Modeling compressible flows with Lattice-Boltzmann Methods

January 19, 2022

Gabriel Farag

Sous la supervision de Pierre Boivin et Guillaume Chiavassa

Mécanique Et Complexité

Table of contents

1. Lattice-Boltzmann basics
2. Athermal Lattice-Boltzmann
3. Thermal Lattice-Boltzmann
4. Compressible models \& applications

Lattice-Boltzmann basics

Moments, distributions, lattices, discretization

Mass, momentum and energy conservations,

$$
\begin{align*}
\frac{\partial \rho}{\partial t}+\frac{\partial \rho u_{\beta}}{\partial x_{\beta}} & =0, \tag{1}\\
\frac{\partial \rho u_{\alpha}}{\partial t}+\frac{\partial\left[\rho u_{\alpha} u_{\beta}+p \delta_{\alpha \beta}-\mathcal{T}_{\alpha \beta}\right]}{\partial x_{\beta}} & =0 . \tag{2}\\
\frac{\partial \rho\left(e+u_{\alpha}^{2} / 2\right)}{\partial t}+\frac{\partial\left[\left(\rho\left(e+u_{\alpha}^{2} / 2\right)+p\right) u_{\beta}+q_{\beta}-u_{\alpha} \mathcal{T}_{\alpha \beta}\right]}{\partial x_{\beta}} & =0 . \tag{3}
\end{align*}
$$

Equations of state, e.g

Mass, momentum and energy conservations,

$$
\begin{align*}
\frac{\partial \rho}{\partial t}+\frac{\partial \rho u_{\beta}}{\partial x_{\beta}} & =0, \tag{1}\\
\frac{\partial \rho u_{\alpha}}{\partial t}+\frac{\partial\left[\rho u_{\alpha} u_{\beta}+p \delta_{\alpha \beta}-\mathcal{T}_{\alpha \beta}\right]}{\partial x_{\beta}} & =0 . \tag{2}\\
\frac{\partial \rho\left(e+u_{\alpha}^{2} / 2\right)}{\partial t}+\frac{\partial\left[\left(\rho\left(e+u_{\alpha}^{2} / 2\right)+p\right) u_{\beta}+q_{\beta}-u_{\alpha} \mathcal{T}_{\alpha \beta}\right]}{\partial x_{\beta}} & =0 . \tag{3}
\end{align*}
$$

Equations of state, e.g.

$$
\begin{array}{r}
p=\rho R T, \\
e=C_{v} T+e_{0} . \tag{5}
\end{array}
$$

Constitutive equations,

Mass, momentum and energy conservations,

$$
\begin{align*}
\frac{\partial \rho}{\partial t}+\frac{\partial \rho u_{\beta}}{\partial x_{\beta}} & =0, \tag{1}\\
\frac{\partial \rho u_{\alpha}}{\partial t}+\frac{\partial\left[\rho u_{\alpha} u_{\beta}+p \delta_{\alpha \beta}-\mathcal{T}_{\alpha \beta}\right]}{\partial x_{\beta}} & =0 . \tag{2}\\
\frac{\partial \rho\left(e+u_{\alpha}^{2} / 2\right)}{\partial t}+\frac{\partial\left[\left(\rho\left(e+u_{\alpha}^{2} / 2\right)+p\right) u_{\beta}+q_{\beta}-u_{\alpha} \mathcal{T}_{\alpha \beta}\right]}{\partial x_{\beta}} & =0 . \tag{3}
\end{align*}
$$

Equations of state, e.g.

$$
\begin{array}{r}
p=\rho R T, \\
e=C_{v} T+e_{0} . \tag{5}
\end{array}
$$

$$
\begin{align*}
& \text { Constitutive equations, } \quad q_{\alpha}=-\lambda \frac{\partial T}{\partial x_{\alpha}}, \tag{6}\\
& \mathcal{T}_{\alpha \beta}=\mu\left[\frac{\partial u_{\alpha}}{\partial x_{\beta}}+\frac{\partial u_{\beta}}{\partial x_{\alpha}}-\delta_{\alpha \beta} \frac{2}{3} \frac{\partial u_{\gamma}}{\partial x_{\gamma}}\right] . \tag{7}
\end{align*}
$$

Late 1980s, birth of Lattice-Boltzmann Methods

Use of the Boltzmann Equation to Simulate Lattice-Gas Automata

Guy R. McNamara and Gianluigi Zanetti ${ }^{(\mathrm{a})}$
The Research Institutes, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637
Figure 1: Guy R. McNamara and Gianluigi Zanetti, first Lattice-Boltzmann Model.

LBM algorithm is basically :

- Collision, local step
- Streaming, memory-shift
\rightarrow Attractive method!

McNamara, G. R., \& Zanetti, G. Use of the Boltzmann equation to simulate lattice-gas automata, Physical review letters, 1988.
O'Brien, P. M. A framework for digital watercolor, MSc thesis, Texas A\&M University, 2008.

Figure 4: D3Q15, D3Q19 and D3Q27 lattices.

Figure 3: D2Q9 lattice.

Each different lattice leads to a different Discrete Velocity Boltzmann Equation,

$$
\begin{equation*}
\frac{\partial f_{i}}{\partial t}+c_{i \alpha} \frac{\partial f_{i}}{\partial x_{\alpha}}=-\frac{1}{\tau}\left(f_{i}-f_{i}^{e q}\right)=-\frac{1}{\tau} f_{i}^{n e q}, \tag{8}
\end{equation*}
$$

c_{i} with $i=0, \ldots, q-1$ and $f_{i}(t, \boldsymbol{x})=f\left(t, x, c_{i}\right)$.

- Discrete Velocity Boltzmann Equation (DVBE) with BGK collision kernel,

$$
\begin{equation*}
\frac{\partial f_{i}}{\partial t}+c_{i \alpha} \frac{\partial f_{i}}{\partial x_{\alpha}}=-\frac{1}{\tau}\left(f_{i}-f_{i}^{e q}\right)=-\frac{1}{\tau} f_{i}^{n e q} \tag{9}
\end{equation*}
$$

- Integration along characteristic $d \boldsymbol{x}=\boldsymbol{c}_{i} d t$ and Crank-Nicolson,
$f_{i}\left(t+\Delta t, \boldsymbol{x}+\boldsymbol{c}_{i} \Delta t\right)=f_{i}(t, \boldsymbol{x})-\frac{\Delta t}{2}\left\{\left[\frac{1}{\tau} f_{i}^{n e q}\right](t, \boldsymbol{x})+\left[\frac{1}{\tau} f_{i}^{n e q}\right]\left(t+\Delta t, \boldsymbol{x}+\boldsymbol{c}_{i} \Delta t\right)\right\}$.
- Change of variables $\bar{f}_{i}=f_{i}+\frac{\Delta t}{2 \tau} f_{i}^{\text {neq }}$ and $\bar{\tau}=\tau+\Delta t / 2$,

$$
\begin{align*}
\bar{f}_{i}\left(t+\Delta t, \boldsymbol{x}+\boldsymbol{c}_{i} \Delta t\right) & =\left\{f_{i}-\frac{\Delta t}{2 \tau} f_{i}^{n e q}\right\}(t, \boldsymbol{x}), \tag{10}\\
& =\left\{f_{i}^{e q}+\left[1-\frac{\Delta t}{2 \tau}\right] f_{i}^{n e q}\right\}(t, \boldsymbol{x}), \tag{11}\\
& =\left\{f_{i}^{e q}+\left[1-\frac{\Delta t}{\tau+\Delta t / 2}\right] \bar{f}_{i}^{\text {neq }}\right\}(t, \boldsymbol{x}) . \tag{12}
\end{align*}
$$

By definition in Lattice-Boltzmann $f_{i}=f_{i}^{\text {eq }}+f_{i}^{\text {neq }}$:

$$
\begin{equation*}
\rho=\Pi^{f,(0)}=\sum_{i} f_{i}=\sum_{i} f_{i}^{e q}, \quad \rho u_{\alpha}=\Pi_{\alpha}^{f,(1)}=\sum_{i} c_{i \alpha} f_{i}=\sum_{i} c_{i \alpha} f_{i}^{e q} \tag{13}
\end{equation*}
$$

additionally, $f_{i}^{e q}$ is also built such that,

$$
\begin{equation*}
\rho u_{\alpha} u_{\beta}+p \delta_{\alpha \beta}=\Pi_{\alpha \beta}^{f e q,(2)}=\sum_{i} c_{i \alpha} c_{i \beta} f_{i}^{e q} . \tag{14}
\end{equation*}
$$

Discrete Velocity Boltzmann Equation,

$$
\begin{equation*}
\frac{\partial f_{i}}{\partial t}+c_{i \alpha} \frac{\partial f_{i}}{\partial x_{\alpha}}=\Omega_{i} \tag{15}
\end{equation*}
$$

Mass and momentum conservations are obtained using moments, e.g. :

$$
\begin{align*}
\frac{\partial \rho}{\partial t}+\frac{\partial \rho u_{\alpha}}{\partial x_{\alpha}} & =\sum_{i} \Omega_{i} \tag{16}\\
\frac{\partial \rho u_{\alpha}}{\partial t}+\frac{\partial\left[\rho u_{\alpha} u_{\beta}+p \delta_{\alpha \beta}+\Pi_{\alpha \beta}^{f n e q},(2)\right.}{} & \partial x_{\beta} \tag{17}
\end{align*} \sum_{i} c_{i \alpha} \Omega_{i},
$$

Lattice-Boltzmann with q velocities could be understood in 2 equivalent ways :

$$
\begin{gathered}
\text { DVBE, } \\
\frac{\partial f_{i}}{\partial t}+c_{i \alpha} \frac{\partial f_{i}}{\partial x_{\alpha}}=\Omega_{i}
\end{gathered}
$$

describes q equations for f_{i}.

$$
\begin{aligned}
& \text { Extended hydrodynamic system, } \\
& \frac{\partial \prod_{\alpha_{1} \cdots \alpha_{n}}^{f,(n)}}{\partial t}+\frac{\partial \Pi_{\alpha_{1} \cdots \alpha_{n} \alpha_{n+1}}^{f,(n+1)}}{\partial x_{\alpha_{n+1}}}=\Pi_{\alpha_{1} \cdots \alpha_{n}}^{\Omega,(n)} \\
& \text { describes } q \text { equations for } \Pi_{\alpha_{1} \cdots \alpha_{n}}^{f,(n)} .
\end{aligned}
$$

- What about boundary and initial conditions ?
- Which lattice closure, $f^{e q}$ and collision kernel should be used ?
- What is the range of validity in term of $\operatorname{Pr}, \mathrm{Ma}, \mathrm{Re}$, etc ?
"Higher-order hydrodynamics" is a research field by itself. Some of these models fail to reproduce physical results (e.g. Burnett with Bobylev instabilities).
\rightarrow Can we avoid those uncertainties ?

Lattice-Boltzmann is something in between Boltzmann and Navier-Stokes-Fourier.
\rightarrow How to model compressible flows with Lattice-Boltzmann ?

Nowadays, Lattice-Boltzmann is a fully fledged numerical method used for different applications : fluids, solids, Schrödinger equation, finance, advection-diffusion etc...
\rightarrow We can use classical tools: Taylor expansion and dimensional analysis.

Athermal Lattice-Boltzmann

Description of classical Lattice-Boltzmann

Athermal Lattice-Boltzmann-BGK

This model is summarized by

- Equilibrium,

$$
\begin{equation*}
f_{i}^{e q}=\omega_{i}\left\{\mathcal{H}^{(0)} \rho+\frac{\mathcal{H}_{i \alpha}^{(1)}}{c_{s}^{2}} \rho u_{\alpha}+\frac{\mathcal{H}_{i \alpha \beta}^{(2)}}{2 c_{s}^{4}}\left[\rho u_{\alpha} u_{\beta}\right]+\frac{\mathcal{H}_{i \alpha \beta \gamma}^{(3)}}{6 c_{s}^{6}}\left[\rho u_{\alpha} u_{\beta} u_{\gamma}\right]\right\} . \tag{18}
\end{equation*}
$$

- Collide \& stream, BGK,

$$
\begin{equation*}
\bar{f}_{i}(t+\Delta t, \boldsymbol{x})=\left\{f_{i}^{e q}+\left(1-\frac{\Delta t}{\tau+\Delta t / 2}\right)\left[\bar{f}_{i}-f_{i}^{e q}\right]\right\}\left(t, \boldsymbol{x}-\boldsymbol{c}_{i} \Delta t\right) . \tag{19}
\end{equation*}
$$

- Macroscopic reconstruction,

$$
\begin{align*}
\rho(t+\Delta t, \boldsymbol{x}) & =\sum_{i=0}^{q-1} \bar{f}_{i}(t+\Delta t, \boldsymbol{x}) \tag{20}\\
\rho u_{\alpha}(t+\Delta t, \boldsymbol{x}) & =\sum_{i=1}^{q-1} c_{i \alpha} \bar{f}_{i}(t+\Delta t, \boldsymbol{x}) . \tag{21}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial \prod_{\alpha_{1} \cdots \alpha_{n}}^{f,(n)}}{\partial t}+\frac{\partial \prod_{\alpha_{1} \cdots \alpha_{n} \alpha_{n+1}}^{f,(n+1)}}{\partial x_{\alpha_{n+1}}^{\prime,}}=-\frac{1}{\tau} \Pi_{\alpha_{1} \cdots \alpha_{n}}^{f n e q,(n)}+\mathcal{O}\left(\Delta t^{2}\right) \tag{22}
\end{equation*}
$$

$\mathbf{n}=\mathbf{0}$

$$
\frac{\partial \rho}{\partial t}+\frac{\partial \rho u_{\beta}}{\partial x_{\beta}}=\mathcal{O}\left(\Delta t^{2}\right)
$$

$\mathbf{n}=\mathbf{1} \quad \frac{\partial \rho u_{\alpha}}{\partial t}+\frac{\partial\left[\rho u_{\alpha} u_{\beta}+\rho c_{s}^{2} \delta_{\alpha \beta}+\Pi_{\alpha \beta}^{f n e q}(2)\right]}{\partial x_{\beta}}=\mathcal{O}\left(\Delta t^{2}\right)$

$$
\begin{array}{ll}
\mathbf{n}=2 & \frac{\partial\left[\Pi_{\alpha \beta}^{f^{e q},(2)}+\Pi_{\alpha \beta}^{f^{n e q},(2)}\right]}{\partial t}+\frac{\partial\left[\Pi_{\alpha \beta \gamma}^{f e q,(3)}+\Pi_{\alpha \beta \gamma}^{f^{n e q},(3)}\right]}{\partial x_{\gamma}}=-\frac{1}{\tau} \Pi_{\alpha \beta}^{f^{n e q},(2)}+\mathcal{O}\left(\Delta t^{2}\right) \\
\mathbf{n}=\ldots & \ldots
\end{array}
$$

Athermal model : Constitutive equation

The stress-tensor evolution equation is

$$
\begin{array}{r}
-\Pi_{\alpha \beta}^{f n e q},(2) \\
=\tau \rho c_{s}^{2}\left[\frac{\partial u_{\alpha}}{\partial x_{\beta}}+\frac{\partial u_{\beta}}{\partial x_{\alpha}}\right]+\mathcal{O}\left(\tau \frac{\partial \rho u^{3}}{\partial x}\right)+\mathcal{O}\left(\Delta t^{2}\right) \tag{23}\\
+\tau \frac{\partial \Pi_{\alpha \beta}^{f^{\text {neq }},(2)}}{\partial t}+\tau \frac{\partial \Pi_{\alpha \beta \gamma}^{f^{\text {neq }},(3)}}{\partial x_{\gamma}}-\tau\left[u_{\alpha} \frac{\partial \Pi_{\beta \gamma}^{f^{\text {neq }},(2)}}{\partial x_{\gamma}}+u_{\beta} \frac{\partial \Pi_{\alpha \gamma}^{f \text { neq }}(2)}{\partial x_{\gamma}}\right] .
\end{array}
$$

Open system because
$\Pi^{\text {fneq }}$,(3) is unknown

Athermal model : Constitutive equation

The stress-tensor evolution equation is

$$
\begin{array}{r}
-\Pi_{\alpha \beta}^{f n e q},(2) \\
=\tau \rho c_{s}^{2}\left[\frac{\partial u_{\alpha}}{\partial x_{\beta}}+\frac{\partial u_{\beta}}{\partial x_{\alpha}}\right]+\mathcal{O}\left(\tau \frac{\partial \rho u^{3}}{\partial x}\right)+\mathcal{O}\left(\Delta t^{2}\right) \tag{23}\\
+\tau \frac{\partial \Pi_{\alpha \beta}^{f n e q},(2)}{\partial t}+\tau \frac{\partial \Pi_{\alpha \beta \gamma}^{f^{n e q}(3)}}{\partial x_{\gamma}}-\tau\left[u_{\alpha} \frac{\partial \Pi_{\beta \gamma}^{f n e q},(2)}{\partial x_{\gamma}}+u_{\beta} \frac{\partial \Pi_{\alpha \gamma}^{f n e q},(2)}{\partial x_{\gamma}}\right] .
\end{array}
$$

Usual low-Mach stress-tensor,

$$
-\Pi_{\alpha \beta}^{f n e q,(2)} \approx \underbrace{\tau \rho c_{s}^{2}}_{\mu}\left[\frac{\partial u_{\alpha}}{\partial x_{\beta}}+\frac{\partial u_{\beta}}{\partial x_{\alpha}}\right]
$$

Athermal model : Constitutive equation

The stress-tensor evolution equation is

$$
\begin{gather*}
-\Pi_{\alpha \beta}^{f n e q},(2) \\
=\tau \rho c_{s}^{2}\left[\frac{\partial u_{\alpha}}{\partial x_{\beta}}+\frac{\partial u_{\beta}}{\partial x_{\alpha}}\right]+\mathcal{O}\left(\tau \frac{\partial \rho u^{3}}{\partial x}\right)+\mathcal{O}\left(\Delta t^{2}\right) \tag{23}\\
+\tau \frac{\partial \Pi_{\alpha \beta}^{f^{\text {neq }},(2)}}{\partial t}+\tau \frac{\partial \Pi_{\alpha \beta \gamma}^{f^{\text {neq }},(3)}}{\partial x_{\gamma}}-\tau\left[u_{\alpha} \frac{\partial \Pi_{\beta \gamma}^{f^{\text {neq }},(2)}}{\partial x_{\gamma}}+u_{\beta} \frac{\partial \Pi_{\alpha \gamma}^{f^{\text {neq }},(2)}}{\partial x_{\gamma}}\right] .
\end{gather*}
$$

Usual low-Mach stress-tensor,

$$
\begin{equation*}
-\Pi_{\alpha \beta}^{f n e q,(2)} \approx \underbrace{\tau \rho c_{s}^{2}}_{\mu}\left[\frac{\partial u_{\alpha}}{\partial x_{\beta}}+\frac{\partial u_{\beta}}{\partial x_{\alpha}}\right] \tag{25}
\end{equation*}
$$

$\mathcal{O}\left(u^{3}\right)$ error,
$\mathcal{O}\left(\tau \frac{\partial \rho u^{3}}{\partial x}\right) \propto u^{3}$.

Athermal model : Constitutive equation

The stress-tensor evolution equation is

$$
\begin{array}{r}
-\Pi_{\alpha \beta}^{f n e q},(2) \\
=\tau \rho c_{s}^{2}\left[\frac{\partial u_{\alpha}}{\partial x_{\beta}}+\frac{\partial u_{\beta}}{\partial x_{\alpha}}\right]+\mathcal{O}\left(\tau \frac{\partial \rho u^{3}}{\partial x}\right)+\mathcal{O}\left(\Delta t^{2}\right) \tag{23}\\
+\tau \frac{\partial \Pi_{\alpha \beta}^{f n e q},(2)}{\partial t}+\tau \frac{\partial \Pi_{\alpha \beta \gamma}^{f^{n e q}(3)}}{\partial x_{\gamma}}-\tau\left[u_{\alpha} \frac{\partial \Pi_{\beta \gamma}^{f n e q},(2)}{\partial x_{\gamma}}+u_{\beta} \frac{\partial \Pi_{\alpha \gamma}^{f n e q},(2)}{\partial x_{\gamma}}\right] .
\end{array}
$$

Usual low-Mach stress-tensor,

$$
\begin{equation*}
-\Pi_{\alpha \beta}^{f n e q},(2) \approx \underbrace{\tau \rho c_{s}^{2}}_{\mu}\left[\frac{\partial u_{\alpha}}{\partial x_{\beta}}+\frac{\partial u_{\beta}}{\partial x_{\alpha}}\right] \tag{25}
\end{equation*}
$$

$$
\begin{aligned}
& \mathcal{O}\left(u^{3}\right) \text { error, } \\
& \mathcal{O}\left(\tau \frac{\partial \rho u^{3}}{\partial x}\right) \propto u^{3} .
\end{aligned}
$$

Open system because

$$
\Pi_{\alpha \beta \gamma}^{f n e q,(3)} \text { is unknown. }
$$

Athermal model : Constitutive equation

The stress-tensor evolution equation is

$$
\begin{array}{r}
-\Pi_{\alpha \beta}^{f \text { neq },(2)}=\tau \rho c_{s}^{2}\left[\frac{\partial u_{\alpha}}{\partial x_{\beta}}+\frac{\partial u_{\beta}}{\partial x_{\alpha}}\right]+\mathcal{O}\left(\tau \frac{\partial \rho u^{3}}{\partial x}\right)+\mathcal{O}\left(\Delta t^{2}\right) \\
+\tau \frac{\partial \Pi_{\alpha \beta}^{f^{\text {neq }},(2)}}{\partial t}+\tau \frac{\partial \Pi_{\alpha \beta \gamma}^{f^{\text {neq }},(3)}}{\partial x_{\gamma}}-\tau\left[u_{\alpha} \frac{\partial \Pi_{\beta \gamma}^{f^{\text {neq }},(2)}}{\partial x_{\gamma}}+u_{\beta} \frac{\partial \Pi_{\alpha \gamma}^{f^{\text {neq }},(2)}}{\partial x_{\gamma}}\right] . \tag{23}
\end{array}
$$

Usual low-Mach stress-tensor,

$$
\begin{equation*}
-\Pi_{\alpha \beta}^{f^{n e q},(2)} \approx \underbrace{\tau \rho c_{s}^{2}}_{\mu}\left[\frac{\partial u_{\alpha}}{\partial x_{\beta}}+\frac{\partial u_{\beta}}{\partial x_{\alpha}}\right] . \tag{24}
\end{equation*}
$$

$$
\begin{align*}
& \mathcal{O}\left(u^{3}\right) \text { error, } \\
& \mathcal{O}\left(\tau \frac{\partial \rho u^{3}}{\partial x}\right) \propto u^{3} . \tag{25}
\end{align*}
$$

Open system because

$$
\Pi_{\alpha \beta \gamma}^{f n e q,(3)} \text { is unknown. }
$$

Time evolution.

Athermal constitutive equation, dimensional analysis $1 / 2$

Assuming t_{s} is the shortest characteristic time, nondimensional variables * are $\mathcal{O}(1)$,

$$
\begin{array}{r}
\frac{\partial}{\partial t}=\frac{1}{t_{s}} \frac{\partial}{\partial t^{*}}, \quad \frac{\partial}{\partial x}=\frac{1}{L_{0}} \frac{\partial}{\partial x^{*}}, \\
\Pi_{\alpha \beta}^{f^{\text {neq },(2)}=\Pi_{0} \Pi_{\alpha \beta}^{*, f n e q},(2)}, \quad \quad \Pi_{\alpha \beta \gamma}^{f n e q},(3)=Q_{0} \Pi_{\alpha \beta \gamma}^{*, f^{n e q},(3)}, \\
u=U_{0} u^{*}, \quad \rho=\rho_{0} \rho^{*}, \quad T=T_{0} T^{*}, \tag{28}
\end{array}
$$

neglecting numerical errors, the nondimensional stress-tensor is expressed as

$$
\begin{align*}
-\Pi_{\alpha \beta}^{*, f}{ }^{\text {neq },(2)} & =\frac{\mu U_{0}}{L_{0} \Pi_{0}}\left[\frac{\partial u_{\alpha}^{*}}{\partial x_{\beta}^{*}}+\frac{\partial u_{\beta}^{*}}{\partial x_{\alpha}^{*}}\right]+\mathcal{O}\left(\frac{\mu U_{0}}{L_{0} \Pi_{0}} \mathrm{Ma}^{2}\right) \\
& +\mathcal{O}\left(\frac{\mu U_{0}}{L_{0} \Pi_{0}} \frac{Q_{0}}{\rho_{0} c_{s}^{2} U_{0}}\right)+\mathcal{O}\left(\frac{\tau}{t_{s}}\right)+\mathcal{O}\left(\frac{\mathrm{Ma}^{2}}{\operatorname{Re}}\right) . \tag{29}
\end{align*}
$$

When the classical low-Mach constitutive equation is verified, only the blue part remains, in which case $\frac{\mu U_{0}}{L_{0} \Pi_{0}}=1$.

Athermal constitutive equation, dimensional analysis $2 / 2$

- $-\Pi_{\alpha \beta}^{*, f^{n e q},(2)}=\left[\frac{\partial u_{\alpha}^{*}}{\partial x_{\beta}^{*}}+\frac{\partial u_{\beta}^{*}}{\partial x_{\alpha}^{*}}\right]$ "hydrodynamic limit".
- $\mathrm{Ma}^{2} \ll 1$ error coming from u^{3} isotropy defect can be neglected.
- $\frac{Q_{0}}{\rho_{0} c_{s}^{2} U_{0}} \ll 1$ higher-order contributions from $\Pi_{\alpha \beta \gamma}^{f^{\text {neq }},(3)}$ can be neglected.
- $\frac{\tau}{t_{s}} \ll 1$ stress-tensor time derivative can be neglected.
- $\frac{\mathrm{Ma}^{2}}{\mathrm{Re}} \ll 1$ other terms can be neglected.
$\rightarrow \mathrm{Kn} \propto \mathrm{Ma} / \mathrm{Re}$ is not the only parameter that controls the consistency.

To get more insight on the interpretation of the non-equilibrium evolution, let recall the DVBE,

$$
\begin{equation*}
\frac{\partial f_{i}}{\partial t}+c_{i \alpha} \frac{\partial f_{i}}{\partial x_{\alpha}}=-\frac{1}{\tau}\left\{f_{i}-f_{i}^{e q}\right\}+\mathcal{O}\left(\Delta t^{2}\right) . \tag{30}
\end{equation*}
$$

Let also recall that $f_{i}=f_{i}^{\text {eq }}+f_{i}^{\text {neq }}$ such that the DVBE yields,

with $\Lambda_{i}=-\tau \frac{\partial f_{i}^{4}}{\partial t}-\tau c_{i} \frac{\partial f_{i}^{4}}{\partial x_{\alpha}} \cdot f_{i}^{\text {neq }}$ relaxes towards Λ_{i} with a characteristic
time τ

To get more insight on the interpretation of the non-equilibrium evolution, let recall the DVBE,

$$
\begin{equation*}
\frac{\partial f_{i}}{\partial t}+c_{i \alpha} \frac{\partial f_{i}}{\partial x_{\alpha}}=-\frac{1}{\tau}\left\{f_{i}-f_{i}^{e q}\right\}+\mathcal{O}\left(\Delta t^{2}\right) . \tag{30}
\end{equation*}
$$

Let also recall that $f_{i}=f_{i}^{e q}+f_{i}^{\text {neq }}$ such that the DVBE yields,

$$
\begin{equation*}
\frac{\partial f_{i}^{\text {neq }}}{\partial t}+c_{i \alpha} \frac{\partial f_{i}^{\text {neq }}}{\partial x_{\alpha}}=-\frac{1}{\tau}\left\{f_{i}^{\text {neq }}-\Lambda_{i}\right\}+\mathcal{O}\left(\Delta t^{2}\right), \tag{31}
\end{equation*}
$$

with $\Lambda_{i}=\left[-\tau \frac{\partial f_{i}^{\text {eq }}}{\partial t}-\tau c_{i \alpha} \frac{\partial f_{i}^{\text {eq }}}{\partial x_{\alpha}}\right] . f_{i}^{\text {neq }}$ relaxes towards Λ_{i} with a characteristic time τ.
$\rightarrow f_{i}^{\text {neq }}$ has its own "equilibrium" : Λ_{i}.

Hence, stress-tensor follows the compact equation,

$$
\begin{equation*}
\frac{\partial \Pi_{\alpha \beta}^{f \text { neq },(2)}}{\partial t}+\frac{\partial \Pi_{\alpha \beta \gamma}^{f^{\text {neq },(3)}}}{\partial x_{\gamma}}=-\frac{1}{\tau}\left\{\Pi_{\alpha \beta}^{f^{\text {nee },(2)}}-\Pi_{\alpha \beta}^{\wedge,(2)}\right\}+\mathcal{O}\left(\Delta t^{2}\right) . \tag{32}
\end{equation*}
$$

- Small lattices \rightarrow "isotropy defects" e.g. $\Pi^{(3)} \propto c_{s}^{2} \Pi^{(1)}$ (this explains the $\mathcal{O}\left(u^{3}\right)$ error in stress-tensor).
- Isotropy defect is even worse for higher order moments.

Closure : regularization, higher order moments are filtered.

The concept of regularized kernels
Collision,

$$
\begin{equation*}
f_{i}^{\text {coll }}=f_{i}^{\text {eq }}+(1-\Delta t / \bar{\tau}) \bar{f}_{i}^{\text {neq }}, \tag{33}
\end{equation*}
$$

can be projected onto moments,

$$
\begin{equation*}
\Pi^{c o l l,(3)}=\Pi^{e q,(3)}+(1-\Delta t / \bar{\tau}) \bar{\Pi}^{n e q,(3)}, \tag{34}
\end{equation*}
$$

$\Pi^{\text {neq,(3) }}$ is regularized (replaced) by $\tilde{\Pi}^{\text {neq.(3) }}$,
$\Pi^{\mathrm{coll},(3)}=\Pi^{\mathrm{eq},(3)}+(1-\Delta t / \tau) \Pi^{\text {neq.(3) }}$.
Exemple: When Latt \& Chopard regularization is applied to D3Q19, the rank
$q=19$ of the solver is reduced to $\tilde{q}=10$.
\rightarrow We are not anymore solving the Discrete Velocity Boltzmann Equation \leftarrow

The concept of regularized kernels

Collision,

$$
\begin{equation*}
f_{i}^{\text {coll }}=f_{i}^{e q}+(1-\Delta t / \bar{\tau}) \bar{f}_{i}^{\text {neq }}, \tag{33}
\end{equation*}
$$

can be projected onto moments,

$$
\begin{equation*}
\Pi^{\text {coll,(3) }}=\Pi^{e q,(3)}+(1-\Delta t / \bar{\tau}) \bar{\Pi}^{\text {neq,(3) }} \tag{34}
\end{equation*}
$$

$\bar{\Pi}^{\text {neq,(3) }}$ is regularized (replaced) by $\tilde{\Pi}^{\text {neq,(3) }}$,

$$
\begin{equation*}
\Pi^{\mathrm{coll},(3)}=\Pi^{e q,(3)}+(1-\Delta t / \bar{\tau}) \tilde{\Pi}^{\text {neq },(3)} . \tag{35}
\end{equation*}
$$

Exemple : When Latt \& Chopard regularization is applied to D3Q19, the rank $q=19$ of the solver is reduced to $\tilde{q}=10$.
\rightarrow We are not anymore solving the Discrete Velocity Boltzmann Equation

Regularized Lattice-Boltzmann model is obtained using Taylor expansion,

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+\frac{\partial \rho u_{\beta}}{\partial x_{\beta}}=\mathcal{O}\left(\Delta t^{2}\right), \tag{36}\\
& \frac{\partial \rho u_{\alpha}}{\partial t}+\frac{\partial\left[\rho u_{\alpha} u_{\beta}+\rho c_{s}^{2} \delta_{\alpha \beta}+\Pi_{\alpha \beta}^{f n e q},(2)\right.}{\partial x_{\beta}}=\mathcal{O}\left(\Delta t^{2}\right), \tag{37}\\
& \frac{\partial \Pi_{\alpha \beta}^{f n e q},(2)}{\partial t}+\frac{\partial \tilde{\Pi}_{\alpha \beta \gamma}^{\text {feq }},(3)}{\partial x_{\gamma}}=-\frac{1}{\tau}\left\{\Pi_{\alpha \beta}^{f \text { neq },(2)}-\Pi_{\alpha \beta}^{\Lambda,(2)}\right\}+\mathcal{O}(\Delta t) . \tag{38}
\end{align*}
$$

Stress-tensor evolution is $\mathcal{O}(\Delta t)$ accurate, but $\tilde{\Pi}^{n e q,(3)}$ can be freely changed to increase stability/accuracy.

Thermal Lattice-Boltzmann

Hybrid coupling, entropy equation and traceless collision

Due to isotropy errors $\left(\Pi^{(3)} \propto c_{s}^{2} \Pi^{(1)}\right)$, energy conservation is wrong with standard lattices (e.g. D3Q19). Possible solutions,

- Multispeed, one large set of distributions. Computational efficiency is at stake. X
- Double Distributions coupling, 2 sets of distributions, one for mass/momentum and another for energy. Computational efficiency is at stake. X
- Hybrid coupling, 1 small set of distributions and 1 energy equation discretized by a finite difference scheme. Cheaper, allows coupling with a wide variety of models.

The entropy is a mode of the linearized Euler system, its coupling with mass/momentum is weaker than using e.g. total energy or enthaply.

Entropy equation in the frame reference of a plane discontinuity,

$$
\begin{equation*}
u \frac{\partial s}{\partial x}=0 \tag{39}
\end{equation*}
$$

Contact discontinuity is compatible. Shock is not, because $u \neq 0$ such that $\partial s / \partial x=0$ is necessary.

Figure 5: Entropy jump error with entropy equation as a function of Ma. $\gamma=1.2,1.4,1.6,1.8$ (top to bottom).

Acceptable errors on plane shocks ($\sim 5 \%$) up to Mach $1.4 \leftarrow$

Step-by-step Lattice-Boltzmann scheme from t to $t+\Delta t$

- Initial solution, $\rho(t, \boldsymbol{x}), u_{\alpha}(t, \boldsymbol{x}), T(t, \boldsymbol{x})$ and $\Pi_{\alpha \beta}^{\text {fneq },(2)}(t, \boldsymbol{x})$ are known.
\square

Lattice-Boltzmann

- Compute Equilibrium $f_{i}^{\text {eq }}(t, x)$
and Non-Equilibrium $\bar{f}_{i}^{\text {neq }}(t, \boldsymbol{x})$.
- Collide \& Stream provides the
updated distribution $\bar{f}_{i}(t+\Delta t, \boldsymbol{x})$
- Macroscopic update provides $\rho(t+\Delta t, x)$ and $u_{\alpha}(t+\Delta t, x)$.
- Compute the updated Entropy
using a one step
explicit scheme. MUSCL-Hancock
for advection and centered schemes
for heat diffusion and viscous heat.
- Temperature update $T(t+\Delta t, \boldsymbol{x})$ using $\rho(t+\Delta t, x)$ and
- Stress-tensor update $\Pi_{\alpha \beta}^{f n e q}(t+\Delta t, \boldsymbol{x})$ using $\Pi_{\alpha \beta}^{f}, \rho, u_{\alpha}, T(t+\Delta t, x)$
\qquad

Step-by-step Lattice-Boltzmann scheme from t to $t+\Delta t$

- Initial solution, $\rho(t, \boldsymbol{x}), u_{\alpha}(t, \boldsymbol{x}), T(t, \boldsymbol{x})$ and $\Pi_{\alpha \beta}^{f^{n e q},(2)}(t, \boldsymbol{x})$ are known.

Lattice-Boltzmann

- Compute Equilibrium $f_{i}^{e q}(t, \boldsymbol{x})$ and Non-Equilibrium $\bar{f}_{i}^{n e q}(t, \boldsymbol{x})$.
- Collide \& Stream provides the updated distribution $\bar{f}_{i}(t+\Delta t, \boldsymbol{x})$.
- Macroscopic update provides $\rho(t+\Delta t, x)$ and $u_{\alpha}(t+\Delta t, x)$.
- Temperature update $T(t+\Delta t, \boldsymbol{x})$ using $\rho(t+\Delta t, x)$ and
- Stress-tensor undate $\Pi^{f}(t+\Lambda t, x)$ using $\Pi^{f} \quad \Omega u_{\alpha} T(t+\Delta t, x)$

Step-by-step Lattice-Boltzmann scheme from t to $t+\Delta t$

- Initial solution, $\rho(t, \boldsymbol{x}), u_{\alpha}(t, \boldsymbol{x}), T(t, \boldsymbol{x})$ and $\Pi_{\alpha \beta}^{f^{n e q},(2)}(t, \boldsymbol{x})$ are known.

Lattice-Boltzmann

- Compute Equilibrium $f_{i}^{\text {eq }}(t, \boldsymbol{x})$ and Non-Equilibrium $\bar{f}_{i}^{n e q}(t, \boldsymbol{x})$.
- Collide \& Stream provides the updated distribution $\bar{f}_{i}(t+\Delta t, \boldsymbol{x})$.
- Macroscopic update provides
$\rho(t+\Delta t, x)$ and $u_{\alpha}(t+\Delta t, x)$.

Finite Differences

- Compute the updated Entropy

$$
s(t+\Delta t, x) \text { using a one step }
$$ explicit scheme. MUSCL-Hancock for advection and centered schemes for heat diffusion and viscous heat.

- Temperature update $T(t+\Delta t, x)$ using $\rho(t+\Delta t, x)$ and
- Stress-tensor update $\Pi_{\alpha \beta}^{f n e q}(t+\Delta t, \boldsymbol{x})$ using $\Pi_{\alpha \beta}^{f}, \rho, u_{\alpha}, T(t+\Delta t, \boldsymbol{x})$
- Initial solution, $\rho(t, \boldsymbol{x}), u_{\alpha}(t, \boldsymbol{x}), T(t, \boldsymbol{x})$ and $\Pi_{\alpha \beta}^{f^{n e q},(2)}(t, \boldsymbol{x})$ are known.

Lattice-Boltzmann

- Compute Equilibrium $f_{i}^{e q}(t, \boldsymbol{x})$ and Non-Equilibrium $\bar{f}_{i}^{\text {neq }}(t, \boldsymbol{x})$.
- Collide \& Stream provides the updated distribution $\bar{f}_{i}(t+\Delta t, \boldsymbol{x})$.
- Macroscopic update provides
$\rho(t+\Delta t, \boldsymbol{x})$ and $u_{\alpha}(t+\Delta t, \boldsymbol{x})$.

Finite Differences

- Compute the updated Entropy

$$
s(t+\Delta t, x) \text { using a one step }
$$ explicit scheme. MUSCL-Hancock for advection and centered schemes for heat diffusion and viscous heat.

- Temperature update $T(t+\Delta t, \boldsymbol{x})$ using $\rho(t+\Delta t, \boldsymbol{x})$ and $s(t+\Delta t, x)$.
- Stress-tensor update $\Pi_{\alpha \beta}^{\bar{f}^{n e q}}(t+\Delta t, \boldsymbol{x})$ using $\left[\Pi_{\alpha \beta}^{\bar{f}}, \rho, u_{\alpha}, T\right](t+\Delta t, \boldsymbol{x})$.
\rightarrow Interface bewteen LBM/FD is the second order moment \leftarrow

Thermal coupling, traceless collision

$\Pi_{\alpha \beta}^{\bar{f}^{\text {neq }}}$ uses $\Pi_{\alpha \beta}^{\bar{f}}, \rho, u_{\alpha}(\mathrm{LBM})$ and $p(\mathrm{LBM} / \mathrm{FD})$,

$$
\begin{align*}
\Pi_{\alpha \beta}^{\bar{f}^{n e q}} & =\left(\Pi_{\alpha \beta}^{\bar{f}}-\Pi_{\alpha \beta}^{f e q}\right) \\
& =\left(\Pi_{\alpha \beta}^{\bar{f}}-\left[\rho u_{\alpha} u_{\beta}+p \delta_{\alpha \beta}\right]\right) . \tag{40}
\end{align*}
$$

Coupling errors between LBM/FD are stacked in the trace of $\Pi_{\alpha \beta}^{\bar{f}^{\text {neq }}}$.
A compressible scheme traditionally uses Stokes Hypothesis (traceless $\Pi_{\alpha \beta}^{f n e q}(2)$),

The trace $\Pi_{\alpha \alpha}^{\bar{f}^{n e q}}$ is pure errors, it could be safely replaced by 0 . \rightarrow New regularization $\Pi^{\bar{f}^{\text {neq }}}-0$ improves the stability

$$
\begin{align*}
& \Pi_{\alpha \beta}^{\bar{f}^{\text {neq }}} \text { uses } \Pi_{\alpha \beta}^{\bar{f}}, \rho, u_{\alpha}(\text { LBM }) \text { and } p(\text { LBM /FD), } \\
& \Pi_{\alpha \beta}^{\bar{f}^{\text {neq }}}=\left(\Pi_{\alpha \beta}^{\bar{f}}-\Pi_{\alpha \beta}^{\text {eq }}\right) \\
& =\left(\Pi_{\alpha \beta}^{\bar{f}}-\left[\rho u_{\alpha} u_{\beta}+p \delta_{\alpha \beta}\right]\right) . \tag{40}
\end{align*}
$$

Coupling errors between LBM/FD are stacked in the trace of $\Pi_{\alpha \beta}^{\bar{f}^{\text {neq }}}$.
A compressible scheme traditionally uses Stokes Hypothesis (traceless $\Pi_{\alpha \beta}^{f n e q,(2)}$),

$$
\begin{equation*}
-\Pi_{\alpha \beta}^{f n e q},(2)=\mu\left[\frac{\partial u_{\alpha}}{\partial x_{\beta}}+\frac{\partial u_{\beta}}{\partial x_{\alpha}}-\frac{2 \delta_{\alpha \beta}}{3} \frac{\partial u_{\gamma}}{\partial x_{\gamma}}\right] \tag{41}
\end{equation*}
$$

The trace $\Pi_{\alpha \alpha}^{\bar{f}^{\text {neq }}}$ is pure errors, it could be safely replaced by 0 .
\rightarrow New regularization $\Pi_{\alpha \alpha}^{\bar{f}^{\text {neq }}}=0$ improves the stability.

Farag, G. \& Zhao, S. \& Coratger, T. \& Boivin, P. \& Sagaut, P. A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows, Physics of Fluids, 2020.

Compressible models \& applications

Pressure-based model, unified model, applications

M2P2 Lattice-Boltzmann models 1/2

During the past few years, M2P2 designed different compressible models,

- Density based (ρ-based), 2019,

E Y. Feng, P. Boivin, J. Jacob and P. Sagaut. Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic compressible flows. Journal of Computational Physics, 2019.
E F. Renard, Y. Feng, , JF. Boussuge and P. Sagaut. Improved compressible Hybrid Lattice Boltzmann Method on standard lattice for subsonic and supersonic flows. Computers \& Fluids, 2021.

- Pressure based (p-based), early 2020,

E G. Farag, S. Zhao, T. Coratger, P. Boivin, G. Chiavassa and P. Sagaut. A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows. Physics of Fluids, 2020.

- Improved-density based ($i \rho$-based), late 2020,

E S. Guo, Y. Feng and P. Sagaut. Improved standard thermal lattice Boltzmann model with hybrid recursive regularization for compressible laminar and turbulent flows. Physics of Fluids, 2020.
\rightarrow How do they differ from one another ? Which one should be used ?

Their $2^{\text {nd }}$-order distributions are :

$$
\begin{align*}
f_{i}^{\rho, e q} & =\omega_{i}\left\{\rho+\frac{\mathcal{H}_{i \alpha}^{(1)}}{c_{s}^{2}} \rho u_{\alpha}+\frac{\mathcal{H}_{i \alpha \beta}^{(2)}}{2 c_{s}^{4}}\left[\rho u_{\alpha} u_{\beta}+\delta_{\alpha \beta} \rho c_{s}^{2}(\theta-1)\right]\right\} \tag{42}\\
f_{i}^{\boldsymbol{p}, e q} & =\omega_{i}\left\{\rho \theta+\frac{\mathcal{H}_{i \alpha}^{(1)}}{c_{s}^{2}} \rho u_{\alpha}+\frac{\mathcal{H}_{i \alpha \beta}^{(2)}}{2 c_{s}^{4}}\left[\rho u_{\alpha} u_{\beta}+\delta_{\alpha \beta} 0\right]\right\} \tag{43}\\
f_{i}^{i \boldsymbol{i}, e q} & =\omega_{i}\left\{\rho+\frac{\mathcal{H}_{i \alpha}^{(1)}}{c_{s}^{2}} \rho u_{\alpha}+\frac{\mathcal{H}_{i \alpha \beta}^{(2)}}{2 c_{s}^{4}}\left[\rho u_{\alpha} u_{\beta}+\delta_{\alpha \beta} 0\right]+\frac{\omega_{i}-\delta_{0 i}}{\omega_{i}} \rho[\theta-1]\right\} \tag{44}
\end{align*}
$$

With 2 different update rules for mass :

- $\rho / i \rho$-based : $\rho(t+\Delta t, \boldsymbol{x})=\sum_{i=0}^{q-1} \bar{f}_{i}(t+\Delta t, \boldsymbol{x})$
- p-based : $\quad \rho(t+\Delta t, \boldsymbol{x})=\sum_{i=0}^{q-1} \bar{f}_{i}(t+\Delta t, \boldsymbol{x})+\rho(t, \boldsymbol{x})[1-\theta(t, x)]$
\rightarrow Very close equations, let us try to find a generalized formulation.

Considering the D3Q19 lattice a function can be projected onto its basis

$$
\begin{align*}
& \left(\mathcal{H}_{i}^{(0)}, \mathcal{H}_{i x}^{(1)}, \mathcal{H}_{i y}^{(1)}, \mathcal{H}_{i z}^{(1)}, \mathcal{H}_{i x x}^{(2)}, \mathcal{H}_{i y y}^{(2)}, \mathcal{H}_{i z z}^{(2)}, \mathcal{H}_{i x y}^{(2)}, \mathcal{H}_{i x z}^{(2)}, \mathcal{H}_{i y z}^{(2)},\right. \\
& \left.\mathcal{H}_{i x x y}^{(3)}, \mathcal{H}_{i x x z}^{(3)}, \mathcal{H}_{i y y x}^{(3)}, \mathcal{H}_{i y y z}^{(3)}, \mathcal{H}_{i z z x}^{(3)}, \mathcal{H}_{i z z y}^{(3)}, \mathcal{A}_{i}, \mathcal{B}_{i}, \mathcal{C}_{i}\right) \tag{47}
\end{align*}
$$

The equilibrium distribution that generalizes M2P2 models is

$$
\begin{align*}
f_{i}^{e q} & =\omega_{i}\left\{\mathcal{H}^{(0)} \rho+\frac{\mathcal{H}_{i \alpha}^{(1)}}{c_{s}^{2}} \rho u_{\alpha}+\frac{\mathcal{H}_{i \alpha \beta}^{(2)}}{2 c_{s}^{4}}\left[\rho u_{\alpha} u_{\beta}+\delta_{\alpha \beta} \rho c_{s}^{2}(\theta-1)\right]+\frac{\mathcal{H}_{i \alpha \beta \gamma}^{(3)}}{6 c_{s}^{6}}\left[\rho u_{\alpha} u_{\beta} u_{\gamma}\right.\right. \\
& \left.\left.-\kappa \rho c_{s}^{2}\left(u_{\alpha} \delta_{\beta \gamma}+u_{\beta} \delta_{\gamma \alpha}+u_{\gamma} \delta_{\alpha \beta}\right)\right]-\frac{\mathcal{A}_{i}+\mathcal{B}_{i}+\mathcal{C}_{i}}{12 c_{s}^{4}} \rho[\theta-1](1-\zeta)\right\} \tag{48}
\end{align*}
$$

- $\zeta=1$ and $\kappa=1-\theta$ is the classical ρ-based.
- $\zeta=0$ and $\kappa=0$ is for p-based and $i \rho$-based. Same core model!
\rightarrow Differences between models are inside $3^{\text {rd }}$ and $4^{\text {th }}$-order moments.

Unified model on D3Q19, ingredients

1/ Classical thermal equilibrium up to $2^{\text {nd }}$-order \rightarrow Consistent mass and momentum Euler conservation.

2/ Higher-order equilibrium moments related to $\mathcal{A}_{i} \mathcal{B}_{i}$ and \mathcal{C}_{i} polynomials and force correction term similar to pressure-based model \rightarrow Improved stability.
3/ Athermal $3^{r d}$ order equilibrium moments $\rho u_{\alpha} u_{\beta} u_{\gamma} \rightarrow$ Improved stability and more reasonable errors $\mathcal{O}\left(\frac{\mathrm{Ma}^{2} \mathrm{CFL}{ }^{2}}{\operatorname{Re}(\mathrm{Ma}+1)^{2}}\right)$ compared to $\mathcal{O}\left(\frac{\mathrm{Ma}^{2}}{\operatorname{Re}}\right)+\mathcal{O}\left(\frac{1}{\operatorname{RePr}}\right)$ in classical density-based thermal model.

4/ Entropy equation using MUSCL-Hancock scheme \rightarrow Reasonable trade-off between small stencil (1D is 5points), both stability and accuracy are improved.

5/ Discontinuity sensor based on density \rightarrow Increased viscosity in both shocks and contact discontinuities.

6/ Small artificial bulk viscosity \rightarrow Necessary for very high Mach $\gtrsim 1.7$.
7/ Recursive regularization and regularization of stress-tensor trace \rightarrow Improved stability.

Unified model validation : Thermal Couette flow

Figure 6: \square, \times and \bigcirc are the $\mathrm{Ma}=1.3,2.3,3.3$ analytical solution. - correspond to numerical solutions with the unified model.
$100 \times 1 \times 1$ mesh, CFL ranging between 0.5 and 0.2 .
\rightarrow Accurate viscosity, heat diffusion and viscous heat \leftarrow

Unified model validation : Isenstropic vortex advection

Figure 7: Isentropic vortex advection after 20 flow-through-time periods for different Mach numbers.

Figure 8: $y=0$ density slices after 20 periods for different Ma.
$200 \times 200 \times 1$ mesh, CFL from 0.3 to 0.1 and $\mu=0$.
\rightarrow Low numerical dissipation/dispersion \leftarrow

Unified model validation : Entropy spot advection

Figure 9: Entropy spot advection after 20 flow-through-time periods for different Mach numbers.

Figure 10: $y=0 \stackrel{x}{d}$ ensity slices after 20 periods for different Ma.
$200 \times 200 \times 1$ mesh, CFL from 0.3
to 0.1 and $\mu=0$.
Low numerical
dissipation/dispersion \leftarrow

Unified model : 2D Riemann problems

Figure 11: Lax \& Liu 2D Riemann problems : Density fields of configurations 4-6-11-12-13-16.
$400 \times 400 \times 1$ grid, $\Delta t / \Delta x=0.22$
extremely close to Lax \& Liu's article, $\mu=0$ and discontinuity sensor.
\rightarrow Robust \leftarrow

Unified model : Compressible double shear layer

Figure 12: Vorticity (top) and Mach (bottom) at time t_{c} (left) and $2 t_{c}$ (right) using the 512×512 grid.

Initial CFL $=0.28$ and $\mu=0$.
\rightarrow Robust \leftarrow

Unified model : Vortex / Ma 1.2 shock interaction

Figure 14:
Vortex/shock interaction: density fields at time $t=3,6,10$.

Figure 15:
Different acoustic slices compared
to reference.

$$
C F L=0.83 \text { and }
$$ discontinuity sensor. Other parameters are identical to reference.

\rightarrow Robust \leftarrow

Unified model : Entropy spot / Ma 1.2 shock interaction

Figure 16: Transmitted entropy, vorticity and pressure fields. From left to right $\gamma=1.2,1.4$ and 1.6. Analytical and numerical solutions respectively correspond to $y<0$ and $y \geq 0$.

Initial CFL $=0.42$ and $\mu=0$.
\rightarrow Robust \leftarrow

Conclusion

1/ In the absence of a careful study of higher-order terms, the Lattice-Boltzmann link with kinetic theory is blurred.

2/ $\Delta t \rightarrow 0$ is the sole necessary assumption to study a LB model. Being cheaper in term of assumptions, the dimensional analysis outperforms Chapman-Enskog.

3/ M2P2 models are now unified under a single formalism.
4/ "Kinetic-theory-inspired" LB schemes is not necessarily the most efficient path towards stability/accuracy.

5/ The regularization has been extended to the trace of the stress-tensor: $\Pi_{\alpha \alpha}^{n e q}$. This drastically improves the stability.

Short bibliography

J. Latt \& B. Chopard. Lattice Boltzmann method with regularized pre-collision distribution functions, Mathematics and Computers in Simulation, 2006.

E F. Dubois. Equivalent partial differential equations of a lattice Boltzmann scheme, Computers \& Mathematics with Applications, 2008.
E. C. Coreixas, G. Wissocq, G. Puigt, J. F. Boussuge \& P. Sagaut. Recursive regularization step for high-order lattice Boltzmann methods, Physical Review E, 2017.
E J. Jacob, O. Malaspinas \& P. Sagaut. A new hybrid recursive regularised Bhatnagar-Gross-Krook collision model for Lattice Boltzmann method-based large eddy simulation, Journal of Turbulence, 2018.
E Y. Feng, P. Boivin, J. Jacob \& P. Sagaut Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic compressible flows, Journal of Computational Physics, 2019.

E G. Farag, S. Zhao, T. Coratger, P. Boivin \& P. Sagaut. A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows, Physics of Fluids, 2020.

日 S. Guo, Y. Feng \& P. Sagaut Improved standard thermal lattice Boltzmann model with hybrid recursive regularization for compressible laminar and turbulent flows, Physics of Fluids, 2020.

日 G. Farag, S. Zhao, G. Chiavassa \& P. Boivin. Consistency study of Lattice-Boltzmann schemes macroscopic limit, Physics of Fluids, 2021.
E F. Renard, Y. Feng, , JF. Boussuge \& P. Sagaut Improved compressible Hybrid Lattice Boltzmann Method on standard lattice for subsonic and supersonic flows, Computers \& Fluids, 2021.
E G. Farag, T. Coratger, G. Wissocq, S. Zhao, P. Boivin \& P. Sagaut. A unified hybrid lattice-Boltzmann method for compressible flows: Bridging between pressure-based and density-based methods, Physics of Fluids, 2021.
E. G. Wissocq \& P. Sagaut. Hydrodynamic limits and numerical errors of isothermal lattice Boltzmann schemes, Journal of Computational Physics, 2022.

