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Lattice-Boltzmann basics

Moments, distributions, lattices, discretization
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Navier-Stokes-Fourier system

Mass, momentum and energy conservations,

∂ρ

∂t
+

∂ρuβ
∂xβ

= 0 , (1)

∂ρuα
∂t

+
∂ [ρuαuβ + pδαβ − Tαβ]

∂xβ
= 0 . (2)

∂ρ(e + u2α/2)

∂t
+

∂
[
(ρ(e + u2α/2) + p)uβ + qβ − uαTαβ

]
∂xβ

= 0 . (3)

Equations of state, e.g.

p = ρRT , (4)

e = CvT + e0 . (5)

Constitutive equations,
qα = −λ

∂T

∂xα
, (6)

Tαβ = µ

[
∂uα
∂xβ

+
∂uβ
∂xα

− δαβ
2

3

∂uγ
∂xγ

]
. (7)
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Late 1980s, birth of Lattice-Boltzmann Methods

Figure 1: Guy R. McNamara and Gianluigi Zanetti, first Lattice-Boltzmann Model.

LBM algorithm is basically :

• Collision, local step

• Streaming, memory-shift

 Attractive method !
Figure 2: O’Brien’s schematic streaming.

� McNamara, G. R., & Zanetti, G. Use of the Boltzmann equation to simulate lattice-gas automata, Physical review letters, 1988.

� O’Brien, P. M. A framework for digital watercolor , MSc thesis, Texas A&M University, 2008.
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Velocity space discretization

Figure 3: D2Q9 lattice.

Figure 4: D3Q15, D3Q19 and D3Q27
lattices.

Each different lattice leads to a different Discrete Velocity Boltzmann Equation,

∂fi
∂t

+ ciα
∂fi
∂xα

= −1

τ

(
fi − f eqi

)
= −1

τ
f neqi , (8)

ci with i = 0, ..., q-1 and fi (t, x)=f (t, x , ci ).
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Time integration

• Discrete Velocity Boltzmann Equation (DVBE) with BGK collision kernel,
∂fi
∂t

+ ciα
∂fi
∂xα

= −1

τ

(
fi − f eqi

)
= −1

τ
f neqi . (9)

• Integration along characteristic dx = cidt and Crank-Nicolson,

fi (t+∆t, x+ci∆t) = fi (t, x)−
∆t

2

{ [
1

τ
f neqi

]
(t, x)+

[
1

τ
f neqi

]
(t+∆t, x+ci∆t)

}
.

• Change of variables f i = fi +
∆t
2τ f

neq
i and τ = τ +∆t/2,

f i (t +∆t, x + ci∆t) =

{
fi −

∆t

2τ
f neqi

}
(t, x) , (10)

=

{
f eqi +

[
1− ∆t

2τ

]
f neqi

}
(t, x) , (11)

=

{
f eqi +

[
1− ∆t

τ +∆t/2

]
f
neq
i

}
(t, x) . (12)
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Equilibrium, non-equilibrium and moments

By definition in Lattice-Boltzmann fi = f eqi + f neqi :

ρ = Πf ,(0) =
∑
i

fi =
∑
i

f eqi , ρuα = Πf ,(1)
α =

∑
i

ciαfi =
∑
i

ciαf
eq
i , (13)

additionally, f eqi is also built such that,

ρuαuβ + pδαβ = Π
f eq ,(2)
αβ =

∑
i

ciαciβf
eq
i . (14)

Discrete Velocity Boltzmann Equation,
∂fi
∂t

+ ciα
∂fi
∂xα

= Ωi . (15)

Mass and momentum conservations are obtained using moments, e.g. :
∂ρ

∂t
+

∂ρuα
∂xα

=
∑
i

Ωi , (16)

∂ρuα
∂t

+
∂
[
ρuαuβ + pδαβ +Π

f neq ,(2)
αβ

]
∂xβ

=
∑
i

ciαΩi , (17)
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Distributions or Moments ?

Lattice-Boltzmann with q velocities could be understood in 2 equivalent ways :

DVBE,
∂fi
∂t

+ ciα
∂fi
∂xα

= Ωi

describes q equations for fi .



Extended hydrodynamic system,

∂Π
f ,(n)
α1···αn

∂t
+

∂Π
f ,(n+1)
α1···αnαn+1

∂xαn+1

= Π
Ω,(n)
α1···αn

describes q equations for Π
f ,(n)
α1···αn .

• What about boundary and initial conditions ?

• Which lattice closure, f eq and collision kernel should be used ?

• What is the range of validity in term of Pr, Ma, Re, etc ?

”Higher-order hydrodynamics” is a research field by itself. Some of these mod-

els fail to reproduce physical results (e.g. Burnett with Bobylev instabilities).

 Can we avoid those uncertainties ?
9



Lattice-Boltzmann modeling

Lattice-Boltzmann is something in between Boltzmann and Navier-Stokes-Fourier.

 How to model compressible flows with Lattice-Boltzmann ?

Nowadays, Lattice-Boltzmann is a fully fledged numerical method used for different

applications : fluids, solids, Schrödinger equation, finance, advection-diffusion etc...

 We can use classical tools : Taylor expansion and dimensional analysis.
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Athermal Lattice-Boltzmann

Description of classical Lattice-Boltzmann
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Athermal Lattice-Boltzmann-BGK

This model is summarized by

• Equilibrium,

f eqi = ωi

{
H(0)ρ+

H(1)
iα

c2s
ρuα +

H(2)
iαβ

2c4s
[ρuαuβ] +

H(3)
iαβγ

6c6s
[ρuαuβuγ ]

}
. (18)

• Collide & stream, BGK,

f i (t +∆t, x) =
{
f eqi +

(
1− ∆t

τ +∆t/2

)[
f i − f eqi

]}
(t, x − ci∆t) . (19)

• Macroscopic reconstruction,

ρ(t +∆t, x) =
q−1∑
i=0

f i (t +∆t, x) , (20)

ρuα(t +∆t, x) =
q−1∑
i=1

ciαf i (t +∆t, x) . (21)
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Where to find the stress-tensor ?

∂Π
f ,(n)
α1···αn

∂t
+

∂Π
f ,(n+1)
α1···αnαn+1

∂xαn+1

= −1

τ
Π
f neq ,(n)
α1···αn +O(∆t2) (22)

↓ ↓ ↓ ↓

n = 0
∂ρ

∂t
+

∂ρuβ
∂xβ

= O(∆t2)

n = 1
∂ρuα
∂t

+
∂
[
ρuαuβ + ρc2s δαβ +Π

f neq ,(2)
αβ

]
∂xβ

= O(∆t2)

n = 2
∂
[
Π
f eq ,(2)
αβ +Π

f neq ,(2)
αβ

]
∂t

+
∂
[
Π
f eq ,(3)
αβγ +Π

f neq ,(3)
αβγ

]
∂xγ

= −1

τ
Π
f neq ,(2)
αβ +O(∆t2)

n = ... · · ·
13



Athermal model : Constitutive equation

The stress-tensor evolution equation is

−Π
f neq ,(2)
αβ = τρc2s

[
∂uα
∂xβ

+
∂uβ
∂xα

]
+O

(
τ ∂ρu3

∂x

)
+O(∆t2)

+τ
∂Π

f neq ,(2)
αβ

∂t
+ τ

∂Π
f neq ,(3)
αβγ

∂xγ
− τ

[
uα

∂Π
f neq ,(2)
βγ

∂xγ
+ uβ

∂Π
f neq ,(2)
αγ

∂xγ

]
. (23)

Usual low-Mach stress-tensor,

−Π
f neq ,(2)
αβ ≈ τρc2s︸︷︷︸

µ

[
∂uα
∂xβ

+
∂uβ
∂xα

]
. (24)

O
(
u3
)
error,

O
(
τ
∂ρu3

∂x

)
∝ u3 . (25)

Open system because

Π
f neq ,(3)
αβγ is unknown. Time evolution.
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Athermal constitutive equation, dimensional analysis 1/2

Assuming ts is the shortest characteristic time, nondimensional variables ∗ are

O(1),
∂

∂t
=

1

ts

∂

∂t∗
,

∂

∂x
=

1

L0

∂

∂x∗
, (26)

Π
f neq ,(2)
αβ = Π0Π

∗,f neq ,(2)
αβ , Π

f neq ,(3)
αβγ = Q0Π

∗,f neq ,(3)
αβγ , (27)

u = U0u
∗ , ρ = ρ0ρ

∗ , T = T0T
∗ , (28)

neglecting numerical errors, the nondimensional stress-tensor is expressed as

−Π
∗,f neq ,(2)
αβ =

µU0

L0Π0

[
∂u∗α
∂x∗β

+
∂u∗β
∂x∗α

]
+O

(
µU0

L0Π0
Ma2

)
+O

(
µU0

L0Π0

Q0

ρ0c2s U0

)
+O

(
τ

ts

)
+O

(
Ma2

Re

)
. (29)

When the classical low-Mach constitutive equation is verified, only the blue part

remains, in which case µU0
L0Π0

= 1. 15



Athermal constitutive equation, dimensional analysis 2/2

• −Π
∗,f neq ,(2)
αβ =

[
∂u∗α
∂x∗β

+
∂u∗β
∂x∗α

]
”hydrodynamic limit”.

• Ma2 ≪ 1 error coming from u3 isotropy defect can be neglected.

•
Q0

ρ0c2s U0
≪ 1 higher-order contributions from Π

f neq ,(3)
αβγ can be neglected.

•
τ

ts
≪ 1 stress-tensor time derivative can be neglected.

•
Ma2

Re
≪ 1 other terms can be neglected.

 Kn ∝ Ma/Re is not the only parameter that controls the consistency.
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Time evolution of f neqi

To get more insight on the interpretation of the non-equilibrium evolution, let

recall the DVBE,
∂fi
∂t

+ ciα
∂fi
∂xα

= −1

τ

{
fi − f eqi

}
+O

(
∆t2

)
. (30)

Let also recall that fi = f eqi + f neqi such that the DVBE yields,

∂f neqi

∂t
+ ciα

∂f neqi

∂xα
= −1

τ

{
f neqi − Λi

}
+O

(
∆t2

)
, (31)

with Λi =
[
− τ

∂f eqi
∂t − τciα

∂f eqi
∂xα

]
. f neqi relaxes towards Λi with a characteristic

time τ .

 f neqi has its own ”equilibrium” : Λi .
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Time evolution of Πf neq ,(2)
αβ

Hence, stress-tensor follows the compact equation,

∂Π
f neq ,(2)
αβ

∂t
+

∂Π
f neq ,(3)
αβγ

∂xγ
= −1

τ

{
Π
f neq ,(2)
αβ − Π

Λ,(2)
αβ

}
+O

(
∆t2

)
. (32)

• Small lattices → ”isotropy defects” e.g. Π(3) ∝ c2s Π
(1) (this explains the

O(u3) error in stress-tensor).

• Isotropy defect is even worse for higher order moments.

 Closure : regularization, higher order moments are filtered.
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The concept of regularized kernels

Collision,
f colli = f eqi + (1−∆t/τ)f

neq
i , (33)

can be projected onto moments,

Πcoll ,(3) = Πeq,(3) + (1−∆t/τ)Π
neq,(3)

, (34)

Π
neq,(3)

is regularized (replaced) by Π̃neq,(3),

Πcoll ,(3) = Πeq,(3) + (1−∆t/τ)Π̃neq,(3) . (35)

Exemple : When Latt & Chopard regularization is applied to D3Q19, the rank

q = 19 of the solver is reduced to q̃ = 10.

 We are not anymore solving the Discrete Velocity Boltzmann Equation

� Latt, J., & Chopard, B. Lattice Boltzmann method with regularized pre-collision distribution functions, Mathematics and Computers in

Simulation, 2006. 19
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Regularized Lattice-Boltzmann models

Regularized Lattice-Boltzmann model is obtained using Taylor expansion,

∂ρ

∂t
+

∂ρuβ
∂xβ

=O(∆t2) , (36)

∂ρuα
∂t

+
∂
[
ρuαuβ + ρc2s δαβ +Π

f neq ,(2)
αβ

]
∂xβ

=O(∆t2) , (37)

∂Π
f neq ,(2)
αβ

∂t
+

∂Π̃
f neq ,(3)
αβγ

∂xγ
= −1

τ

{
Π
f neq ,(2)
αβ − Π

Λ,(2)
αβ

}
+O (∆t) . (38)

Stress-tensor evolution is O (∆t) accurate, but Π̃neq,(3) can be freely changed

to increase stability/accuracy.
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Thermal Lattice-Boltzmann

Hybrid coupling, entropy equation and traceless collision

21



Different paths towards thermal flows

Due to isotropy errors (Π(3) ∝ c2s Π
(1)), energy conservation is wrong with stan-

dard lattices (e.g. D3Q19). Possible solutions,

• Multispeed, one large set of distributions. Computational efficiency is at

stake. ✗

• Double Distributions coupling, 2 sets of distributions, one for

mass/momentum and another for energy. Computational efficiency is at

stake. ✗

• Hybrid coupling, 1 small set of distributions and 1 energy equation

discretized by a finite difference scheme. Cheaper, allows coupling with a

wide variety of models. ✓
22



The entropy equation in non-conservative form

The entropy is a mode of the linearized Euler system, its coupling with

mass/momentum is weaker than using e.g. total energy or enthaply.

Entropy equation in the frame ref-

erence of a plane discontinuity,

u
∂s

∂x
= 0 . (39)

Contact discontinuity is compati-
ble. Shock is not, because u ̸= 0

such that ∂s/∂x = 0 is necessary.

1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

Figure 5: Entropy jump error with
entropy equation as a function of Ma.
γ = 1.2, 1.4, 1.6, 1.8 (top to bottom).

 Acceptable errors on plane shocks (∼ 5%) up to Mach 1.4
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Step-by-step Lattice-Boltzmann scheme from t to t + ∆t

• Initial solution, ρ(t, x), uα(t, x), T (t, x) and Π
f neq ,(2)
αβ (t, x) are known.

↓ ↓
Lattice-Boltzmann

• Compute Equilibrium f eqi (t, x)
and Non-Equilibrium f

neq
i (t, x).

• Collide & Stream provides the

updated distribution f i (t +∆t, x).
• Macroscopic update provides

ρ(t +∆t, x) and uα(t +∆t, x).

Finite Differences

• Compute the updated Entropy

s(t +∆t, x) using a one step

explicit scheme. MUSCL-Hancock

for advection and centered schemes

for heat diffusion and viscous heat.

↓ ↓
• Temperature update T (t +∆t, x) using ρ(t +∆t, x) and s(t +∆t, x).
• Stress-tensor update Πf

neq

αβ (t +∆t, x) using
[
Πf
αβ, ρ, uα,T

]
(t +∆t, x).

 Interface bewteen LBM/FD is the second order moment
24
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• Stress-tensor update Πf

neq

αβ (t +∆t, x) using
[
Πf
αβ, ρ, uα,T

]
(t +∆t, x).

 Interface bewteen LBM/FD is the second order moment
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Step-by-step Lattice-Boltzmann scheme from t to t + ∆t

• Initial solution, ρ(t, x), uα(t, x), T (t, x) and Π
f neq ,(2)
αβ (t, x) are known.

↓ ↓
Lattice-Boltzmann

• Compute Equilibrium f eqi (t, x)
and Non-Equilibrium f

neq
i (t, x).
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Thermal coupling, traceless collision

Πf
neq

αβ uses Πf
αβ, ρ, uα (LBM) and p (LBM/FD),

Πf
neq

αβ =
(
Πf
αβ − Πf eq

αβ

)
=

(
Πf
αβ − [ρuαuβ + pδαβ]

)
. (40)

Coupling errors between LBM/FD are stacked in the trace of Πf
neq

αβ .

A compressible scheme traditionally uses Stokes Hypothesis (traceless Π
f neq ,(2)
αβ ),

−Π
f neq ,(2)
αβ = µ

[
∂uα
∂xβ

+
∂uβ
∂xα

−
2δαβ
3

∂uγ
∂xγ

]
, (41)

The trace Πf
neq

αα is pure errors, it could be safely replaced by 0.

 New regularization Πf
neq

αα = 0 improves the stability.

� Farag, G. & Zhao, S. & Coratger, T. & Boivin, P. & Sagaut, P. A pressure-based regularized lattice-Boltzmann method for the simulation of

compressible flows, Physics of Fluids, 2020. 25



Thermal coupling, traceless collision

Πf
neq

αβ uses Πf
αβ, ρ, uα (LBM) and p (LBM/FD),

Πf
neq

αβ =
(
Πf
αβ − Πf eq

αβ

)
=

(
Πf
αβ − [ρuαuβ + pδαβ]

)
. (40)

Coupling errors between LBM/FD are stacked in the trace of Πf
neq

αβ .

A compressible scheme traditionally uses Stokes Hypothesis (traceless Π
f neq ,(2)
αβ ),

−Π
f neq ,(2)
αβ = µ

[
∂uα
∂xβ

+
∂uβ
∂xα

−
2δαβ
3

∂uγ
∂xγ

]
, (41)

The trace Πf
neq

αα is pure errors, it could be safely replaced by 0.

 New regularization Πf
neq

αα = 0 improves the stability.

� Farag, G. & Zhao, S. & Coratger, T. & Boivin, P. & Sagaut, P. A pressure-based regularized lattice-Boltzmann method for the simulation of

compressible flows, Physics of Fluids, 2020. 25



Compressible models & applications

Pressure-based model, unified model, applications

26



M2P2 Lattice-Boltzmann models 1/2

During the past few years, M2P2 designed different compressible models,

• Density based (ρ-based), 2019,
� Y. Feng, P. Boivin, J. Jacob and P. Sagaut. Hybrid recursive regularized thermal lattice Boltzmann model for

high subsonic compressible flows. Journal of Computational Physics, 2019.

� F. Renard, Y. Feng, , JF. Boussuge and P. Sagaut. Improved compressible Hybrid Lattice Boltzmann Method

on standard lattice for subsonic and supersonic flows. Computers & Fluids, 2021.

• Pressure based (p-based), early 2020,
� G. Farag, S. Zhao, T. Coratger, P. Boivin, G. Chiavassa and P. Sagaut. A pressure-based regularized

lattice-Boltzmann method for the simulation of compressible flows. Physics of Fluids, 2020.

• Improved-density based (iρ-based), late 2020,
� S. Guo, Y. Feng and P. Sagaut. Improved standard thermal lattice Boltzmann model with hybrid recursive

regularization for compressible laminar and turbulent flows. Physics of Fluids, 2020.

 How do they differ from one another ? Which one should be used ?
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M2P2 Lattice-Boltzmann models 2/2

Their 2nd -order distributions are :

f ρ,eqi = ωi

{
ρ +

H(1)
iα

c2s
ρuα +

H(2)
iαβ

2c4s

[
ρuαuβ + δαβρc

2
s (θ − 1)

] }
(42)

f p,eq
i = ωi

{
ρθ +

H(1)
iα

c2s
ρuα +

H(2)
iαβ

2c4s
[ρuαuβ + δαβ0]

}
(43)

f iρ,eq
i = ωi

{
ρ +

H(1)
iα

c2s
ρuα +

H(2)
iαβ

2c4s
[ρuαuβ + δαβ0] +

ωi − δ0i
ωi

ρ[θ − 1]
}

(44)

With 2 different update rules for mass :

• ρ/iρ-based : ρ(t +∆t, x) =
∑q−1

i=0 f i (t +∆t, x) (45)

• p-based : ρ(t +∆t, x) =
∑q−1

i=0 f i (t +∆t, x)+ρ(t, x)[1− θ(t, x)] (46)

 Very close equations, let us try to find a generalized formulation.  28



A generalized equilibrium on D3Q19

Considering the D3Q19 lattice a function can be projected onto its basis(
H(0)

i ,H(1)
ix ,H(1)

iy ,H(1)
iz ,H(2)

ixx ,H
(2)
iyy ,H

(2)
izz ,H

(2)
ixy ,H

(2)
ixz ,H

(2)
iyz ,

H(3)
ixxy ,H

(3)
ixxz ,H

(3)
iyyx ,H

(3)
iyyz ,H

(3)
izzx ,H

(3)
izzy ,Ai ,Bi , Ci

)
(47)

The equilibrium distribution that generalizes M2P2 models is

f eqi = ωi

{
H(0)ρ+

H(1)
iα

c2s
ρuα +

H(2)
iαβ

2c4s

[
ρuαuβ + δαβρc

2
s (θ − 1)

]
+

H(3)
iαβγ

6c6s

[
ρuαuβuγ

− κρc2s (uαδβγ + uβδγα + uγδαβ)
]
− Ai + Bi + Ci

12c4s
ρ[θ − 1](1− ζ)

}
. (48)

• ζ = 1 and κ = 1− θ is the classical ρ-based.

• ζ = 0 and κ = 0 is for p-based and iρ-based. Same core model !

 Differences between models are inside 3rd and 4th-order moments.  29



Unified model on D3Q19, ingredients

1/ Classical thermal equilibrium up to 2nd -order  Consistent mass and momentum

Euler conservation.

2/ Higher-order equilibrium moments related to Ai Bi and Ci polynomials and force

correction term similar to pressure-based model  Improved stability.

3/ Athermal 3rd order equilibrium moments ρuαuβuγ  Improved stability and more

reasonable errors O( Ma2CFL2

Re(Ma+1)2
) compared to O(Ma2

Re
) +O( 1

RePr
) in classical density-based

thermal model.

4/ Entropy equation using MUSCL-Hancock scheme  Reasonable trade-off between

small stencil (1D is 5points), both stability and accuracy are improved.

5/ Discontinuity sensor based on density  Increased viscosity in both shocks and

contact discontinuities.

6/ Small artificial bulk viscosity  Necessary for very high Mach ⪆ 1.7.

7/ Recursive regularization and regularization of stress-tensor trace  Improved

stability.

� Farag, G. & Coratger, T. & Wissocq G. & Zhao S. & Boivin P. & Sagaut P. A unified hybrid lattice-Boltzmann method for compressible flows:

Bridging between pressure-based and density-based methods, Physics of Fluids, 2021.
30



Unified model validation : Thermal Couette flow

Figure 6: □, × and ⃝ are the Ma = 1.3, 2.3, 3.3 analytical solution.
correspond to numerical solutions with the unified model.

100× 1× 1 mesh, CFL ranging between 0.5 and 0.2.

 Accurate viscosity, heat diffusion and viscous heat
31



Unified model validation : Isenstropic vortex advection

Figure 7: Isentropic vortex advection
after 20 flow-through-time periods for

different Mach numbers.

Figure 8: y = 0 density slices after
20 periods for different Ma.

200× 200× 1 mesh, CFL from 0.3

to 0.1 and µ = 0.

 Low numerical

dissipation/dispersion
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Unified model validation : Entropy spot advection

Figure 9: Entropy spot advection
after 20 flow-through-time periods for

different Mach numbers.

Figure 10: y = 0 density slices after
20 periods for different Ma.

200× 200× 1 mesh, CFL from 0.3

to 0.1 and µ = 0.

 Low numerical

dissipation/dispersion
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Unified model : 2D Riemann problems

Figure 11: Lax & Liu 2D Riemann
problems : Density fields of

configurations 4-6-11-12-13-16.

400× 400× 1 grid, ∆t/∆x = 0.22

extremely close to Lax & Liu’s

article, µ = 0 and discontinuity

sensor.

 Robust
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Unified model : Compressible double shear layer

Figure 12: Vorticity (top) and Mach
(bottom) at time tc (left) and 2tc (right)

using the 512× 512 grid.

Figure 13: Diagonal Vorticity and Mach
slices at time tc for different resolutions.

Initial CFL = 0.28 and µ = 0.

 Robust  35



Unified model : Vortex / Ma 1.2 shock interaction

Figure 14:
Vortex/shock
interaction :
density fields

at time
t = 3, 6, 10.

Figure 15:
Different
acoustic
slices

compared
to

reference.

CFL = 0.83 and

discontinuity sensor.

Other parameters are

identical to reference.

 Robust
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Unified model : Entropy spot / Ma 1.2 shock interaction

Figure 16: Transmitted
entropy, vorticity and pressure

fields. From left to right
γ = 1.2, 1.4 and 1.6. Analytical

and numerical solutions
respectively correspond to y < 0

and y ≥ 0.

Initial CFL = 0.42 and µ = 0.

 Robust
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Conclusion

1/ In the absence of a careful study of higher-order terms, the Lattice-Boltzmann link

with kinetic theory is blurred.

2/ ∆t → 0 is the sole necessary assumption to study a LB model. Being cheaper in term

of assumptions, the dimensional analysis outperforms Chapman-Enskog.

3/ M2P2 models are now unified under a single formalism.

4/ ”Kinetic-theory-inspired” LB schemes is not necessarily the most efficient path towards

stability/accuracy.

5/ The regularization has been extended to the trace of the stress-tensor : Πneq
αα. This

drastically improves the stability.
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