Ternary Conservative Phase-field Lattice Boltzmann Method and Its Applications

LBM Working Group Meeting Institute of Henri Poincare

May 18, 2022

Taehun Lee

Department of Mechanical Engineering and CUNY Energy Institute City University of New York – City College (CCNY), New York, USA

This work is supported by PSC CUNY, DOE NEUP, NRC, and NSF

Breakup of liquid filament

Multi-phase Flow Simulations with LBM

Re., = 446 Re., = 446 W. = 400 Drop released at = 5D

Less viscous (left) and viscous (right) drop impact

Irmgard, Ray, Morris, Lee, & Nagel, Soft Matter 2016

Drop Splashing

Unstructured two-phase LBM

Wardle & Lee, Comp Math Appl 2013

Liquid bridge break-up

Connington, Miskin, Lee, Morris, Jaeger, IJMF 2015

Lee, in preparation

Lee, in preparation

Engulfment of a Drop on Solids Coated by a Film

- (A) Experimental setup. Water/glycerol pendant drops of radius R~1 mm and viscosity $\eta_w = [0.035 0.154]Pa \cdot s$ are brought into contact with a silicone oil film of height H and viscosity $\eta_o = [0.33 1.54]Pa \cdot s$. Viscosity ratios are held at 1:10.
- (B) Initialization of the droplet spreading simulation.

Note: The dynamics of droplets coalescing with solids coated with a very thin oil film H/R<<1 can be characterized by an inertial time scale $t_{\rho} = \sqrt{\frac{\rho R^3}{\sigma_{ao}}}$ for Oh<<1 and by a viscous time scale $t_{\eta} = \frac{\eta_o R}{\sigma_{ao}}$ for Oh>>1 (Carlson 2013), where $Oh = \frac{\eta_o}{\sqrt{\rho_o \sigma_{wo} R}}$. (Zhao, Kern, Carlson, and Lee, in preparation)

Engulfment of a Drop on Solids Coated by a Film

Droplet dynamics on a thin oil film H/R=0.1 and a thick film H/R=4 for Oh=0.07.

Droplet dynamics on a thin oil film H/R=0.1 and a thick film H/R=4 for Oh=5.2.

Engulfment of a Drop on Solids Coated by a Film

Comparison between the simulation and the experiment for H/R=0.2. Simulation: Oh=40. Experiment: Oh=57.

Contour plot of the viscous dissipation of a thin film H/R=0.1 and a thick film H/R=4 for Oh=5.27.

 Model equation: External intermolecular force based singlecomponent two-phase flow model (He et al. 1998 PRE; Lee and Fischer 2006 PRE) and incompressible binary two-phase flow model (He et al. 1999 JCP; Lee and Liu 2010 JCP)

$$\frac{\partial f_{\alpha}}{\partial t} + \boldsymbol{e}_{\alpha} \cdot \nabla f_{\alpha} = -\frac{1}{\lambda} (f_{\alpha} - f_{\alpha}^{eq}) + \frac{(\boldsymbol{e}_{\alpha} - \boldsymbol{u}) \cdot \boldsymbol{F}}{\rho c_{s}^{2}} f_{\alpha}^{eq}$$

- External force based model vs. equilibrium free energy model (Wagner & Qi 2006 Physica A) ; External force based model & S-C model (He et al. 1998 PRE): They can be shown equivalent
- Other (early) stable models: single-component two-phase flow model (Yuan & Schaefer 2006 PF) and incompressible binary two-phase flow model (Inamuro et al. 2004 JCP; Zheng et al. 2006 JCP)
- Non phase-field model (sharp interface model): Front-tracking LBM (Lallemand 2007 JCP), VOF LBM (Thurey et al. Proc. Vision Mod Visualization 2006) → simpler physics and generally more stable but not necessarily more accurate

→ Momentum equation for non-ideal gas: $\mathbf{F} = \nabla \rho c_s^2 - \nabla p_0 + \rho \kappa \nabla \nabla^2 \rho$

• Model equation:

$$\frac{\partial f_{\alpha}}{\partial t} + \boldsymbol{e}_{\alpha} \cdot \nabla f_{\alpha} = -\frac{1}{\lambda} \left(f_{\alpha} - f_{\alpha}^{eq} \right) + \underbrace{\frac{(\boldsymbol{e}_{\alpha} - \boldsymbol{u}_{\alpha}) \cdot \boldsymbol{F}}{\rho c_{s}^{2}}}_{\sim t_{\alpha} \left(\underbrace{\frac{\boldsymbol{e}_{\alpha} - \boldsymbol{u}_{\alpha}}{c_{s}^{2}} + \underbrace{\frac{(\boldsymbol{e}_{\alpha} \cdot \boldsymbol{u})\boldsymbol{e}_{\alpha} - \boldsymbol{u}c_{s}^{2}}{c_{s}^{4}} \right)}_{\sim F} \quad \text{Guo et al. 2002}$$

Recovered Governing Equations:

201

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$$

$$\frac{\partial \rho \boldsymbol{u}}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} \boldsymbol{u}) = -\nabla \rho c_s^2 + \underbrace{\boldsymbol{F}}_{\nabla \rho c_s^2 - \nabla p_0 + \rho \kappa \nabla \nabla^2 \rho} + \nabla \cdot \eta (\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T)$$

- Enforcing incompressibility typically requires certain transformation to introduce $abla p^{dynamic}$
- Additional LB equation for passive scalar with the velocity from $u = \frac{1}{\rho} \sum e_{\alpha} f_{\alpha}$ and $\rho = \sum h_{\alpha}$

$$\frac{\partial h_{\alpha}}{\partial t} + \boldsymbol{e}_{\alpha} \cdot \nabla h_{\alpha} = -\frac{1}{\lambda} \left(h_{\alpha} - h_{\alpha}^{eq} \right) + \frac{(\boldsymbol{e}_{\alpha} - \boldsymbol{u}_{\alpha}) \cdot \boldsymbol{G}}{\rho c_{s}^{2}} f_{\alpha}^{eq}$$

• Recovered scalar transport equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = \nabla \cdot \lambda c_s^2 (\boldsymbol{G} - \boldsymbol{F})$$

• SC force: $\mathbf{F} = -g\psi(\mathbf{x})\sum_{\alpha}\psi(\mathbf{x} + \mathbf{e}_{\alpha}\delta_{t})\mathbf{e}_{\alpha} = -\nabla\left(\frac{3gc_{s}^{2}\delta_{t}\psi^{2}}{2}\right) - \frac{3gc_{s}^{4}\delta_{t}^{3}}{8}\psi\nabla\nabla^{2}\psi$

He et al. PRE 1997

- Free energy functional: $\Psi = \int \left(E_0 + \frac{\kappa}{2} |\nabla \rho|^2 \right) dV \int_S \rho_S \phi \, dS$ $E_0 \approx \beta \left(\rho - \rho_{liq}^{sat} \right)^2 \left(\rho - \rho_{vap}^{sat} \right)^2 \qquad \left(\mu_0 = \frac{\partial E_0}{\partial \rho}, p_0 = \rho \frac{\partial E_0}{\partial \rho} - E_0 \right)$
- In plane interface, density profile (D being interface thickness) is determined such that the energy is minimized ($\mu = \mu_0 \kappa \nabla^2 \rho$) (Lee and Lin, JCP 2005)

$$\rho(z) = \frac{\rho_{liq}^{sat} + \rho_{vap}^{sat}}{2} + \frac{\rho_{liq}^{sat} - \rho_{vap}^{sat}}{2} \tanh\left(\frac{2z}{D}\right)$$

Surface tension:

$$\sigma = \frac{\left(\rho_{liq}^{sat} - \rho_{vap}^{sat}\right)^3}{6} \sqrt{2\kappa\beta}, \qquad \qquad \kappa = \frac{\beta D^2 \left(\rho_{liq}^{sat} - \rho_{vap}^{sat}\right)^3}{8}$$

• Boundary condition: $\kappa \frac{\partial \rho}{\partial n} = -\phi$, $\frac{\partial \mu}{\partial n} = 0$

 $\Omega = \frac{4\phi}{\left(\rho_{liq}^{sat} - \rho_{vap}^{sat}\right)^2 \sqrt{2\kappa\beta}}$ (Dimensionless wetting potential) $\cos \theta_w = \frac{(1+\Omega)^{3/2} - (1-\Omega)^{3/2}}{2}$ (Equilibrium contact angle)

Fig. 1: Density profile in the normal direction to wall (a) liquid (b) vapor

LBM as Phase Field/Diffuse Interface Approach

- Pressure tensor and/or chemical potential are defined such that the system will phase separate below the critical temperature
- Interfaces and their associated dynamics will be a natural feature of the simulation
- Ability to handle tortuous interface geometries without having to resort to *interface-tracking schemes* (weakness: necessity for interface to have finite width)
- When exploring systems on a mesoscopic scale it is very reasonable that finite width of a thermodynamic interface is explicitly apparent in the simulation → vital in controlling the dynamics of moving contact line or phase ordering of a fluid
- Stable NS diffuse interface approach is also new (Ding et al. 2007 JCP)

- Phase-field LBM appears to be more stable than NS version of phase-field approach (PF-NS is generally less stable than Level set, FT or VOF-NS)
- Forcing terms are stiff!
- **1** Large density gradient $F = \nabla \rho c_s^2 \nabla p_0 + \rho \kappa \nabla \nabla^2 \rho$
 - Stiff equation of state
 - Large surface tension force

- $F = \nabla \rho c_s^2 \nabla p_0 + \rho \kappa \nabla \nabla^2 \rho$ $F = \nabla \rho c_s^2 \nabla p_0 + \rho \kappa \nabla \nabla^2 \rho$ $F = \nabla \rho c_s^2 \nabla p_0 + \rho \kappa \nabla \nabla^2 \rho$
- Larger speed of sound at large density ratio \rightarrow sharper interface
- Discretization: Upwind biased vs. Central schemes
- Spurious currents (parasitic currents) \rightarrow not clear

Incompressible Navier-Stokes Equations

or **PPE**:
$$\nabla \cdot \left(\frac{1}{\rho} \nabla P\right) = -\nabla \cdot \left(\mathbf{u} \cdot \nabla \mathbf{u} - \frac{1}{\rho} \nabla \cdot \eta (\nabla \mathbf{u} + \nabla \mathbf{u}^T) - \frac{1}{\rho} \mathbf{F}_s + \frac{\partial \mathbf{u}}{\partial t}\right)$$

 $\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = -\nabla P + \nabla \cdot \eta (\nabla \mathbf{u} + \nabla \mathbf{u}^T) + \mathbf{F}_{surface \ tension}$

Interface Tracking Equations

$$\frac{\partial \rho}{\partial t} + \boldsymbol{u} \cdot \nabla \rho = \rho \nabla \cdot \boldsymbol{u} \quad \xrightarrow{\nabla \cdot \boldsymbol{u} = 0} \quad \frac{\partial \rho}{\partial t} + \boldsymbol{u} \cdot \nabla \rho = 0$$

or define volume fraction $\boldsymbol{\phi}$ s.t. $\rho = \boldsymbol{\phi}\rho_l + (1 - \boldsymbol{\phi}) \rho_v$ $\frac{\partial \phi}{\partial t} + \boldsymbol{u} \cdot \nabla \phi = 0$ or define level set function $\boldsymbol{\psi}$ s.t. $|\nabla \psi| = 1$ $\frac{\partial \psi}{\partial t} + \boldsymbol{u} \cdot \nabla \psi = 0$

Notes: Local mass conservation and calculation of surface tension

- Due to dispersion and dissipation errors interface tends to oscillate and smear
- VOF: Interface reconstruction is required
- Level set: Reinitialization step is required (Abadie, Aubin, Legendre, JCP 2015)

Level-Set Equation

$$\frac{\partial \psi}{\partial t} + \boldsymbol{u} \cdot \nabla \psi = 0 \xrightarrow{\text{Reinitialization}} \frac{\partial \psi}{\partial \tau} + s(\psi_0)(|\nabla \psi| - 1) = 0 \xrightarrow{S.S.} s(\psi_0)(|\nabla \psi| - 1) = 0$$

at steady state: $|\nabla \psi| = 1$

Note: Interface can shift during reinitialization \rightarrow Mass conservation problem

Phase Field Equations (Allen-Cahn and Cahn-Hilliard)

$$\frac{\partial \phi}{\partial t} + \boldsymbol{u} \cdot \nabla \phi = -M \underbrace{\mu}_{\substack{\text{chemical} \\ \text{potential}}} = -M \left(\frac{\partial f}{\partial \phi} - \nabla^2 \phi \right)$$

known as **Allen-Cahn** equation. Notes:

- Pattern formation processes (e.g., solidification) •
- Non-conservative due to curvature driven interface ٠

$$\frac{\partial \phi}{\partial t} + \boldsymbol{u} \cdot \nabla \phi = \nabla \cdot (M \nabla \mu) = \nabla \cdot M \left[\frac{\partial^2 f}{\partial \phi^2} \nabla \phi - \nabla \nabla^2 \phi \right]$$

known as **Cahn-Hilliard** equation.

Notes:

- Non-linear high-order spatial derivatives Globally conservative but loses mass when curvature is large $\rightarrow r_c = \left(\frac{\sqrt{3}}{16\pi}DV\right)^{1/2}$

Benchmark I: Bubble Rising within a Thin Gap

- Few numerical simulation of unsteady bubble motion have been performed at high *Reynolds* number
- Detailed study of path oscillations, shape oscillations, and unsteady wake dynamics of high Re bubble flow (O(10²) ~ O(10⁴))
- **Dimensionless numbers**

 V_t

$$Bo = \frac{g\Delta\rho d^2}{\sigma}$$

$$Ar = \frac{\sqrt{gdd}}{\nu}$$

$$Re = \frac{\rho_l U_t d}{\eta_l}$$
where g : gravity
$$\Delta\rho$$
 : density difference
$$\sigma$$
 : surface tension
$$d$$
 : bubble diameter
$$\eta_l$$
 : liquid viscosity

- : liquid viscosity
- : terminal velocity

Hyperbolic Tangent Equilibrium Profile (Chiu & Lin, JCP 2011)

$$\boldsymbol{n} = \frac{\nabla \phi}{|\nabla \phi|}, \qquad \kappa = \nabla \cdot \boldsymbol{n} = \nabla \cdot \frac{\nabla \phi}{|\nabla \phi|}, \qquad \phi = \frac{1}{2} \Big[1 + \tanh\left(\frac{x}{2\epsilon}\right) \Big]$$
$$\frac{\partial \phi}{\partial \boldsymbol{n}} = |\nabla \phi| = \frac{\phi(1-\phi)}{\epsilon}, \qquad \frac{\partial^2 \phi}{\partial \boldsymbol{n}^2} = \frac{(\nabla \phi \cdot \nabla)|\nabla \phi|}{|\nabla \phi|} = \frac{\partial f}{\partial \phi} = \frac{\phi(1-\phi)(1-2\phi)}{\epsilon^2}$$

Conservative Phase Field Equation without Curvature Contribution

$$\begin{aligned} \frac{\partial \phi}{\partial t} + \boldsymbol{u} \cdot \nabla \phi &= M \left(\nabla^2 \phi - \frac{\partial f}{\partial \phi} - |\nabla \phi| \nabla \cdot \frac{\nabla \phi}{|\nabla \phi|} \right) = M \left(\nabla^2 \phi - \frac{\partial f}{\partial \phi} - |\nabla \phi| \kappa \right) \\ &= M \left(\nabla^2 \phi - \frac{(\nabla \phi \cdot \nabla) |\nabla \phi|}{|\nabla \phi|} - |\nabla \phi| \nabla \cdot \frac{\nabla \phi}{|\nabla \phi|} \right) \\ &= M \left(\nabla^2 \phi - \frac{\nabla \phi}{|\nabla \phi|} \cdot \nabla \left[\frac{\phi(1 - \phi)}{\epsilon} \right] - \frac{\phi(1 - \phi)}{\epsilon} \nabla \cdot \frac{\nabla \phi}{|\nabla \phi|} \right) \\ &= M \nabla \cdot \left(1 - \left[\frac{\phi(1 - \phi)}{\epsilon} \right] \frac{1}{|\nabla \phi|} \right) \nabla \phi \\ &= \frac{4}{\delta} \frac{\nabla \phi_i}{|\nabla \phi_i|} \phi_i(1 - \phi_i) - \frac{\phi_i^2}{\sum_{j=1}^3 \phi_j^2} \sum_{j=1}^3 \frac{4}{\delta} \frac{\nabla \phi_j}{|\nabla \phi_j|} \phi_j(1 - \phi_j) \end{aligned}$$

Issues:

- Division by zero $(1/|\nabla \phi|)$ possible; could be unstable PDE
- Tend to fragmentize continuous interfaces into droplets and bubbles

Water-Air Ar = 6000 Bo = 35.6

Variation of mass of the system for rising bubble.

Navier-Stokes Equations with Non-ideal Gas EOS

$$\frac{\partial \rho}{\partial t} + \boldsymbol{u} \cdot \nabla \rho = \rho \nabla \cdot \boldsymbol{u}$$
$$\rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) = -\nabla p + \nabla \cdot \eta (\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T) + \boldsymbol{F}$$

$$F = \underbrace{\nabla \rho c_s^2}_{\text{Leading order term}} - \rho \nabla (\mu_0 - \kappa \nabla^2 \rho)$$
$$F_{\alpha} = t_{\alpha} \left(\frac{\boldsymbol{e}_{\alpha}}{c_s^2} + \frac{(\boldsymbol{e}_{\alpha} \cdot \boldsymbol{u})\boldsymbol{e}_{\alpha} - \boldsymbol{u}c_s^2}{c_s^4} \right) \cdot F_{\alpha}$$

Guo 2002

Lattice Boltzmann (Discrete Boltzmann) Equations

$$\frac{\partial f_{\alpha}}{\partial t} + \mathbf{e}_{\alpha} \cdot \nabla f_{\alpha} = \underbrace{-\frac{1}{\lambda} (f_{\alpha} - f_{\alpha}^{eq})}_{Collision} + \underbrace{F_{\alpha}}_{External}_{Force}$$

 f_{α} : Particle distribution function ($\sum_{\alpha} f_{\alpha} = \rho; \sum_{\alpha} e_{\alpha} f_{\alpha} = \rho u$)

 $oldsymbol{e}_{lpha}\,$: Microscopic particle velocity, e.g. in D2Q9 model

$$(e_0 = (0,0); e_1 = (1,0); e_2 = (1,1); ...; e_8 = (1,-1))$$

 f_{α}^{eq} : Equilibrium distribution function

$$f_{\alpha}^{eq} = t_{\alpha} \rho \left(1 + \frac{\boldsymbol{e}_{\alpha} \cdot \boldsymbol{u}}{c_{s}^{2}} + \frac{(\boldsymbol{e}_{\alpha} \boldsymbol{e}_{\alpha} - c_{s}^{2} \boldsymbol{I}) \cdot \boldsymbol{u} \boldsymbol{u}}{2c_{s}^{4}} \right)$$

 λ : Relaxation time ($\eta = \rho \lambda c_s^2$, c_s : speed of sound)

Set of 1st order hyperbolic PDEs with constant advection velocities (Nonlinearity is considered in f_{α}^{eq})

From DBE to Lattice Boltzmann Equation (LBE): Standard Approach

- Discretize DBE along characteristics over time δt $\int_{t}^{t+\delta t} \left(\frac{\partial f_{\alpha}}{\partial t} + \boldsymbol{e}_{\alpha} \cdot \nabla f_{\alpha}\right) dt' = -\int_{t}^{t+\delta t} \frac{1}{\lambda} (f_{\alpha} - f_{\alpha}^{eq}) dt' + \int_{t}^{t+\delta t} F_{\alpha} dt'$
- Applying Crank-Nicolson scheme to integrate RHS

$$f_{\alpha}(\boldsymbol{x}, t + \delta t) - f_{\alpha}(\boldsymbol{x} - \boldsymbol{e}_{\alpha}\delta t, t) = -\frac{f_{\alpha} - f_{\alpha}^{eq}}{2\tau} \bigg|_{(\boldsymbol{x} - \boldsymbol{e}_{\alpha}\delta t, t)} + \frac{\delta t}{2} F_{\alpha} \bigg|_{(\boldsymbol{x} - \boldsymbol{e}_{\alpha}\delta t, t)} - \frac{f_{\alpha} - f_{\alpha}^{eq}}{2\tau} \bigg|_{(\boldsymbol{x}, t + \delta t)} + \frac{\delta t}{2} F_{\alpha} \bigg|_{(\boldsymbol{x}, t + \delta t)}$$

• Introduction of modified particle distribution functions (He et al. 1998)

$$\bar{f}_{\alpha} = f_{\alpha} + \frac{f_{\alpha} - f_{\alpha}^{eq}}{2\tau} - \frac{\delta t}{2} F_{\alpha} \qquad \& \qquad \bar{f}_{\alpha}^{eq} = f_{\alpha}^{eq} - \frac{\delta t}{2} F_{\alpha}$$

• LBE

$$\bar{f}_{\alpha}(\boldsymbol{x},t+\delta t) - \bar{f}_{\alpha}(\boldsymbol{x}-\boldsymbol{e}_{\alpha}\delta t,t) = -\frac{\bar{f}_{\alpha}-\bar{f}_{\alpha}^{eq}}{\tau+1/2}\Big|_{(\boldsymbol{x}-\boldsymbol{e}_{\alpha}\delta t,t)} + \delta t F_{\alpha}\Big|_{(\boldsymbol{x}-\boldsymbol{e}_{\alpha}\delta t,t)}$$

- This equation can be solved in two steps: Collision & Streaming
- Non-local forcing requires particular attention: truncation errors due to time and space discretizations may not be balanced

Strang & Force Splitting

- Strang Splitting: A method to compute f_{α}^{n+1} from f_{α}^{n} (Dellar 2013) $f_{\alpha}^{n+1} = C_{\lambda}^{I} \left(\frac{\delta t}{2}\right) \circ S_{e_{\alpha}}(\delta t) \circ C_{\lambda}^{E} \left(\frac{\delta t}{2}\right) f_{\alpha}^{n}$
- Here, $C_{\lambda}^{I}\left(\frac{\delta t}{2}\right)$ and $C_{\lambda}^{E}\left(\frac{\delta t}{2}\right)$ represent numerical operator for following ODE $\frac{df_{\alpha}}{dt} = -\frac{f_{\alpha} - f_{\alpha}^{eq}}{\lambda} + F_{\alpha}^{**}$

over a half time-step. Superscripts *E* and *I* indicate explicit and implicit Euler time-stepping schemes

• $S_{e_{\alpha}}(\delta t)$ is numerical operator for $\frac{\partial f_{\alpha}}{\partial t} + e_{\alpha} \cdot \nabla f_{\alpha} = F_{\alpha}^{*}$ over full time-step • Strang splitting: $F_{\alpha} = F_{\alpha}^{*} + F_{\alpha}^{**}$

- $S_{e_{\alpha}}(\delta t)$: Hyperbolic equation with a source term, which can be fairly stiff $\frac{\partial f_{\alpha}}{\partial t} + e_{\alpha} \cdot \nabla f_{\alpha} = F_{\alpha}^{*}$
- It is desired that F_{α}^* is close to $\boldsymbol{e}_{\alpha} \cdot \nabla f_{\alpha}$ to the leading order, for instance $F_{\alpha}^* \sim t_{\alpha} \boldsymbol{e}_{\alpha} \cdot \nabla \rho c_s^2$, so that their difference is small
- Here we choose the following force splitting (Patel & Lee 2016)

$$F_{\alpha}^{*} = t_{\alpha} \left(\frac{\boldsymbol{e}_{\alpha}}{c_{s}^{2}} \right) \cdot \boldsymbol{F} \quad \text{and} \quad F_{\alpha}^{**} = t_{\alpha} \left(\frac{(\boldsymbol{e}_{\alpha} \cdot \boldsymbol{u})\boldsymbol{e}_{\alpha} - \boldsymbol{u}c_{s}^{2}}{c_{s}^{4}} \right) \cdot \boldsymbol{F}$$

such that

$$\sum_{\alpha} F_{\alpha}^{**} = 0$$
 and $\sum_{\alpha} \boldsymbol{e}_{\alpha} F_{\alpha}^{**} = 0$

and thus collisions do not change conservative moments

Navier-Stokes Equations with Non-ideal Gas EOS

$$\frac{\partial \rho}{\partial t} + \boldsymbol{u} \cdot \nabla \rho = \rho \nabla \cdot \boldsymbol{u}$$

$$\rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) = -\nabla p + \nabla \cdot \eta (\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T) + \boldsymbol{F}$$

$$F_{\alpha} = t_{\alpha} \left(\frac{\boldsymbol{e}_{\alpha}}{c_{s}^{2}} + \frac{(\boldsymbol{e}_{\alpha} \cdot \boldsymbol{u})\boldsymbol{e}_{\alpha} - \boldsymbol{u}c_{s}^{2}}{c_{s}^{4}} \right) \cdot \boldsymbol{F}$$

Lattice Boltzmann (Discrete Boltzmann) Equations

$$\frac{\partial f_{\alpha}}{\partial t} + \boldsymbol{e}_{\alpha} \cdot \nabla f_{\alpha} = -\frac{1}{\lambda} \left(f_{\alpha} - f_{\alpha}^{eq} \right) + \underbrace{t_{\alpha} \left(\frac{\boldsymbol{e}_{\alpha}}{c_{s}^{2}} \right) \cdot \nabla \rho c_{s}^{2}}_{F_{\alpha}^{*}} + \underbrace{t_{\alpha} \left(\frac{(\boldsymbol{e}_{\alpha} \cdot \boldsymbol{u}) \boldsymbol{e}_{\alpha} - \boldsymbol{u} c_{s}^{2}}{c_{s}^{4}} \right) \cdot \nabla \rho c_{s}^{2}}_{F_{\alpha}^{**}}$$

Guo 2002

Introduction of modified particle distribution functions

$$\bar{f}_{\alpha} = f_{\alpha} + \frac{f_{\alpha} - f_{\alpha}^{eq}}{2\tau} - \frac{\delta t}{2} t_{\alpha} \left(\frac{(\boldsymbol{e}_{\alpha} \cdot \boldsymbol{u})\boldsymbol{e}_{\alpha} - \boldsymbol{u}c_{s}^{2}}{c_{s}^{4}} \right) \cdot \nabla \rho c_{s}^{2}$$
$$\bar{f}_{\alpha}^{eq} = f_{\alpha}^{eq} - \frac{\delta t}{2} t_{\alpha} \left(\frac{(\boldsymbol{e}_{\alpha} \cdot \boldsymbol{u})\boldsymbol{e}_{\alpha} - \boldsymbol{u}c_{s}^{2}}{c_{s}^{4}} \right) \cdot \nabla \rho c_{s}^{2}$$

Collision step after combining $C_{\lambda}^{I}\left(\frac{\delta t}{2}\right)$ and $C_{\lambda}^{E}\left(\frac{\delta t}{2}\right)$: $\bar{f}_{\alpha}(\boldsymbol{x},t+\delta t) - \bar{f}_{\alpha}(\boldsymbol{x},t) = -\frac{\bar{f}_{\alpha}-\bar{f}_{\alpha}^{eq}}{\tau+1/2}\Big|_{(\boldsymbol{x},t)} + \delta t t_{\alpha}\left(\frac{(\boldsymbol{e}_{\alpha}\cdot\boldsymbol{u})\boldsymbol{e}_{\alpha}-\boldsymbol{u}c_{s}^{2}}{c_{s}^{4}}\right) \cdot \nabla \rho c_{s}^{2}\Big|_{(\boldsymbol{x},t)}$

From DBE to Lattice Boltzmann Equation (LBE)

- Discretize $S_{\boldsymbol{e}_{\alpha}}^{A}(\delta t)$ along characteristics over time δt $\int_{t}^{t+\delta t} \left(\frac{\partial \bar{f}_{\alpha}}{\partial t} + \boldsymbol{e}_{\alpha} \cdot \nabla \bar{f}_{\alpha}\right) dt' = \int_{t}^{t+\delta t} F_{\alpha}^{*} dt'$
- Applying Crank-Nicolson scheme to integrate RHS $\bar{f}_{\alpha}(\boldsymbol{x},t+\delta t) - \bar{f}_{\alpha}(\boldsymbol{x}-\boldsymbol{e}_{\alpha}\delta t,t) = \frac{\delta t}{2} \left(\frac{t_{\alpha}}{c_{s}^{2}}\right) \boldsymbol{e}_{\alpha} \cdot \nabla \rho c_{s}^{2} \bigg|_{(\boldsymbol{x}-\boldsymbol{e}_{\alpha}\delta t,t)} + \frac{\delta t}{2} \left(\frac{t_{\alpha}}{c_{s}^{2}}\right) \boldsymbol{e}_{\alpha} \cdot \nabla \rho c_{s}^{2} \bigg|_{(\boldsymbol{x},t+\delta t)}$
- How to discretize *directional derivative* $\delta t \mathbf{e}_{\alpha} \cdot \nabla \rho$?
 - Discretization along characteristics:

$$\delta t \boldsymbol{e}_{\alpha} \cdot \nabla \rho = \frac{1}{2} \left[\rho(\boldsymbol{x} + \boldsymbol{e}_{\alpha} \delta t) - \rho(\boldsymbol{x} - \boldsymbol{e}_{\alpha} \delta t) \right]$$

- Isotropic finite difference (Lee & Lin 2005; Kumar 2004)

$$\delta t \boldsymbol{e}_{\alpha} \cdot \nabla \rho = \boldsymbol{e}_{\alpha} \cdot \sum_{\alpha \neq 0} \frac{t_{\alpha} \boldsymbol{e}_{\alpha} [\rho(\boldsymbol{x} + \boldsymbol{e}_{\alpha} \delta t) - \rho(\boldsymbol{x} - \boldsymbol{e}_{\alpha} \delta t)]}{2c_s^2}$$

Numerical Test: ρu field of a 2D Stationary Drop

- $\Omega \coloneqq [-1,1]^2$ filled with quadrilateral spectral elements, $\frac{\rho_l}{\rho_r} = 10$
- <u>Uniform mesh</u> of size $E = 32 \times 32$ and N = 5, after 10^6 time steps

SAS-DBM, vectors magnified by 10^{15}

SANS-DBM, vectors magnified by 10^2

Numerical Test: 2D Stationary Drop on Perturbed Mesh

- $\Omega \coloneqq [-1,1]^2$ filled with quadrilateral spectral elements, $\frac{\rho_l}{\rho_v} = 10$
- Non-uniform mesh of size $E = 16 \times 16$ and variable $La = \frac{\sigma^2 R_0}{\rho v^2} = 10^3$

Perturbed mesh with zig-zagged distribution. The degree of perturbation is based on the skewness coefficient $\alpha = \tan \theta$

- Cahn-Hilliard LBM performs well but suffers local mass conservation when local curvature effect is large
- To correct mass conservation error for low resolution simulation, derivative-free conservative phase-field LBM has been proposed, which possesses excellent Galilean invariant property, numerical efficiency, and accuracy.
- Moment-based fully derivative-free model lacks robustness of finite difference version, which needs to be improved.
- A force splitting scheme based on the Strang splitting is proposed and tested for two-phase lattice Boltzmann equation
- Discretization along characteristics is consistent with LB framework, more stable, and delivers better quality solutions.

$$F = \underbrace{\nabla \rho c_s^2}_{\text{Leading order}} - \rho \nabla (\mu_0 - \kappa \nabla^2 \rho)$$

- Computational Multiphase Flow Dynamics Group Members & Collaborators
 - Jeffrey Morris (CCNY)
 - Masahiro Kawaji (CCNY)
 - Martin Geier (U Braunschweig)
 - Kevin Connington (Stevens)
 - Abbas Fakhari (UPenn)
 - Lina Baroudi (Manhattan College)
 - Mahmood Mohammadi-Shad (Harvard)
 - Samaneh Farokhirad (UPenn)
 - Geng Liu (CCNY)
 - Chunheng Zhao (CCNY)
- NSF PREM award
- NSF PIRE award
- DOE's NEUP grant
- NRC's Faculty Development grant