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Abstract. We study acoustic wave propagation in a uniform stationary flow. We develop

a method founded on the Lorentz transform and a hypothesis of irrotationality of the acoustic

perturbation. After a transformation of the space-time and of the unknown fields, we derive

a system of partial differential equations that eliminates the external flow and deals with the

classical case of non advective acoustics. A sequel of the analysis is a new set of perfectly

matched layers equations in the spirit of the work of Berenger and Collino. The numerical

implementation of the previous ideas is presented with the finite differences method HaWAY on

cartesian staggered grids. Relevant numerical tests are proposed.
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2 François Dubois, Eric Duceau, Frédéric Maréchal and Isabelle Terrasse

1) Introduction
The acoustic dimensioning of a civil aircraft requires the use of numerical models to predict

the radiated acoustic field emitted by the engine. We study this problem in the case of

advective acoustics. The specific case of classical acoustic wave propagation can be viewed

as a scalar version of Maxwell equations. We use our previous experience acquired in the

simulation of the propagation of electromagnetic waves using the finite differences method

[DDS94] to rapidly develop a three-dimensional software simulating the propagation of

acoustic waves.

Our work is structured as follows. In order to take into account the external aerodynamic

flow, we first come back to the equations of gas dynamics and consider the acoustic field

as a first order linear perturbation of such a flow. Then we use physical ideas based on

the Lorentz group invariance in Section 3, in the spirit of [AB86], to deal in Section 4 with

the case of advective acoustics in the same way as the non-advective ones. We develop

in Section 5 a smart solution of the difficult problem of absorbing layers. The numerical

aspect with the use of staggered grids is tackled in Section 6, and relevant physical and

numerical tests are proposed in Section 7

2) Non linear acoustics

2-1 Barotrope gas dynamics
We consider the propagation of sound waves in a uniform two-dimensional subsonic flow

of a compressible fluid. This phenomenon is described by the nonlinear Euler equations

for gas dynamics, see [LL54] for example, as :

(1)





∂ρ̌

∂t
+ div (ρ̌ǔ) = 0

∂(ρ̌ǔ)

∂t
+

∂

∂x
(ρ̌ǔ2 + p̌) +

∂

∂y
(ρ̌ǔv̌) = 0

∂(ρ̌v̌)

∂t
+

∂

∂x
(ρ̌ǔv̌) +

∂

∂y
(ρ̌v̌2 + p̌) = 0

∂š

∂t
+ ǔ

∂š

∂x
+ v̌

∂š

∂y
= 0 ,

where ǔ = (ǔ, v̌) is the velocity vector, ρ̌ the density of the fluid, p̌ the pressure of the

fluid and š the entropy. We also know that :

(2)
p̌

p̌0
=

ρ̌γ

ρ̌0
γ
exp(

š

CV
) ,

where CV is the calorific capacity at constant volume and (ρ0, p0) a state of reference.
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Lorentz Transform and Staggered Finite Differences for Advective Acoustics 3

2-2 Linearization around a stationary state
We linearize the system (1) around a constant state W0 defined by :

W0 = (ρ0, u0, v0, s0)
t ,

where (...)t is the transpose of a vector. The global state W̌ of the system is defined

around the state W0 thanks to the perturbation W = (ρ, u, v, s)t , as :

W̌ = W0 +W .

A first idea of our approach is to use the impulses :

{
ρ̌ǔ = (ρ0 + ρ)(u0 + u) ≡ ρ0u0 + ξ + ρu

ρ̌v̌ = (ρ0 + ρ)(v0 + v) ≡ ρ0v0 + ζ + ρv ,

and to linearize them considering the variables ρ, u, v, s as first order infinitesimal quan-

tities. We then introduce the linearized impulses :

{
ξ = ρ0u+ ρu0

ζ = ρ0v + ρv0 .

We have the following classical hypothesis, see [LL54] :

Hypothesis 1 Isentropy of the flow.

The linearization of the fourth equation of the system (1) gives :

∂s

∂t
+ u0

∂s

∂x
+ v0

∂s

∂y
≡ ds

dt
= 0 .

If we consider the perturbation of entropy at the initial time to be null, that is to say

s(x, y, t = 0) ≡ 0, we deduce that s(x, y, t) ≡ 0 during the time evolution.

Then the system (1) can be shared, first into a stationary aerodynamic system :

{
div (ρ0u0) = 0

ρ0u0 • ∇u0 +∇p0 = 0 ,

and then into an isentropic acoustic system :

(3)






∂ρ

∂t
+
∂ξ

∂x
+
∂ζ

∂y
= 0

∂ξ

∂t
+

∂

∂x

(
2u0ξ +

c20 − u20
c20

p

)
+

∂

∂y
(u0ζ + v0ξ − ρu0v0) = 0

∂ζ

∂t
+

∂

∂x
(u0ζ + v0ξ − ρu0v0) +

∂

∂y

(
2v0ζ +

c20 − v20
c20

p

)
= 0 ,

with p = c20ρ and c0 the speed of sound, deduced from the linearization of (2).
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4 François Dubois, Eric Duceau, Frédéric Maréchal and Isabelle Terrasse

Proposition 1 (Advection of the acoustic vorticity).

If the external flow W0 = (ρ0, u0, v0, s0)
t is stationary and uniform, the acoustic vorticity

ω =
∂u

∂y
− ∂v

∂x
is advected by the flow, i.e.

dω

dt
= 0.

Proof. This property is classical, see [LL54] for example. We give the proof for complete-

ness. We have from the system (3) :

∂ξ

∂t
+

∂

∂x

(
2u0ξ +

c20 − u20
c20

p

)
+

∂

∂y
(u0ζ + v0ξ − ρu0v0)

=
∂ξ

∂t
+ u0

∂

∂x
(ξ − ρu0) + v0

∂

∂y
(ξ − ρu0) + u0

∂ξ

∂x
+ u0

∂ζ

∂y
+
∂p

∂x

= (
∂

∂t
+ u0

∂

∂x
+ v0

∂

∂y
)(ξ − ρu0) +

∂p

∂x
= 0 ,

∂ζ

∂t
+

∂

∂x
(u0ζ + v0ξ − ρu0v0) +

∂

∂y

(
2v0ζ +

c20 − v20
c20

p

)

=
∂ζ

∂t
+ u0

∂

∂x
(ζ − ρv0) + v0

∂

∂y
(ζ − ρv0) + v0

∂ξ

∂x
+ v0

∂ζ

∂y
+
∂p

∂y

= (
∂

∂t
+ u0

∂

∂x
+ v0

∂

∂y
)(ζ − ρv0) +

∂p

∂y
= 0 .

We differentiate the first set of equations by y and the second by x, we eliminate the

pressure field and obtain :

(4)
1

ρ0

d

dt

(
∂

∂y
(ξ − ρu0)−

∂

∂x
(ζ − ρv0)

)
=

d

dt
(
∂u

∂y
− ∂v

∂x
) =

dω

dt
= 0 .

Hypothesis 2 Irrotationality of the acoustic vorticity.

If we consider the acoustic perturbation at the initial time to be irrotational, i.e.

rot u (x, y, t = 0) ≡ ω (x, y, t = 0) = 0, we then deduce with equation (4) that rot u (x, y, t) =

0 during the time evolution.

3) Lorentz Transform
We consider the two-dimensional equations of advective acoustics when the velocity of

the fluid is parallel to a particular direction; we suppose specifically :

(5) u = u0 ex .

We search a space-time transform (x, t) 7−→ (x′, t′) so that in the new space-time (x′, t′),

the pressure field is the solution of the wave equation. We find that this space-time

transform is a Lorentz transform. With it, we derive a new set of equations and
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Lorentz Transform and Staggered Finite Differences for Advective Acoustics 5

prove that the corresponding system can be reduced to the classical case of non advective

acoustics.

3-1 Change of space-time
Considering a flow of velocity given by equation (5), the system (3) is written as :

(6)





∂p

∂t
+ c20

∂ξ

∂x
+ c20

∂ζ

∂y
= 0

∂ξ

∂t
+

∂

∂x

(
2u0ξ +

(c20 − u20)

c20
p

)
+

∂

∂y
(u0ζ) = 0

∂ζ

∂t
+

∂

∂x
(u0ζ) +

∂p

∂y
= 0 ,

which is a pleasant conservative form. We easily deduce that the pressure field p (x, y, t)

is solution in the (initial) space-time (x, y, t) of a wave equation :

(7)
∂2p

∂t2
+ 2u0

∂2p

∂x∂t
+ u20

∂2p

∂x2
− c20∆p = 0 ,

where ∆ =
∂2

∂x2
+

∂2

∂y2
is the laplacian in two dimension space.

Proposition 2 (Lorentz transform and equation of pressure).

We suppose that the advective velocity satisfies equation (5). We define the Mach number

as M0 =
u0
c0

and the Lorentz space-time transform as :

(8)





x′ =
1√

1−M2
0

x

y′ = y

t′ = t +
M0

c0(1−M2
0 )
x .

In this new space-time, the pressure field is considered as a function of the new set of

space-time coordinates (x′, y′, t′), i.e. :

(9) p′(x′, y′, t′) ≡ p (x, y, t) ,

and is the solution of the wave equation with a modified celerity :

(10)
∂2p′

∂t′2
− c20(1−M2

0 )

(
∂2p′

∂x′2
+
∂2p′

∂y′2

)
= 0 .

reduced from the “pure” sound celerity by a similarity factor
√

1−M2
0 .
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6 François Dubois, Eric Duceau, Frédéric Maréchal and Isabelle Terrasse

Proof. We first explain the way we derive the Lorentz transform (8) to remove the ad-

vective contribution 2u0
∂2p

∂x∂t
in equation (7). In the new space-time (x′, y′, t′), we want

the pressure field to be solution of the wave equation. We search the new space-time

coordinates (x′, y′, t′) as :

(11)





x′ = αx

y′ = y

t′ = t + βx .

The transformed equation (7) takes the form :

∂2p

∂t2
+ 2u0

∂2p

∂x∂t
+ u20

∂2p

∂x2
− c20∆p

=

[(
∂

∂t
+ u0

∂

∂x

)2

− c20∆

]
p (x, y, t)

=

[(
(1 + u0β)

2 − c20β
2
) ∂2

∂t
′2 + 2α

(
u0(1 + u0β)− βc20

) ∂2

∂t′∂x′

−α2(c20 − u20)
∂2

∂x
′2 − c20

∂2

∂y
′2

]
p′(x′, y′, t′) .

Then we obtain :

(12)

[(
(1 + u0β)

2 − c20β
2
) ∂2

∂t
′2 + 2α

(
u0(1 + u0β)− βc20

) ∂2

∂t′∂x′

−α2(c20 − u20)
∂2

∂x
′2 − c20

∂2

∂y
′2

]
p′(x′, y′, t′) = 0 .

The conditions upon α and β to find the wave equation are clear from equation (12); on

the first hand no further crossed partial derivation between space and time, that is :

(13) 2α
(
u0(1 + u0β)− βc20

)
= 0 ,

and on the other hand equality of the coefficients of double derivations in space to have

a laplacian operator invariant by rotation :

(14) α2(c20 − u20) = c20 .

The unique solution (α, β) of the previous 2 x 2 linear system (13)-(14) is :





α =
c0√
c20 − u20

β =
u0

c20 − u20
,
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Lorentz Transform and Staggered Finite Differences for Advective Acoustics 7

and with this set of coefficients, the space-time transform (11) is exactly equal to the

system (8). Moreover, we remark that the coefficient of
∂2

∂t2
in equation (12) is now equal

to :
(
(1 + u0β)

2 − c20β
2
)
=

c20
c20 − u20

=
1

1−M2
0

,

and, in our transformed space-time (x′, y′, t′), the pressure field defined by the condition

(9) is the solution of the wave equation (10) .

3-2 Change of unknown functions
Let us apply the Lorentz transform (8) to the acoustic system (6). We have the following

proposition :

Proposition 3 (New unknown functions for advective acoustic).

We assume that the hypothesis 2 of irrotationality of the acoustic vorticity is satisfied and

that the advective velocity field is defined by equation (5). After applying the Lorentz

transform (8) and the following change of pressure and impulse functions :

(15)





p̃ = p′ +
u0

(1−M2
0 )
ξ′

ξ̃ =
1√

1−M2
0

ξ′

ζ̃ = ζ ′ ,

the advective acoustic system (6) can be written as :

(16)






∂p̃

∂t′
+ c20

∂ξ̃

∂x′
+ c20

∂ζ̃

∂y′
= 0

∂ξ̃

∂t′
+ (1−M2

0 )
∂p̃

∂x′
= 0

∂ζ̃

∂t′
+ (1−M2

0 )
∂p̃

∂y′
= 0 .

Proof. We first use the hypothesis of irrotationality of the acoustic vorticity in the third

equation of the system (6) and obtain :

∂ζ

∂x
=
∂(ξ − ρu0)

∂y
=
∂ξ

∂y
− u0

c20

∂p

∂y
.

Secondly we introduce the Lorentz transform (8) into the system (6). We have the fol-

lowing transform of partial derivations :





∂

∂x
=

1√
1−M2

0

∂

∂x′
+

u0

c20(1−M2
0 )

∂

∂t′

∂

∂y
=

∂

∂y′

∂

∂t
=

∂

∂t′
.
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8 François Dubois, Eric Duceau, Frédéric Maréchal and Isabelle Terrasse

We then substract the first equation of the system (6) multiplied by u0
c2
0

from the second

one and, using the following notations :

(17)





p′(x′, y′, t′) ≡ p (x, y, t)

ξ′(x′, y′, t′) ≡ ξ(x, y, t)

ζ ′(x′, y′, t′) ≡ ζ(x, y, t) ,

we find : 




∂p′

∂t′
+

c20√
1−M2

0

∂ξ′

∂x′
+

M0c0

(1−M2
0 )

∂ξ′

∂t′
+ c20

∂ζ ′

∂y′
= 0

∂ξ′

∂t′
+

u0√
1−M2

0

∂ξ′

∂x′
+

M2
0

1−M2
0

∂ξ′

∂t′
+

c20 − u20

c20
√
1−M2

0

∂p′

∂x′
= 0

∂ζ ′

∂t′
+ u0

∂ξ′

∂y′
+

(c20 − u20)

c20

∂p′

∂y′
= 0 .

We gather the terms associated with the same operator of derivation :





∂

∂t′

[
p′ +

M0c0

(1−M2
0 )
ξ′
]
+ c20

∂

∂x′
(

ξ′√
1−M2

0

) + c20
∂ζ ′

∂y′
= 0

∂

∂t′
(

ξ′√
1−M2

0

) + (1−M2
0 )

∂

∂x′

[
p′ +

M0c0

(1−M2
0 )
ξ′
]
= 0

∂ζ ′

∂t′
+ (1−M2

0 )
∂

∂y′

[
p′ +

M0c0

(1−M2
0 )
ξ′
]
= 0 ,

and we substitute into the previous system the new unknown functions (p̃ , ξ̃ , ζ̃) introduced

in the system (15). Then the system of equations (16) is satisfied.

Remark 4.

The major consequence of propositions 2 and 3 is the following (operational !) remark.

The resolution of the advective acoustic system is absolutly identical to the one obtained

without advective flow, but with a propagation celerity scaled by a factor
√

1−M2
0 .

4) Lorentz transform for multi-dimensional flows
In the previous section, we dealt with the case of a velocity field described by the equation

(5). In [AGH99], Abarbanel et al consider a multi-dimensional flow as a one-dimensional

flow, after a correct rotation of the studied medium by an angle θ = tan−1( v0
u0
) and

considering the new velocity to be unew =
√
u20 + v20. We observe that in order to study

numerically the influence of the flow for acoustic propagation near objects, such an idea

imposes a remeshing of the geometry for each change of the advective flow. In our opinion,

this process is not compatible with the use of finite differences and with operational

industrial constraints. We propose in this section to generalize the Lorentz space-time

transform to a multi-dimensional flow and to extend our approach with the help of space
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Lorentz Transform and Staggered Finite Differences for Advective Acoustics 9

affinities to a multi-dimensional flow under the same hypotheses as before. In the next

two paragraphs, we present the generalization of the Lorentz transform respectively to the

two and three-dimensional cases. Only the two-dimensional case is proven in the present

document. The proof of the three-dimensional case can be found in [Ma2k].

4-1 The two-dimensional case
We now consider a subsonic uniform flow described by a velocity vector :

(18) u = (u0, v0) .

With such an external flow, the linearized isentropic Euler equations for advective acous-

tics are :

(19)





∂p

∂t
+ c20

∂ξ

∂x
+ c20

∂ζ

∂y
= 0

∂ξ

∂t
+

∂

∂x

(
2u0ξ +

(c20 − u20)

c20
p

)
+

∂

∂y
(u0ζ + v0ξ −

u0v0

c20
p) = 0

∂ζ

∂t
+

∂

∂x
(u0ζ + v0ξ −

u0v0

c20
p) +

∂

∂y

(
2v0ζ +

(c20 − v20)

c20
p

)
= 0 .

Proposition 4 (Simplification of the acoustic system).

We generalize the Lorentz space-time transform when the external flow verifies (18). We

introduce a new set of space-time coordinates as :

(20)





x′ =
1√

1− u2
0

c2
0

x

y′ =
1√

1− v2
0

c2
0

y

t′ = t +
u0

c20(1−M2
0 )
x+

v0

c20(1−M2
0 )
y ,

the Mach number as M0 =

√
u2
0
+v2

0

c0
, a coupling coefficient α between the two cartesian

coordinates as :

(21) α =
u0v0

c20

√
1− u2

0

c2
0

√
1− v2

0

c2
0

,

and the new unknown functions p̃, ξ̃ et ζ̃ defined by :

(22)





p̃ = p′ +
1

1−M2
0

(u0ξ
′ + v0ζ

′)

ξ̃ =

√

1− u20
c20

(
(1− v20

c20
)

ξ′

1−M2
0

+
u0v0

c20

ζ ′

1−M2
0

)

ζ̃ =

√

1− v20
c20

(
u0v0

c20

ξ′

1−M2
0

+ (1− u20
c20
)

ζ ′

1−M2
0

)
.
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10 François Dubois, Eric Duceau, Frédéric Maréchal and Isabelle Terrasse

Under the hypothesis 2 of irrotationality of the acoustic vorticity, the new form of the

acoustic system (19) is the following :

(23)





∂p̃

∂t′
+ c20

∂

∂x′
(ξ̃ − αζ̃) + c20

∂

∂y′
(ζ̃ − αξ̃) = 0

∂ξ̃

∂t′
+ (1−M2

0 )
∂p̃

∂x′
= 0

∂ζ̃

∂t′
+ (1−M2

0 )
∂p̃

∂y′
= 0 .

Proof. First, by substracting with a correct coefficient the first equation of the system

(19) from the two others, we find :






∂p

∂t
+ c20

∂ξ

∂x
+ c20

∂ζ

∂y
= 0

∂

∂t
(ξ − u0

c20
p) +

∂

∂x

(
u0ξ +

(c20 − u20)

c20
p

)
+

∂

∂y
(v0ξ −

u0v0

c20
p) = 0

∂

∂t
(ζ − v0

c20
p) +

∂

∂x
(u0ζ −

u0v0

c20
p) +

∂

∂y

(
v0ζ +

(c20 − v20)

c20
p

)
= 0 .

Using the hypothesis of irrotationality of the acoustic vorticity, we have :

∂

∂y
(v0ξ −

u0v0

c20
p) =

∂

∂y

[
v0(ρ0u+ ρu0)−

u0v0

c20
p

]
=

∂

∂y
(ρ0v0u)

=
∂

∂x
(ρ0v0v) =

∂

∂x
v0(ζ − ρv0)

=
∂

∂x
(v0ζ −

v20
c20
p) .

The previous calculation gives the new system :






∂p

∂t
+ c20

∂ξ

∂x
+ c20

∂ζ

∂y
= 0

∂

∂t
(ξ − u0

c20
p) +

∂

∂x

[
u0ξ + v0ζ + (1−M2

0 )p
]
= 0

∂

∂t
(ζ − v0

c20
p) +

∂

∂y

[
u0ξ + v0ζ + (1−M2

0 )p
]
= 0 .

In the new space-time defined by the change of space-time (20), we have :





∂

∂x
=

1√
1− u2

0

c2
0

∂

∂x′
+

u0

c20(1−M2
0 )

∂

∂t′

∂

∂y
=

1√
1− v2

0

c2
0

∂

∂y′
+

v0

c20(1−M2
0 )

∂

∂t′

∂

∂t
=

∂

∂t′
.
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Lorentz Transform and Staggered Finite Differences for Advective Acoustics 11

With the notation introduced in the system (17), the transformed equations take the

algrebraic form :





∂

∂t′

(
p′ +

u0ξ
′ + v0ζ

′

1−M2
0

)
+ c20

∂

∂x′
(

ξ′√
1− u2

0

c2
0

) + c20
∂

∂y′
(

ζ ′√
1− v2

0

c2
0

) = 0

∂

∂t′





√
1− u2

0

c2
0

1−M2
0

(
(1− v20

c20
)ξ′ +

u0v0

c20
ζ ′
)

+ (1−M2
0 )

∂

∂x′

(
p′ +

u0ξ
′ + v0ζ

′

1−M2
0

)
= 0

∂

∂t′




√
1− v2

0

c2
0

1−M2
0

(
u0v0

c20
ξ′ + (1− u20

c20
)ζ ′

)
+ (1−M2

0 )
∂

∂y′

(
p′ +

u0ξ
′ + v0ζ

′

1−M2
0

)
= 0 .

By the change of unknown functions (22), the previous system becomes :

(24)





∂p̃

∂t′
+ c20

∂

∂x′
(

ξ′√
1− u2

0

c2
0

) + c20
∂

∂y′
(

ζ ′√
1− v2

0

c2
0

) = 0

∂ξ̃

∂t′
+ (1−M2

0 )
∂p̃

∂x′
= 0

∂ζ̃

∂t′
+ (1−M2

0 )
∂p̃

∂y′
= 0 .

We focus here on the fact that the pair (ξ′, ζ ′) is present in the first equation of (24) whereas

the new unknown functions are ξ̃ and ζ̃. Nevertheless with the last two equations of the

system (22), we have the following calculation :





ξ′ =

√

1− u20
c20

(ξ̃ − αζ̃)

ζ ′ =

√

1− v20
c20

(ζ̃ − αξ̃) ,

where α is defined by equation (21). We then find the final form (23) of the system of

advective acoustics in the new space-time (x′, y′, t′).

4-2 The three-dimensional case
The generalization to three dimension space can be done without any major difficulty.

We have the following proposition proven in [Ma2k] :

Proposition 5.

We assume that the velocity of the external flow is given by :

(25) u0 = (u0, v0, w0) ,
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12 François Dubois, Eric Duceau, Frédéric Maréchal and Isabelle Terrasse

and that the Hypothesis 2 of irrotationality of the acoustic vorticity is verified. We define

the Mach number as M0 =

√
u2
0
+v2

0
+w2

0

c0
and a change of space-time as :

(26)





x′ =
1√

1− u2
0

c2
0

x

y′ =
1√

1− v2
0

c2
0

y

z′ =
1√

1− w2

0

c2
0

z

t′ = t +
u0

c20(1−M2
0 )
x+

v0

c20(1−M2
0 )
y +

w0

c20(1−M2
0 )
z .

We introduce three coupling coefficients as :





α =
u0v0

c20

√
1− u2

0

c2
0

√
1− v2

0

c2
0

β =
u0w0

c20

√
1− u2

0

c2
0

√
1− w2

0

c2
0

γ =
v0w0

c20

√
1− v2

0

c2
0

√
1− w2

0

c2
0

,

and a change of unknown functions as :






p̃ = p′ +
1

1−M2
0

(u0ξ
′ + v0ζ

′ + w0χ
′)

ξ̃ =

√

1− u20
c20

(
(1− v20 + w2

0

c20
)

ξ′

1−M2
0

+
u0v0

c20

ζ ′

1−M2
0

+
u0w0

c20

χ′

1−M2
0

)

ζ̃ =

√

1− v20
c20

(
u0v0

c20

ξ′

1−M2
0

+ (1− u20 + w2
0

c20
)

ζ ′

1−M2
0

+
v0w0

c20

χ′

1−M2
0

)

χ̃ =

√

1− w2
0

c20

(
u0w0

c20

ξ′

1−M2
0

+
v0w0

c20

ζ ′

1−M2
0

+ (1− u20 + v20
c20

)
χ′

1−M2
0

)
.

The acoustic system takes the new form :
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Lorentz Transform and Staggered Finite Differences for Advective Acoustics 13





∂p̃

∂t′
+ c20

∂

∂x′
(ξ̃ − αζ̃ − βχ̃)

+ c20
∂

∂y′
(ζ̃ − αξ̃ − γχ̃) + c20

∂

∂z′
(χ̃− βξ̃ − γζ̃) = 0

∂ξ̃

∂t′
+ (1−M2

0 )
∂p̃

∂x′
= 0

∂ζ̃

∂t′
+ (1−M2

0 )
∂p̃

∂y′
= 0

∂χ̃

∂t′
+ (1−M2

0 )
∂p̃

∂z′
= 0 .

5) Acoustic Absorbing Layers
Physical wave phenomena modelling takes often place in the infinite two or three di-

mensional space. Due to finite computing resources, the numerical simulations of such

phenomena must be truncated to confined domains, then numerical artifical boundaries

must be considered. Generally, numerical reflections of outgoing waves from the bound-

aries of the numerical domain reenter the computational domain and falsify the results.

Various methods have been proposed to reduce the influence of reentering waves in the

computational domain.

For many years, the numerical physicists, Israeli-Orsag [IO81], have developed the idea of

layers of absorbing materials. Then the mathematical study of non reflecting boundary

conditions has been developed after the pionnering work of Engquist-Majda [EM77]. The

discrete studies of such absorbing conditions have been realized for scalar waves by Bayliss-

Turkel [BT80], for electromagnetic waves by Joly-Mercier [JM89], Taflove [Ta98] and for

sismic waves by Halpern-Trefethen [HT86] among others.

The current perfectly matched layers approach has been introduced by Bérenger [Be94]

in the context of computational electromagnetics; a mathematical interpretation of this

model has been made by Collino [Co85]. In [Hu96], Hu proposes an adaptation of

Berenger’s model for advective acoustics. Nevertheless, Abarbanel et al [AGH99] and

Rahmouni [Rah01] and [Rah99] have demonstrated that this model is mathematically ill-

posed, i.e. that, if truncated to the first order terms, there exists a perturbation as small

as we wish that can make the model unstable. These authors also propose well-posed

models.

Our approach uses a model of the type introduced by Hu. We focus in our study on

the practical disadvantages to deal with a mathematical model whose principal symbol

corresponds to a ill-posed problem.
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14 François Dubois, Eric Duceau, Frédéric Maréchal and Isabelle Terrasse

5-1 Acoustic absorbing layers without external flow
We propose in the following a precise description of acoustic absorbing layers, and we

follow the ideas developed by Collino [Co85]. We consider a semi-infinite medium in the

x-direction defined by Ω = Ω+ ∪ Ω−, where :

(27)

{
Ω− = {(x, y), y < 0}
Ω+ = {(x, y), 0 ≤ y ≤ δ} ,

Ω+ representing the absorbing layers domain.

s

Ω− Physical
domain

y = 0

Ω+ Absorbing
layers

y = δ��������������������
6

y

Proposition 6 (System of acoustic absorbing layers).

A system of partial differential equations that models absorbing layers of acoustic waves

in the domain Ω+ introduced in (27) can be given as :

(28)






∂px

∂t
+ c20

∂ξ

∂x
= 0

∂py

∂t
+ σ∗(η) py + c20

∂ζ

∂η
= 0

∂ξ

∂t
+

∂

∂x
(px + py) = 0

∂ζ

∂t
+ σ∗(η) ζ +

∂

∂η
(px + py) = 0 ,

where the absorbing coefficient σ∗(y) satisfies :

(29) [0, δ] ∋ y 7−→ σ∗(y) ∈ R+ , σ∗(y) > 0 if y > 0 and σ∗(0) = 0 .

The pressure p is defined by p ≡ px + py .

Proof. We follow essentially the idea of Collino [Co85]. The main idea to establish the

acoustic system inside the absorbing layers is to introduce the Fourier-Laplace transform

and to write the system (19) in the complex plan.
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Lorentz Transform and Staggered Finite Differences for Advective Acoustics 15

We define the Fourier-Laplace transform by :

v̂(kx, y, ω) =

∫ ∫
v(x, y, t) e−i(ωt+kxx) dx dt .

Then in the domain Ω− = {(x, y), y < 0}, the system (19) takes the form :

(30)





iωp̂ = −ikxc20ξ̂ − c20
∂ζ̂

∂y
iωξ̂ = −ikxp̂
iωζ̂ = −∂p̂

∂y
,

and the solution of the system (30) for a propagation in the growing y-direction is obtained

after the integration of an ordinary differential equation of degree 2 :

(31)






p̂ = p0e
−ikyy

ξ̂ =
p0

ω
kxe

−ikyy with k2y =
ω2

c20
− k2x .

ζ̂ = −p0
ω
kye

−ikyy

We establish a modified form of the system (30) in Ω+ that ensures that waves leaving

the domain are not reflected back. Let us extend the variable y in the complex plan by

adding an imaginary part depending on the function σ∗ defined by equation (29), and that

equals zero for σ∗ ≡ 0. We write precisely in Ω+ the complex variable y parameterized

by a real variable η, 0 ≤ η ≤ δ, as :

y = ϕ(η) = η +
1

iω

∫ η

0

σ∗(u) du .

We can draw the function y = ϕ(η) in the complex plan as :

6

Re y

δ

�Im y

η - y = ϕ(η)

For v equal to one of the variables of pressure or momentum, we introduce the function

v̂(y), with y = ϕ(η), as a function v̂∗ of the real variable η :

v̂∗(η) ≡ v̂(ϕ(η)) , v ∈ {p , ξ , ζ} .

An elementary calculation gives us :
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16 François Dubois, Eric Duceau, Frédéric Maréchal and Isabelle Terrasse

v̂∗(η) = v̂

(
η +

1

iω

∫ η

0

σ∗(u) du

)

= v0 exp

(
−iky

[
η +

1

iω

∫ η

0

σ∗(u) du

])

= v̂ (η) exp

(
−ky
ω

∫ η

0

σ∗(u) du

)
.

We then deduce the following important property :

(32) |v̂∗(η)| < |v̂ (η)| , 0 < η ≤ δ , v ∈ {p , ξ , ζ} .

The property (32) is a consequence of an exponential decay of all the variables inside

the absorbing layers. It is possible to derive the system of partial differential equations

satisfied by those fields. A first algebraic calculation gives us :

∂v̂

∂y
=
∂v̂∗

∂η

dη

dy
=

iω

iω + σ∗(η)

∂v̂∗

∂η
, v ∈ {p , ξ , ζ} ,

then we obtain with this new set of unknown functions a system in the (x, η) domain

issued from (30) :

(33)





iωp̂∗ = −ikxc20ξ̂∗ − c20
iω

iω + σ∗(η)

∂ζ̂∗

∂η

iωξ̂∗ = −ikxp̂∗

iωζ̂∗ = − iω

iω + σ∗(η)

∂p̂∗

∂η
.

The first equation can be rewritten while splitting the pressure field into two sub-pressure

fields as :

p̂∗ = p̂∗x + p̂∗y ,

with p̂∗x and p̂∗y solutions of :





iωp̂∗x = −ikxc20ξ̂∗

iωp̂∗y =
iω

iω + σ∗(η)
c20
∂ζ̂∗

∂η
.

Taking the inverse Fourier-Laplace transform of the new system, we obtain (28).

Considering a square domain [ 0 , L ]2, we define the thickness of the absorbing layers

by δx in the x-direction and δy in the y-direction. The interesting studying medium is

then [ δx, L− δx ] × [ δy, L− δy ]. We have the following proposition that generalizes the

proposition 6 :
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Lorentz Transform and Staggered Finite Differences for Advective Acoustics 17

Proposition 7 (General acoustic system to solve).

We consider two smoothing functions σ∗
x and σ∗

y defined by :

(34) [0, L] ∋ x 7−→ σ∗
x(x) ∈ R+

σ∗
x(x) > 0 ifx ∈ [ 0 , δx [× ]L− δx, L ]

σ∗
x(x) = 0 ifx ∈ [δx, L− δx ],

(35) [0, L] ∋∋ y 7−→ σ∗
y(y) ∈ R+

σ∗
y(y) > 0 if y ∈ [ 0 , δy [× ]L− δy, L ]

σ∗
y(y) = 0 if y ∈ [δy, L− δy ].

The acoustic system in the studying medium and in the absorbing layers can be written

as :

(36)






∂px

∂t
+ σ∗

x(x) px + c20
∂ξ

∂x
= 0

∂py

∂t
+ σ∗

y(y) py + c20
∂ζ

∂y
= 0

∂ξ

∂t
+ σ∗

x(x) ξ +
∂

∂x
(px + py) = 0

∂ζ

∂t
+ σ∗

y(y) ζ +
∂

∂y
(px + py) = 0 .

Remark 9.

This set of equations is the same as obtained by Hu in [Hu96] using velocity fields rather

than impulses.

Proof. The proof is similar to the one of proposition 6

5-2 Plane wave analysis

- x

6
y

��������������������

HHHHHHHHHHHH

2m

1m���*
r
(kix, k

i
y)

HHHj
r (k

r
x, k

r
y)

���*
r
(ktx, k

t
y)

θ2
θ′1θ1

The acoustic system, inside the absorbing layers in the y-direction is, after a Fourier

transform :





iωpx − ikxc
2
0ξ = 0

iωpy + σ∗(y)py − ikyc
2
0ζ = 0

iωξ − ikxp = 0

iωζ + σ∗(y)ζ − ikyp = 0 .
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18 François Dubois, Eric Duceau, Frédéric Maréchal and Isabelle Terrasse

The incident wave is a solution of the system :

(37)





iωp− ikixc
2
0ξ −

iω

iω + σ∗
1

ikiyc
2
0ζ = 0

iωξ − ikixp = 0

iωζ − iω

iω + σ∗
1

ikiyp = 0 .

The reflected wave is a solution of the system :

(38)





iωpr − ikrxc
2
0ξr −

iω

iω + σ∗
1

ikryc
2
0ζr = 0

iωξr − ikrxpr = 0

iωζr −
iω

iω + σ∗
1

ikrypr = 0 .

The transmitted wave is a solution of the system :

(39)






iωpt − iktxc
2
0ξt −

iω

iω + σ∗
2

iktyc
2
0ζt = 0

iωξt − ikrxpt = 0

iωζt −
iω

iω + σ∗
2

ikrypt = 0 .

At y = 0, we write the continuity of the pressure field. We have : p + pr = pt then

pr = Rp and pt = Tp with 1 +R = T. We then have :

{
ξr = R ξ and ξt = Tξ

ζr = R ζ and ζt = Tζ

We deduce from the system (37) :

ξ =
kix
ω
p and ζ =

ikiy

iω + σ∗
1

p ,

and we know that krx = kix and kry = −kiy. We then have :





ξ + ξr =
kix
ω
p +

kix
ω
pr =

kix
ω
(1 +R)p

ζ + ζr =
ikiy

iω + σ∗
1

(1−R)p

The system (39) gives us :





ξt =
ktx
ω
(1 +R)p =

ktx
ω
Tp

ξt =
ikty

iω + σ∗
2

(1 +R)p =
ikty

iω + σ∗
2

Tp
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Lorentz Transform and Staggered Finite Differences for Advective Acoustics 19

At the interface y = 0, we write the continuity of ζ . We then have ζt = ζ + ζr, that we

write as :

(40)
ikty

iω + σ∗
2(0)

(1 +R)p =
ikiy

iω + σ∗
1(0)

(1− R)p

5-3 Mathematical property of the absorbing layers system
The system of acoustic absorbing layers (36) can be written as :

(41)
∂W

∂t
+ A

∂W

∂x
+B

∂W

∂y
+ CW = 0 ,

where W = (px, py, ξ, ζ)
t ,

A =




0 0 c20 0

0 0 0 0

1 1 0 0

0 0 0 0


 , B =




0 0 0 0

0 0 0 c20
0 0 0 0

1 1 0 0


 ,

and

C =




σ∗
x(x) 0 0 0

0 σ∗
y(y) 0 0

0 0 σ∗
x(x) 0

0 0 0 σ∗
y(y)


 .

The principal symbol, M = ikxA+ ikyB, of the system (41) is given by :

(42) M =




0 0 ikxc
2
0 0

0 0 0 ikyc
2
0

ikx ikx 0 0

iky iky 0 0


 .

The eigenvalues and eigenvectors of the principal symbol are re-evaluated in table 1.

Eigenvalue Eigenvector

0 (double) (−1, 1, 0, 0)t

c0

√
−k2x − k2y (−

ikxc0
√

−k2x − k2y

k2x + k2y
,−

ik2yc0
√

−k2x − k2y

kx(k2x + k2y)
, 1,

ky

kx
)t

−c0
√

−k2x − k2y (
ikxc0

√
−k2x − k2y

k2x + k2y
,
ik2yc0

√
−k2x − k2y

kx(k2x + k2y)
, 1,

ky

kx
)t

Table 1. Eigenvalues and eigenvectors of matrix (42)
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20 François Dubois, Eric Duceau, Frédéric Maréchal and Isabelle Terrasse

We notice that 0 is an eigenvalue of multiplicity order equal to 2 associated with a one-

dimensional eigensubspace. The system (41) is not hyperbolic and classical results relative

to well-posedness of such systems (see [Rau91]) can not be applied to the absorbing layers.

There exists an arbitrarily small perturbation of the Cauchy problem for the system (36)

with σ∗
x(x) = σ∗

y(y) = 0 that makes the system (41) ill-posed for L2 or Sobolev norms of

order 1. Nevertheless, our choice of the system (41) does not produce unstable numerical

results.

Proposition 8.

If we look for a solution of the form W = ϕ(t) e−ikxxe−ikyy VM2 of the system (41), where

VM2 = (0, 0, ky,−kx)t, the scalar function ϕ(t) is an exponential decay in time.

Proof. To establish this result, we determine the characteristic subspace for the eigenvalue

λ = 0, i.e. we calculate ker(M2). We have :

(43) −M2 =




kx
2 kx

2 0 0

ky
2 ky

2 0 0

0 0 kx
2 kxky

0 0 kxky ky
2


 and ker(M2) =







1

−1

0

0


 ,




0

0

ky

−kx





 .

We analyse the stability of the system (41) under a perturbation following the direction

of the eigenvector of M2 that is not eigenvector of M . We note VM2 = (0, 0, ky,−kx)t
this vector that is a simple impulse pertubation in the direction orthogonal to the wave

vector. We choose a state vector W of the form :

W = ϕ(t) e−ikxxe−ikyy VM2 .

In this case, the system (36) is written as :

(44)
∂ϕ

∂t
VM2 + ϕM VM2 + ϕC VM2 = 0 ,

with :

MVM2 =




ikxky

−ikxky
0

0


 , CVM2 =




0

0

σ∗
x(x)ky

−σ∗
y(y)kx


 .

We then deduce that the first two equations of (44) impose that kxky = 0. Therefore, if

kx = 0 and ky 6= 0, the third equation of (44) gives us :

(45)
∂ϕ

∂t
ky + σ∗

x(x)kyϕ = 0 i.e.
∂ϕ

∂t
+ σ∗

x(x)ϕ = 0 .
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Lorentz Transform and Staggered Finite Differences for Advective Acoustics 21

We assume that σ∗
x(x) > 0 inside the absorbing layers, the solution of the equation (45)

is an exponential decay in time of the function ϕ.

We obtain the same result considering ky = 0 and kx 6= 0. Even if the principal symbol

of the system (41) is associated to a “ill-posed mathematical problem”, the form of the

zero order terms shows that even exciting the absorbing layers system in the direction of

the characteristic vector, the perturbation is dissipated.

We would like to predict the behavior of our absorbing layers model. Thus, we simplify

our set of equations to the simplest model and study it. We establish the following

proposition :

Proposition 9.

We consider the simplest 1-D non-hyperbolic model inside the absorbing layers, excitated

with a source term ψ(t) centered at (xa, ya), in the direction of the eigenvector VM2 . We

note W = (u, v)t the state vector, δxa,ya the Dirac mass at the position (xa, ya) and we

assume that the coefficients σ1 and σ2 are strictly positive. The problem :

(46)






∂W

∂t
+

(
0 1

0 0

)
∂W

∂x
+

(
σ1 0

0 σ2

)
W =

(
0

ψ(t) δxa,ya

)

W (0) = 0 .

is stable as long as ψ(t) is bounded.

Proof. The system (46) is written as :

(47)





∂u

∂t
+
∂v

∂x
+ σ1u = 0

∂v

∂t
+ σ2v = ψ(t) δxa,ya

u(0) = v(0) = 0 .

The solution in v is v(t) =

(∫ t

0

ψ(θ)e−σ2(t−θ)dθ

)
δxa,ya, we then deduce that u is solution

of :

∂u

∂t
+ σ1u =

(∫ t

0

ψ(θ)e−σ2(t−θ)dθ

)
δ′xa,ya .

Then, the solution in u is u(t) = µ(t) δ′xa,ya, where limt→∞ µ(t) = 0. Then, for a function

ψ(t) bounded, u → 0 and v is bounded. The system (47) is stable as long as σ1 > 0 and

σ2 > 0.
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22 François Dubois, Eric Duceau, Frédéric Maréchal and Isabelle Terrasse

This simple model makes us think that our absorbing layers model is stable even if we

are in the worst situation, i.e. there is a source in the direction of the eigenvector VM2.

Numerical simulations proposed in Section 7 confirm this result.

One challenge in the future is to theorically understand the behavior of the solution of

the true problem in the absorbing layers defined by the following system :

(48)






∂W

∂t
+ A

∂W

∂x
+B

∂W

∂y
+ CW = ψ(t) δxa,ya VM2

W (0) = 0 .

Nevertheless, the qualitative behavior proposed for the system (46) gives a good idea of

the behavior of the system (48), see Section 7.

5-4 Acoustic absorbing layers with external subsonic flow

Proposition 10 (General absorbing layers in two dimensions).

We assume that the velocity for the external subsonic flow is u = (u0, v0) . A system of

partial differential equations that models absorbing layers of acoustic waves is given by :

(49)





∂px

∂t
+ c0

√
1−M2

0 σ
∗(x) px +

c0u0√
1−M2

0

σ∗(x) ξ + c20
∂ξ

∂x
= 0

∂py

∂t
+ c0

√
1−M2

0 σ
∗(y) py +

c0v0√
1−M2

0

σ∗(y) ζ + c20
∂ζ

∂y
= 0

∂ξ

∂t
+

∂

∂x
(2u0ξ + v0ζ) + (1−M2

0 )
∂p

∂x
+

∂

∂y
(u0ζ) +

c0(1 +
u2
0
−v2

0

c2
0

)
√

1−M2
0

σ∗(x)ξ

+
u0
√

1−M2
0

c0
(σ∗(x)px + σ∗(y)py) +

u0v0(σ
∗(x) + σ∗(y))

c0
√
1−M2

0

ζ = 0

∂ζ

∂t
+

∂

∂x
(v0ξ) +

∂

∂y
(u0ξ + 2v0ζ) + (1−M2

0 )
∂p

∂y
+
c0(1 +

v2
0
−u2

0

c2
0

)
√
1−M2

0

σ∗(y)ζ

+
v0
√

1−M2
0

c0
(σ∗(x) px + σ∗(y) py) +

u0v0(σ
∗(x) + σ∗(y))

c0
√

1−M2
0

ξ = 0 ,

where σ∗(x) et σ∗(y) are smoothing functions defined by (35).

Proof. Here are the main ideas of the proof; the details of all the calculus can be found in

[Ma2k]. If we consider a two-dimensional flow, we have shown that the acoustic system in

the new space-time defined by (20) is given by (23) after the change of unknown functions

(22). Using the method described in the section, we easily show that a general system
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Lorentz Transform and Staggered Finite Differences for Advective Acoustics 23

of dimensionless partial differential equations for the acoustic absorbing layers can be

written in (x′, y′, t′) using the functions σ∗(x) and σ∗(y) introduced by equation (35) as :

(50)





∂p̃x

∂t′
+ c0

√
1−M2

0 σ
∗(x)p̃x + c20

∂

∂x′
(ξ̃ − αζ̃) = 0

∂p̃y

∂t′
+ c0

√
1−M2

0 σ
∗(y)p̃y + c20

∂

∂y′
(ζ̃ − αξ̃) = 0

∂ξ̃

∂t′
+ c0

√
1−M2

0 σ
∗(x)ξ̃ +

∂

∂x′
(p̃x + p̃y) = 0

∂ζ̃

∂t′
+ c0

√
1−M2

0 σ
∗(y)ζ̃ +

∂

∂y′
(p̃x + p̃y) = 0 ,

where α is a coupling coefficient given by :

α =
u0v0

c20

√
1− u2

0

c2
0

√
1− v2

0

c2
0

.

We now wish to write the system (50) in the initial space-time (x, y, t), using the initial

unknown functions p, ξ, ζ . We have :

(51) ξ̃ − αζ̃ =
1√

1− u2
0

c2
0

ξ′ , ζ̃ − αξ̃ =
1√

1− v2
0

c2
0

ζ ′ ,

and we easily calculate :

(52)





∂

∂t′
=

∂

∂t

∂

∂x′
=

√

1− u20
c20

∂

∂x
−
u0

√
1− u2

0

c2
0

c20(1−M2
0 )

∂

∂t

∂

∂y′
=

√

1− v20
c20

∂

∂y
−
v0

√
1− v2

0

c2
0

c20(1−M2
0 )

∂

∂t
.

We substitute (51) and (52) in the system (50) :





∂p̃x

∂t
+ c0

√
1−M2

0σ
∗(x)p̃x + c20

√

1− u20
c20

∂

∂x
(ξ̃ − αζ̃)−

u0

√
1− u2

0

c2
0

1−M2
0

∂

∂t
(ξ̃ − αζ̃) = 0

∂p̃y

∂t
+ c0

√
1−M2

0σ
∗(y)p̃y + c20

√

1− v20
c20

∂

∂y
(ζ̃ − αξ̃)−

v0

√
1− v2

0

c2
0

1−M2
0

∂

∂t
(ζ̃ − αξ̃) = 0

∂ξ̃

∂t
+ c0

√
1−M2

0σ
∗(x)ξ̃ + (1−M2

0 )

√

1− u20
c20

∂p̃

∂x
−
u0

√
1− u2

0

c2
0

c20

∂p̃

∂t
= 0

∂ζ̃

∂t
+ c0

√
1−M2

0σ
∗(y)ζ̃ + (1−M2

0 )

√

1− v20
c20

∂p̃

∂y
−
v0

√
1− v2

0

c2
0

c20

∂p̃

∂t
= 0 .
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24 François Dubois, Eric Duceau, Frédéric Maréchal and Isabelle Terrasse

Using the change of variables (22), we deduce :

(53)





p̃ = p′ +
1

1−M2
0

(u0ξ
′ + v0ζ

′)

ξ̃ =

√

1− u20
c20

(
(1− v20

c20
)

ξ′

1−M2
0

+
u0v0

c20

ζ ′

1−M2
0

)

ζ̃ =

√

1− v20
c20

(
u0v0

c20

ξ′

1−M2
0

+ (1− u20
c20
)

ζ ′

1−M2
0

)
.

We substitute the change of variables (53) into the previous system, we then obtain :

(54)





∂p̃x

∂t
− u0

1−M2
0

∂ξ

∂t
+ c0

√
1−M2

0σ
∗(x)p̃x + c20

∂ξ

∂x
= 0

∂p̃y

∂t
− v0

1−M2
0

∂ζ

∂t
+ c0

√
1−M2

0σ
∗(y)p̃y + c20

∂ζ

∂y
= 0

∂ξ

∂t
− u0

c20

∂p

∂t
+ c0

√
1−M2

0σ
∗(x)

(
(1− v20

c20
)

ξ

1−M2
0

+
u0v0

c20

ζ

1−M2
0

)

+ (1−M2
0 )
∂p

∂x
+

∂

∂x
(u0ξ + v0ζ) = 0

∂ζ

∂t
− v0

c20

∂p

∂t
+ c0

√
1−M2

0σ
∗(y)

(
u0v0

c20

ξ

1−M2
0

+ (1− u20
c20
)

ζ

1−M2
0

)

+
∂

∂y
(u0ξ + v0ζ) + (1−M2

0 )
∂p

∂y
= 0 .

We use as new unknowns :

p̃x = px +
u0

1−M2
0

ξ , p̃y = py +
v0

1−M2
0

ζ ,

we then have :

p̃ = p̃x + p̃y , p = px + py ,

and we finally obtain :

(55)






∂px

∂t
+ c0

√
1−M2

0σ
∗(x)px + c20

∂ξ

∂x
= 0

∂py

∂t
+ c0

√
1−M2

0σ
∗(y)py +

c0v0√
1−M2

0

σ∗(y)ζ + c20
∂ζ

∂y
= 0

∂ξ

∂t
− u0

c20

∂p

∂t
+ (1−M2

0 )
∂p

∂x
+

∂

∂x
(u0ξ + v0ζ) = 0

∂ζ

∂t
− v0

c20

∂p

∂t
+ c0

√
1−M2

0σ
∗(y)

(
u0v0

c20

ξ

1−M2
0

+ (1− u20
c20
)

ζ

1−M2
0

)

+
∂

∂y
(u0ξ + v0ζ) + (1−M2

0 )
∂p

∂y
= 0 .
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Lorentz Transform and Staggered Finite Differences for Advective Acoustics 25

We wish to find a dynamic system, then we eliminate the ∂p

∂t
terms in the last two equations

of the system (55). Using the equality p = px + py, and adding the first two equations of

the system (55), we deduce :

(56)
∂p

∂t
+ c20

∂ξ

∂x
+ c20

∂ζ

∂y
+ c0

√
1−M2

0σ
∗(y)py +

c0v0√
1−M2

0

σ∗(y)ζ = 0 ,

and we substitute the equation (56) in the last two equations of the system (55). Hence,

we find the result (49) that ends the proof.

Remark 13.

Various authors propose a system of partial differential equation for absorbing layers for

advective acoustic (see [AGH99], [Hu96], [Rah99], [Rah01] for example). Each of them

have to solve 6 equations, whereas we propose a system composed by only 4 equations. We

see this property as a consequence of our precise physical analysis based on the Lorentz

transform and our change of unknown functions.

6) Discretization with the “HaWAY” method
This section deals with the numerical resolution of the equation of acousticwithout an ex-

ternal flow. We use finite differences with staggered grids as introduced by Harlow-Welsch

(MAC method) [HW65], Arakawa (C grids) [Ar66] and Yee [Yee66] for electromagnetism.

HaWAY comes from Harlow-Welsch, Arakawa, Yee. The acoustic system can be written

as :

(57)






∂p′

∂t′
+ c20

∂ξ′

∂x′
+ c20

∂ζ ′

∂y′
= 0

∂ξ′

∂t′
+
∂p′

∂x′
= 0

∂ζ ′

∂t′
+
∂p′

∂y′
= 0 .

We first propose to nondimensionalize the previous system. We then explain the numerical

scheme chosen in the free space and in the acoustic absorbing layers.

6-1 Dimensionlessness of the acoustic system
This section is introduced for the completeness of our meaning. We refer to [Se75] for this

kind of purpose. We nondimensionalize the set of equations (57) by writing each variable

as : X ′ = X∗X, for X ′ pressure, impulse, time and space variables and X∗ a reference

dimension for each variable: a reference pressure p∗, reference impulses ξ∗ and ζ∗, a time

reference t∗ and reference lengths x∗ and y∗. The new form of the system (57) is :
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26 François Dubois, Eric Duceau, Frédéric Maréchal and Isabelle Terrasse





∂p

∂t
+ c20

t∗

p∗
ξ∗

x∗
∂ξ

∂x
+ c20

t∗

p∗
ζ∗

y∗
∂ζ

∂y
= 0

∂ξ

∂t
+
t∗

ξ∗
p∗

x∗
∂p

∂x
= 0

∂ζ

∂t
+
t∗

ζ∗
p∗

y∗
∂p

∂y
= 0 .

We decide here to choose the following coefficients c20
t∗

p∗
ξ∗

x∗
, c20

t∗

p∗
ζ∗

y∗
,
t∗

ξ∗
p∗

x∗
and

t∗

ζ∗
p∗

y∗
equal

to 1. We then deduce that we have :

ξ∗ =
1

c0
p∗ , ζ∗ =

1

c0
p∗ ,

x∗

t∗
= c0 ,

y∗

t∗
= c0 ,

and the resulting set of dimensionless equations is :

(58)





∂p

∂t
+
∂ξ

∂x
+
∂ζ

∂y
= 0

∂ξ

∂t
+
∂p

∂x
= 0

∂ζ

∂t
+
∂p

∂y
= 0 .

6-2 Staggered grids for acoustics
By analogy with electromagnetism (see [DDS94]), we decide to use the cartesian staggered

finite differences method to solve the system (58). We decompose a model domain Ω =

[ 0, L ]2 into finite elements with an isotropic meshing of space step ∆x = ∆y = L
J
(J ∈ N∗

is the number of cells in each direction). The cell Ki+ 1

2
,j+ 1

2

is defined as :

Ki+ 1

2
,j+ 1

2

=] i∆x , (i+ 1)∆x [× ] j∆y , (j + 1)∆y [

We share the time with the help of a time step ∆t and introduce the nth “entire time”

tn = n∆t . By convention, we know that the pressure is defined at entire times tn in the

center of the mesh Ki+ 1

2
,j+ 1

2

and that the impulses are defined at semi-entire times tn+
1

2

on the edge of the mesh. The variables in a mesh are defined as below :

uu

u

pn
i+ 1

2
,j+ 1

2ξ
n+ 1

2

i,j+ 1

2

ζ
n+ 1

2

i+ 1

2
,j
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Lorentz Transform and Staggered Finite Differences for Advective Acoustics 27

The numerical scheme used in the free space is in two-dimensional space :

• Discretization of the pressure equation :

pn+1
i+ 1

2
,j+ 1

2

= pn
i+ 1

2
,j+ 1

2

− σ
[
(ξ
n+ 1

2

i+1,j+ 1

2

− ξ
n+ 1

2

i,j+ 1

2

) + (ζ
n+ 1

2

i+ 1

2
,j+1

− ζ
n+ 1

2

i+ 1

2
,j
)
]
,

• Discretization of the impulse equations :





ξ
n+ 3

2

i,j+ 1

2

= ξ
n+ 1

2

i,j+ 1

2

− σ(pn+1
i+ 1

2
,j+ 1

2

− pn+1
i− 1

2
,j+ 1

2

)

ζ
n+ 3

2

i+ 1

2
,j
= ζ

n+ 1

2

i+ 1

2
,j
− σ(pn+1

i+ 1

2
,j+ 1

2

− pn+1
i+ 1

2
,j− 1

2

) ,

where we have σ =
∆t

∆x
=

∆t

∆y
.

This numerical scheme is an explicit second order in time and space scheme, stable under

the Courant-Friedrichs-Lewy condition :

(59) CFL






∆t ≤ 1√
1

∆x2
+ 1

∆y2

in two dimension space,

∆t ≤ 1√
1

∆x2
+ 1

∆y2
+ 1

∆z2

in three dimension space.

The boundary condition is supposed to be on the edge of the mesh. The Dirichlet bound-

ary condition is written as : u.n = 0 .

6-3 Numerical acoustic absorbing layers
We deduce from section 4 the set of equations to solve in the absorbing layers :






∂px

∂t
+ σ∗(x) px +

∂ξ

∂x
= 0

∂py

∂t
+ σ∗(y) py +

∂ζ

∂y
= 0

∂ξ

∂t
+ σ∗(x) ξ +

∂

∂x
(px + py) = 0

∂ζ

∂t
+ σ∗(y) ζ +

∂

∂y
(px + py) = 0 ,

where σ∗(x) and σ∗(y) are the smoothing functions strictly positive inside the absorbing

layers. The set of equations is ended by a Dirichlet condition on the edge of the whole

studied domain : u.n = 0 , where n is the external normal to the domain. The

discretization of such a boundary condition for the whole studied domain is :
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ξ
n+ 1

2

0,j+ 1

2

= 0, 0 ≤ j ≤ J − 1, n ≥ 0

ξ
n+ 1

2

J,j+ 1

2

= 0, 0 ≤ j ≤ J − 1, n ≥ 0

ζ
n+ 1

2

i+ 1

2
,0
= 0, 0 ≤ i ≤ J − 1, n ≥ 0

ζ
n+ 1

2

i+ 1

2
,J
= 0, 0 ≤ i ≤ J − 1, n ≥ 0

We propose to use the same discretisation as before. In the absorbing layers, we have to

know p , ξ and ζ respectively at times n + 1
2
, n + 1 et n + 1. We decide to center those

values in time, we write :





p
n+ 1

2

i+ 1

2
,j+ 1

2

=
1

2

(
pn+1
i+ 1

2
,j+ 1

2

+ pn
i+ 1

2
,j+ 1

2

)

ξn+1
i,j+ 1

2

=
1

2

(
ξ
n+ 3

2

i,j+ 1

2

+ ξ
n+ 1

2

i,j+ 1

2

)

ζn+1
i+ 1

2
,j

=
1

2

(
ζ
n+ 3

2

i+ 1

2
,j
+ ζ

n+ 1

2

i+ 1

2
,j

)
.

The numerical scheme, while noting σ =
∆t

∆x
=

∆t

∆y
(isotrop meshing), can be written as :






px
n+1
i+ 1

2
,j+ 1

2

=
2− σ∗

x(i+
1
2
) ∆t

2 + σ∗
x(i+

1
2
) ∆t

px
n
i+ 1

2
,j+ 1

2

−
2σ

(
ξ
n+ 1

2

i+1,j+ 1

2

− ξ
n+ 1

2

i,j+ 1

2

)

2 + σ∗
x(i+

1
2
) ∆t

py
n+1
i+ 1

2
,j+ 1

2

=
2− σ∗

y(j +
1
2
) ∆t

2 + σ∗
y(j +

1
2
) ∆t

py
n
i+ 1

2
,j+ 1

2

−
2σ

(
ζ
n+ 1

2

i+ 1

2
,j+1

− ζ
n+ 1

2

i+ 1

2
,j

)

2 + σ∗
y(j +

1
2
) ∆t

ξ
n+ 3

2

i,j+ 1

2

=
2− σ∗

x(i) ∆t

2 + σ∗
x(i) ∆t

ξ
n+ 1

2

i,j+ 1

2

− 2σ

2 + σ∗
x(i) ∆t

(
pn+1
i+ 1

2
,j+ 1

2

− pn+1
i− 1

2
,j+ 1

2

)

ζ
n+ 3

2

i+ 1

2
,j
=

2− σ∗
y(j) ∆t

2 + σ∗
y(j) ∆t

ζ
n+ 1

2

i+ 1

2
,j
− 2σ

2 + σ∗
y(j) ∆t

(
pn+1
i+ 1

2
,j+ 1

2

− pn+1
i+ 1

2
,j− 1

2

)
,

with p ≡ px + py .
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Lorentz Transform and Staggered Finite Differences for Advective Acoustics 29

7) Numerical tests
The computational domain is shared into two areas : the studying medium and the

absorbing layers. Those two areas are defined as shown below :

� Absorbing layers

� Studying medium

0 xmax xmax + Lpml−xmax

xmax

−xmax

7-1 Mathematical experiments
We first propose to numerically validate our mathematical analysis of the absorbing layers

acoustic system (41) with a test case proposed by O. Pironneau [Pi99]. We decide to place

an acoustic pulse inside the absorbing layers, in the direction of the eigenvector associated

to the eigenvalue 0 in order to enforce the unstability due to the lack of hyperbolicity as

shown before. For this test, the computational domain, symetric in the x-direction and

the y-direction, is defined by xmax = 5 and Lpml = 45. We consider two different tests.

For the first one, we solve :

(60)






∂W

∂t
+ A

∂W

∂x
+B

∂W

∂y
+ CW = ψ(t) δxa,ya VM2

W (0) = 0 .

For the second one, we solve :

(61)





∂W

∂t
+ A

∂W

∂x
+B

∂W

∂y
+ CW = 0 ,

W (0) =




0

0

exp
(
−(ln 2) (x−xa)

2+(y−ya)2

9

)

exp
(
−(ln 2) (x−xa)

2+(y−ya)2

9

)




.

For the first test case, the excitation ψ(t) VM2 is centered inside the absorbing layers at

(xa, ya) = (25, 0). The absorbing coefficients in the absorbing layers are constant in the x

and in the y-direction. The reference excitation is :
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30 François Dubois, Eric Duceau, Frédéric Maréchal and Isabelle Terrasse

ψxy = exp

(
−(ln 2)

(x− xa)
2 + (y − ya)

2

9

)
.

We solve the problem (60) with the particular data given by :






p̌(xa, ya, t) = 0

ξ̌(xa, ya, t) =
∂ψxy

∂y

ζ̌(xa, ya, t) = −∂ψxy

∂x
.

The observing points are centered at (x1, y1) = (45, 0), (x2, y2) = (25, 0), (x3, y3) = (0, 0),

(x4, y4) = (−45, 0), (x5, y5) = (0, 25) and (x6, y6) = (0,−25). We observe the results at

(x2, y2) = (25, 0). We obtain the graph presented of Figure 1.

0 500 1000 1500 2000 2500 3000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

Time

Pressure
x−Impulse
y−Impulse

Figure 1. Pressure and impulse fields at (x, y) = (25, 0).

We remark that, for long times, the pressure field converges to 0 and the impulse fields to

a non-zero value. We obtain the results predicted by our simple 1-D model (see proposi-

tion 9) noting u the pressure field and v the impulse fields ξ or ζ . We notice that the sign

is changing if we consider a positive or a negative source. We observe approximately the

same results for the other observing points. The pressure field converges to 0 except at

(x5, y5) and (x6, y6), where there is a slight residual rp at (x5, y5) and −rp at (x6, y6). The
ξ impulse field converges to 0 at (x1, y1), (x3, y3) and (x4, y4). The residual at (x5, y5) is rξ
and −rξ at (x6, y6). The ζ impulse field always converges to a constant value as predicted

by the 1-D model.

ha
l-0

05
91

14
3,

 v
er

si
on

 1
 - 

7 
M

ay
 2

01
1



Lorentz Transform and Staggered Finite Differences for Advective Acoustics 31

For the second test, we solve the problem (61) with an excitation centered inside the

absorbing layers at (xa, ya) = (25, 0). As before, we analyse the results at (x2, y2) = (25, 0).

The evolution of the pressure and impulse fields are drawn in the following figure :

0 1000 2000 3000
−0.03

−0.02

−0.01

0

0.01

0.02
Pressure

0 500 1000

−5

0

5

x 10
−3

x−Impulse
y−Impulse

Figure 2. Pressure and impulse fields at (x, y) = (25, 0).

All the fields converge to 0 for all the observing points. We obtain the same results as pre-

dicted by the proposition 9 with an excitation function ψ(t) such as
∫∞
0
ψ(t)dt is bounded.

The conclusion of these mathematical experiments is that even if we excite this non

hyperbolic system in the direction of the non caracteristic vector, the zero order damping

terms insure that there is no numerical explosion of our results.

7-2 Physical experiments
We have proven the stability of our absorbing layers. We now want to study numerical

reflections of outgoing waves from the boundaries of the computational domain for various

speeds of the external flow. We then consider the problem (6) in the computational domain

defined by xmax = 25 with the absorbing layers outside (Lpml is now a parameter), an

acoustic pulse centered at (xa, ya) = (0, 0) and an excitation in the right hand side (p̌, ξ̌, ζ̌)t

given by :

(62)





p̌ (x, y, t) = exp

(
−(ln 2)

(x− xa)
2 + (y − ya)

2

9

)
sin(πt)

ξ̌(x, y, t) = 0

ζ̌(x, y, t) = 0 .

We compare the calculated solution, denoted by p, to the numerical solution obtained in

the domain defined by xmax = 150. We take ∆x = 1 and ∆t following the CFL (59). For

t < 300∆t, it is easy to see that no reflection from the boundaries can interact with the

solution within the small domain [−25, 25]2 and such a solution is the numerical solution

ha
l-0

05
91

14
3,

 v
er

si
on

 1
 - 

7 
M

ay
 2

01
1



32 François Dubois, Eric Duceau, Frédéric Maréchal and Isabelle Terrasse

in an infinite domain for t < 300∆t. This solution is considered as a reference, noted

pref , and the computation of the error |p−pref | for each time step indicates the efficiency

of the absorbing layers. As explained in Section 5, the boundary condition is imposed on

the edge of a cell and the pressure is calculated in the middle of the cell. The observing

point is then taken only half a cell near the absorbing layers at (25, 0).

0 50 100 150 200 250 300
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−6
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time

4 layers

10 layers

20 layers

Figure 3. L2−error of the pressure for 4, 10 and 20 absorbing layers, u

c0
= (0.5, 0).

0 50 100 150 200 250 300
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

time

4 layers

10 layers

20 layers

Figure 4. L2−error of the pressure for 4, 10 and 20 absorbing layers, u

c0
= (0.5, 0).
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Figure 5. L2−error of the pressure for 4, 10 and 20 absorbing layers, u

c0
= ( 1

2
√
2
, 1
2
√
2
).
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Figure 6. L2−error of the pressure for 4, 10 and 20 absorbing layers, u

c0
= ( 2√

17
, 1
2
√
17
).
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Figure 7. Iso-lines of the pressure field for t = 40∆t, t = 80∆t and t = 120∆t.

ha
l-0

05
91

14
3,

 v
er

si
on

 1
 - 

7 
M

ay
 2

01
1



Lorentz Transform and Staggered Finite Differences for Advective Acoustics 35

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

Figure 8. Iso-lines of the pressure field for t = 40∆t, t = 80∆t and t = 120∆t.
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We first consider a domain without external flow. We notice that the L2-error of the

pressure field p computed for each time step at the observing point (25, 0) for various

thickness for the absorbing layers. We notice that for small absorbing layers (4 cells), we

have a good accuracy for the results, and that increasing the thickness from 4 cells to 20

cells improves the accuracy by 2 orders of magnitude.

We also compare, for various thickness of the absorbing layers, the “exact” and the numer-

ical solution considering the same observing point and the same acoustic source, for three

velocity vectors defined by u = (0.5 c0, 0), u = ( 1
2
√
2
c0,

1
2
√
2
c0) and u = ( 2√

17
c0,

1
2
√
17
c0).

We notice an improvement of the accuracy by 2 orders of magnitude for an absorbing

layers growing from 4 cells to a 20 cells.

The results are satisfying. Nevertheless, when the number of cells in the absorbing layers

is increasing, the error is small but remains measurable, even for the long times. We think

that this behavior could be improved in future work.

Conclusion
We have explored a new method for solving the equations of advective acoustics based on

a change a space-time variables (Lorentz transform) and a change of unknown variables.

We have also derived a system of equations (49) to modelize the absorbing layers for the

acoustic model. The system of partial differential equations established in the absorbing

layers is well-posed due to the zero order term. The staggered grid “HaWAY” method has

been used for the numerical implementation and experiments have proven the efficiency of

such a method. When we force a punctual acoustic source inside this numerical domain,

our experiments show that the results remain bounded and our method is stable from

a practical point of view. Notice that we explain our method only in two-dimensional

space, but we extend it easily to three-dimensional space.
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