Adaptive multiresolution-based lattice Boltzmann schemes and their accuracy analysis *via* the equivalent equations

Thomas Bellotti (thomas.bellotti@polytechnique.edu) with Loïc Gouarin, Benjamin Graille and Marc Massot

CMAP - Ecole polytechnique

5th of May, 2021 Groupe de travail **"Schémas de Boltzmann sur réseau"** - Institut Henri Poincaré

If we had met before¹,²

- Time adaptive mesh built by multiresolution.
- Fully adaptive lattice Boltzmann method.
- **Error control** by a small threshold $0 < \epsilon \ll 1$.

¹Bellotti, Gouarin, Graille, Massot - Multiresolution-based mesh adaptation and error control for lattice Boltzmann methods with applications to hyperbolic conservation laws - Submitted to SIAM SISC - 2021 https://arxiv.org/abs/2102.12163.

²Bellotti, Gouarin, Graille, Massot - Multidimensional fully adaptive lattice Boltzmann methods with error control based on multiresolution analysis - Submitted to JCP - 2021 - https://arxiv.org/abs/2103.02903.

³Bellotti, Gouarin, Graille, Massot - Accuracy analysis of adaptive multiresolution-based lattice Boltzmann schemes via the equivalent equations - Submitted to SMAI JCM - 2021 - https://arxiv.org/abs/2105.13816

If we had met before¹,²

- Time adaptive mesh built by multiresolution.
- Fully adaptive lattice Boltzmann method.
- **Error control** by a small threshold $0 < \epsilon \ll 1$.

Ok ... but is the method reliable independently of *c*?

¹Bellotti, Gouarin, Graille, Massot - Multiresolution-based mesh adaptation and error control for lattice Boltzmann methods with applications to hyperbolic conservation laws - Submitted to SIAM SISC - 2021 https://arxiv.org/abs/2102.12163.

²Bellotti, Gouarin, Graille, Massot - Multidimensional fully adaptive lattice Boltzmann methods with error control based on multiresolution analysis - Submitted to JCP - 2021 - https://arxiv.org/abs/2103.02903.

³Bellotti, Gouarin, Graille, Massot - Accuracy analysis of adaptive multiresolution-based lattice Boltzmann schemes via the equivalent equations - Submitted to SMAIJCM - 2021 - https://arxiv.org/abs/2105.13816

If we had met before¹,²

- Time adaptive mesh built by multiresolution.
- Fully adaptive lattice Boltzmann method.
- **Error control** by a small threshold $0 < \epsilon \ll 1$.

Ok ... but is the method reliable independently of *c*?

• What about the **actual physics** we simulate, besides the control by ϵ ?

 $\partial_t u + \nabla \cdot (\boldsymbol{\varphi}(u)) - \nabla \cdot (\boldsymbol{D} \nabla u) = \mathbf{H.O.Ts.}$

¹Bellotti, Gouarin, Graille, Massot - Multiresolution-based mesh adaptation and error control for lattice Boltzmann methods with applications to hyperbolic conservation laws - Submitted to SIAM SISC - 2021 https://arxiv.org/abs/2102.12163.

²Bellotti, Gouarin, Graille, Massot - Multidimensional fully adaptive lattice Boltzmann methods with error control based on multiresolution analysis - Submitted to JCP - 2021 - https://arxiv.org/abs/2103.02903.

³Bellotti, Gouarin, Graille, Massot - Accuracy analysis of adaptive multiresolution-based lattice Boltzmann schemes via the equivalent equations - Submitted to SMAIJCM - 2021 - https://arxiv.org/abs/2105.13816

If we had met before¹,²

- Time adaptive mesh built by multiresolution.
- Fully adaptive lattice Boltzmann method.
- **Error control** by a small threshold $0 < \epsilon \ll 1$.

Ok ... but is the method reliable independently of *c*?

• What about the **actual physics** we simulate, besides the control by ϵ ?

 $\partial_t u + \nabla \cdot (\boldsymbol{\varphi}(u)) - \nabla \cdot (\boldsymbol{D} \nabla u) = \mathbf{H.O.Ts.}$

• Could we rely on the same scheme for **fixed adapted meshes** or **AMR** (Adaptive Mesh Refinement) meshes?

¹Bellotti, Gouarin, Graille, Massot - Multiresolution-based mesh adaptation and error control for lattice Boltzmann methods with applications to hyperbolic conservation laws - Submitted to SIAM SISC - 2021 https://arxiv.org/abs/2102.12163.

²Bellotti, Gouarin, Graille, Massot - Multidimensional fully adaptive lattice Boltzmann methods with error control based on multiresolution analysis - Submitted to JCP - 2021 - https://arxiv.org/abs/2103.02903.

³Bellotti, Gouarin, Graille, Massot - Accuracy analysis of adaptive multiresolution-based lattice Boltzmann schemes via the equivalent equations - Submitted to SMAI JCM - 2021 - https://arxiv.org/abs/2105.13816

If we had met before¹,²

- Time adaptive mesh built by multiresolution.
- Fully adaptive lattice Boltzmann method.
- **Error control** by a small threshold $0 < \epsilon \ll 1$.

Ok ... but is the method reliable independently of *c*?

• What about the **actual physics** we simulate, besides the control by ϵ ?

 $\partial_t u + \nabla \cdot (\boldsymbol{\varphi}(u)) - \nabla \cdot (\boldsymbol{D} \nabla u) = \text{H.O.Ts.}$

• Could we rely on the same scheme for **fixed adapted meshes** or **AMR** (Adaptive Mesh Refinement) meshes?

Today³

Devising an asymptotic analysis for the adaptive LBM-MR scheme.

¹Bellotti, Gouarin, Graille, Massot - Multiresolution-based mesh adaptation and error control for lattice Boltzmann methods with applications to hyperbolic conservation laws - Submitted to SIAM SISC - 2021 https://arxiv.org/abs/2102.12163.

²Bellotti, Gouarin, Graille, Massot - Multidimensional fully adaptive lattice Boltzmann methods with error control based on multiresolution analysis - Submitted to JCP - 2021 - https://arxiv.org/abs/2103.02903.

³Bellotti, Gouarin, Graille, Massot - Accuracy analysis of adaptive multiresolution-based lattice Boltzmann schemes via the equivalent equations - Submitted to SMAI JCM - 2021 - https://arxiv.org/abs/2105.13816

Lattice Boltzmann schemes

Adaptive LBM-MR method

Equivalent equation analysis on the LBM-MR adaptive scheme

Numerical simulations

Conclusions

Lattice Boltzmann schemes

The ingredients

• Precise scaling between space and time: $\Delta t = \Delta x / \lambda$ (also $\Delta t \sim \Delta x^2$ is possible).

- Precise scaling between space and time: $\Delta t = \Delta x / \lambda$ (also $\Delta t \sim \Delta x^2$ is possible).
- Finite family of compatible velocities: $(e_{\alpha})_{\alpha=0}^{q-1} \subset \lambda \mathbb{Z}^d$. Call the logical velocity $c_{\alpha} = e_{\alpha} / \lambda \in \mathbb{Z}^d$.

- Precise scaling between space and time: $\Delta t = \Delta x / \lambda$ (also $\Delta t \sim \Delta x^2$ is possible).
- Finite family of compatible velocities: $(e_{\alpha})_{\alpha=0}^{q-1} \subset \lambda \mathbb{Z}^d$. Call the logical velocity $c_{\alpha} = e_{\alpha} / \lambda \in \mathbb{Z}^d$.
- A change of basis: $M \in \mathbb{R}^{q \times q}$.

- Precise scaling between space and time: $\Delta t = \Delta x / \lambda$ (also $\Delta t \sim \Delta x^2$ is possible).
- Finite family of compatible velocities: $(e_{\alpha})_{\alpha=0}^{q-1} \subset \lambda \mathbb{Z}^d$. Call the logical velocity $c_{\alpha} = e_{\alpha} / \lambda \in \mathbb{Z}^d$.
- A change of basis: $M \in \mathbb{R}^{q \times q}$.
- A diagonal relaxation matrix: S = diag(0, ..., s, ...).

The ingredients

- Precise scaling between space and time: $\Delta t = \Delta x / \lambda$ (also $\Delta t \sim \Delta x^2$ is possible).
- Finite family of compatible velocities: $(e_{\alpha})_{\alpha=0}^{q-1} \subset \lambda \mathbb{Z}^d$. Call the logical velocity $c_{\alpha} = e_{\alpha} / \lambda \in \mathbb{Z}^d$.
- A change of basis: $M \in \mathbb{R}^{q \times q}$.
- A diagonal relaxation matrix: S = diag(0, ..., s, ...).
- The equilibria: $m^{eq}(...)$, functions on the conserved moments.

We denote f^{α} the distribution of the particles moving with velocity e_{α} .

The ingredients

- Precise scaling between space and time: $\Delta t = \Delta x / \lambda$ (also $\Delta t \sim \Delta x^2$ is possible).
- Finite family of compatible velocities: $(e_{\alpha})_{\alpha=0}^{q-1} \subset \lambda \mathbb{Z}^d$. Call the logical velocity $c_{\alpha} = e_{\alpha} / \lambda \in \mathbb{Z}^d$.
- A change of basis: $M \in \mathbb{R}^{q \times q}$.
- A diagonal relaxation matrix: S = diag(0, ..., s, ...).
- The equilibria: $m^{eq}(...)$, functions on the conserved moments.

We denote f^{α} the distribution of the particles moving with velocity e_{α} .

The recipe

The ingredients

- Precise scaling between space and time: $\Delta t = \Delta x / \lambda$ (also $\Delta t \sim \Delta x^2$ is possible).
- Finite family of compatible velocities: $(e_{\alpha})_{\alpha=0}^{q-1} \subset \lambda \mathbb{Z}^d$. Call the logical velocity $c_{\alpha} = e_{\alpha} / \lambda \in \mathbb{Z}^d$.
- A change of basis: $M \in \mathbb{R}^{q \times q}$.
- A diagonal relaxation matrix: S = diag(0, ..., s, ...).
- The equilibria: $m^{eq}(...)$, functions on the conserved moments.

We denote f^{α} the distribution of the particles moving with velocity e_{α} .

The recipe

• Collide

$$\boldsymbol{m}(t,\boldsymbol{x}) = \boldsymbol{M}\boldsymbol{f}(t,\boldsymbol{x})$$
$$\boldsymbol{f}^{\star}(t,\boldsymbol{x}) = \boldsymbol{M}^{-1}\left((\boldsymbol{I}-\boldsymbol{S})\boldsymbol{m}(t,\boldsymbol{x}) + \boldsymbol{S}\boldsymbol{m}^{\mathrm{eq}}(\boldsymbol{m}^{0}(t,\boldsymbol{x}),\ldots)\right),$$

The ingredients

- Precise scaling between space and time: $\Delta t = \Delta x / \lambda$ (also $\Delta t \sim \Delta x^2$ is possible).
- Finite family of compatible velocities: $(e_{\alpha})_{\alpha=0}^{q-1} \subset \lambda \mathbb{Z}^d$. Call the logical velocity $c_{\alpha} = e_{\alpha} / \lambda \in \mathbb{Z}^d$.
- A change of basis: $M \in \mathbb{R}^{q \times q}$.
- A diagonal relaxation matrix: S = diag(0, ..., s, ...).
- The equilibria: $m^{eq}(...)$, functions on the conserved moments.

We denote f^{α} the distribution of the particles moving with velocity e_{α} .

The recipe

• Collide

$$m(t, \boldsymbol{x}) = \boldsymbol{M}\boldsymbol{f}(t, \boldsymbol{x})$$

$$\boldsymbol{f}^{\star}(t, \boldsymbol{x}) = \boldsymbol{M}^{-1}\left((\boldsymbol{I} - \boldsymbol{S})\boldsymbol{m}(t, \boldsymbol{x}) + \boldsymbol{S}\boldsymbol{m}^{\text{eq}}(\boldsymbol{m}^{0}(t, \boldsymbol{x}), \ldots)\right),$$

• Stream

$$f^{\alpha}(t + \Delta t, \boldsymbol{x}) = f^{\alpha, \star}(t, \boldsymbol{x} - \boldsymbol{c}_{\alpha} \Delta x).$$

Most of the schemes follow these principles:

- The discrete velocities are generally isotropic.
- The lines of the matrix *M* are in general low order polynomials of the discrete velocities, for example 1, *X*, *X*²/2, . . . , [D'HUMIÈRES, 1992].
- The relaxation matrix *S* and the equilibria are selected by Chapman-Enskog expansions [CHAPMAN AND COWLING, 1991] or using the **equivalent equations** [DUBOIS, 2008].

Most of the schemes follow these principles:

- The discrete velocities are generally isotropic.
- The lines of the matrix *M* are in general low order polynomials of the discrete velocities, for example 1, *X*, *X*²/2, . . . , [D'HUMIÈRES, 1992].
- The relaxation matrix *S* and the equilibria are selected by Chapman-Enskog expansions [CHAPMAN AND COWLING, 1991] or using the **equivalent equations** [DUBOIS, 2008].

This latter technique is based on the Taylor expansion of the stream phase (we do the 1D for simplicity)

$$f^{\alpha}(t+\Delta t,x) = \sum_{s=0}^{+\infty} \frac{\Delta t^s}{s!} \partial_t^s f^{\alpha}(t,x) = f^{\alpha,\star}(t,x-c_{\alpha}\Delta x) = \sum_{s=0}^{+\infty} \frac{(-c_{\alpha}\Delta x)^s}{s!} \partial_x^s f^{\alpha,\star}(t,x).$$

We call this formula (especially the right hand side) target expansion.

Most of the schemes follow these principles:

- The discrete velocities are generally isotropic.
- The lines of the matrix *M* are in general low order polynomials of the discrete velocities, for example 1, *X*, *X*²/2, . . . , [D'HUMIÈRES, 1992].
- The relaxation matrix *S* and the equilibria are selected by Chapman-Enskog expansions [CHAPMAN AND COWLING, 1991] or using the **equivalent equations** [DUBOIS, 2008].

This latter technique is based on the Taylor expansion of the stream phase (we do the 1D for simplicity)

$$f^{\alpha}(t+\Delta t,x) = \sum_{s=0}^{+\infty} \frac{\Delta t^s}{s!} \partial_t^s f^{\alpha}(t,x) = f^{\alpha,\star}(t,x-c_{\alpha}\Delta x) = \sum_{s=0}^{+\infty} \frac{(-c_{\alpha}\Delta x)^s}{s!} \partial_x^s f^{\alpha,\star}(t,x).$$

We call this formula (especially the right hand side) **target expansion**. Then, one changes the basis with M and identify powers of Δx order by order.

Probably the most simple LBM scheme is [GRAILLE, 2014]

$$q=2, \quad c_0=1, \quad c_1=-1, \quad M=\begin{pmatrix} 1 & 1\\ \lambda & -\lambda \end{pmatrix}, \quad S=\operatorname{diag}(0,s).$$

Probably the most simple LBM scheme is [GRAILLE, 2014]

$$q=2, \quad c_0=1, \quad c_1=-1, \quad M=\begin{pmatrix} 1&1\\ \lambda&-\lambda \end{pmatrix}, \quad S=\operatorname{diag}(0,s).$$

Expanding the stream phase

$$f^{\pm} + \frac{\Delta x}{\lambda} \partial_t f^{\pm} + \frac{\Delta x^2}{2\lambda} \partial_{tt} f^{\pm} + O(\Delta x^3) = f^{\pm,\star} \mp \Delta x \partial_x f^{\pm,\star} + \frac{\Delta x^2}{2} \partial_{xx} f^{\pm,\star} + O(\Delta x^3)$$

Probably the most simple LBM scheme is [GRAILLE, 2014]

$$q=2, \quad c_0=1, \quad c_1=-1, \quad M=\begin{pmatrix} 1 & 1\\ \lambda & -\lambda \end{pmatrix}, \quad S=\operatorname{diag}(0,s).$$

Expanding the stream phase

$$f^{\pm} + \frac{\Delta x}{\lambda} \partial_t f^{\pm} + \frac{\Delta x^2}{2\lambda} \partial_{tt} f^{\pm} + O(\Delta x^3) = f^{\pm,\star} \mp \Delta x \partial_x f^{\pm,\star} + \frac{\Delta x^2}{2} \partial_{xx} f^{\pm,\star} + O(\Delta x^3)$$

Writing the moments: u is the conserved one and v is the non-conserved

$$\begin{split} u &+ \frac{\Delta x}{\lambda} \partial_t u + \frac{\Delta x^2}{2\lambda} \partial_{tt} u + O(\Delta x^3) = u^* - \frac{\Delta x}{\lambda} \partial_x v^* + \frac{\Delta x^2}{2} \partial_{xx} u^* + O(\Delta x^3), \\ v &+ \frac{\Delta x}{\lambda} \partial_t v + O(\Delta x^2) = v^* - \lambda \Delta x \partial_x u^* + O(\Delta x^2). \end{split}$$

Probably the most simple LBM scheme is [GRAILLE, 2014]

$$q=2, \quad c_0=1, \quad c_1=-1, \quad \boldsymbol{M}=\begin{pmatrix} 1 & 1\\ \lambda & -\lambda \end{pmatrix}, \quad \boldsymbol{S}=\mathrm{diag}(0,s).$$

Expanding the stream phase

$$f^{\pm} + \frac{\Delta x}{\lambda} \partial_t f^{\pm} + \frac{\Delta x^2}{2\lambda} \partial_{tt} f^{\pm} + O(\Delta x^3) = f^{\pm,\star} \mp \Delta x \partial_x f^{\pm,\star} + \frac{\Delta x^2}{2} \partial_{xx} f^{\pm,\star} + O(\Delta x^3)$$

Writing the moments: u is the conserved one and v is the non-conserved

$$\begin{split} u &+ \frac{\Delta x}{\lambda} \partial_t u + \frac{\Delta x^2}{2\lambda} \partial_{tt} u + O(\Delta x^3) = u^* - \frac{\Delta x}{\lambda} \partial_x v^* + \frac{\Delta x^2}{2} \partial_{xx} u^* + O(\Delta x^3), \\ v &+ \frac{\Delta x}{\lambda} \partial_t v + O(\Delta x^2) = v^* - \lambda \Delta x \partial_x u^* + O(\Delta x^2). \end{split}$$

By conservation of *u*

$$\partial_t u + \frac{\Delta x}{2} \partial_{tt} u + O(\Delta x^2) = -\partial_x v^* + \frac{\lambda \Delta x}{2} \partial_{xx} u + O(\Delta x^2),$$
$$v + \frac{\Delta x}{\lambda} \partial_t v + O(\Delta x^2) = v^* - \lambda \Delta x \partial_x u + O(\Delta x^2).$$

• Leading order Δx^0

$$\partial_t u + \partial_x v^* = O(\Delta x), \qquad v = v^* + O(\Delta x) = (1 - s)v + sv^{eq}(u) + O(\Delta x),$$

• Leading order Δx^0

$$\partial_t u + \partial_x v^* = O(\Delta x), \qquad v = v^* + O(\Delta x) = (1 - s)v + sv^{eq}(u) + O(\Delta x),$$

Therefore $v = v^{eq}(u) + O(\Delta x)$ as well as $v^* = v^{eq}(u) + O(\Delta x)$. Assuming that $\partial_x v^* = \partial_x v^{eq}(u) + O(\Delta x)$, we are consistent with a conservation law with flux $v^{eq}(u)$. We call this order of development **inertial order**.

• Leading order Δx^0

$$\partial_t u + \partial_x v^* = O(\Delta x), \qquad v = v^* + O(\Delta x) = (1 - s)v + sv^{eq}(u) + O(\Delta x),$$

Therefore $v = v^{eq}(u) + O(\Delta x)$ as well as $v^* = v^{eq}(u) + O(\Delta x)$. Assuming that $\partial_x v^* = \partial_x v^{eq}(u) + O(\Delta x)$, we are consistent with a conservation law with flux $v^{eq}(u)$. We call this order of development **inertial order**.

• Linear order Δx^1 .

$$\begin{aligned} v + \frac{\Delta x}{\lambda} \partial_t v + O(\Delta x^2) &= v + \frac{\Delta x}{\lambda} \partial_t v^{\text{eq}}(u) + O(\Delta x^2) = v^* - \lambda \Delta x \partial_x u + O(\Delta x^2), \\ &= (1 - s)v + sv^{\text{eq}}(u) - \lambda \Delta x \partial_x u + O(\Delta x^2) \\ &= v + \frac{\Delta x}{\lambda} \partial_u v^{\text{eq}}(u) \partial_t u + O(\Delta x^2) \\ &= v - \frac{\Delta x}{\lambda} \partial_u v^{\text{eq}}(u) \partial_x v^{\text{eq}}(u) + O(\Delta x^2) \\ &= v - \frac{\Delta x}{\lambda} (\partial_u v^{\text{eq}}(u))^2 \partial_x u + O(\Delta x^2) \end{aligned}$$

• Leading order Δx^0

$$\partial_t u + \partial_x v^* = O(\Delta x), \qquad v = v^* + O(\Delta x) = (1 - s)v + sv^{eq}(u) + O(\Delta x),$$

Therefore $v = v^{eq}(u) + O(\Delta x)$ as well as $v^* = v^{eq}(u) + O(\Delta x)$. Assuming that $\partial_x v^* = \partial_x v^{eq}(u) + O(\Delta x)$, we are consistent with a conservation law with flux $v^{eq}(u)$. We call this order of development **inertial order**.

• Linear order Δx^1 .

$$\begin{aligned} v + \frac{\Delta x}{\lambda} \partial_t v + O(\Delta x^2) &= v + \frac{\Delta x}{\lambda} \partial_t v^{\text{eq}}(u) + O(\Delta x^2) = v^* - \lambda \Delta x \partial_x u + O(\Delta x^2), \\ &= (1 - s)v + sv^{\text{eq}}(u) - \lambda \Delta x \partial_x u + O(\Delta x^2) \\ &= v + \frac{\Delta x}{\lambda} \partial_u v^{\text{eq}}(u) \partial_t u + O(\Delta x^2) \\ &= v - \frac{\Delta x}{\lambda} \partial_u v^{\text{eq}}(u) \partial_x v^{\text{eq}}(u) + O(\Delta x^2) \\ &= v - \frac{\Delta x}{\lambda} (\partial_u v^{\text{eq}}(u))^2 \partial_x u + O(\Delta x^2) \end{aligned}$$

This yields

$$v = v^{\text{eq}}(u) - \frac{\lambda \Delta x}{s} (1 - (\partial_u v^{\text{eq}}(u))^2) \partial_x u + O(\Delta x^2),$$

$$v^* = v^{\text{eq}}(u) - \frac{\lambda \Delta x (1 - s)}{s} \left(1 - \frac{(\partial_u v^{\text{eq}}(u))^2}{\lambda^2}\right) \partial_x u + O(\Delta x^2)$$

On the other hand

$$\begin{aligned} \partial_{tt}u &= \partial_t (-\partial_x v^{\text{eq}}(u) + O(\Delta x)) = -\partial_x (\partial_u v^{\text{eq}}(u) \partial_t u) + O(\Delta x) \\ &= \partial_x (\partial_u v^{\text{eq}}(u) \partial_x v^{\text{eq}}(u) + O(\Delta x)) + O(\Delta x) = \partial_x ((\partial_u v^{\text{eq}}(u))^2 \partial_x u) + O(\Delta x), \end{aligned}$$

On the other hand

$$\begin{split} \partial_{tt} u &= \partial_t (-\partial_x v^{\text{eq}}(u) + O(\Delta x)) = -\partial_x (\partial_u v^{\text{eq}}(u) \partial_t u) + O(\Delta x) \\ &= \partial_x (\partial_u v^{\text{eq}}(u) \partial_x v^{\text{eq}}(u) + O(\Delta x)) + O(\Delta x) = \partial_x ((\partial_u v^{\text{eq}}(u))^2 \partial_x u) + O(\Delta x), \end{split}$$

hence

$$\partial_t u + \partial_x v^{\text{eq}}(u) - \frac{\Delta x}{\lambda} \left(\frac{1}{s} - \frac{1}{2} \right) \partial_x ((\lambda^2 - (\partial_u v^{\text{eq}}(u))^2) \partial_x u) = O(\Delta x^2).$$

We call this order of development **diffusive order**.

On the other hand

$$\begin{aligned} \partial_{tt}u &= \partial_t (-\partial_x v^{\text{eq}}(u) + O(\Delta x)) = -\partial_x (\partial_u v^{\text{eq}}(u)\partial_t u) + O(\Delta x) \\ &= \partial_x (\partial_u v^{\text{eq}}(u)\partial_x v^{\text{eq}}(u) + O(\Delta x)) + O(\Delta x) = \partial_x ((\partial_u v^{\text{eq}}(u))^2 \partial_x u) + O(\Delta x), \end{aligned}$$

hence

$$\partial_t u + \partial_x v^{\rm eq}(u) - \frac{\Delta x}{\lambda} \left(\frac{1}{s} - \frac{1}{2} \right) \partial_x ((\lambda^2 - (\partial_u v^{\rm eq}(u))^2) \partial_x u) = O(\Delta x^2).$$

We call this order of development **diffusive order**. For this simple scheme, there are not enough DOF to impose a diffusion structure independently of the hyperbolic structure.

Remark

A key role is played by the stream phase which make flux-like terms showing up.

Adaptive LBM-MR method

Consider a bounded domain $\Omega = [0, 1]^d$. We can build a **hybrid partition** of such a domain formed by cells at different levels of resolution between \underline{L} and \overline{L} .

Consider a bounded domain $\Omega = [0, 1]^d$. We can build a **hybrid partition** of such a domain formed by cells at different levels of resolution between \underline{L} and \overline{L} . A cell is given by

$$C_{\ell, \mathbf{k}} = \prod_{a=1}^{d} [2^{-\ell} k_a, 2^{-\ell} (k_a + 1)],$$

for
$$\ell = \underline{L}, \ldots, \overline{L}$$
 and $\mathbf{k} \in \{0, \ldots, 2^{\Delta \ell} - 1\}$.

Consider a bounded domain $\Omega = [0, 1]^d$. We can build a **hybrid partition** of such a domain formed by cells at different levels of resolution between \underline{L} and \overline{L} . A cell is given by

$$C_{\ell,k} = \prod_{a=1}^{d} [2^{-\ell} k_a, 2^{-\ell} (k_a + 1)],$$

for
$$\ell = \underline{L}, \ldots, \overline{L}$$
 and $\mathbf{k} \in \{0, \ldots, 2^{\Delta \ell} - 1\}.$

- $x_{\ell,k} := 2^{-\ell} (k + 1/2)$: cell center
- $\Delta x_{\ell} = 2^{\Delta \ell} \Delta x$: edge length
- $\Delta x = 2^{-\overline{L}}$: finest space-step
- Δℓ = L̄ − ℓ: distance between the current level ℓ and the finest level L̄
Introduce the prediction operator [HARTEN, 1994], [COHEN et al., 2003]

$$\widehat{\overline{f}}_{\ell+1,2k+\delta}^{\alpha} = \overline{f}_{\ell,k}^{\alpha} + (-1)^{\delta} Q_1^{\gamma}(k;\overline{f}_{\ell}), \quad \text{with} \quad Q_1^{\gamma}(k;\overline{f}_{\ell}) = \sum_{\pi=1}^{\gamma} w_{\pi} \left(\overline{f}_{\ell,k+\pi}^{\alpha} - \overline{f}_{\ell,k-\pi}^{\alpha}\right),$$

Introduce the prediction operator [HARTEN, 1994], [COHEN et al., 2003]

$$\widehat{\overline{f}}_{\ell+1,2k+\delta}^{\alpha} = \overline{f}_{\ell,k}^{\alpha} + (-1)^{\delta} Q_1^{\gamma}(k;\overline{f}_{\ell}), \quad \text{with} \quad Q_1^{\gamma}(k;\overline{f}_{\ell}) = \sum_{\pi=1}^{\gamma} w_{\pi} \left(\overline{f}_{\ell,k+\pi}^{\alpha} - \overline{f}_{\ell,k-\pi}^{\alpha}\right),$$

It is constructed in the following way.

Introduce the prediction operator [HARTEN, 1994], [COHEN et al., 2003]

$$\widehat{\overline{f}}_{\ell+1,2k+\delta}^{\alpha} = \overline{f}_{\ell,k}^{\alpha} + (-1)^{\delta} Q_1^{\gamma}(k; \overline{f}_{\ell}), \quad \text{with} \quad Q_1^{\gamma}(k; \overline{f}_{\ell}) = \sum_{\pi=1}^{\gamma} w_{\pi} \left(\overline{f}_{\ell,k+\pi}^{\alpha} - \overline{f}_{\ell,k-\pi}^{\alpha} \right),$$

It is constructed in the following way. Take $\pi_{\ell,k}^{\alpha}(x) = \sum_{m=0}^{m=2\gamma} A_{\ell,k}^{\alpha,m} x^m$ such that for $\delta = -\gamma, \dots, 0, \dots, \gamma$

$$\frac{1}{\Delta x_{\ell}} \int_{\mathcal{C}_{\ell,k+\delta}} \pi^{\alpha}_{\ell,k}(x) \mathrm{d}x = \overline{f}^{\alpha}_{\ell,k+\delta}, \quad \Longrightarrow \quad \mathbf{T}(A^{\alpha,m}_{\ell,k})^{m=2\gamma}_{m=0} = (\overline{f}^{\alpha}_{\ell,k+\delta})^{\delta=+\gamma}_{\delta=-\gamma}$$

Introduce the prediction operator [HARTEN, 1994], [COHEN et al., 2003]

$$\widehat{\overline{f}}_{\ell+1,2k+\delta}^{\alpha} = \overline{f}_{\ell,k}^{\alpha} + (-1)^{\delta} Q_1^{\gamma}(k; \overline{f}_{\ell}), \quad \text{with} \quad Q_1^{\gamma}(k; \overline{f}_{\ell}) = \sum_{\pi=1}^{\gamma} w_{\pi} \left(\overline{f}_{\ell,k+\pi}^{\alpha} - \overline{f}_{\ell,k-\pi}^{\alpha} \right),$$

It is constructed in the following way. Take $\pi_{\ell,k}^{\alpha}(x) = \sum_{m=0}^{m=2\gamma} A_{\ell,k}^{\alpha,m} x^m$ such that for $\delta = -\gamma, \dots, 0, \dots, \gamma$

$$\frac{1}{\Delta x_{\ell}} \int_{\mathcal{C}_{\ell,k+\delta}} \pi^{\alpha}_{\ell,k}(x) \mathrm{d}x = \overline{f}^{\alpha}_{\ell,k+\delta}, \quad \Longrightarrow \quad \mathbf{T}(A^{\alpha,m}_{\ell,k})^{m=2\gamma}_{m=0} = (\overline{f}^{\alpha}_{\ell,k+\delta})^{\delta=+\gamma}_{\delta=-\gamma}.$$

Then

$$\widehat{f}^{\alpha}_{\ell+1,2k+\delta} = \frac{1}{\Delta x_{\ell+1}} \int_{C_{\ell+1,2k+\delta}} \pi^{\alpha}_{\ell,k}(x) \mathrm{d}x, \qquad \delta = 0, 1.$$

Introduce the prediction operator [HARTEN, 1994], [COHEN et al., 2003]

$$\widehat{\overline{f}}_{\ell+1,2k+\delta}^{\alpha} = \overline{f}_{\ell,k}^{\alpha} + (-1)^{\delta} Q_1^{\gamma}(k; \overline{f}_{\ell}), \quad \text{with} \quad Q_1^{\gamma}(k; \overline{f}_{\ell}) = \sum_{\pi=1}^{\gamma} w_{\pi} \left(\overline{f}_{\ell,k+\pi}^{\alpha} - \overline{f}_{\ell,k-\pi}^{\alpha} \right),$$

It is constructed in the following way. Take $\pi_{\ell,k}^{\alpha}(x) = \sum_{m=0}^{m=2\gamma} A_{\ell,k}^{\alpha,m} x^m$ such that for $\delta = -\gamma, \dots, 0, \dots, \gamma$

$$\frac{1}{\Delta x_{\ell}} \int_{\mathcal{C}_{\ell,k+\delta}} \pi^{\alpha}_{\ell,k}(x) \mathrm{d}x = \overline{f}^{\alpha}_{\ell,k+\delta}, \quad \Longrightarrow \quad \mathbf{T}(A^{\alpha,m}_{\ell,k})^{m=2\gamma}_{m=0} = (\overline{f}^{\alpha}_{\ell,k+\delta})^{\delta=+\gamma}_{\delta=-\gamma}.$$

Then

$$\widehat{\overline{f}}_{\ell+1,2k+\delta}^{\alpha} = \frac{1}{\Delta x_{\ell+1}} \int_{\mathcal{C}_{\ell+1,2k+\delta}} \pi_{\ell,k}^{\alpha}(x) \mathrm{d}x, \qquad \delta = 0, 1.$$

Remark

The prediction operator exactly recovers the average on the cell $C_{\ell+1,2k+\delta}$ when the function f^{α} is polynomial of degree at most $2\gamma + 1$.

Given a threshold $0 < \epsilon \ll 1$, the mesh is adapted [B., Gouarin, Graille, Massot, 2021] at each time step using

$$\begin{array}{ll} \text{Coarsen} & C_{\ell,\boldsymbol{k}} & \text{if} & \max_{\alpha} \left(|\widehat{f}_{\ell,\boldsymbol{k}}^{\alpha} - \overline{f}_{\ell,\boldsymbol{k}}^{\alpha}| \right) \leq 2^{-d\Delta\ell} \varepsilon, \\ \text{Refine} & C_{\ell,\boldsymbol{k}} & \text{if} & \max_{\alpha} \left(|\widehat{f}_{\ell,\boldsymbol{k}}^{\alpha} - \overline{f}_{\ell,\boldsymbol{k}}^{\alpha}| \right) \geq 2^{-d(\Delta\ell-1)+\overline{\mu}} \varepsilon \end{array}$$

Given a threshold $0<\epsilon\ll 1$, the mesh is adapted [B., Gouarin, Graille, Massot, 2021] at each time step using

Coarsen
$$C_{\ell, \mathbf{k}}$$
 if $\max_{\alpha} \left(|\widehat{f}^{\alpha}_{\ell, \mathbf{k}} - \overline{f}^{\alpha}_{\ell, \mathbf{k}}| \right) \leq 2^{-d\Delta\ell} \epsilon$,
Refine $C_{\ell, \mathbf{k}}$ if $\max_{\alpha} \left(|\widehat{f}^{\alpha}_{\ell, \mathbf{k}} - \overline{f}^{\alpha}_{\ell, \mathbf{k}}| \right) \geq 2^{-d(\Delta\ell - 1) + \overline{\mu}} \epsilon$

Remark

This stretegy grants a control of the additional error introduced by the adaptation by $\epsilon.$

Given a threshold $0<\epsilon\ll 1$, the mesh is adapted [B., Gouarin, Graille, Massot, 2021] at each time step using

Coarsen
$$C_{\ell, \mathbf{k}}$$
 if $\max_{\alpha} \left(|\widehat{f}^{\alpha}_{\ell, \mathbf{k}} - \overline{f}^{\alpha}_{\ell, \mathbf{k}}| \right) \leq 2^{-d\Delta\ell} \epsilon$,
Refine $C_{\ell, \mathbf{k}}$ if $\max_{\alpha} \left(|\widehat{f}^{\alpha}_{\ell, \mathbf{k}} - \overline{f}^{\alpha}_{\ell, \mathbf{k}}| \right) \geq 2^{-d(\Delta\ell - 1) + \overline{\mu}} \epsilon$

Remark

This stretegy grants a control of the additional error introduced by the adaptation by ϵ .

Fixed mesh

In this work, we are not primarly interested by the quality of the whole process in ϵ , which was the subject of previous works. Thus, most of the time, we consider uniform coarsened meshes at level \underline{L} .

We [B., GOUARIN, GRAILLE, MASSOT, 2021] have introduced:

We [B., GOUARIN, GRAILLE, MASSOT, 2021] have introduced:

• Collide $\overline{f}_{\ell,k}^{\star}(t) = M^{-1}\left((I-S)\overline{m}_{\ell,k}(t) + Sm^{\text{eq}}(\overline{m}_{\ell,k}^{0}(t),\dots)\right).$

We [B., GOUARIN, GRAILLE, MASSOT, 2021] have introduced:

- Collide $\overline{f}_{\ell,k}^{\star}(t) = M^{-1}\left((I-S)\overline{m}_{\ell,k}(t) + Sm^{\text{eq}}(\overline{m}_{\ell,k}^{0}(t),\dots)\right).$
- Stream $\overline{f}^{\alpha}_{\ell,\mathbf{k}}(t+\Delta t) = \overline{f}^{\alpha,\star}_{\ell,\mathbf{k}}(t) + \frac{1}{2^{d\Delta \ell}} \left(\sum_{\overline{\mathbf{k}}\in\mathcal{E}^{\alpha}_{\ell,\mathbf{k}}} \widehat{\overline{f}}^{\alpha,\star}_{\overline{L,\overline{\mathbf{k}}}}(t) \sum_{\overline{\mathbf{k}}\in\mathcal{A}^{\alpha}_{\ell,\mathbf{k}}} \widehat{\overline{f}}^{\alpha,\star}_{\overline{L,\overline{\mathbf{k}}}}(t) \right)$, where we have taken

$$\begin{split} \mathcal{B}_{\ell,\boldsymbol{k}} &= \{\boldsymbol{k}2^{\Delta\ell} + \boldsymbol{\delta} \,:\, \boldsymbol{\delta} \in \{0,\ldots,2^{\Delta\ell}-1\}^d\},\\ \mathcal{E}^{\alpha}_{\ell,\boldsymbol{k}} &= (\mathcal{B}_{\ell,\boldsymbol{k}} - \boldsymbol{c}_{\alpha}) \smallsetminus \mathcal{B}_{\ell,\boldsymbol{k}}, \qquad \mathcal{A}^{\alpha}_{\ell,\boldsymbol{k}} &= \mathcal{B}_{\ell,\boldsymbol{k}} \smallsetminus (\mathcal{B}_{\ell,\boldsymbol{k}} - \boldsymbol{c}_{\alpha}). \end{split}$$

In the figure, $c_{\alpha} = (1, 1)$. Why is it interesting???

Example of result - Non-isothermal Euler system

We consider the non-isothermal Euler system with the well-known Lax-Liu problem [Lax AND LIU, 1998] simulated using a vectorial D2Q4 scheme⁴:

⁴Bellotti, Gouarin, Graille, Massot - Multidimensional fully adaptive lattice Boltzmann methods with error control based on multiresolution analysis - Submitted to JCP - 2021 - https://arxiv.org/abs/2103.02903.

We consider the von Karman vortex shedding simulated using a D2Q9 scheme⁵:

⁵Bellotti, Gouarin, Graille, Massot - Multidimensional fully adaptive lattice Boltzmann methods with error control based on multiresolution analysis - Submitted to JCP - 2021 - https://arxiv.org/abs/2103.02903.

Equivalent equation analysis on the LBM-MR adaptive scheme

Remark

We analyze the **stream phase** without taking the different models for the collision phase into account. This is totally justified as long as the equilibria are **linear** but we shall numerically verify that the study applies to non-linear situations.

Remark

We analyze the **stream phase** without taking the different models for the collision phase into account. This is totally justified as long as the equilibria are **linear** but we shall numerically verify that the study applies to non-linear situations.

We want to find the **maximum order of accuracy** of our adaptive strategies according to the size of the prediction stencil γ . We adopt the point of view of Finite Differences [LEVEQUE, 2002]. When considered at the finest level \overline{L}

$$f^{\alpha}(t + \Delta t, x_{\overline{L},k}) = f^{\alpha,\star}(t, x_{\overline{L},k-c_{\alpha}}) = f^{\alpha,\star}(t, x_{\overline{L},k} - c_{\alpha}\Delta x).$$

Remark

We analyze the **stream phase** without taking the different models for the collision phase into account. This is totally justified as long as the equilibria are **linear** but we shall numerically verify that the study applies to non-linear situations.

We want to find the **maximum order of accuracy** of our adaptive strategies according to the size of the prediction stencil γ . We adopt the point of view of Finite Differences [LEVEQUE, 2002]. When considered at the finest level \overline{L}

$$f^{\alpha}(t+\Delta t, x_{\overline{L},k}) = f^{\alpha,\star}(t, x_{\overline{L},k-c_{\alpha}}) = f^{\alpha,\star}(t, x_{\overline{L},k} - c_{\alpha}\Delta x).$$

Thus we can apply a Taylor expansion to both sides of the equation, yielding

$$\sum_{s=0}^{+\infty} \frac{\Delta t^s}{s!} \partial_t^s f^{\alpha}(t, x_{\overline{L}, k}) = \sum_{s=0}^{+\infty} \frac{(-c_{\alpha} \Delta x)^s}{s!} \partial_x^s f^{\alpha, \star}(t, x_{\overline{L}, k})$$
$$= f^{\alpha, \star} - \underbrace{c_{\alpha} \Delta x \partial_x f^{\alpha, \star}}_{\text{Inertial term}} + \underbrace{\frac{c_{\alpha}^2 \Delta x^2}{2}}_{\text{Diffusive term}} \partial_{xx} f^{\alpha, \star} - \underbrace{\frac{c_{\alpha}^3 \Delta x^3}{6}}_{\text{Dispersive term}} \partial_x^3 f^{\alpha, \star} + \dots,$$

The right hand side is called **target expansion**. Indeed, the left hand side shall always be the same because the time-step Δt is fixed by the finest mesh.

Remark

We analyze the **stream phase** without taking the different models for the collision phase into account. This is totally justified as long as the equilibria are **linear** but we shall numerically verify that the study applies to non-linear situations.

We want to find the **maximum order of accuracy** of our adaptive strategies according to the size of the prediction stencil γ . We adopt the point of view of Finite Differences [LEVEQUE, 2002]. When considered at the finest level \overline{L}

$$f^{\alpha}(t+\Delta t, x_{\overline{L},k}) = f^{\alpha,\star}(t, x_{\overline{L},k-c_{\alpha}}) = f^{\alpha,\star}(t, x_{\overline{L},k} - c_{\alpha}\Delta x).$$

Thus we can apply a Taylor expansion to both sides of the equation, yielding

$$\sum_{s=0}^{+\infty} \frac{\Delta t^s}{s!} \partial_t^s f^{\alpha}(t, x_{\overline{L}, k}) = \sum_{s=0}^{+\infty} \frac{(-c_{\alpha} \Delta x)^s}{s!} \partial_x^s f^{\alpha, \star}(t, x_{\overline{L}, k})$$
$$= f^{\alpha, \star} - \underbrace{c_{\alpha} \Delta x \partial_x f^{\alpha, \star}}_{\text{Inertial term}} + \underbrace{\frac{c_{\alpha}^2 \Delta x^2}{2}}_{\text{Diffusive term}} \partial_{xx} f^{\alpha, \star} - \underbrace{\frac{c_{\alpha}^3 \Delta x^3}{6}}_{\text{Dispersive term}} \partial_x^3 f^{\alpha, \star} + \dots,$$

The right hand side is called **target expansion**. Indeed, the left hand side shall always be the same because the time-step Δt is fixed by the finest mesh.

How to analyze our scheme? Assume, without loss of generality, that $\max_{\alpha} |c_{\alpha}| \le 2$ and $\gamma \le 1$.

Recursion flattening

With a set of weights $(C^{\alpha}_{\Delta \ell,m})_{m=-2}^{m=+2} \subset \mathbb{R}$

$$\begin{split} \overline{f}_{\ell,k}^{\alpha}(t+\Delta t) &= \overline{f}_{\ell,k}^{\alpha,\star}(t) + \frac{1}{2^{\Delta\ell}} \left(\sum_{\overline{k}\in\mathcal{E}_{\ell,k}^{\alpha}} \widehat{\overline{f}}_{\overline{L}\overline{k}}^{\alpha,\star}(t) - \sum_{\overline{k}\in\mathcal{A}_{\ell,k}^{\alpha}} \widehat{\overline{f}}_{\overline{L}\overline{k}}^{\alpha,\star}(t) \right) \\ &= \overline{f}_{\ell,k}^{\alpha,\star}(t) + \frac{1}{2^{\Delta\ell}} \sum_{m=-2}^{+2} C_{\Delta\ell,m}^{\alpha} \overline{\overline{f}}_{\ell,k+m}^{\alpha,\star}(t), \end{split}$$

Recursion flattening

With a set of weights $(C^{\alpha}_{\Delta \ell,m})_{m=-2}^{m=+2} \subset \mathbb{R}$

$$\begin{split} \overline{f}^{\alpha}_{\ell,k}(t+\Delta t) &= \overline{f}^{\alpha,\star}_{\ell,k}(t) + \frac{1}{2^{\Delta\ell}} \left(\sum_{\overline{k}\in\mathcal{E}^{\alpha}_{\ell,k}} \widehat{\overline{f}}^{\alpha,\star}_{\overline{L},\overline{k}}(t) - \sum_{\overline{k}\in\mathcal{A}^{\alpha}_{\ell,k}} \widehat{\overline{f}}^{\alpha,\star}_{\overline{L},\overline{k}}(t) \right) \\ &= \overline{f}^{\alpha,\star}_{\ell,k}(t) + \frac{1}{2^{\Delta\ell}} \sum_{m=-2}^{+2} C^{\alpha}_{\Delta\ell,m} \overline{f}^{\alpha,\star}_{\ell,k+m}(t), \end{split}$$

The advantage is that the pseudo-flux term can be developed using Taylor expansions adopting a Finite Difference point of view.

Expansion of the LBM-MR scheme

$$\begin{split} \sum_{s=0}^{+\infty} \frac{\Delta t^{s}}{s!} \partial_{t}^{s} f^{\alpha}(t, x_{\ell,k}) &= f^{\alpha,\star}(t, x_{\ell,k}) + \sum_{s=0}^{+\infty} \left(\frac{(\Delta x_{\ell})^{s}}{2^{\Delta \ell} s!} \left(\sum_{m=-2}^{+2} m^{s} C_{\Delta \ell,m}^{\alpha} \right) \partial_{x}^{s} f^{\alpha,\star}(t, x_{\ell,k}) \right), \\ &= f^{\alpha,\star}(t, x_{\ell,k}) + \sum_{s=0}^{+\infty} \left(\frac{2^{\Delta \ell(s-1)} (\Delta x)^{s}}{s!} \left(\sum_{m=-2}^{+2} m^{s} C_{\Delta \ell,m}^{\alpha} \right) \partial_{x}^{s} f^{\alpha,\star}(t, x_{\ell,k}) \right), \\ &= \left(1 + \frac{1}{2^{\Delta \ell}} \sum_{m=-2}^{+2} C_{\Delta \ell,m}^{\alpha} \right) f^{\alpha,\star} + \underbrace{\left(\sum_{m=-2}^{+2} m^{s} C_{\Delta \ell,m}^{\alpha} \right) \Delta x \partial_{x} f^{\alpha,\star}}_{m=-2} + \underbrace{\left(2^{\Delta \ell} \sum_{m=-2}^{+2} m^{2} C_{\Delta \ell,m}^{\alpha} \right) \frac{\Delta x^{2}}{2} \partial_{xx} f^{\alpha,\star}}_{m=-2} + \underbrace{\left(2^{2\Delta \ell} \sum_{m=-2}^{+2} m^{3} C_{\Delta \ell,m}^{\alpha} \right) \frac{\Delta x^{3}}{6} \partial_{x}^{3} f^{\alpha,\star}}_{m+\dots} + \dots \end{split}$$

Diffusive term

Dispersive term

$$\begin{split} \sum_{s=0}^{+\infty} \frac{\Delta t^s}{s!} \partial_t^s f^{\alpha}(t, x_{\ell,k}) &= f^{\alpha, \star}(t, x_{\ell,k}) + \sum_{s=0}^{+\infty} \left(\frac{(\Delta x_\ell)^s}{2^{\Delta \ell} s!} \left(\sum_{m=-2}^{+2} m^s C^{\alpha}_{\Delta \ell,m} \right) \partial_x^s f^{\alpha, \star}(t, x_{\ell,k}) \right), \\ &= f^{\alpha, \star}(t, x_{\ell,k}) + \sum_{s=0}^{+\infty} \left(\frac{2^{\Delta \ell(s-1)}(\Delta x)^s}{s!} \left(\sum_{m=-2}^{+2} m^s C^{\alpha}_{\Delta \ell,m} \right) \partial_x^s f^{\alpha, \star}(t, x_{\ell,k}) \right), \\ &= \left(1 + \frac{1}{2^{\Delta \ell}} \sum_{m=-2}^{+2} C^{\alpha}_{\Delta \ell,m} \right) f^{\alpha, \star} + \underbrace{\left(\sum_{m=-2}^{+2} m^c C^{\alpha}_{\Delta \ell,m} \right) \Delta x \partial_x f^{\alpha, \star}}_{\text{Inertial term}} \\ &+ \underbrace{\left(2^{\Delta \ell} \sum_{m=-2}^{+2} m^2 C^{\alpha}_{\Delta \ell,m} \right) \frac{\Delta x^2}{2} \partial_{xx} f^{\alpha, \star}}_{\text{Diffusive term}} + \underbrace{\left(2^{2\Delta \ell} \sum_{m=-2}^{+2} m^3 C^{\alpha}_{\Delta \ell,m} \right) \frac{\Delta x^3}{6} \partial_x^3 f^{\alpha, \star}}_{\text{Dispersive term}} + \dots \end{split}$$

The goal of this game is to match as much terms as possible of the target expansion: approximated physics and stability conditions as close as possible to that of the reference scheme at level \overline{L} for the adaptive scheme at the local level of refinement ℓ . These conditions are checked locally: we request them for any possible level.

$$\sum_{m=-2}^{+2} C^{\alpha}_{\Delta\ell,m} = 0, \quad \text{and} \quad \sum_{m=-2}^{+2} m^s C^{\alpha}_{\Delta\ell,m} = \frac{(-c_{\alpha})^s}{2^{\Delta\ell(s-1)}}, \quad \text{for} \quad s \in \{1, 2, 3, \dots\} = \mathbb{N}^{\star},$$

... of course for every α and for every $\Delta \ell!!!$

Apply the expansion to some scheme

In this presentation, we consider three numerical schemes:

• The Haar scheme: LBM-MR with $\gamma = 0$, thus

 $\widehat{\vec{f}}^{\alpha}_{\ell+1,2k+\delta} = \overline{f}^{\alpha}_{\ell,k'}, \qquad (talis \ pater, \ qualis \ filius)_{\rm Abælardus}.$

Apply the expansion to some scheme

In this presentation, we consider three numerical schemes:

• The Haar scheme: LBM-MR with $\gamma = 0$, thus

 $\widehat{\overline{f}}_{\ell+1,2k+\delta}^{\alpha} = \overline{f}_{\ell,k}^{\alpha}, \qquad (talis \ pater, \ qualis \ filius)_{\rm Abælardus}.$

• The first **non-trivial wavelet scheme**: LBM-MR with $\gamma = 1$, thus

 $\widehat{f}^{\alpha}_{\ell+1,2k+\delta} = \overline{f}^{\alpha}_{\ell,k} + \frac{(-1)^{\delta}}{8} \left(\overline{f}^{\alpha}_{\ell,k+1} - \overline{f}^{\alpha}_{\ell,k-1} \right), \qquad (talis \ pater \ ac \ finitimi, \ qualis \ filius).$

Apply the expansion to some scheme

In this presentation, we consider three numerical schemes:

• The Haar scheme: LBM-MR with $\gamma = 0$, thus

 $\widehat{\overline{f}}_{\ell+1,2k+\delta}^{\alpha} = \overline{f}_{\ell,k}^{\alpha}, \qquad (talis \ pater, \ qualis \ filius)_{\rm Abælardus}.$

• The first **non-trivial wavelet scheme**: LBM-MR with $\gamma = 1$, thus

$$\widehat{f}^{\alpha}_{\ell+1,2k+\delta} = \overline{f}^{\alpha}_{\ell,k} + \frac{(-1)^{\delta}}{8} \left(\overline{f}^{\alpha}_{\ell,k+1} - \overline{f}^{\alpha}_{\ell,k-1} \right), \qquad (talis \ pater \ ac \ finitimi, \ qualis \ filius).$$

• The Lax-Wendroff scheme by [FAKHARI et al., 2014]

$$\begin{split} \overline{f}^{\alpha}_{\ell,\boldsymbol{k}}(t+\Delta t) &= \left(1 - \frac{1}{4^{\Delta\ell}}\right) \overline{f}^{\alpha,\star}_{\ell,\boldsymbol{k}}(t) \\ &+ \frac{1}{2^{\Delta\ell+1}} \left(1 + \frac{1}{2^{\Delta\ell}}\right) \overline{f}^{\alpha,\star}_{\ell,\boldsymbol{k}-\boldsymbol{c}_{\alpha}/|\boldsymbol{c}_{\alpha}|_{2}}(t) - \frac{1}{2^{\Delta\ell+1}} \left(1 - \frac{1}{2^{\Delta\ell}}\right) \overline{f}^{\alpha,\star}_{\ell,\boldsymbol{k}+\boldsymbol{c}_{\alpha}/|\boldsymbol{c}_{\alpha}|_{2}}(t). \end{split}$$

This is not a multiresolution scheme: we consider it for comparison purposes.

More details on the schemes

Lax Wendroff

LBM-MR for $\gamma = 1$

Proposition (Match for $\gamma = 0$ **)**

Let d = 1, $\gamma = 0$ and $\Delta \ell \ge 0$, then the flattened coefficients of the advection phase read $C^{\alpha}_{\Delta \ell,0} = -|c_{\alpha}|, \qquad C^{\alpha}_{\Delta \ell,-c_{\alpha}/|c_{\alpha}|} = |c_{\alpha}|,$

and those not listed are equal to zero. Therefore, the adaptive stream phase matches that of the reference scheme up to order s = 1. This also writes

Proposition (Match for $\gamma = 1$ **)**

Let d = 1, $\gamma = 1$ and $\Delta \ell > 0$, then the flattened weights of the stream phase are given by the recurrence relations

$$\begin{pmatrix} C^{\alpha}_{\Delta\ell,-2} \\ C^{\alpha}_{\Delta\ell,-1} \\ C^{\alpha}_{\Delta\ell,0} \\ C^{\alpha}_{\Delta\ell,1} \\ C^{\alpha}_{\Delta\ell,2} \end{pmatrix} = \begin{pmatrix} 0 & -1/8 & 0 & 0 & 0 \\ 2 & 9/8 & 0 & -1/8 & 0 \\ 0 & 9/8 & 2 & 9/8 & 0 \\ 0 & -1/8 & 0 & 9/8 & 2 \\ 0 & 0 & 0 & -1/8 & 0 \end{pmatrix} \begin{pmatrix} C^{\alpha}_{\Delta\ell-1,-2} \\ C^{\alpha}_{\Delta\ell-1,-1} \\ C^{\alpha}_{\Delta\ell-1,0} \\ C^{\alpha}_{\Delta\ell-1,1} \\ C^{\alpha}_{\Delta\ell-1,2} \end{pmatrix},$$

where the initialization is given by $C_{0,-c_{\alpha}}^{\alpha} = 1$ and $C_{0,0}^{\alpha} = -1$ and the remaining terms set to zero. Therefore, the adaptive stream phase matches that of the reference scheme up to order s = 3. This also writes

Assume to know the coefficients of the flattened advection for level $\ell + 1$ (for $\Delta \ell - 1$). We have

$$\sum_{\overline{k}\in\mathcal{E}_{\ell,k}^{\alpha}}\widehat{f}_{\overline{L},\overline{k}}^{\alpha,\star} - \sum_{\overline{k}\in\mathcal{A}_{\ell,k}^{\alpha}}\widehat{f}_{\overline{L},\overline{k}}^{\alpha,\star} = \left(\sum_{\overline{k}\in\mathcal{E}_{\ell+1,2k}^{\alpha}}\widehat{f}_{\overline{L},\overline{k}}^{\alpha,\star} - \sum_{\overline{k}\in\mathcal{A}_{\ell+1,2k}^{\alpha}}\widehat{f}_{\overline{L},\overline{k}}^{\alpha,\star} - \sum_{\overline{k}\in\mathcal{A}_{\ell+1,2k}^{\alpha}}\widehat{f}_{\overline{L},\overline{k}}^{\alpha,\star} - \sum_{\overline{k}\in\mathcal{A}_{\ell+1,2k+1}^{\alpha}}\widehat{f}_{\overline{L},\overline{k}}^{\alpha,\star} - \sum_{\overline{k}\in\mathcal{A}_{\ell+1,2k+1}^{\alpha}}\widehat{f}_{\overline{L},\overline{k}}^{\alpha,\star}\right),$$

$$= \sum_{m=-2}^{+2} C_{\Delta\ell-1,m}^{\alpha}\widehat{f}_{\ell+1,2k+m}^{\alpha,\star} + \sum_{m=-2}^{+2} C_{\Delta\ell-1,m}^{\alpha}\widehat{f}_{\ell+1,2k+1}^{\alpha,\star} + \sum_{m=-1}^{+3} C_{\Delta\ell-1,m-1}^{\alpha}\widehat{f}_{\ell+1,2k+m}^{\alpha,\star} = \sum_{m=-2}^{+3} \tilde{C}_{\Delta\ell-1,m}^{\alpha}\widehat{f}_{\ell+1,2k+m}^{\alpha,\star},$$

$$= \sum_{m=-2}^{+3} \tilde{C}_{\Delta\ell-1,m}^{\alpha}\widehat{f}_{\ell+1,2k+m}^{\alpha,\star},$$

$$C_{\Delta\ell-1,m-1}^{\alpha,\star}\widehat{f}_{\ell+1,2k+m}^{\alpha,\star}$$

with

$$\tilde{C}^{\alpha}_{\Delta \ell-1,m} = \begin{cases} C^{\alpha}_{\Delta \ell-1,-2'}, & m = -2, \\ C^{\alpha}_{\Delta \ell-1,m} + C^{\alpha}_{\Delta \ell-1,m-1'}, & m = -1, 0, 1, 2, \\ C^{\alpha}_{\Delta \ell-1,2'}, & m = 3. \end{cases}$$

Using the prediction operator

$$\begin{split} \sum_{m=-2}^{+3} \tilde{C}^{\alpha}_{\Delta\ell-1,m} &\tilde{f}^{\alpha,\star}_{\ell+1,2k+m} = \tilde{C}^{\alpha}_{\Delta\ell-1,-2} \left(f_{\ell,k-1} + \frac{1}{8} f_{\ell,k-2} - \frac{1}{8} f_{\ell,k} \right) + \tilde{C}^{\alpha}_{\Delta\ell-1,-1} \left(f_{\ell,k-1} - \frac{1}{8} f_{\ell,k-2} + \frac{1}{8} f_{\ell,k} \right) \\ &+ \tilde{C}^{\alpha}_{\Delta\ell-1,0} \left(f_{\ell,k} + \frac{1}{8} f_{\ell,k-1} - \frac{1}{8} f_{\ell,k+1} \right) + \tilde{C}^{\alpha}_{\Delta\ell-1,1} \left(f_{\ell,k} - \frac{1}{8} f_{\ell,k-1} + \frac{1}{8} f_{\ell,k+1} \right) \\ &+ \tilde{C}^{\alpha}_{\Delta\ell-1,2} \left(f_{\ell,k+1} + \frac{1}{8} f_{\ell,k} - \frac{1}{8} f_{\ell,k+2} \right) + \tilde{C}^{\alpha}_{\Delta\ell-1,3} \left(f_{\ell,k+1} - \frac{1}{8} f_{\ell,k+2} \right), \end{split}$$

Using the prediction operator

$$\begin{split} \sum_{m=-2}^{+3} \tilde{C}^{\alpha}_{\Delta\ell-1,m} \widehat{f}^{\alpha,\star}_{\ell+1,2k+m} &= \tilde{C}^{\alpha}_{\Delta\ell-1,-2} \left(f_{\ell,k-1} + \frac{1}{8} f_{\ell,k-2} - \frac{1}{8} f_{\ell,k} \right) + \tilde{C}^{\alpha}_{\Delta\ell-1,-1} \left(f_{\ell,k-1} - \frac{1}{8} f_{\ell,k-2} + \frac{1}{8} f_{\ell,k} \right) \\ &+ \tilde{C}^{\alpha}_{\Delta\ell-1,0} \left(f_{\ell,k} + \frac{1}{8} f_{\ell,k-1} - \frac{1}{8} f_{\ell,k+1} \right) + \tilde{C}^{\alpha}_{\Delta\ell-1,1} \left(f_{\ell,k} - \frac{1}{8} f_{\ell,k-1} + \frac{1}{8} f_{\ell,k+1} \right) \\ &+ \tilde{C}^{\alpha}_{\Delta\ell-1,2} \left(f_{\ell,k+1} + \frac{1}{8} f_{\ell,k} - \frac{1}{8} f_{\ell,k+2} \right) + \tilde{C}^{\alpha}_{\Delta\ell-1,3} \left(f_{\ell,k+1} - \frac{1}{8} f_{\ell,k} + \frac{1}{8} f_{\ell,k+2} \right), \end{split}$$

so that after tedious computations, we arrive at

$$\begin{split} \sum_{m=-2}^{+3} \widehat{C}^{\alpha}_{\Delta\ell-1,m} \widehat{f}^{\alpha,\star}_{\ell+1,2k+m} &= \left(-\frac{1}{8} C^{\alpha}_{\Delta\ell-1,-1} \right) \overline{f}^{\alpha,\star}_{\ell,k-2} + \left(2C^{\alpha}_{\Delta\ell-1,-2} + \frac{9}{8} C^{\alpha}_{\Delta\ell-1,-1} - \frac{1}{8} C^{\alpha}_{\Delta\ell-1,1} \right) \overline{f}^{\alpha,\star}_{\ell,k-1} \\ &+ \left(\frac{9}{8} C^{\alpha}_{\Delta\ell-1,-1} + 2C^{\alpha}_{\Delta\ell-1,0} + \frac{9}{8} C^{\alpha}_{\Delta\ell-1,1} \right) \overline{f}^{\alpha,\star}_{\ell,k} \\ &+ \left(-\frac{1}{8} C^{\alpha}_{\Delta\ell-1,-1} + \frac{9}{8} C^{\alpha}_{\Delta\ell-1,1} + 2C^{\alpha}_{\Delta\ell-1,2} \right) \overline{f}^{\alpha,\star}_{\ell,k+1} + \left(-\frac{1}{8} C^{\alpha}_{\Delta\ell-1,1} \right) \overline{f}^{\alpha,\star}_{\ell,k+2}, \end{split}$$

concluding the first part of the proof.

Using the prediction operator

$$\begin{split} \sum_{m=-2}^{+3} \tilde{C}^{\alpha}_{\Delta\ell-1,m} \widehat{f}^{a,\star}_{\ell+1,2k+m} &= \tilde{C}^{\alpha}_{\Delta\ell-1,-2} \left(f_{\ell,k-1} + \frac{1}{8} f_{\ell,k-2} - \frac{1}{8} f_{\ell,k} \right) + \tilde{C}^{\alpha}_{\Delta\ell-1,-1} \left(f_{\ell,k-1} - \frac{1}{8} f_{\ell,k-2} + \frac{1}{8} f_{\ell,k} \right) \\ &\quad + \tilde{C}^{\alpha}_{\Delta\ell-1,0} \left(f_{\ell,k} + \frac{1}{8} f_{\ell,k-1} - \frac{1}{8} f_{\ell,k+1} \right) + \tilde{C}^{\alpha}_{\Delta\ell-1,1} \left(f_{\ell,k} - \frac{1}{8} f_{\ell,k-1} + \frac{1}{8} f_{\ell,k+1} \right) \\ &\quad + \tilde{C}^{\alpha}_{\Delta\ell-1,2} \left(f_{\ell,k+1} + \frac{1}{8} f_{\ell,k} - \frac{1}{8} f_{\ell,k+2} \right) + \tilde{C}^{\alpha}_{\Delta\ell-1,3} \left(f_{\ell,k+1} - \frac{1}{8} f_{\ell,k+2} \right), \end{split}$$

so that after tedious computations, we arrive at

$$\begin{split} \sum_{m=-2}^{+3} \tilde{C}^{\alpha}_{\Delta\ell-1,m} \widehat{f}^{\alpha,\star}_{\ell+1,2k+m} &= \left(-\frac{1}{8} C^{\alpha}_{\Delta\ell-1,-1}\right) \overline{f}^{\alpha,\star}_{\ell,k-2} + \left(2C^{\alpha}_{\Delta\ell-1,-2} + \frac{9}{8} C^{\alpha}_{\Delta\ell-1,-1} - \frac{1}{8} C^{\alpha}_{\Delta\ell-1,1}\right) \overline{f}^{\alpha,\star}_{\ell,k-1} \\ &+ \left(\frac{9}{8} C^{\alpha}_{\Delta\ell-1,-1} + 2C^{\alpha}_{\Delta\ell-1,0} + \frac{9}{8} C^{\alpha}_{\Delta\ell-1,1}\right) \overline{f}^{\alpha,\star}_{\ell,k} \\ &+ \left(-\frac{1}{8} C^{\alpha}_{\Delta\ell-1,-1} + \frac{9}{8} C^{\alpha}_{\Delta\ell-1,1} + 2C^{\alpha}_{\Delta\ell-1,2}\right) \overline{f}^{\alpha,\star}_{\ell,k+1} + \left(-\frac{1}{8} C^{\alpha}_{\Delta\ell-1,1}\right) \overline{f}^{\alpha,\star}_{\ell,k+2}. \end{split}$$

concluding the first part of the proof. Then, let us proceed by recurrence: for $\Delta \ell = 0$ the thesis trivially holds.

Using the prediction operator

$$\sum_{m=-2}^{+3} \tilde{C}^{\alpha}_{\Delta\ell-1,m} \widehat{f}^{\alpha,\star}_{\ell+1,2k+m} = \tilde{C}^{\alpha}_{\Delta\ell-1,-2} \left(f_{\ell,k-1} + \frac{1}{8} f_{\ell,k-2} - \frac{1}{8} f_{\ell,k} \right) + \tilde{C}^{\alpha}_{\Delta\ell-1,-1} \left(f_{\ell,k-1} - \frac{1}{8} f_{\ell,k-2} + \frac{1}{8} f_{\ell,k} \right) \\ + \tilde{C}^{\alpha}_{\Delta\ell-1,0} \left(f_{\ell,k} + \frac{1}{8} f_{\ell,k-1} - \frac{1}{8} f_{\ell,k+1} \right) + \tilde{C}^{\alpha}_{\Delta\ell-1,1} \left(f_{\ell,k} - \frac{1}{8} f_{\ell,k-1} + \frac{1}{8} f_{\ell,k+1} \right) \\ + \tilde{C}^{\alpha}_{\Delta\ell-1,2} \left(f_{\ell,k+1} + \frac{1}{8} f_{\ell,k} - \frac{1}{8} f_{\ell,k+2} \right) + \tilde{C}^{\alpha}_{\Delta\ell-1,3} \left(f_{\ell,k+1} - \frac{1}{8} f_{\ell,k+2} + \frac{1}{8} f_{\ell,k+2} \right),$$

so that after tedious computations, we arrive at

$$\begin{split} \sum_{m=-2}^{+3} \tilde{C}^{\alpha}_{\Delta\ell-1,m} \widehat{f}^{\alpha,\star}_{\ell+1,2k+m} &= \left(-\frac{1}{8} C^{\alpha}_{\Delta\ell-1,-1} \right) \overline{f}^{\alpha,\star}_{\ell,k-2} + \left(2C^{\alpha}_{\Delta\ell-1,-2} + \frac{9}{8} C^{\alpha}_{\Delta\ell-1,-1} - \frac{1}{8} C^{\alpha}_{\Delta\ell-1,1} \right) \overline{f}^{\alpha,\star}_{\ell,k-1} \\ &+ \left(\frac{9}{8} C^{\alpha}_{\Delta\ell-1,-1} + 2C^{\alpha}_{\Delta\ell-1,0} + \frac{9}{8} C^{\alpha}_{\Delta\ell-1,1} \right) \overline{f}^{\alpha,\star}_{\ell,k+1} \\ &+ \left(-\frac{1}{8} C^{\alpha}_{\Delta\ell-1,-1} + \frac{9}{8} C^{\alpha}_{\Delta\ell-1,1} + 2C^{\alpha}_{\Delta\ell-1,2} \right) \overline{f}^{\alpha,\star}_{\ell,k+1} + \left(-\frac{1}{8} C^{\alpha}_{\Delta\ell-1,1} \right) \overline{f}^{\alpha,\star}_{\ell,k+2}. \end{split}$$

concluding the first part of the proof. Then, let us proceed by recurrence: for $\Delta \ell = 0$ the thesis trivially holds. Assume that it holds for $\Delta \ell - 1$.

$$\begin{split} & \sum_{m=-2}^{+2} C^{\alpha}_{\Delta\ell,m} = \dots = 2 \sum_{m=-2}^{+2} C^{\alpha}_{\Delta\ell-1,m} = 0. \\ & \sum_{m=-2}^{+2} m C^{\alpha}_{\Delta\ell,m} = \dots = \sum_{m=-2}^{+2} m C^{\alpha}_{\Delta\ell-1,m} = -c_{\alpha}. \\ & \sum_{m=-2}^{+2} m^2 C^{\alpha}_{\Delta\ell,m} = \dots = \frac{1}{2} \sum_{m=-2}^{+2} m^2 C^{\alpha}_{\Delta\ell-1,m} = \frac{1}{2} \frac{c^2_{\alpha}}{2^{\Delta\ell}-1} = \frac{c^2_{\alpha}}{2^{\Delta\ell}}. \\ & \sum_{m=-2}^{+2} m^3 C^{\alpha}_{\Delta\ell,m} = \dots = \frac{1}{4} \sum_{m=-2}^{+2} m^3 C^{\alpha}_{\Delta\ell-1,m} = -\frac{1}{4} \frac{c^2_{\alpha}}{4^{\Delta\ell}-1} = -\frac{c^3_{\alpha}}{4^{\Delta\ell}}. \end{split}$$

that concludes the proof.

Proposition (Match for Lax-Wendroff)

Let d = 1 and $\Delta \ell \ge 0$, then the flattened coefficients of the advection phase are given by $C^{\alpha}_{\Delta \ell,0} = -\frac{|c_{\alpha}|^2}{2^{\Delta \ell}}, \quad C^{\alpha}_{\Delta \ell,-c_{\alpha}/|c_{\alpha}|} = \frac{|c_{\alpha}|}{2} \left(1 + \frac{|c_{\alpha}|}{2^{\Delta \ell}}\right), \quad C^{\alpha}_{\Delta \ell,c_{\alpha}/|c_{\alpha}|} = -\frac{|c_{\alpha}|}{2} \left(1 - \frac{|c_{\alpha}|}{2^{\Delta \ell}}\right).$

Therefore, the adaptive stream phase matches that of the reference scheme up to order s = 2. This also writes

Conclusion on the schemes

The previous analysis shows that:

- A multiresolution scheme matches until $s = 2\gamma + 1$.
- All the schemes match the **inertial term**.
- Only the scheme for $\gamma = 1$ and Lax-Wendroff match the **diffusive term**.
- Only the scheme for $\gamma = 1$ matches the **dispersive term**.
Conclusion on the schemes

The previous analysis shows that:

- A multiresolution scheme matches until $s = 2\gamma + 1$.
- All the schemes match the **inertial term**.
- Only the scheme for $\gamma = 1$ and Lax-Wendroff match the **diffusive term**.
- Only the scheme for $\gamma = 1$ matches the **dispersive term**.

Therefore:

$$\partial_t u + \underbrace{\nabla \cdot (\varphi(u))}_{\substack{\gamma=0\\ \gamma=1\\ \text{Lax-Wendroff}}} - \underbrace{\nabla \cdot (\mathbf{D} \nabla u)}_{\substack{\gamma=1\\ \text{Lax-Wendroff}}} = \underbrace{\text{H.O.Ts.}}_{\gamma=1}.$$

- The scheme for $\gamma = 0$ is almost **unusable** in practice.
- The Lax-Wendroff scheme is the **minimal scheme** for real applications (Navier-Stokes, etc...), because we also control diffusion. Still, it can threaten stability.
- The scheme for γ ≥ 1 is the "best". It also keeps 3rd order term, so better control on the stability.

Numerical simulations

- Smooth solutions.
- In the limit of small Δx_{ℓ} for every $\ell = \underline{L}, \dots, \overline{L}$.

The aim of the following numerical simulations is to **validate the previous approach** by showing that it provides a useful tool to *a priori* study the behavior of the adaptive scheme.

- Smooth solutions.
- In the limit of small Δx_{ℓ} for every $\ell = \underline{L}, \dots, \overline{L}$.

The aim of the following numerical simulations is to **validate the previous approach** by showing that it provides a useful tool to *a priori* study the behavior of the adaptive scheme. We monitor the following ℓ^1 normalized quantities at the final time *T*:

- $E_{\underline{ref}}$: error of the reference scheme (at \overline{L}) *vs.* exact solution.
- E_{adap}^{L} : error of the adaptive scheme (at <u>L</u>) *vs.* exact solution at level \overline{L} , using the reconstruction operator.
- D_{adap} : difference between the reference (at \overline{L}) and adaptive scheme (at \underline{L}).

• Smooth solutions.

 $E_{adap}^{\overline{L}}$

• In the limit of small Δx_{ℓ} for every $\ell = \underline{L}, \dots, \overline{L}$.

The aim of the following numerical simulations is to **validate the previous approach** by showing that it provides a useful tool to *a priori* study the behavior of the adaptive scheme. We monitor the following ℓ^1 normalized quantities at the final time *T*:

- $E_{\underline{ref}}$: error of the reference scheme (at \overline{L}) *vs.* exact solution.
- \mathbf{E}_{adap}^{L} : error of the adaptive scheme (at \underline{L}) *vs.* exact solution at level \overline{L} , using the reconstruction operator.
- D_{adap} : difference between the reference (at \overline{L}) and adaptive scheme (at \underline{L}).

$$= \begin{cases} E_{\text{ref}} & \text{intrinsic and sometimes converging for } \Delta x \to 0 \\ D_{\text{adap}} & \text{converging as } \Delta \ell \to 0, \end{cases}$$

- Smooth solutions.
- In the limit of small Δx_{ℓ} for every $\ell = \underline{L}, \dots, \overline{L}$.

The aim of the following numerical simulations is to **validate the previous approach** by showing that it provides a useful tool to *a priori* study the behavior of the adaptive scheme. We monitor the following ℓ^1 normalized quantities at the final time *T*:

- $E_{\underline{ref}}$: error of the reference scheme (at \overline{L}) *vs.* exact solution.
- \mathbf{E}_{adap}^{L} : error of the adaptive scheme (at \underline{L}) *vs.* exact solution at level \overline{L} , using the reconstruction operator.
- D_{adap} : difference between the reference (at \overline{L}) and adaptive scheme (at \underline{L}).

$$E_{adap}^{\overline{L}} = \begin{cases} E_{ref} & \text{ intrinsic and sometimes converging for } \Delta x \to 0, \\ D_{adap} & \text{ converging as } \Delta \ell \to 0, \end{cases}$$

therefore by triangle inequality

$$E_{adap}^{\overline{L}} \leq E_{ref} + D_{adap},$$

- Smooth solutions.
- In the limit of small Δx_{ℓ} for every $\ell = \underline{L}, \dots, \overline{L}$.

The aim of the following numerical simulations is to **validate the previous approach** by showing that it provides a useful tool to *a priori* study the behavior of the adaptive scheme. We monitor the following ℓ^1 normalized quantities at the final time *T*:

- $E_{\underline{ref}}$: error of the reference scheme (at \overline{L}) *vs.* exact solution.
- E_{adap}^{L} : error of the adaptive scheme (at <u>L</u>) *vs.* exact solution at level \overline{L} , using the reconstruction operator.
- D_{adap} : difference between the reference (at \overline{L}) and adaptive scheme (at \underline{L}).

$$\mathbf{E}_{\mathrm{adap}}^{\overline{L}} = \begin{cases} \mathbf{E}_{\mathrm{ref}} & \text{ intrinsic and sometimes converging for } \Delta x \to 0, \\ \mathbf{D}_{\mathrm{adap}} & \text{ converging as } \Delta \ell \to 0, \end{cases}$$

therefore by triangle inequality

$$E_{adap}^{\overline{L}} \leq E_{ref} + D_{adap},$$

and the plan is to make

$$D_{adap} \ll E_{ref}, \qquad \Rightarrow \qquad E_{adap}^{\overline{L}} \approx E_{ref},$$

regardless the fact that it converges or not for $\Delta x \rightarrow 0$.

Remark (bis)

We are not interested in evaluating the quality of the multiresolution adaptation with respect to the parameter ϵ : we consider a uniform mesh at the lowest resolution \underline{L} . Remember that the match property is **uniform** in ℓ .

Remark (bis)

We are not interested in evaluating the quality of the multiresolution adaptation with respect to the parameter ϵ : we consider a uniform mesh at the lowest resolution \underline{L} . Remember that the match property is **uniform** in ℓ . This also provides a **worst case scenario** to undoubtedly prove the resilience of our numerical strategy.

Remark (bis)

We are not interested in evaluating the quality of the multiresolution adaptation with respect to the parameter ϵ : we consider a uniform mesh at the lowest resolution \underline{L} . Remember that the match property is **uniform** in ℓ . This also provides a **worst case scenario** to undoubtedly prove the resilience of our numerical strategy. Similar scenarios can happen

- when the mesh is updated using some stiff variable [FAKHARI *et al.*, 2016] and [N'GUESSAN *et al.*, 2019] but we still want to achieve a good accuracy in the coarsely meshed areas for the non-stiff variables.
- a fixed adapted mesh is used: [FILIPPOVA AND HÄNEL, 1998] and many others.

- The aim of this test case is to validate our analysis in a case where:
 - **Convergent** reference scheme: $E_{ref} \rightarrow 0$ as $\Delta x \rightarrow 0$, see [Dellacherie, 2014], [CAETANO *et al.*, 2019].
 - Only inertial terms to model: we expect that all the schemes are suitable for this problem.
 - Linear equilibria: the collision strategy does not alter the quality of the method.

- The aim of this test case is to validate our analysis in a case where:
 - **Convergent** reference scheme: $E_{ref} \rightarrow 0$ as $\Delta x \rightarrow 0$, see [Dellacherie, 2014], [CAETANO *et al.*, 2019].
 - Only inertial terms to model: we expect that all the schemes are suitable for this problem.
 - Linear equilibria: the collision strategy does not alter the quality of the method.
- The target problem is

$$\begin{cases} \partial_t u + \partial_x (Vu) = 0, \\ u(t=0,x) = \frac{1}{(4\pi v t_0)^{1/2}} \exp\left(-\frac{|x|^2}{4v t_0}\right), \end{cases}$$

- The aim of this test case is to validate our analysis in a case where:
 - **Convergent** reference scheme: $E_{ref} \rightarrow 0$ as $\Delta x \rightarrow 0$, see [Dellacherie, 2014], [CAETANO *et al.*, 2019].
 - Only inertial terms to model: we expect that all the schemes are suitable for this problem.
 - Linear equilibria: the collision strategy does not alter the quality of the method.
- The target problem is

$$\begin{cases} \partial_t u + \partial_x (Vu) = 0, \\ u(t = 0, x) = \frac{1}{(4\pi v t_0)^{1/2}} \exp\left(-\frac{|x|^2}{4v t_0}\right), \end{cases}$$

• The scheme is the D1Q2 given at the beginning of the presentation.

- The aim of this test case is to validate our analysis in a case where:
 - **Convergent** reference scheme: $E_{ref} \rightarrow 0$ as $\Delta x \rightarrow 0$, see [Dellacherie, 2014], [CAETANO *et al.*, 2019].
 - Only inertial terms to model: we expect that all the schemes are suitable for this problem.
 - Linear equilibria: the collision strategy does not alter the quality of the method.
- The target problem is

$$\begin{cases} \partial_t u + \partial_x (Vu) = 0, \\ u(t = 0, x) = \frac{1}{(4\pi v t_0)^{1/2}} \exp\left(-\frac{|x|^2}{4v t_0}\right), \end{cases}$$

• The scheme is the D1Q2 given at the beginning of the presentation. We fix the level distance $\Delta \ell_{\min}$ and we increase \overline{L} (thus reduce Δx).

We have also tested $\Delta \ell_{min} = 6$ having similar results. Remember: $E_{adap}^{\overline{L}} \leq E_{ref} + D_{adap}$.

We have also tested $\Delta \ell_{\min} = 6$ having similar results. Remember: $E_{adap}^{\overline{L}} \leq E_{ref} + D_{adap}$.

- The aim of this test case is to validate our analysis in a case where:
 - Not convergent reference scheme as $\Delta x \rightarrow 0$, but a richer structure.
 - Both inertial and diffusive terms: not all the schemes are suitable.
 - Linear equilibria: the collision strategy does not alter the quality of the method.

- The aim of this test case is to validate our analysis in a case where:
 - Not convergent reference scheme as $\Delta x \rightarrow 0$, but a richer structure.
 - Both inertial and diffusive terms: not all the schemes are suitable.
 - Linear equilibria: the collision strategy does not alter the quality of the method.
- Target problem:

$$\begin{cases} \partial_t u + \partial_x (Vu) - v \partial_{xx} u = 0, \\ u(t = 0, x) = \frac{1}{(4\pi v t_0)^{1/2}} \exp\left(-\frac{|x|^2}{4v t_0}\right), \end{cases}$$

- The aim of this test case is to validate our analysis in a case where:
 - Not convergent reference scheme as $\Delta x \rightarrow 0$, but a richer structure.
 - Both inertial and diffusive terms: not all the schemes are suitable.
 - · Linear equilibria: the collision strategy does not alter the quality of the method.
- Target problem:

$$\begin{cases} \partial_t u + \partial_x (Vu) - v \partial_{xx} u = 0, \\ u(t=0,x) = \frac{1}{(4\pi v t_0)^{1/2}} \exp\left(-\frac{|x|^2}{4v t_0}\right), \end{cases}$$

• We consider a D1Q3 scheme with velocities $c_0 = 0$, $c_1 = 1$ and $c_2 = -1$ with change of basis and relaxation matrix given by

$$\boldsymbol{M} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & \lambda & -\lambda \\ 0 & \lambda^2/2 & \lambda^2/2 \end{pmatrix}, \qquad \boldsymbol{S} = \operatorname{diag}(0, s_v, s_w).$$

With equilibria and relaxation parameters:

$$\begin{split} m^{1,\text{eq}} &= Vm^{0}, \qquad m^{2,\text{eq}} = \kappa m^{0} \\ s_{v} &= (1/2 + \lambda v / (\Delta x (2\kappa - V^{2})))^{-1}, \qquad s_{w} = 1 \end{split}$$

- The aim of this test case is to validate our analysis in a case where:
 - Not convergent reference scheme as $\Delta x \rightarrow 0$, but a richer structure.
 - Both inertial and diffusive terms: not all the schemes are suitable.
 - · Linear equilibria: the collision strategy does not alter the quality of the method.
- Target problem:

$$\begin{cases} \partial_t u + \partial_x (Vu) - v \partial_{xx} u = 0, \\ u(t=0,x) = \frac{1}{(4\pi v t_0)^{1/2}} \exp\left(-\frac{|x|^2}{4v t_0}\right), \end{cases}$$

• We consider a D1Q3 scheme with velocities $c_0 = 0$, $c_1 = 1$ and $c_2 = -1$ with change of basis and relaxation matrix given by

$$\boldsymbol{M} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & \lambda & -\lambda \\ 0 & \lambda^2/2 & \lambda^2/2 \end{pmatrix}, \qquad \boldsymbol{S} = \operatorname{diag}(0, s_v, s_w).$$

With equilibria and relaxation parameters:

$$m^{1,eq} = Vm^0, \qquad m^{2,eq} = \kappa m^0$$

 $s_v = (1/2 + \lambda v / (\Delta x (2\kappa - V^2)))^{-1}, \qquad s_w = 1$

We fix the maximal level \overline{L} and we decrease the minimum level \underline{L} (we increase $\Delta \ell_{\min}$.

1D Linear advection diffusion equation: $\overline{L} = 11$

1D viscous Burgers equation

- The aim of this test case is to validate our analysis in a case where:
 - Not convergent reference scheme as $\Delta x \rightarrow 0$.
 - Non-linear equilibria: the collision could alter the quality of the method (at the end if we have time).
 - Both inertial and diffusive terms: not all the schemes are suitable.
 - **Smootness assumption**: if the solution develops singularities, the previous analysis is no longer well-grounded. Thus interest in doing dynamic mesh adaptation.

1D viscous Burgers equation

- The aim of this test case is to validate our analysis in a case where:
 - Not convergent reference scheme as $\Delta x \rightarrow 0$.
 - Non-linear equilibria: the collision could alter the quality of the method (at the end if we have time).
 - Both inertial and diffusive terms: not all the schemes are suitable.
 - Smootness assumption: if the solution develops singularities, the previous analysis is no longer well-grounded. Thus interest in doing dynamic mesh adaptation.
- Target problem

$$\begin{cases} \partial_t u + \partial_x (u^2/2) - v \partial_{xx} u = 0, \\ u(t = 0, x) = \frac{1}{(4\pi v t_0)^{1/2}} \exp\left(-\frac{x^2}{4v t_0}\right), \end{cases}$$

1D viscous Burgers equation

- The aim of this test case is to validate our analysis in a case where:
 - Not convergent reference scheme as $\Delta x \rightarrow 0$.
 - Non-linear equilibria: the collision could alter the quality of the method (at the end if we have time).
 - Both inertial and diffusive terms: not all the schemes are suitable.
 - Smootness assumption: if the solution develops singularities, the previous analysis is no longer well-grounded. Thus interest in doing dynamic mesh adaptation.
- Target problem

$$\begin{cases} \partial_t u + \partial_x (u^2/2) - v \partial_{xx} u = 0, \\ u(t = 0, x) = \frac{1}{(4\pi v t_0)^{1/2}} \exp\left(-\frac{x^2}{4v t_0}\right), \end{cases}$$

• The scheme the D1Q3 with

$$m^{1,\text{eq}} = (m^0)^2/2, \qquad m^{2,\text{eq}} = (m^0)^3/6 + \kappa m^0/2,$$

$$s_v = (1/2 + \lambda \nu / (\Delta x \kappa))^{-1}, \qquad s_w = 1.$$

Again, we fix the maximal level \overline{L} and we decrease the minimum level \underline{L} (we increase $\Delta \ell_{\min}$.

1D viscous Burgers equation: large diffusion

Coherent with the theoretical analysis (smooth solution).

1D viscous Burgers equation: small diffusion

The theoretical analysis cannot predict this (singular solution): need for mesh adaptation.

The scheme we use is the D2Q9 with velocities given by

$$\int (0,0), \qquad \qquad \alpha = 0,$$

$$c_{\alpha} = \left\{ \left(\cos\left(\frac{\pi}{2}(\alpha-1)\right), \sin\left(\frac{\pi}{2}(\alpha-1)\right) \right), \qquad \alpha = 1, 2, 3, 4, \right.$$

$$\left(\left(\cos\left(\frac{\pi}{2}(\alpha-5)+\frac{\pi}{4}\right),\sin\left(\frac{\pi}{2}(\alpha-5)+\frac{\pi}{4}\right)\right), \qquad \alpha=5,6,7,8,$$

with the moments by [Lallemand and Luo, 2000] relaxing with S = diag(0, s, s, 1, 1, 1, 1, 1, 1)

with $s = (1/2 + 3\nu/(\lambda\Delta x))^{-1}$ to enforce the diffusivity. The equilibria are based on the second-order expansion of the Maxwellian

$$\begin{split} m^{1,\text{eq}} &= V_x m^0, \quad m^{2,\text{eq}} = V_y m^0, \quad m^{3,\text{eq}} = (-2\lambda^2 + 3|\boldsymbol{V}|^2)m^0, \\ m^{4,\text{eq}} &= -\lambda^2 V_x m^0, \quad m^{5,\text{eq}} = -\lambda^2 V_y m^0, \quad m^{6,\text{eq}} = (\lambda^4 - 3\lambda^2 |\boldsymbol{V}|^2)m^0, \\ m^{7,\text{eq}} &= (V_x^2 - V_y^2)m^0, \quad m^{8,\text{eq}} = V_x V_y m^0. \end{split}$$

Same kind of tests than in 1D: prove that our analysis extends to 2D to quite "rich" models.

2D Linear advection equation: $\overline{L} = 9$

Spatial behavior of D_{adap} (in logarithmic scale) and contours:

LBM-MR - $\gamma=0$ LBM-MR - $\gamma = 1$ Lax-Wendroff 4.1e-01 0.001 0.0001 1e-5 1e-6 1e-7 1e-8 1e-9 $\Delta \ell_{\min} = 1$ 1e-15 1e-16 1e-17 2.3e-19 1.1e+000.1 0.01 0.001 0.0001 16-6 IA-7 $\Delta \ell_{\min} = 2$ le-1 le-12 16-13 1e-14 1e-15 3.0e-17

36/43

2D Linear advection equation: $\overline{L} = 9$

	Haar $\gamma = 0$		$\gamma = 1$		Lax-Wendroff	
Δℓ _{min}	$E_{adap}^{\overline{L}}$	D _{adap}	$E_{adap}^{\overline{L}}$	D _{adap}	$E_{adap}^{\overline{L}}$	D _{adap}
0	4.86e-02	0.00e+00	4.86e-02	0.00e+00	4.86e-02	0.00e+00
1	4.61e-02	2.79e-02	4.86e-02	9.42e-05	4.80e-02	8.20e-04
2	7.58e-02	8.06e-02	4.87e-02	3.89e-04	4.56e-02	4.09e-03
3	1.64e-01	1.75e-01	4.87e-02	1.62e-03	3.71e-02	1.71e-02
4	3.16e-01	3.29e-01	4.82e-02	7.49e-03	4.01e-02	6.90e-02
5	5.38e-01	5.51e-01	4.99e-02	4.94e-02	2.39e-01	2.82e-01
6	8.16e-01	8.26e-01	4.74e-01	5.14e-01	1.00e+00	1.04e+00

Again on the 1D viscous Burgers equation: small diffusion

What could be the effect of mesh adaptation with multiresolution?

Again on the 1D viscous Burgers equation: small diffusion

What could be the effect of **mesh adaptation** with multiresolution? Is the adaptive scheme accurate enough to allow, even if the initial mesh is quite coarsened with respect to the finest level \overline{L} , to progressively refine the mesh when steep gradients occur.

For singular solutions, a dynamic refinement algorithm is actually needed.

What has been done (theoretically)

- Analysis based on the **equivalent equations** [DUBOIS, 2008] for the LBM-MR schemes.
- Find the **maximal order of compliance** of the adaptive scheme with the desired physics, depending on the prediction stencil *γ*.

What has been done (theoretically)

- Analysis based on the **equivalent equations** [DUBOIS, 2008] for the LBM-MR schemes.
- Find the **maximal order of compliance** of the adaptive scheme with the desired physics, depending on the prediction stencil *γ*.

Conclusions (stream)

- Good agreement between the empirical behavior and the asymptotic analysis.
 - The Lax-Wendroff scheme [FAKHARI *et al.*, 2014]: minimal setting to use most of the LBM schemes. Unpredictable dispersive behaviors: threat to the stability.
 - The Haar scheme $\gamma = 0$ is almost unusable: it modifies the diffusive terms.
 - The LBM-MR scheme for γ ≥ 1: most reliable of the analyzed schemes, both in terms of consistency and stability.
- If the solution is singular: adaptive mesh adaptation needed!

What has been done (theoretically)

- Analysis based on the **equivalent equations** [DUBOIS, 2008] for the LBM-MR schemes.
- Find the **maximal order of compliance** of the adaptive scheme with the desired physics, depending on the prediction stencil *γ*.

Conclusions (stream)

- Good agreement between the empirical behavior and the asymptotic analysis.
 - The Lax-Wendroff scheme [FAKHARI *et al.*, 2014]: minimal setting to use most of the LBM schemes. Unpredictable dispersive behaviors: threat to the stability.
 - The Haar scheme $\gamma = 0$ is almost unusable: it modifies the diffusive terms.
 - The LBM-MR scheme for γ ≥ 1: most reliable of the analyzed schemes, both in terms of consistency and stability.
- If the solution is singular: adaptive mesh adaptation needed!

Conclusions (collision) [BONUS - QUESTIONS]

- Our leaves collision is a good choice: accuracy is only marginally affected.
- More refined collision strategy have to be especially needed and carefully optimized.
An interesting question

During this presentation, we received an interesting question:

What happens to a **wave passing through a fixed level jump**? Do we expect large spurious reflected waves?

We answer it in

Bellotti, Gouarin, Graille, Massot - Does the multiresolution lattice Boltzmann method allow to deal with waves passing through mesh jumps? - Submitted to Comptes Rendus Mathématique - 2021 - https://arxiv.org/abs/2105.12609 and https://hal.archives-ouvertes.fr/hal-03235133v1

The setting looks like:

Thank you for your attention! Looking forward to receiving your questions!

Alternative collision approaches [BONUS]

Alternative collision approaches [BONUS]

• Reconstructed collision

$$\overline{f}_{\ell,k}^{\star}(t) = M^{-1}\left((I-S)\overline{m}_{\ell,k}(t) + \frac{S}{2^{d\Delta\ell}}\sum_{\overline{k}\in\mathcal{B}_{\ell,k}}m^{\mathrm{eq}}(\widehat{\overline{m}}_{\overline{L},\overline{k}}^{0}(t),\dots)\right).$$

Alternative collision approaches [BONUS]

• Reconstructed collision

$$\overline{f}_{\ell,k}^{\star}(t) = M^{-1}\left((I-S)\overline{m}_{\ell,k}(t) + \frac{S}{2^{d\Delta\ell}}\sum_{\overline{k}\in\mathcal{B}_{\ell,k}}m^{\mathrm{eq}}(\widehat{\overline{m}}_{\overline{L},\overline{k}}^{0}(t),\dots)\right).$$

• Predict-and-quadrate collision, following [HOVHANNISYAN AND MÜLLER, 2010]

$$\overline{f}_{\ell,k}^{\star}(t) = M^{-1}\left((I-S)\overline{m}_{\ell,k}(t) + \frac{S}{|C_{\ell,k}|}\sum_{i=1}^{N} \tilde{w}_{i}m^{\text{eq}}(\pi_{\ell,k}^{0}(t,\tilde{x}_{i}),\dots)\right).$$

The stream phase is the LBM-MR scheme for $\gamma = 1$, which has proved to be the most reliable stream phase we analyzed.

	Leaves		Reconstructed		Predict-and-quadrate	
$\Delta \ell_{min}$	$E_{adap}^{\overline{L}}$	D _{adap}	$E_{adap}^{\overline{L}}$	D _{adap}	$E_{adap}^{\overline{L}}$	D _{adap}
0	1.23e-02	0.00e+00	1.23e-02	0.00e+00	1.23e-02	5.18e-08
1	1.23e-02	1.88e-07	1.23e-02	1.14e-07	1.23e-02	1.27e-07
2	1.23e-02	9.34e-07	1.23e-02	5.70e-07	1.23e-02	5.76e-07
3	1.23e-02	3.89e-06	1.23e-02	2.40e-06	1.23e-02	2.41e-06
4	1.23e-02	1.57e-05	1.23e-02	9.78e-06	1.23e-02	9.79e-06
5	1.23e-02	6.30e-05	1.23e-02	4.06e-05	1.23e-02	4.06e-05
6	1.23e-02	2.60e-04	1.23e-02	1.86e-04	1.23e-02	1.86e-04
7	1.22e-02	1.18e-03	1.23e-02	9.97e-04	1.23e-02	9.98e-04

	Leaves		Reconstructed		Predict-and-quadrate	
$\Delta \ell_{min}$	$E_{adap}^{\overline{L}}$	D _{adap}	$E_{adap}^{\overline{L}}$	D _{adap}	$E_{adap}^{\overline{L}}$	D _{adap}
0	5.31e-03	0.00e+00	5.31e-03	0.00e+00	5.31e-03	1.19e-06
1	5.31e-03	3.47e-06	5.31e-03	2.79e-06	5.31e-03	3.02e-06
2	5.31e-03	2.34e-05	5.31e-03	2.28e-05	5.31e-03	2.29e-05
3	5.30e-03	1.41e-04	5.28e-03	1.43e-04	5.28e-03	1.43e-04
4	5.31e-03	8.63e-04	5.27e-03	8.93e-04	5.27e-03	8.93e-04
5	6.14e-03	6.08e-03	5.83e-03	5.73e-03	5.84e-03	5.76e-03
6	3.36e-02	3.37e-02	3.11e-02	3.14e-02	3.12e-02	3.15e-02
7	2.45e-01	2.42e-01	2.27e-01	2.23e-01	2.22e-01	2.19e-01