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Abstract. - The Gear scheme is a three-level step algorithm, backward in time and second
order accurate for the approximation of classical time derivatives. In this contribution, the formal
power of this scheme is proposed to approximate fractional derivative operators in the context
of finite difference methods. Some numerical examples are presented and analyzed in order to
show the effectiveness of the present Gear scheme at the power o (G*-scheme) when compared to
the classical Griinwald-Letnikov approximation. In particular, for a fractional damped oscillator
problem, the combined G*Newmark scheme is shown to be second-order accurate.
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1 Introduction

The importance of fractional calculus for modeling viscoelastic materials has been rec-
ognized by the mechanical scientific community since the article of (Bagley and Torvik,
1983). The numerical approximation of such systems has been intensively studied since
the work of (Padovan, 1987). On the other side, the numerical community is interested
in the approximation of fractional derivatives. One refers to the pioneering theoretical
work of (Lubich, 1986) and the state of the art proposed by (Diethelm et al., 2005).
Most applications use the discrete convolution formula proposed by Griinwald-Letnikov
(GL-scheme). Another direction could be autonomous systems in the context of diffusive
representations (Matignon and Montseny (Eds.), 1998; Yuan and Agrawal, 2002; Trinks
and Ruge, 2002).

In this work, we focus on the application of a numerical method based on the Gear
scheme for the approximation of fractional derivatives in linear dynamics. Such a scheme
is called here G®-scheme. It should be stressed that preliminary tests of convergence
have been performed in a recent work (see (Galucio et al., 2006)). Finally, two examples
are presented and analyzed. The first one deals with the study of a harmonic oscillator
with fractional damping in order i) to validate the method and ii) to derive an order of
convergence. The use of the G*-scheme is then extended to viscoelastic beams submitted
to an applied time-dependent force.

2 The G%scheme

Let us introduce the G®-operator, which is based in the Gear scheme, to approximate
fractional derivatives

(1) G =5 (g)a {1 LS )

where At, which is supposed to be fixed, is the time step.

Let u be a time dependent function known only by its discretized values u™ at each
time ¢", where n is a positive integer. The function u™ is approximated by w(¢") with
t" = nAt. The a-derivative of u at time t" can be approximated by

a, \n 1 3 ‘o n—j
2) G = (3) ST

where ¢ is a rational number. The calculation of these G®-coefficients is a hard task
due to cumulative numerical errors. In order to overcome such a difficulty, the method
employed here consists of calculating these coefficients analytically using Symbolic Matlab
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Toolbox. For illustrative purposes, the reader is referred to Table 1, where the first ten
G%-coefficients are presented for three values of a: 1/3, 1/2, and 3/4.

Table 1: First ten coefficients g;;; of the formal power series (2).

j a=1/3 a=1/2 a=3/4
0 1 1 1
4 2
= - ~1
97 31 1
2 L _— —
81 18 12
o 14 1 1
2187 27 108
643 17 1
19683 648 96
4348 o T
177147 972 864
92809 _ 99 _ 193
4782969 3888 31104
683552 . n 151
43046721 5832 31104
5164958 2807 5813
387420489 279936 1492992
358288744 10627 128713
31381059609 1259712 40310784
2805807422 109159 430313

282429536481 15116544 161243136

3 The fractional damped oscillator problem

Consider a fractional one-dof system submitted to a constant step load f for ¢ > 0 with

zero initial conditions. The damping is taken into account by introducing a fractional

damping term or a spring-pot element in the formulation. The corresponding governing

equation as well as the initial conditions are given by

) mi+ ct*Du+ ku=f, t>0
u(0) =u(0)=0

where m and k are mass and stiffness constants; and ¢7® is a fractional damping constant
with 7 the relaxation time and c the classical damping constant.

The aim of this section is to solve the set of equations (3) with a direct time integration
method (Newmark) in conjunction with an approximation for the a-derivative D%u (G-
or GL-scheme). Furthermore, in order to validate such combinations, the approximated
solution is compared to an exact solution proposed by (Galucio et al., 2006). Finally,
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error estimates in L norm are performed. For a fixed time step At = 1/2™, this error is
computed by

(4) e :max{\u(jAt)—uj|,j =0,---,2"}

where m is a positive integer.

3.1 Algorithm

As mentioned above, the average acceleration algorithm is used to solve Eq. (3). The dis-
placement history arising from the a-derivative approximation (damping term) is shifted
to the right-hand side of Eq. (3) (Galucio et al., 2004). Therefore, using (2), the governing
equation in its discretized form is written as

(5) munJrl 4 (l{?—i— K)unJrl — fn+1 +¢n+1

where the non-classical terms x and ¢ arise from the approximation of the a-derivative:

cet® (3\°
(6a) = A (5)
a N
ct® (3
(6b) ¢ = o (—) ngﬂunﬂ%
At*\2)

One notes that the stiffness term x is constant in time, depending only on the time step,
which is supposed to be fixed. Concerning the modified loading ¢, it depends on the
displacement history.

3.2 Results

In all calculations performed below, we assume that m = k =7 = f = 1 in a suitable
unit system. In Table 2, as well in Figures 1 2, one assumes that ¢ = 1. Moreover, three
values of « are tested. The final time is chosen to be T" = 15 for various values of time
step.

It should be pointed out that the error estimates in L.°° norm are obtained using an
exact solution based on formal power series as mentioned above.

In Table 2, error estimates in [.°° norm are presented. One notes that the combined
G*-Newmark scheme keeps the second-order accuracy for any value of . However, the
use of a GL-Newmark algorithm decreases the order of accuracy to 1.

Figures 1 2 show the evolution of the displacement for two values of a as well the
error estimates on LL°° norm, when using a combined G%- or GL-Newmark scheme.

In Figures 1-2 (a), the exact solution of Eq. (3) and its corresponding numerical ap-
proximations (GL and G® methods) are presented, with a time discretization correspond-
ing to 2 = 64 time steps. One can easily note that the solution obtained by using the
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Table 2: Rate of convergence computed with the . norm for three values of a.

a=1/3 a=1/2 a=3/4
G* 1.99 1.96 1.90
GL 1.00 0.99 0.99

—Exact (Galucio et al., 2005)
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Figure 1: (a) Exact and approximated solutions of (3) for « = 1/3 and At = T'/25; (b)
Error estimates in L° norm

G%-scheme is very close to the exact solution while that one obtained by the GL-method
is overestimated.

Error estimates in L* norms are presented in Figures 1-2 (b). In both situations, the
combined G*-Newmark scheme shows a better accuracy than the GL one. The rates of

convergence presented in Table 2 are computed with 7 9 meshes, otherwise the slopes are
wrongly estimated.

It should be emphasized that the order of the fractional derivative does not affect
the rate of convergence (according to Table 2 and Figures 1 2) when using a Newmark
integrator. The influence of « is observed in the mechanical behavior of the fractional
damped oscillator by means of a damping factor. In other words, when « decreases, the
damping and the time required to achieve the quasistatic time solution increase.

In order to show the influence of an added damping, the results presented below are
computed for a fixed value of @ = 1/2 and different values of the classical damping
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Figure 2: (a) Exact and approximated solutions of (3) for a« = 3/4 and At = T'/25; (b)
Error estimates in L.°® norm

Table 3: Rate of convergence computed with the L>° norm for three values of c.

c=050 ¢=100 c=1.50
G* 1.98 1.96 1.93
GL 0.96 0.99 1.00

constant ¢. According to Table 3 (see also Table 2), the rate of convergence remains the
same. As in previous results, using the combined G*-Newmark algorithm, the order of
accuracy is at about 2.

For illustrative purposes, the responses of the oscillator computed with the G*-Newmark
scheme are presented in Fig. 3 (a) for three values of damping: ¢ = 0.5, 1.0, 1.5 (see
Eq. (3)). These results are obtained for a semi-derivative problem. Comparing to the
exact solution, the corresponding error in L norm is plotted in Fig. 3 (b). One notes
that the rate of convergence remains the same for all c.
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Figure 3: (a) Exact and approximated solutions of (3) for « = 1/2 and At = T'/2%; (b)
Error estimates in L.°® norm

4 Extension to viscoelastic beams

4.1 Viscoelastic Constitutive Equations

The one-dimensional fractional Zener model is adopted in this section to describe the
behavior of a viscoelastic material (Bagley and Torvik, 1983)

(7) o(t) + 19D (t) = Eoe(t) + BauroD%(t)

where ¢ and ¢ are the stress and the strain, £, and E_, are the relaxed and non-relaxed
elastic moduli, and 7 is the relaxation time.

In order to facilitate the numerical implementation of this model, let us introduce an
internal variable as an “anelastic” strain function:

(8)

This expression when replaced in Eq. (7) results only one fractional derivative operator.

o =¢—0/E

4.2 Algorithm

For the sake of brevity, finite element considerations are not presented in this investigation
(for more details, reader is referred to (Galucio et al., 2004)). The governing equation to
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be solved takes the following form

(9)

qu—i—l + (K + lC)q”“ — Fn+1 + (I)n-i-l
=q"=0

where M and K are the mass and stiffness matrices, q the degree-of-freedom vector and
F a mechanical load. Moreover, IC and ® are the terms arising from the viscoelastic
behavior of the beam such that

E,—F
10 K = QMK
(10a) 0
N
Eo k=1 ’

with ¢, = 7%/(7* + At®). We note that, as in the one-dof problem, the added stiffness
matrix K does not depend on time, while the dissipative force ® depends on the history
of “anelastic” displacements, which are updated at each time step by

Ew—E,
Eos

n+1 __

N
4 = (1-ca) a" —ca ) grngyt

k=1

It is important to observe that the introduction of q, in the formulation does not
imply an augmentation of the system. It can be considered as an intermediate variable
in the time scheme (see (Galucio et al., 2004)).

As in the previous example, the average acceleration algorithm is used to solve Eq. (9).

4.3 Results

Consider a viscoelastic cantilever beam of length L = 150 mm, width b = 25 mm and
thickness h = 5 mm, discretized with 5 finite elements. The mechanical characteristics
of the fictitious viscoelastic material are: mass density p = 1000 kg/m?, Poisson’s ratio
v = 0.5, relaxed elastic modulus £, = 1 MPa, non-relaxed elastic modulus £, = 50 MPa,
relaxation time 7 = 1 ms and order of the fractional derivative o = 0.5. The beam is
subjected to a transversal load at its free end such that

Fit/t, , 0<t<t
Pty = et '
FO ) tZtl

where F, = 0.01 N, t; = 50 ms and 7" = 1 s. Additionally, the time step is At = 2 ms
and the whole time history of “anelastic” displacements is used in the calculations.

In Fig. 4, transient responses of the damped viscoelastic beam are presented. The
evolution of the tip displacement and the phase-space diagram are plotted in Fig. 4(a)
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and (b), respectively. As expected, we observe that the oscillations of the viscoelastic
beam are damped.

It should be pointed out that these preliminary results show the versatility of the
G“-scheme since its implementation is easy and without additional costs when compared
to the GlL-one.
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Figure 4. Damped responses of the viscoelastic beam: (a) Tip displacement versus time;
(b) Phase-space diagram

5 Conclusion

A numerical method based on the Gear scheme to approximate fractional derivatives is
used here to model damping in linear dynamics. This G*-scheme is written in terms of a
formal power series, where the coefficients have to be calculated. The numerical evaluation
of G®-coefficients is delicate due to a bad conditioning of the recurrence formula. However,
with the help of formal calculus, cumulative numerical errors are avoided.

Two examples are presented and analyzed. In both cases, the average-acceleration
algorithm is used to integrate the governing equation. The first example concerns a
single degree-of-freedom oscillator with a fractional damping. In order to validate the
presented approach, numerical results are compared to an exact solution for the single dof
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problem submitted to a constant load (Galucio et al., 2006). The combined algorithm G-
Newmark is a promising tool for dynamic problems since a two-order accuracy is obtained.
The second example deals with the finite element implementation of a viscoelastic beam
submitted to a mechanical load.
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