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Abstra
t. The Gear s
heme is a three-level step algorithm, ba
kward in time and se
ondorder a

urate for the approximation of 
lassi
al time derivatives. In this 
ontribution, the formalpower of this s
heme is proposed to approximate fra
tional derivative operators in the 
ontextof �nite di�eren
e methods. Some numeri
al examples are presented and analyzed in order toshow the e�e
tiveness of the present Gear s
heme at the power α (Gα-s
heme) when 
ompared tothe 
lassi
al Grünwald-Letnikov approximation. In parti
ular, for a fra
tional damped os
illatorproblem, the 
ombined Gα-Newmark s
heme is shown to be se
ond-order a

urate.Keywords: Fra
tional derivatives, Vis
oelasti
ity, Multi-step s
heme, Linear dynami
s.
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2 Ana-Cristina Galu
io, Jean-François Deü and François Dubois1 Introdu
tionThe importan
e of fra
tional 
al
ulus for modeling vis
oelasti
 materials has been re
-ognized by the me
hani
al s
ienti�
 
ommunity sin
e the arti
le of (Bagley and Torvik,1983). The numeri
al approximation of su
h systems has been intensively studied sin
ethe work of (Padovan, 1987). On the other side, the numeri
al 
ommunity is interestedin the approximation of fra
tional derivatives. One refers to the pioneering theoreti
alwork of (Lubi
h, 1986) and the state of the art proposed by (Diethelm et al., 2005).Most appli
ations use the dis
rete 
onvolution formula proposed by Grünwald-Letnikov(GL-s
heme). Another dire
tion 
ould be autonomous systems in the 
ontext of di�usiverepresentations (Matignon and Montseny (Eds.), 1998; Yuan and Agrawal, 2002; Trinksand Ruge, 2002).In this work, we fo
us on the appli
ation of a numeri
al method based on the Gears
heme for the approximation of fra
tional derivatives in linear dynami
s. Su
h a s
hemeis 
alled here Gα-s
heme. It should be stressed that preliminary tests of 
onvergen
ehave been performed in a re
ent work (see (Galu
io et al., 2006)). Finally, two examplesare presented and analyzed. The �rst one deals with the study of a harmoni
 os
illatorwith fra
tional damping in order i) to validate the method and ii) to derive an order of
onvergen
e. The use of the Gα-s
heme is then extended to vis
oelasti
 beams submittedto an applied time-dependent for
e.2 The Gα-s
hemeLet us introdu
e the Gα-operator, whi
h is based in the Gear s
heme, to approximatefra
tional derivatives(1) Gα =
1

∆tα

(

3

2

)α [

I −
4

3
δ− +
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3
(δ−)2

]αwhere ∆t, whi
h is supposed to be �xed, is the time step.Let u be a time dependent fun
tion known only by its dis
retized values un at ea
htime tn, where n is a positive integer. The fun
tion un is approximated by u(tn) with
tn = n∆t. The α-derivative of u at time tn 
an be approximated by(2) (Gαu)n =

1

∆tα

(

3

2

)α ∞
∑

j=0

gj+1u
n−jwhere g is a rational number. The 
al
ulation of these Gα-
oe�
ients is a hard taskdue to 
umulative numeri
al errors. In order to over
ome su
h a di�
ulty, the methodemployed here 
onsists of 
al
ulating these 
oe�
ients analyti
ally using Symboli
 Matlab
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tional Derivatives 3Toolbox. For illustrative purposes, the reader is referred to Table 1, where the �rst tenGα-
oe�
ients are presented for three values of α: 1/3, 1/2, and 3/4.Table 1: First ten 
oe�
ients gj+1 of the formal power series (2).
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3 The fra
tional damped os
illator problemConsider a fra
tional one-dof system submitted to a 
onstant step load f for t > 0 withzero initial 
onditions. The damping is taken into a

ount by introdu
ing a fra
tionaldamping term or a spring-pot element in the formulation. The 
orresponding governingequation as well as the initial 
onditions are given by(3) {

mü + cταDαu + ku = f, t > 0

u(0) = u̇(0) = 0where m and k are mass and sti�ness 
onstants; and cτα is a fra
tional damping 
onstantwith τ the relaxation time and c the 
lassi
al damping 
onstant.The aim of this se
tion is to solve the set of equations (3) with a dire
t time integrationmethod (Newmark) in 
onjun
tion with an approximation for the α-derivative Dαu (Gα-or GL-s
heme). Furthermore, in order to validate su
h 
ombinations, the approximatedsolution is 
ompared to an exa
t solution proposed by (Galu
io et al., 2006). Finally,



4 Ana-Cristina Galu
io, Jean-François Deü and François Duboiserror estimates in L∞ norm are performed. For a �xed time step ∆t = 1/2m, this error is
omputed by(4) em
∞

= max{|u(j∆t) − uj| , j = 0, · · · , 2m}where m is a positive integer.3.1 AlgorithmAs mentioned above, the average a

eleration algorithm is used to solve Eq. (3). The dis-pla
ement history arising from the α-derivative approximation (damping term) is shiftedto the right-hand side of Eq. (3) (Galu
io et al., 2004). Therefore, using (2), the governingequation in its dis
retized form is written as(5) mün+1 + (k + κ)un+1 = fn+1 + φn+1where the non-
lassi
al terms κ and φ arise from the approximation of the α-derivative:
κ =

cτα

∆tα

(

3

2

)α(6a)
φn+1 = −

cτα

∆tα

(

3

2

)α N
∑

k=1

gk+1u
n+1−k(6b)One notes that the sti�ness term κ is 
onstant in time, depending only on the time step,whi
h is supposed to be �xed. Con
erning the modi�ed loading φ, it depends on thedispla
ement history.3.2 ResultsIn all 
al
ulations performed below, we assume that m = k = τ = f = 1 in a suitableunit system. In Table 2, as well in Figures 1�2, one assumes that c = 1. Moreover, threevalues of α are tested. The �nal time is 
hosen to be T = 15 for various values of timestep.It should be pointed out that the error estimates in L∞ norm are obtained using anexa
t solution based on formal power series as mentioned above.In Table 2, error estimates in L∞ norm are presented. One notes that the 
ombinedGα-Newmark s
heme keeps the se
ond-order a

ura
y for any value of α. However, theuse of a GL-Newmark algorithm de
reases the order of a

ura
y to 1.Figures 1�2 show the evolution of the displa
ement for two values of α as well theerror estimates on L∞ norm, when using a 
ombined Gα- or GL-Newmark s
heme.In Figures 1�2 (a), the exa
t solution of Eq. (3) and its 
orresponding numeri
al ap-proximations (GL and Gα methods) are presented, with a time dis
retization 
orrespond-ing to 26 = 64 time steps. One 
an easily note that the solution obtained by using the
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heme for Approximation of Fra
tional Derivatives 5Table 2: Rate of 
onvergen
e 
omputed with the L∞ norm for three values of α.
α = 1/3 α = 1/2 α = 3/4Gα 1.99 1.96 1.90GL 1.00 0.99 0.99
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Figure 1: (a) Exa
t and approximated solutions of (3) for α = 1/3 and ∆t = T/26; (b)Error estimates in L∞ normGα-s
heme is very 
lose to the exa
t solution while that one obtained by the GL-methodis overestimated.Error estimates in L∞ norms are presented in Figures 1�2 (b). In both situations, the
ombined Gα-Newmark s
heme shows a better a

ura
y than the GL one. The rates of
onvergen
e presented in Table 2 are 
omputed with 7�9 meshes, otherwise the slopes arewrongly estimated.It should be emphasized that the order of the fra
tional derivative does not a�e
tthe rate of 
onvergen
e (a

ording to Table 2 and Figures 1�2) when using a Newmarkintegrator. The in�uen
e of α is observed in the me
hani
al behavior of the fra
tionaldamped os
illator by means of a damping fa
tor. In other words, when α de
reases, thedamping and the time required to a
hieve the quasistati
 time solution in
rease.In order to show the in�uen
e of an added damping, the results presented below are
omputed for a �xed value of α = 1/2 and di�erent values of the 
lassi
al damping
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Exact (Galucio et al., 2005)
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Figure 2: (a) Exa
t and approximated solutions of (3) for α = 3/4 and ∆t = T/26; (b)Error estimates in L∞ norm
Table 3: Rate of 
onvergen
e 
omputed with the L∞ norm for three values of c.

c = 0.50 c = 1.00 c = 1.50Gα 1.98 1.96 1.93GL 0.96 0.99 1.00

onstant c. A

ording to Table 3 (see also Table 2), the rate of 
onvergen
e remains thesame. As in previous results, using the 
ombined Gα-Newmark algorithm, the order ofa

ura
y is at about 2.For illustrative purposes, the responses of the os
illator 
omputed with the Gα-Newmarks
heme are presented in Fig. 3 (a) for three values of damping: c = 0.5, 1.0, 1.5 (seeEq. (3)). These results are obtained for a semi-derivative problem. Comparing to theexa
t solution, the 
orresponding error in L∞ norm is plotted in Fig. 3 (b). One notesthat the rate of 
onvergen
e remains the same for all c.
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Figure 3: (a) Exa
t and approximated solutions of (3) for α = 1/2 and ∆t = T/29; (b)Error estimates in L∞ norm4 Extension to vis
oelasti
 beams4.1 Vis
oelasti
 Constitutive EquationsThe one-dimensional fra
tional Zener model is adopted in this se
tion to des
ribe thebehavior of a vis
oelasti
 material (Bagley and Torvik, 1983)(7) σ(t) + ταDασ(t) = Eoε(t) + E
∞

ταDαε(t)where σ and ε are the stress and the strain, Eo and E
∞

are the relaxed and non-relaxedelasti
 moduli, and τ is the relaxation time.In order to fa
ilitate the numeri
al implementation of this model, let us introdu
e aninternal variable as an �anelasti
� strain fun
tion:(8) εα = ε − σ/E
∞This expression when repla
ed in Eq. (7) results only one fra
tional derivative operator.4.2 AlgorithmFor the sake of brevity, �nite element 
onsiderations are not presented in this investigation(for more details, reader is referred to (Galu
io et al., 2004)). The governing equation to
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io, Jean-François Deü and François Duboisbe solved takes the following form(9) {

Mq̈n+1 + (K + K)qn+1 = Fn+1 + Φn+1

q0 = q̇0 = 0where M and K are the mass and sti�ness matri
es, q the degree-of-freedom ve
tor and
F a me
hani
al load. Moreover, K and Φ are the terms arising from the vis
oelasti
behavior of the beam su
h that

K = cα

E
∞
− Eo

Eo

K(10a)
Φn+1 = −cα

E
∞

Eo

K

N
∑

k=1

gk+1q
n+1−k
α(10b)with cα = τα/(τα + ∆tα). We note that, as in the one-dof problem, the added sti�nessmatrix K does not depend on time, while the dissipative for
e Φ depends on the historyof �anelasti
� displa
ements, whi
h are updated at ea
h time step by

qn+1

α = (1 − cα)
E

∞
− Eo

E
∞

qn+1 − cα

N
∑

k=1

gk+1q
n+1−k
αIt is important to observe that the introdu
tion of qα in the formulation does notimply an augmentation of the system. It 
an be 
onsidered as an intermediate variablein the time s
heme (see (Galu
io et al., 2004)).As in the previous example, the average a

eleration algorithm is used to solve Eq. (9).4.3 ResultsConsider a vis
oelasti
 
antilever beam of length L = 150 mm, width b = 25 mm andthi
kness h = 5 mm, dis
retized with 5 �nite elements. The me
hani
al 
hara
teristi
sof the �
titious vis
oelasti
 material are: mass density ρ = 1000 kg/m3, Poisson's ratio

ν = 0.5, relaxed elasti
 modulus Eo = 1 MPa, non-relaxed elasti
 modulus E
∞

= 50 MPa,relaxation time τ = 1 ms and order of the fra
tional derivative α = 0.5. The beam issubje
ted to a transversal load at its free end su
h that
F (t) =

{

Fot/t1 , 0 ≤ t ≤ t1

Fo , t ≥ t1where Fo = 0.01 N, t1 = 50 ms and T = 1 s. Additionally, the time step is ∆t = 2 msand the whole time history of �anelasti
� displa
ements is used in the 
al
ulations.In Fig. 4, transient responses of the damped vis
oelasti
 beam are presented. Theevolution of the tip displa
ement and the phase-spa
e diagram are plotted in Fig. 4(a)
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tional Derivatives 9and (b), respe
tively. As expe
ted, we observe that the os
illations of the vis
oelasti
beam are damped.It should be pointed out that these preliminary results show the versatility of theGα-s
heme sin
e its implementation is easy and without additional 
osts when 
omparedto the GL-one.
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(a) (b)Figure 4: Damped responses of the vis
oelasti
 beam: (a) Tip displa
ement versus time;(b) Phase-spa
e diagram5 Con
lusionA numeri
al method based on the Gear s
heme to approximate fra
tional derivatives isused here to model damping in linear dynami
s. This Gα-s
heme is written in terms of aformal power series, where the 
oe�
ients have to be 
al
ulated. The numeri
al evaluationof Gα-
oe�
ients is deli
ate due to a bad 
onditioning of the re
urren
e formula. However,with the help of formal 
al
ulus, 
umulative numeri
al errors are avoided.Two examples are presented and analyzed. In both 
ases, the average-a

elerationalgorithm is used to integrate the governing equation. The �rst example 
on
erns asingle degree-of-freedom os
illator with a fra
tional damping. In order to validate thepresented approa
h, numeri
al results are 
ompared to an exa
t solution for the single dof
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onstant load (Galu
io et al., 2006). The 
ombined algorithm Gα-Newmark is a promising tool for dynami
 problems sin
e a two-order a

ura
y is obtained.The se
ond example deals with the �nite element implementation of a vis
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