m

)
f α,? +

Inertial term︷ ︸︸ ︷(
+2

∑
m=−2

mCα
∆`,m

)
∆x∂x f α,?

+

(
2∆`

+2

∑
m=−2

m2Cα
∆`,m

)
∆x2

2
∂xx f α,?

︸ ︷︷ ︸
Diffusive term

+

(
22∆`

+2

∑
m=−2

m3Cα
∆`,m

)
∆x3

6
∂3

x f α,?

︸ ︷︷ ︸
Dispersive term

+ . . .

The goal of this game is to match as much terms as possible of the target expansion:
approximated physics and stability conditions as close as possible to that of the
reference scheme at level L for the adaptive scheme at the local level of refinement `.
These conditions are checked locally: we request them for any possible level.

+2

∑
m=−2

Cα
∆`,m = 0, and

+2

∑
m=−2

msCα
∆`,m =

(−cα)s

2∆`(s−1)
, for s ∈ {1, 2, 3, . . . } = N?,

. . . of course for every α and for every ∆`!!! 16/43



Apply the expansion to some scheme

In this presentation, we consider three numerical schemes:

• The Haar scheme: LBM-MR with γ = 0, thus

f
∧

α
`+1,2k+δ = f

α

`,k , (talis pater, qualis filius)Abælardus.

• The first non-trivial wavelet scheme: LBM-MR with γ = 1, thus

f
∧

α
`+1,2k+δ = f

α

`,k +
(−1)δ

8

(
f

α

`,k+1 − f
α

`,k−1

)
, (talis pater ac finitimi, qualis filius).

• The Lax-Wendroff scheme by [FAKHARI et al., 2014]

f
α

`,k(t + ∆t) =
(

1− 1
4∆`

)
f

α,?
`,k(t)

+
1

2∆`+1

(
1 +

1
2∆`

)
f

α,?
`,k−cα/|cα |2 (t)−

1
2∆`+1

(
1− 1

2∆`

)
f

α,?
`,k+cα/|cα |2 (t).

This is not a multiresolution scheme: we consider it for comparison purposes.
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More details on the schemes

Lax Wendroff

k k + 1 k + 2k− 1k− 2
`

`+ 1

`+ 2

`+ 3

`+ 4 = L
E`,k

LBM-MR for γ = 1

k k + 1 k + 2k− 1k− 2
`

`+ 1

`+ 2

`+ 3

`+ 4 = L
E`,k
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The Haar scheme γ = 0

Proposition (Match for γ = 0)
Let d = 1, γ = 0 and ∆` ≥ 0, then the flattened coefficients of the advection phase read

Cα
∆`,0 = −|cα|, Cα

∆`,−cα/|cα | = |cα|,

and those not listed are equal to zero. Therefore, the adaptive stream phase matches that of the
reference scheme up to order s = 1. This also writes

+2

∑
m=−2

Cα
∆`,m = 0,

+2

∑
m=−2

mCα
∆`,m = −cα︸ ︷︷ ︸

Inertial term

,

�
���

���
��

+2

∑
m=−2

m2Cα
∆`,m =

(−cα)2

2∆`︸ ︷︷ ︸
Diffusive term

.
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The non-trivial scheme γ = 1

Proposition (Match for γ = 1)

Let d = 1, γ = 1 and ∆` > 0, then the flattened weights of the stream phase are given by the
recurrence relations

Cα
∆`,−2

Cα
∆`,−1

Cα
∆`,0

Cα
∆`,1

Cα
∆`,2

 =


0 −1/8 0 0 0
2 9/8 0 −1/8 0
0 9/8 2 9/8 0
0 −1/8 0 9/8 2
0 0 0 −1/8 0




Cα

∆`−1,−2
Cα

∆`−1,−1
Cα

∆`−1,0
Cα

∆`−1,1
Cα

∆`−1,2

 ,

where the initialization is given by Cα
0,−cα

= 1 and Cα
0,0 = −1 and the remaining terms set to

zero. Therefore, the adaptive stream phase matches that of the reference scheme up to order
s = 3. This also writes

+2

∑
m=−2

Cα
∆`,m = 0,

+2

∑
m=−2

mCα
∆`,m = −cα︸ ︷︷ ︸

Inertial term

,

+2

∑
m=−2

m2Cα
∆`,m =

c2
α

2∆`︸ ︷︷ ︸
Diffusive term

,
+2

∑
m=−2

m3Cα
∆`,m = − c3

α

4∆`︸ ︷︷ ︸
Dispersive term

,

��
���

���+2

∑
m=−2

m4Cα
∆`,m =

c4
α

8∆`︸ ︷︷ ︸
4th-order term (biLaplacian)

.
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The non-trivial scheme γ = 1 - Proof

Assume to know the coefficients of the flattened advection for level `+ 1 (for ∆`− 1).
We have

∑
k∈Eα

`,k

f
∧∧

α,?
L,k
− ∑

k∈Aα
`,k

f
∧∧

α,?
L,k

=

( Ingoing
left son︷ ︸︸ ︷
∑

k∈Eα
`+1,2k

f
∧∧

α,?
L,k
−

Outgoing
left son︷ ︸︸ ︷
∑

k∈Aα
`+1,2k

f
∧∧

α,?
L,k

)
+

( Ingoing
right son︷ ︸︸ ︷
∑

k∈Eα
`+1,2k+1

f
∧∧

α,?
L,k
−

Outgoing
right son︷ ︸︸ ︷
∑

k∈Aα
`+1,2k+1

f
∧∧

α,?
L,k

)
,

=
+2

∑
m=−2

Cα
∆`−1,m f

∧
α,?
`+1,2k+m +

+2

∑
m=−2

Cα
∆`−1,m f

∧
α,?
`+1,2k+1+m,

=
+2

∑
m=−2

Cα
∆`−1,m f

∧
α,?
`+1,2k+m +

+3

∑
m=−1

Cα
∆`−1,m−1 f

∧
α,?
`+1,2k+m

=
+3

∑
m=−2

C̃α
∆`−1,m f

∧
α,?
`+1,2k+m,

with

C̃α
∆`−1,m =


Cα

∆`−1,−2, m = −2,

Cα
∆`−1,m + Cα

∆`−1,m−1, m = −1, 0, 1, 2,

Cα
∆`−1,2, m = 3.
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The non-trivial scheme γ = 1 - Proof

Using the prediction operator
+3

∑
m=−2

C̃α
∆`−1,m f

∧
α,?
`+1,2k+m = C̃α

∆`−1,−2

(
f`,k−1 +

1
8

f`,k−2 −
1
8

f`,k

)
+ C̃α,

∆`−1,−1

(
f`,k−1 −

1
8

f`,k−2 +
1
8

f`,k

)

+ C̃α
∆`−1,0

(
f`,k +

1
8

f`,k−1 −
1
8

f`,k+1

)
+ C̃α

∆`−1,1

(
f`,k −

1
8

f`,k−1 +
1
8

f`,k+1

)
+ C̃α

∆`−1,2

(
f`,k+1 +

1
8

f`,k −
1
8

f`,k+2

)
+ C̃α

∆`−1,3

(
f`,k+1 −

1
8

f`,k +
1
8

f`,k+2

)
,

so that after tedious computations, we arrive at
+3

∑
m=−2

C̃α
∆`−1,m f

∧
α,?
`+1,2k+m =

(
− 1

8
Cα

∆`−1,−1

)
f α,?
`,k−2 +

(
2Cα

∆`−1,−2 +
9
8

Cα
∆`−1,−1 −

1
8

Cα
∆`−1,1

)
f α,?
`,k−1

+

(
9
8

Cα
∆`−1,−1 + 2Cα

∆`−1,0 +
9
8

Cα
∆`−1,1

)
f α,?
`,k

+

(
− 1

8
Cα

∆`−1,−1 +
9
8

Cα
∆`−1,1 + 2Cα

∆`−1,2

)
f α,?
`,k+1 +

(
− 1

8
Cα

∆`−1,1

)
f α,?
`,k+2 ,

concluding the first part of the proof. Then, let us proceed by recurrence: for ∆` = 0
the thesis trivially holds. Assume that it holds for ∆`− 1.

• ∑+2
m=−2 Cα

∆`,m = · · · = 2 ∑+2
m=−2 Cα

∆`−1,m = 0.
• ∑+2

m=−2 mCα
∆`,m = · · · = ∑+2

m=−2 mCα
∆`−1,m = −cα.

• ∑+2
m=−2 m2Cα

∆`,m = · · · = 1
2 ∑+2

m=−2 m2Cα
∆`−1,m = 1

2
c2

α

2∆`−1 = c2
α

2∆` .

• ∑+2
m=−2 m3Cα

∆`,m = · · · = 1
4 ∑+2

m=−2 m3Cα
∆`−1,m = − 1

4
c3

α

4∆`−1 = − c3
α

4∆` ,

that concludes the proof.
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concluding the first part of the proof. Then, let us proceed by recurrence: for ∆` = 0
the thesis trivially holds.

Assume that it holds for ∆`− 1.

• ∑+2
m=−2 Cα

∆`,m = · · · = 2 ∑+2
m=−2 Cα

∆`−1,m = 0.
• ∑+2

m=−2 mCα
∆`,m = · · · = ∑+2

m=−2 mCα
∆`−1,m = −cα.

• ∑+2
m=−2 m2Cα

∆`,m = · · · = 1
2 ∑+2

m=−2 m2Cα
∆`−1,m = 1

2
c2

α

2∆`−1 = c2
α

2∆` .

• ∑+2
m=−2 m3Cα

∆`,m = · · · = 1
4 ∑+2

m=−2 m3Cα
∆`−1,m = − 1

4
c3

α

4∆`−1 = − c3
α

4∆` ,

that concludes the proof.
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The non-trivial scheme γ = 1 - Proof

Using the prediction operator
+3
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C̃α
∆`−1,m f

∧
α,?
`+1,2k+m = C̃α

∆`−1,−2

(
f`,k−1 +

1
8

f`,k−2 −
1
8

f`,k

)
+ C̃α,

∆`−1,−1

(
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1
8

f`,k−2 +
1
8

f`,k

)

+ C̃α
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f`,k +

1
8

f`,k−1 −
1
8

f`,k+1

)
+ C̃α

∆`−1,1

(
f`,k −

1
8

f`,k−1 +
1
8

f`,k+1

)
+ C̃α

∆`−1,2

(
f`,k+1 +

1
8

f`,k −
1
8

f`,k+2

)
+ C̃α

∆`−1,3

(
f`,k+1 −

1
8

f`,k +
1
8

f`,k+2

)
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so that after tedious computations, we arrive at
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Cα
∆`−1,1

)
f α,?
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Lax-Wendroff stream

Proposition (Match for Lax-Wendroff)
Let d = 1 and ∆` ≥ 0, then the flattened coefficients of the advection phase are given by

Cα
∆`,0 = − |cα|2

2∆` , Cα
∆`,−cα/|cα | =

|cα|
2

(
1 +
|cα|
2∆`

)
, Cα

∆`,cα/|cα | = −
|cα|

2

(
1− |cα|

2∆`

)
.

Therefore, the adaptive stream phase matches that of the reference scheme up to order s = 2.
This also writes

+2

∑
m=−2

Cα
∆`,m = 0,

+2

∑
m=−2

mCα
∆`,m = −cα︸ ︷︷ ︸

Inertial term

,

+2

∑
m=−2

m2Cα
∆`,m =

c2
α

2∆`︸ ︷︷ ︸
Diffusive term

,

��
���

����+2

∑
m=−2

m3Cα
∆`,m = − c3

α

4∆`︸ ︷︷ ︸
Dispersive term
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Conclusion on the schemes

The previous analysis shows that:

• A multiresolution scheme matches until s = 2γ + 1.

• All the schemes match the inertial term.

• Only the scheme for γ = 1 and Lax-Wendroff match the diffusive term.

• Only the scheme for γ = 1 matches the dispersive term.

Therefore:
∂tu +∇ · (ϕ(u))︸ ︷︷ ︸

γ=0
γ=1

Lax-Wendroff

−∇ · (D∇u)︸ ︷︷ ︸
γ=1

Lax-Wendroff

= H.O.Ts︸ ︷︷ ︸
γ=1

.

• The scheme for γ = 0 is almost unusable in practice.

• The Lax-Wendroff scheme is the minimal scheme for real applications
(Navier-Stokes, etc. . . ), because we also control diffusion. Still, it can threaten
stability.

• The scheme for γ ≥ 1 is the “best”. It also keeps 3rd order term, so better control
on the stability.
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Numerical simulations



Points of emphasis

The previous analysis was valid for

• Smooth solutions.
• In the limit of small ∆x` for every ` = L, . . . , L.

The aim of the following numerical simulations is to validate the previous approach
by showing that it provides a useful tool to a priori study the behavior of the adaptive
scheme.

We monitor the following `1 normalized quantities at the final time T:

• Eref: error of the reference scheme (at L) vs. exact solution.
• EL

adap: error of the adaptive scheme (at L) vs. exact solution at level L, using the
reconstruction operator.

• Dadap: difference between the reference (at L) and adaptive scheme (at L).

EL
adap =

{
Eref intrinsic and sometimes converging for ∆x → 0,

Dadap converging as ∆`→ 0,

therefore by triangle inequality

EL
adap ≤ Eref + Dadap,

and the plan is to make

Dadap � Eref, ⇒ EL
adap ≈ Eref,

regardless the fact that it converges or not for ∆x → 0.
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Points of emphasis

Remark (bis)
We are not interested in evaluating the quality of the multiresolution adaptation with
respect to the parameter ε: we consider a uniform mesh at the lowest resolution L.
Remember that the match property is uniform in `.

This also provides a worst case
scenario to undoubtedly prove the resilience of our numerical strategy. Similar
scenarios can happen

• when the mesh is updated using some stiff variable [FAKHARI et al., 2016] and
[N’GUESSAN et al., 2019] but we still want to achieve a good accuracy in the coarsely
meshed areas for the non-stiff variables.

• a fixed adapted mesh is used: [FILIPPOVA AND HÄNEL, 1998] and many others.

26/43



Points of emphasis

Remark (bis)
We are not interested in evaluating the quality of the multiresolution adaptation with
respect to the parameter ε: we consider a uniform mesh at the lowest resolution L.
Remember that the match property is uniform in `. This also provides a worst case
scenario to undoubtedly prove the resilience of our numerical strategy.

Similar
scenarios can happen

• when the mesh is updated using some stiff variable [FAKHARI et al., 2016] and
[N’GUESSAN et al., 2019] but we still want to achieve a good accuracy in the coarsely
meshed areas for the non-stiff variables.

• a fixed adapted mesh is used: [FILIPPOVA AND HÄNEL, 1998] and many others.
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1D Linear advection equation

• The aim of this test case is to validate our analysis in a case where:
• Convergent reference scheme: Eref → 0 as ∆x → 0, see [DELLACHERIE, 2014], [CAETANO et

al., 2019].
• Only inertial terms to model: we expect that all the schemes are suitable for this

problem.
• Linear equilibria: the collision strategy does not alter the quality of the method.

• The target problem is∂tu + ∂x(Vu) = 0,

u(t = 0, x) = 1
(4πνt0)1/2 exp

(
− |x|24νt0

)
,

• The scheme is the D1Q2 given at the beginning of the presentation. We fix the
level distance ∆`min and we increase L (thus reduce ∆x).
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1D Linear advection equation: ∆`min = 2 and s = 1

10−3 10−2 10−1

∆x

10−5

10−4

10−3

10−2

10−1

100

Eref

γ = 0 : ELadap

γ = 0 : Dadap

γ = 1 : ELadap

γ = 1 : Dadap

LW : ELadap

LW : Dadap

Linear

Quadratic

Cubic

We have also tested ∆`min = 6 having similar results. Remember: EL
adap ≤ Eref + Dadap.
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1D Linear advection diffusion equation

• The aim of this test case is to validate our analysis in a case where:
• Not convergent reference scheme as ∆x → 0, but a richer structure.
• Both inertial and diffusive terms: not all the schemes are suitable.
• Linear equilibria: the collision strategy does not alter the quality of the method.

• Target problem: ∂tu + ∂x(Vu)− ν∂xxu = 0,

u(t = 0, x) = 1
(4πνt0)1/2 exp

(
− |x|24νt0

)
,

• We consider a D1Q3 scheme with velocities c0 = 0, c1 = 1 and c2 = −1 with
change of basis and relaxation matrix given by

M =

1 1 1
0 λ −λ

0 λ2/2 λ2/2

 , S = diag(0, sv, sw).

With equilibria and relaxation parameters:

m1,eq = Vm0, m2,eq = κm0

sv = (1/2 + λν/(∆x(2κ −V2)))−1, sw = 1.

We fix the maximal level L and we decrease the minimum level L (we increase
∆`min.
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1D Linear advection diffusion equation: L = 11

Haar γ = 0 γ = 1 Lax-Wendroff

∆`min EL
adap Dadap EL

adap Dadap EL
adap Dadap

0 1.94e-02 0.00e+00 1.94e-02 0.00e+00 1.94e-02 0.00e+00
1 2.30e-02 1.55e-02 1.94e-02 7.88e-07 1.94e-02 3.63e-05
2 4.68e-02 4.52e-02 1.94e-02 3.41e-06 1.92e-02 1.82e-04
3 9.92e-02 9.94e-02 1.94e-02 1.31e-05 1.87e-02 7.63e-04
4 1.91e-01 1.92e-01 1.94e-02 5.40e-05 1.65e-02 3.09e-03
5 3.33e-01 3.34e-01 1.93e-02 2.78e-04 8.32e-03 1.24e-02
6 5.24e-01 5.26e-01 1.84e-02 1.74e-03 3.16e-02 5.03e-02
7 7.47e-01 7.48e-01 1.07e-02 1.89e-02 1.96e-01 2.15e-01

0 1 2

x

0.0

0.5

1.0

1.5

2.0

2.5
Haar wavelet γ = 0

∆`min =4
∆`min =5
∆`min =6
∆`min =7

0 1 2

x

γ = 1

0 1 2

x

Lax-Wendroff
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1D viscous Burgers equation

• The aim of this test case is to validate our analysis in a case where:
• Not convergent reference scheme as ∆x → 0.
• Non-linear equilibria: the collision could alter the quality of the method (at the end if

we have time).
• Both inertial and diffusive terms: not all the schemes are suitable.
• Smootness assumption: if the solution develops singularities, the previous analysis is

no longer well-grounded. Thus interest in doing dynamic mesh adaptation.

• Target problem ∂tu + ∂x(u2/2)− ν∂xxu = 0,

u(t = 0, x) = 1
(4πνt0)1/2 exp

(
− x2

4νt0

)
,

• The scheme the D1Q3 with

m1,eq = (m0)2/2, m2,eq = (m0)3/6 + κm0/2,

sv = (1/2 + λν/(∆xκ))−1, sw = 1.

Again, we fix the maximal level L and we decrease the minimum level L (we increase
∆`min.
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sv = (1/2 + λν/(∆xκ))−1, sw = 1.

Again, we fix the maximal level L and we decrease the minimum level L (we increase
∆`min.
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1D viscous Burgers equation: large diffusion

Haar γ = 0 γ = 1 Lax-Wendroff

∆`min EL
adap Dadap EL

adap Dadap EL
adap Dadap

0 1.23e-02 0.00e+00 1.23e-02 0.00e+00 1.23e-02 0.00e+00
1 1.24e-02 9.99e-04 1.23e-02 1.88e-07 1.23e-02 1.60e-06
2 1.27e-02 2.99e-03 1.23e-02 9.34e-07 1.23e-02 8.02e-06
3 1.41e-02 6.95e-03 1.23e-02 3.89e-06 1.23e-02 3.37e-05
4 1.94e-02 1.48e-02 1.23e-02 1.57e-05 1.22e-02 1.36e-04
5 3.25e-02 3.00e-02 1.23e-02 6.30e-05 1.19e-02 5.48e-04
6 6.03e-02 5.90e-02 1.23e-02 2.60e-04 1.09e-02 2.20e-03
7 1.13e-01 1.12e-01 1.22e-02 1.18e-03 8.62e-03 9.08e-03

−2 0 2

x

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
Haar wavelet γ = 0

∆`min =4
∆`min =5
∆`min =6
∆`min =7

−2 0 2

x

γ = 1

−2 0 2

x

Lax-Wendroff

Coherent with the theoretical analysis (smooth solution).
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1D viscous Burgers equation: small diffusion

Haar γ = 0 γ = 1 Lax-Wendroff

∆`min EL
adap Dadap EL

adap Dadap EL
adap Dadap

0 5.31e-03 0.00e+00 5.31e-03 0.00e+00 5.31e-03 0.00e+00
1 4.96e-03 1.16e-03 5.31e-03 3.47e-06 5.29e-03 2.72e-05
2 4.61e-03 3.41e-03 5.31e-03 2.34e-05 5.22e-03 1.38e-04
3 6.78e-03 7.76e-03 5.30e-03 1.41e-04 4.92e-03 6.17e-04
4 1.47e-02 1.64e-02 5.31e-03 8.63e-04 4.58e-03 3.54e-03
5 3.20e-02 3.34e-02 6.14e-03 6.08e-03 1.48e-02 1.70e-02
6 6.49e-02 6.57e-02 3.36e-02 3.37e-02 1.05e-01 1.04e-01
7 1.24e-01 1.25e-01 2.45e-01 2.42e-01 8.18e-01 8.19e-01

−1 0 1 2

x

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Haar wavelet γ = 0

Exact
∆`min =3
∆`min =4
∆`min =5
∆`min =6

−1 0 1 2

x

γ = 1

−1 0 1 2

x

Lax-Wendroff

The theoretical analysis cannot predict this (singular solution): need for mesh
adaptation. 34/43



2D Linear advection-diffusion equation

The scheme we use is the D2Q9 with velocities given by

cα =


(0, 0), α = 0,(
cos

(
π
2 (α− 1)

)
, sin

(
π
2 (α− 1)

))
, α = 1, 2, 3, 4,(

cos
(

π
2 (α− 5) + π

4

)
, sin

(
π
2 (α− 5) + π

4

))
, α = 5, 6, 7, 8,

with the moments by [LALLEMAND AND LUO, 2000] relaxing with
S = diag(0, s, s, 1, 1, 1, 1, 1, 1)

M =



1 1 1 1 1 1 1 1 1
0 λ 0 −λ 0 λ −λ −λ λ

0 0 λ 0 −λ λ λ −λ −λ

−4λ2 −λ2 −λ2 −λ2 −λ2 2λ2 2λ2 2λ2 2λ2

0 −2λ3 0 2λ3 0 λ3 −λ3 −λ3 λ3

0 0 −2λ3 0 2λ3 λ3 λ3 −λ3 −λ3

4λ4 −2λ4 −2λ4 −2λ4 −2λ4 λ4 λ4 λ4 λ4

0 λ2 −λ2 λ2 −λ2 0 0 0 0
0 0 0 0 0 λ2 −λ2 λ2 −λ2


,

with s = (1/2 + 3ν/(λ∆x))−1 to enforce the diffusivity. The equilibria are based on
the second-order expansion of the Maxwellian

m1,eq = Vxm0, m2,eq = Vym0, m3,eq = (−2λ2 + 3|V |2)m0,

m4,eq = −λ2Vxm0, m5,eq = −λ2Vym0, m6,eq = (λ4 − 3λ2|V |2)m0,

m7,eq = (V2
x −V2

y )m
0, m8,eq = VxVym0.

Same kind of tests than in 1D: prove that our analysis extends to 2D to quite “rich”
models. 35/43



2D Linear advection equation: L = 9

Spatial behavior of Dadap (in logarithmic scale) and contours:
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2D Linear advection equation: L = 9

Haar γ = 0 γ = 1 Lax-Wendroff

∆`min EL
adap Dadap EL

adap Dadap EL
adap Dadap

0 4.86e-02 0.00e+00 4.86e-02 0.00e+00 4.86e-02 0.00e+00
1 4.61e-02 2.79e-02 4.86e-02 9.42e-05 4.80e-02 8.20e-04
2 7.58e-02 8.06e-02 4.87e-02 3.89e-04 4.56e-02 4.09e-03
3 1.64e-01 1.75e-01 4.87e-02 1.62e-03 3.71e-02 1.71e-02
4 3.16e-01 3.29e-01 4.82e-02 7.49e-03 4.01e-02 6.90e-02
5 5.38e-01 5.51e-01 4.99e-02 4.94e-02 2.39e-01 2.82e-01
6 8.16e-01 8.26e-01 4.74e-01 5.14e-01 1.00e+00 1.04e+00
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Again on the 1D viscous Burgers equation: small diffusion

What could be the effect of mesh adaptation with multiresolution?

Is the adaptive
scheme accurate enough to allow, even if the initial mesh is quite coarsened with
respect to the finest level L, to progressively refine the mesh when steep gradients
occur.

−1 0 1 2

x
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4

u
(0
,x
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−1 0 1 2
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1.5

u
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6
7

∆
`(
T
,x

)

For singular solutions, a dynamic refinement algorithm is actually needed.
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For singular solutions, a dynamic refinement algorithm is actually needed. 38/43



Conclusions



Conclusions

What has been done (theoretically)

• Analysis based on the equivalent equations [DUBOIS, 2008] for the LBM-MR
schemes.

• Find the maximal order of compliance of the adaptive scheme with the desired
physics, depending on the prediction stencil γ.

Conclusions (stream)

• Good agreement between the empirical behavior and the asymptotic analysis.
• The Lax-Wendroff scheme [FAKHARI et al., 2014]: minimal setting to use most of the LBM

schemes. Unpredictable dispersive behaviors: threat to the stability.
• The Haar scheme γ = 0 is almost unusable: it modifies the diffusive terms.
• The LBM-MR scheme for γ ≥ 1: most reliable of the analyzed schemes, both in terms of

consistency and stability.

• If the solution is singular: adaptive mesh adaptation needed!

Conclusions (collision) [BONUS - QUESTIONS]

• Our leaves collision is a good choice: accuracy is only marginally affected.

• More refined collision strategy have to be especially needed and carefully
optimized.
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An interesting question

During this presentation, we received an interesting question:

What happens to a wave passing through a fixed level jump? Do we expect large
spurious reflected waves?

We answer it in

Bellotti, Gouarin, Graille, Massot - Does the multiresolution lattice Boltzmann method
allow to deal with waves passing through mesh jumps? - Submitted to Comptes Rendus
Mathématique - 2021 - https://arxiv.org/abs/2105.12609 and
https://hal.archives-ouvertes.fr/hal-03235133v1

The setting looks like:

0 1 2
x

3

Ωleft Ωright
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Thank you for your attention!
Looking forward to receiving your questions!

41/43



Alternative collision approaches [BONUS]

• Reconstructed collision

f
?
`,k(t) =M

−1

(I −S)m`,k(t) +
S

2d∆` ∑
k∈B`,k

meq(m
∧∧

0
L,k(t), . . . )

 .

• Predict-and-quadrate collision, following [HOVHANNISYAN AND MÜLLER, 2010]

f
?
`,k(t) =M

−1

(
(I −S)m`,k(t) +

S

|C`,k|
N

∑
i=1

w̃im
eq(π0

`,k(t, x̃i), . . . )

)
.
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1D viscous Burgers equation: large and small diffusion [BONUS]

The stream phase is the LBM-MR scheme for γ = 1, which has proved to be the most
reliable stream phase we analyzed.

Leaves Reconstructed Predict-and-quadrate

∆`min EL
adap Dadap EL

adap Dadap EL
adap Dadap

0 1.23e-02 0.00e+00 1.23e-02 0.00e+00 1.23e-02 5.18e-08
1 1.23e-02 1.88e-07 1.23e-02 1.14e-07 1.23e-02 1.27e-07
2 1.23e-02 9.34e-07 1.23e-02 5.70e-07 1.23e-02 5.76e-07
3 1.23e-02 3.89e-06 1.23e-02 2.40e-06 1.23e-02 2.41e-06
4 1.23e-02 1.57e-05 1.23e-02 9.78e-06 1.23e-02 9.79e-06
5 1.23e-02 6.30e-05 1.23e-02 4.06e-05 1.23e-02 4.06e-05
6 1.23e-02 2.60e-04 1.23e-02 1.86e-04 1.23e-02 1.86e-04
7 1.22e-02 1.18e-03 1.23e-02 9.97e-04 1.23e-02 9.98e-04

Leaves Reconstructed Predict-and-quadrate

∆`min EL
adap Dadap EL

adap Dadap EL
adap Dadap

0 5.31e-03 0.00e+00 5.31e-03 0.00e+00 5.31e-03 1.19e-06
1 5.31e-03 3.47e-06 5.31e-03 2.79e-06 5.31e-03 3.02e-06
2 5.31e-03 2.34e-05 5.31e-03 2.28e-05 5.31e-03 2.29e-05
3 5.30e-03 1.41e-04 5.28e-03 1.43e-04 5.28e-03 1.43e-04
4 5.31e-03 8.63e-04 5.27e-03 8.93e-04 5.27e-03 8.93e-04
5 6.14e-03 6.08e-03 5.83e-03 5.73e-03 5.84e-03 5.76e-03
6 3.36e-02 3.37e-02 3.11e-02 3.14e-02 3.12e-02 3.15e-02
7 2.45e-01 2.42e-01 2.27e-01 2.23e-01 2.22e-01 2.19e-01

43/43


	Introduction
	Lattice Boltzmann schemes
	Adaptive LBM-MR method
	Equivalent equation analysis on the LBM-MR adaptive scheme
	Numerical simulations
	Conclusions

