

Développement de modèles conservatifs pour la LBM hybride compressible

Groupe de travail « Schémas de Boltzmann sur réseau » 23 Mars 2022

<u>Gauthier Wissocq</u>, Thomas Coratger, Gabriel Farag, Song Zhao, Pierre Boivin, Pierre Sagaut

LBM compressible : différentes approches

La LBM standard est limitée aux écoulements isothermes faiblement compressibles.

LBM compressible : différentes approches

La LBM standard est limitée aux écoulements isothermes faiblement compressibles.

D3Q19

Segregated Methods

Hybride

M2P2

Schéma FV/FD pour l'équation d'énergie

Méthode lattice Boltzmann

$$f_i(x + e_i\Delta t, t + \Delta t) = f_i^{eq}(x, t) + \left(1 - \frac{\Delta t}{\tau + \Delta t/2}\right) f_i^{neq}(x, t) + \frac{\Delta t}{2} \Phi$$

 $\int f_i^{eq} = f_i^{eq}(f_j)$ $f_i^{neq} = f_i^{neq}(\mathbf{f}_j)$ $\Psi_i = \Psi_i(f_j)$ $au \sim {
m viscosit}$ é

(équilibre) (hors-équilibre) (correction en Mach)

$$\boldsymbol{\rho} = \sum_{i} f_{i} \qquad \qquad \boldsymbol{\rho} \boldsymbol{u} = \sum_{i} \boldsymbol{e}_{i} f_{i}$$

Résout les équations de masse et de quantité de mouvement

Principe de l'approche hybride compressible

- Ψ_i

 ρ, u

Méthode lattice Boltzmann

$$f_i(x + e_i\Delta t, t + \Delta t) = f_i^{eq}(x, t) + \left(1 - \frac{\Delta t}{\tau + \Delta t/2}\right) f_i^{neq}(x, t) + \frac{\Delta t}{2}\Psi_i$$

 $\int f_i^{eq} = f_i^{eq}(f_j, T)$ (équilibre) $f_i^{neq} = f_i^{neq}(f_j, T)$ (hors-équilibre)

$$\boldsymbol{\rho} = \sum_{i} f_{i} \qquad \qquad \boldsymbol{\rho} \boldsymbol{u} = \sum_{i} \boldsymbol{e}_{i} f_{i}$$

Résout les équations de masse et de quantité de mouvement

Principe de l'approche hybride compressible

Différence finies / Volumes finis

Une forme discrète de l'équation d'énergie est explicitement résolue. Plusieurs possibilités :

Température : $\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + (\gamma - 1)\rho T \frac{\partial u}{\partial x} = \text{Heating} + \text{Viscosity}$ Energie totale : $\frac{\partial(\rho E)}{\partial t} + \frac{\partial(u(\rho E + \rho T))}{\partial r} = \text{Heating} + \text{Viscosity}$ Entropie: $\frac{\partial s}{\partial t} + u \frac{\partial s}{\partial r} = \text{Heating} + \text{Viscosity}$ Des choix intelligents d'équation et de discrétisation doivent être faits. **Résout l'équation d'énergie**

Méthode lattice Boltzmann

$$f_i(x + e_i\Delta t, t + \Delta t) = f_i^{eq}(x, t) + \left(1 - \frac{\Delta t}{\tau + \Delta t/2}\right) f_i^{neq}(x, t) + \frac{\Delta t}{2} \Psi$$

(équilibre) $f_i^{eq} = f_i^{eq}(f_j, T)$ $f_i^{neq} = f_i^{neq}(f_j, T)$ (hors-équilibre) $\Psi_i = \Psi_i(f_j, T)$ (correction en Mach) $\tau \sim {
m viscosit\acute{e}}$

$$\boldsymbol{\rho} = \sum_{i} f_{i} \qquad \qquad \boldsymbol{\rho} \boldsymbol{u} = \sum_{i} \boldsymbol{e}_{i} f_{i}$$

Résout les équations de masse et de quantité de mouvement

[1] F. Renard, G. Wissocq, J.-F. Boussuge, P. Sagaut, A linear stability analysis of compressible hybrid lattice Boltzmann methods. Journal of Computational Physics, 446, 110649 (2021).

Principe de l'approche hybride compressible

I. Energie totale vs. Entropie

II. Construction de modèles conservatifs stables

III. Validation

Plan

7

I. Energie totale vs. Entropie

II. Construction de modèles conservatifs stables

III. Validation

Plan

Système conservatif

Système Euler conservatif : \bullet

$$\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} = 0$$

Variables conservées : $U = [\rho, \rho u, \rho E]^T$

 $F(U) = [\rho u, \rho u^{2} + p, u(\rho E + p)]^{T}$ Flux :

I. Caractéristiques d'un système hyperbolique

Caractéristiques

Décomposition en caractéristiques (diagonalisation du système)

$$\frac{\partial \mathcal{L}_i}{\partial t} + \lambda_i \frac{\partial \mathcal{L}_i}{\partial x} = 0 \qquad \lambda_i = \{u - c, u, u\}$$

Simples équations d'advection

Système conservatif

Système Euler conservatif : ${ \bullet }$

$$\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} = 0$$

Variables conservées : $U = [\rho, \rho u, \rho E]^T$ $F(U) = [\rho u, \rho u^{2} + p, u(\rho E + p)]^{T}$ Flux :

• Schéma de Godunov (+ solveur de Riemann) $U(x,t+1) - U(x,t) + F_{+1/2}(x,t) - F_{-1/2}(x,t) = 0$

• LBM couplée avec une discrétisation de l'énergie totale upwind

[1] F. Renard, G. Wissocq, J.-F. Boussuge, P. Sagaut, A linear stability analysis of compressible hybrid lattice Boltzmann methods. Journal of Computational Physics, 446, 110649 (2021).

I. Caractéristiques d'un système hyperbolique

Caractéristiques

Décomposition en caractéristiques (diagonalisation du système)

$$\frac{\partial \mathcal{L}_i}{\partial t} + \overline{\lambda_i} \frac{\partial \mathcal{L}_i}{\partial x} = 0 \quad \overline{\lambda_i} = \{\overline{u} - \overline{c}, \overline{u}, \overline{u}\}$$

Simples équations d'advection

Deux avantages :

1) En linéaire, équations totalement **découplées** 2) On sait comment les discrétiser

- Exemple : discrétisation classique **upwind** $\mathcal{L}_i(x,t+1) - \mathcal{L}_i(x,t) + \lambda_i \left(\mathcal{L}_i(x,t) - \mathcal{L}_i(x-1,t) \right) = 0$
 - Les caractéristiques ne sont pas bien discrétisées ! **Très instable** [1]

caractéristiques \mathcal{L}_i .

- entièrement découplés [2]:
 - Les différences finies s'occupent de l'entropie
 - La LBM s'occupe des phénomènes isentropiques (acoustique, vorticité)
- **Problème :** Formulation **non conservative** inadaptée au traitement des discontinuités
- **Question :** Comment construire un schéma hybride conservatif en gardant les avantages de l'équation de l'entropie ?

[2] G. Farag, T. Coratger, G. Wissocq, S. Zhao, P. Boivin, P. Sagaut, A unified hybrid lattice-Boltzmann method for compressible flows: Bridging between pressure-based and densitybased methods. Physics of Fluids, 33(8) (2021).

I. Intérêt de l'entropie

• Pour le couplage hybride, l'entropie est une variable particulièrement intéressante car c'est une des

Equation d'advection (+ terme dissipatif en NS)

• La discrétisation de cette équation n'introduit pas d'instabilités de couplages, puisque les 2 systèmes sont

I. Energie totale vs. Entropie

II. Construction de modèles conservatifs stables

III. Validation

Plan

• Ecriture générale d'un système discret en volumes finis :

$$\frac{U(x,t+\Delta t) - U(x,t)}{\Delta t} = \frac{F_{-\Delta x/2}(x,t)}{F_{-\Delta x/2}(x,t)}$$

$$F_{-\Delta x/2}(x) = F_{+\Delta x/2}(x - \Delta x)$$

• Le système conservatif peut alors se réécrire comme :

$$\frac{U(x,t+\Delta t) - U(x,t)}{\Delta t} = \frac{F_{+\Delta x/2}(x-\Delta x,t) - F_{+\Delta x/2}(x,t)}{\Delta x}$$

Objectif : Trouver une écriture unique du flux

II. Qu'est-ce qu'un système conservatif?

• Le système est conservatif si le flux entrant dans une cellule est égal au flux quittant la cellule voisine :

II. Cas du schéma LBM

- Le schéma LBM s'écrit de manière générale comme : $f_i(x, t + \Delta t)$
- Cela permet de calculer les évolutions de masse et de quantité de mouvement comme [3] :

$$\frac{\rho(x,t+\Delta t)-\rho(x,t)}{\Delta t} = \frac{1}{\Delta t} \sum_{i} \left(f_{i}^{coll}(\boldsymbol{x}-\boldsymbol{c}_{i}\Delta t,t) - f_{i}^{coll}(\boldsymbol{x},t) \right)$$

$$\frac{\rho u_{\alpha}(\boldsymbol{x},t+\Delta t) - \rho u_{\alpha}(\boldsymbol{x},t)}{\Delta t} = \frac{1}{\Delta t} \sum_{i} c_{i,\alpha} \left(f_{i}^{coll}(\boldsymbol{x}-\boldsymbol{c}_{i}\Delta t,t) - f_{i}^{coll}(\boldsymbol{x},t) \right)$$
The sous une formulation flux :
$$\frac{\Phi(x,t+\Delta t) - \Phi(x,t)}{\Delta t} + \frac{F_{+\Delta x/2}^{\Phi}(x,t) - F_{+\Delta x/2}^{\Phi}(\boldsymbol{x}-\Delta x,t)}{\Delta x} = 0 \qquad \Phi \in \{\rho,\rho u_{\alpha}\}$$

Réécrit

$$\frac{\rho(x, t + \Delta t) - \rho(x, t)}{\Delta t} = \frac{1}{\Delta t} \sum_{i} \left(f_{i}^{coll}(x - c_{i}\Delta t, t) - f_{i}^{coll}(x, t) \right)$$

$$\frac{\rho u_{\alpha}(x, t + \Delta t) - \rho u_{\alpha}(x, t)}{\Delta t} = \frac{1}{\Delta t} \sum_{i} c_{i,\alpha} \left(f_{i}^{coll}(x - c_{i}\Delta t, t) - f_{i}^{coll}(x, t) \right)$$
ture sous une formulation flux :
$$\frac{\Phi(x, t + \Delta t) - \Phi(x, t)}{\Delta t} + \frac{F_{+\Delta x/2}^{\Phi}(x, t) - F_{+\Delta x/2}^{\Phi}(x - \Delta x, t)}{\Delta x} = 0 \qquad \Phi \in \{\rho, \rho u_{\alpha}\}$$

La LBM peut être réécrite sous forme volumes finis conservative [4]

$$= f_i^{coll}(x - c_i \Delta t, t)$$

[3] S. Zhao, G. Farag, P. Boivin, P. Sagaut, Toward fully conservative hybrid lattice Boltzmann methods for compressible flows. Physics of Fluids, 32(12) (2020).

II. Réécriture du schéma couplé entropie

La LBM s'écrit comme : lacksquare

$$\begin{cases} \delta_t \rho + \delta_x F_{\text{LBM}}^{\rho} = 0, \\ \delta_t (\rho u) + \delta_x F_{\text{LBM}}^{\rho u} = 0. \end{cases}$$

• On peut la coupler avec une forme de l'équation de l'entropie :

$$\delta_t s + u \, \delta_x^* s = 0$$

qui peut se réécrire comme :

$$\delta_t s + u \,\delta_x \mathcal{F}_{\mathrm{FD}}^*(s) = 0$$

• Le système couplé s'écrit alors comme :

$$\delta_t V + A^V \delta_x F^V = 0$$

 δ_t, δ_x : opérateurs dérivées discrètes

 δ^*_r : opérateur choisi pour discrétiser l'équation de l'entropie (upwind, Lax-Wendroff, MUSCL,...)

$$A^{V} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & u \end{bmatrix}$$
$$V = [\rho, \rho u, s]^{T} \qquad F^{V} = [F^{\rho}_{\text{LBM}}, F^{\rho u}_{\text{LBM}}, \mathcal{F}^{*}_{\text{FD}}(s)]^{T}$$

II. Construction du schéma conservatif 1/2

Schéma hybride sur l'entropie :

But : construire un système conservatif linéairement équivalent à ce système

• On multiplie cette équation par la matrice Jacobienne :

$$M = \frac{\partial U}{\partial V} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ h - u^2/2 & u & \rho T \end{bmatrix} \qquad (U = [\rho, \rho u, \rho E]^T) \qquad \delta_t U + \underbrace{MA^V}_{MA} \delta_x F^V = 0$$
$$(h = c_p T)$$

L'équation de l'énergie (dernière ligne) devient :

$$\delta_t(\rho E) + (h - u^2/2)\delta_x F_{\text{LBM}}^{\rho} + u\delta_x F_{\text{LBM}}^{\rho u} + \rho u T \delta_x \mathcal{F}_{\text{FD}}^*(s) = 0.$$

On peut alors utiliser l'égalité différentielle suivation

$$\delta_t(\rho E) + \delta_x \mathcal{F}_{FD}^* (u(\rho E + p)) + (h - u^2/2) + u \delta_x \left(F_{LBM}^{\rho u} - \mathcal{F}_{FD}^* (\rho u^2 + p) \right) = 0$$

$$\delta_t V + A^V \delta_x F^V = 0$$

non conservatif

ante:

$$\rho T u_{\alpha} ds = d(u(\rho E + p))$$

$$-(h - u^2/2)d(\rho u) - ud(\rho u^2 + p)$$

 $(2)\delta_x \left(F_{\rm LBM}^{\rho} - \mathcal{F}_{\rm FD}^*(\rho u)\right)$

II. Construction du schéma conservatif 2/2

$$\delta_t(\rho E) + \delta_x^*(u(\rho E + p)) + (h - u^2/2)\delta_x(F_{\text{LBM}}^{\rho} - \mathcal{F}_{\text{FD}}^*(\rho u)) + u\delta_x(F_{\text{LBM}}^{\rho u} - \mathcal{F}_{\text{FD}}^*(\rho u^2 + p)) = 0$$

- d'entropie :

 $\delta_t(\rho E)$

$$F^{\rho E} = \underbrace{\mathcal{F}_{FD}^*(u(\rho E + p))}_{FD} + \underbrace{(h - u^2/2)\left(F_{LBM}^{\rho} - \mathcal{F}_{FD}^*(\rho u)\right)}_{FD} + \underbrace{u\left(F_{LBM}^{\rho u} - \mathcal{F}_{FD}^*(\rho u^2 + p)\right)}_{FD}.$$

Flux d'énergie totale discrétisé avec le schéma initial de l'entropie (Upwind, Lax-Wendroff, MUSCL,...)

Correction permettant de découpler les erreurs liées à la conservation de la masse

L'ajout du terme de Fourier se fait de manière explicite (discrétisation centrée classique)

• Les préfacteurs peuvent être intégrés dans les dérivées spatiales sans modifier les propriétés linéaires ! On obtient alors une équation d'énergie totale conservative linéairement équivalente à l'équation

$$+ \,\delta_x F^{\rho E} = 0$$

Correction permettant de découpler les erreurs liées à la conservation de quantité de mouvement + calcul implicite de l'échauffement par effet visqueux

I. Energie totale vs. Entropie

II. Construction de modèles conservatifs stables

III. Validation

Plan

III. Couette / Spot entropique

- Trois types de modèles énergie totale codés dans proLB : Upwind, Lax-Wendroff et MUSCL. Dans tous les cas tests, utilisation du modèle unifié [2], sigma=1.
- Cas test 1 : Ecoulement de Couette chauffé à Mach = 1.3, 100 points, CFL = 0.5.

Le bon profil de température valide l'échauffement par effet visqueux.

Lax-Wendroff Upwind Cas test 2 : Spot entropique à Mach = 2 $\mathfrak{S} 0$ sur 20 tours, maillage 200x200 CFL = 0.2> 0.50.5 $1 \quad 0$ 0.5

[2] G. Farag, T. Coratger, G. Wissocq, S. Zhao, P. Boivin, P. Sagaut, A unified hybrid lattice-Boltzmann method for compressible flows: Bridging between pressure-based and density-based methods. Physics of Fluids, 33(8) (2021).

L'équivalence linéaire entre les schémas non conservatifs/conservatifs est validée

III. Vortex isentropique / Sod

Cas test 3 : Vortex isentropique à Mach=2 sur 20 tours, maillage 200x200, CFL = 0.2

Cas test 4 : Tube de Sod sur 400 pts (viscosité nulle, sans senseur de choc) CFL < 0.45

> De bonnes relations de saut sont retrouvées

Entropie

Cas test très délicat pour la stabilité. Comportements très proches entre tous les modèles. Seule différence : dispersion sur le LW conservatif.

Energie totale

1.0

0.8

 $\frac{10.6}{1}$

0.4

0.2

0.00

0.25

III. Riemann 2D [5]

 $\gg 0.5$

P 0.5

a 0.5

• Modèle utilisé : MUSCL. Viscosité nulle, senseur de choc activé. Maillage : 400x400 CFL < 0.45 Mach max ~ 3

Bonne structure des chocs

Computing, 19(2), 319–340 (1998).

III. Interaction choc-vortex [6]

[6] O. Inoue, Y. Hattori, Y., Sound generation by shock-vortex interactions. Journal of Fluid Mechanics, 380, 81–116 (1999).

Bonnes relations de saut avec l'énergie totale Le sillage du vortex est plus fidèle à la référence [6].

Conclusions et perspectives

- Un schéma LBM hybride conservatif a été obtenu grâce à :
 - Une réécriture de la LBM sous forme volumes finis
 - La connaissance d'un schéma sur l'entropie (invariant de Riemann)
- Le modèle obtenu est **linéairement équivalent** à son homologue sur l'entropie
 - Assure la stabilité linéaire du schéma hybride conservatif...
 - ... sans dégrader la très faible dissipation de la LBM
- Trois schémas validés sur des cas académiques compressibles avec/sans discontinuités :
 - Upwind (ordre 1)
 - Lax-Wendroff (ordre 2)
 - MUSCL (ordre 3)
- Perspectives :
 - Validation sur cas plus réalistes
 - Etude du surcoût lié au passage en conservatif

• Calcul implicite de l'échauffement par effet visqueux, consistant avec le tenseur des contraintes visqueuses LBM

Questions ?

/

$$f_i^{coll}(\boldsymbol{x},t) = f_i^{eq}(\boldsymbol{x},t) + \left(1\right)$$

$$\mu + \rho \nu_{sc} = \left(\tau - \frac{\Delta t}{2}\right) \rho c_s^2, \qquad \qquad \nu_{sc} = s_c \left| \frac{\rho(x - \Delta x, t) - 2\rho(x, t) + \rho(x + \Delta x, t)}{\rho(x - \Delta x, t) + 2\rho(x, t) + \rho(x + \Delta x, t)} \right|,$$

$$\begin{split} f_{i}^{eq} &= \omega_{i} \Big\{ \rho + \frac{\omega_{i} - \delta_{0i}}{\omega_{i}} \rho(\theta - 1) + \frac{\mathcal{H}_{i,\alpha}^{(1)}}{c_{s}^{2}} \rho u_{\alpha} + \frac{\mathcal{H}_{i,\alpha\beta}^{(2)}}{2c_{s}^{4}} \rho u_{\alpha} u_{\beta} + \frac{1}{6c_{s}^{6}} \Big[3(\mathcal{H}_{i,xxy}^{(3)} + \mathcal{H}_{i,yzz}^{(3)})(\rho u_{x} u_{x} u_{y} + \rho u_{y} u_{z} u_{z} u_{z} + \rho u_{y} u_{y} u_{y}) \\ &+ 3(\mathcal{H}_{i,xzz}^{(3)} + \mathcal{H}_{i,xyy}^{(3)})(\rho u_{x} u_{z} u_{z} + \rho u_{x} u_{y} u_{y}) + 3(\mathcal{H}_{i,yyz}^{(3)} + \mathcal{H}_{i,xxz}^{(3)})(\rho u_{y} u_{y} u_{z} + \rho u_{x} u_{x} u_{z}) \\ &+ (\mathcal{H}_{i,xxy}^{(3)} - \mathcal{H}_{i,yzz}^{(3)})(\rho u_{x} u_{x} u_{y} - \rho u_{y} u_{z} u_{z}) + (\mathcal{H}_{i,xzz}^{(3)} - \mathcal{H}_{i,xyy}^{(3)})(\rho u_{x} u_{z} u_{z} - \rho u_{x} u_{y} u_{y}) \\ &+ (\mathcal{H}_{i,yyz}^{(3)} - \mathcal{H}_{i,xxz}^{(3)})(\rho u_{y} u_{y} u_{z} - \rho u_{x} u_{x} u_{z}) \Big] \Big\}, \end{split}$$

[2] G. Farag, T. Coratger, G. Wissocq, S. Zhao, P. Boivin, P. Sagaut, A unified hybrid lattice-Boltzmann method for compressible flows: Bridging between pressure-based and density-based methods. Physics of Fluids, 33(8) (2021).

éma LBM unifié [2]

$$-\frac{\Delta t}{\tau} \int f_i^{neq}(\boldsymbol{x},t) + \frac{\Delta t}{2} F_i^E(\boldsymbol{x},t)$$

 $F_i^E = \frac{\omega}{2\alpha}$

$$a_{\alpha\beta}^{F,(2)} = \frac{2}{D} \delta_{\alpha\beta} \rho c_s^2 \partial_\gamma u_\gamma - \delta_{\alpha\beta} c_s^2 \partial_t (\rho(1-\theta)) + a_{\alpha\beta}^C,$$

$$a_{\alpha\beta}^{C} = c_s^2 \left[u_{\alpha} \partial_{\beta} (\rho(1-\theta)) + u_{\beta} \partial_{\alpha} (\rho(1-\theta)) \right] - \partial_{\gamma} D_{\alpha\beta\gamma}^{f^{eq},(3)},$$

$$\partial_{\gamma} D^{f^{eq},(3)}_{\alpha\beta\gamma} = \delta_{\alpha\beta} \partial_{\alpha} (\rho u_{\alpha}^3) + (1 - \delta_{\alpha\beta}) \partial_{\psi} (\rho u_{\alpha\beta}^3) + (1 - \delta_{\alpha\beta}) \partial_{\psi} (\rho u_{\alpha\beta}^$$

[2] G. Farag, T. Coratger, G. Wissocq, S. Zhao, P. Boivin, P. Sagaut, A unified hybrid lattice-Boltzmann method for compressible flows: Bridging between pressure-based and density-based methods. Physics of Fluids, 33(8) (2021).

éma LBM unifié [2]

$$\frac{\omega_i}{2c_s^4} \mathcal{H}^{(2)}_{i,\alpha\beta} a^{F,(2)}_{\alpha\beta},$$

 $u_x u_y u_z).$

$$\begin{split} f_{i}^{neq} &= \omega_{i} \Biggl\{ \frac{\mathcal{H}_{i,\alpha\beta}^{(2)}}{2c_{s}^{4}} a_{\alpha\beta}^{neq,(2)} + \frac{1}{6c_{s}^{6}} \Biggl[3(\mathcal{H}_{i,xxy}^{(3)} + \mathcal{H}_{i,yzz}^{(3)}) (a_{xxy}^{neq,(3)} + a_{yzz}^{neq,(3)}) \\ &+ (\mathcal{H}_{i,xxy}^{(3)} - \mathcal{H}_{i,yzz}^{(3)}) (a_{xxy}^{neq,(3)} - a_{yzz}^{neq,(3)}) + 3(\mathcal{H}_{i,xzz}^{(3)} + \mathcal{H}_{i,xyy}^{(3)}) (a_{xzz}^{neq,(3)} + a_{xyy}^{neq,(3)}) \\ &+ (\mathcal{H}_{i,xzz}^{(3)} - \mathcal{H}_{i,xyy}^{(3)}) (a_{xzz}^{neq,(3)} - a_{xyy}^{neq,(3)}) + 3(\mathcal{H}_{i,yyz}^{(3)} + \mathcal{H}_{i,xxz}^{(3)}) (a_{yyz}^{neq,(3)} + a_{xxz}^{neq,(3)}) \\ &+ (\mathcal{H}_{i,yyz}^{(3)} - \mathcal{H}_{i,xxz}^{(3)}) (a_{yyz}^{neq,(3)} - a_{xxz}^{neq,(3)}) \Biggr] \Biggr\}, \end{split}$$

$$a_{\alpha\beta}^{neq,(2)} = \tilde{a}_{\alpha\beta}^{neq,(2)} - \frac{\delta_{\alpha\beta}}{D} \tilde{a}_{\gamma\gamma}^{neq,(2)},$$

$$a_{\alpha\beta\gamma}^{neq,(3)} = u_{\alpha}a_{\beta\gamma}^{neq,(2)} + u_{\beta}a_{\alpha\gamma}^{neq,(2)} + u_{\gamma}a_{\alpha\beta}^{neq,(2)}.$$

[2] G. Farag, T. Coratger, G. Wissocq, S. Zhao, P. Boivin, P. Sagaut, A unified hybrid lattice-Boltzmann method for compressible flows: Bridging between pressure-based and density-based methods. Physics of Fluids, 33(8) (2021).

éma LBM unifié [2]

$$\tilde{a}_{\alpha\beta}^{neq,(2)} = \sum_{i} \mathcal{H}_{i,\alpha\beta}^{(2)} \left(f_i - f_i^{eq} + \frac{\Delta t}{2} F_i^E \right)$$

$^{(3)})$

