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2 Ana-Cristina Galuio, Jean-François Deü and François Dubois1 IntrodutionThe importane of frational alulus for modeling visoelasti materials has been re-ognized by the mehanial sienti� ommunity sine the artile of (Bagley and Torvik,1983). The numerial approximation of suh systems has been intensively studied sinethe work of (Padovan, 1987). On the other side, the numerial ommunity is interestedin the approximation of frational derivatives. One refers to the pioneering theoretialwork of (Lubih, 1986) and the state of the art proposed by (Diethelm et al., 2005).Most appliations use the disrete onvolution formula proposed by Grünwald-Letnikov(GL-sheme). Another diretion ould be autonomous systems in the ontext of di�usiverepresentations (Matignon and Montseny (Eds.), 1998; Yuan and Agrawal, 2002; Trinksand Ruge, 2002).In this work, we fous on the appliation of a numerial method based on the Gearsheme for the approximation of frational derivatives in linear dynamis. Suh a shemeis alled here Gα-sheme. It should be stressed that preliminary tests of onvergenehave been performed in a reent work (see (Galuio et al., 2006)). Finally, two examplesare presented and analyzed. The �rst one deals with the study of a harmoni osillatorwith frational damping in order i) to validate the method and ii) to derive an order ofonvergene. The use of the Gα-sheme is then extended to visoelasti beams submittedto an applied time-dependent fore.2 The Gα-shemeLet us introdue the Gα-operator, whih is based in the Gear sheme, to approximatefrational derivatives(1) Gα =
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]αwhere ∆t, whih is supposed to be �xed, is the time step.Let u be a time dependent funtion known only by its disretized values un at eahtime tn, where n is a positive integer. The funtion un is approximated by u(tn) with
tn = n∆t. The α-derivative of u at time tn an be approximated by(2) (Gαu)n =
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n−jwhere g is a rational number. The alulation of these Gα-oe�ients is a hard taskdue to umulative numerial errors. In order to overome suh a di�ulty, the methodemployed here onsists of alulating these oe�ients analytially using Symboli Matlab



The Gα-sheme for Approximation of Frational Derivatives 3Toolbox. For illustrative purposes, the reader is referred to Table 1, where the �rst tenGα-oe�ients are presented for three values of α: 1/3, 1/2, and 3/4.Table 1: First ten oe�ients gj+1 of the formal power series (2).
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3 The frational damped osillator problemConsider a frational one-dof system submitted to a onstant step load f for t > 0 withzero initial onditions. The damping is taken into aount by introduing a frationaldamping term or a spring-pot element in the formulation. The orresponding governingequation as well as the initial onditions are given by(3) {

mü + cταDαu + ku = f, t > 0

u(0) = u̇(0) = 0where m and k are mass and sti�ness onstants; and cτα is a frational damping onstantwith τ the relaxation time and c the lassial damping onstant.The aim of this setion is to solve the set of equations (3) with a diret time integrationmethod (Newmark) in onjuntion with an approximation for the α-derivative Dαu (Gα-or GL-sheme). Furthermore, in order to validate suh ombinations, the approximatedsolution is ompared to an exat solution proposed by (Galuio et al., 2006). Finally,



4 Ana-Cristina Galuio, Jean-François Deü and François Duboiserror estimates in L∞ norm are performed. For a �xed time step ∆t = 1/2m, this error isomputed by(4) em
∞

= max{|u(j∆t) − uj| , j = 0, · · · , 2m}where m is a positive integer.3.1 AlgorithmAs mentioned above, the average aeleration algorithm is used to solve Eq. (3). The dis-plaement history arising from the α-derivative approximation (damping term) is shiftedto the right-hand side of Eq. (3) (Galuio et al., 2004). Therefore, using (2), the governingequation in its disretized form is written as(5) mün+1 + (k + κ)un+1 = fn+1 + φn+1where the non-lassial terms κ and φ arise from the approximation of the α-derivative:
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gk+1u
n+1−k(6b)One notes that the sti�ness term κ is onstant in time, depending only on the time step,whih is supposed to be �xed. Conerning the modi�ed loading φ, it depends on thedisplaement history.3.2 ResultsIn all alulations performed below, we assume that m = k = τ = f = 1 in a suitableunit system. In Table 2, as well in Figures 1�2, one assumes that c = 1. Moreover, threevalues of α are tested. The �nal time is hosen to be T = 15 for various values of timestep.It should be pointed out that the error estimates in L∞ norm are obtained using anexat solution based on formal power series as mentioned above.In Table 2, error estimates in L∞ norm are presented. One notes that the ombinedGα-Newmark sheme keeps the seond-order auray for any value of α. However, theuse of a GL-Newmark algorithm dereases the order of auray to 1.Figures 1�2 show the evolution of the displaement for two values of α as well theerror estimates on L∞ norm, when using a ombined Gα- or GL-Newmark sheme.In Figures 1�2 (a), the exat solution of Eq. (3) and its orresponding numerial ap-proximations (GL and Gα methods) are presented, with a time disretization orrespond-ing to 26 = 64 time steps. One an easily note that the solution obtained by using the



The Gα-sheme for Approximation of Frational Derivatives 5Table 2: Rate of onvergene omputed with the L∞ norm for three values of α.
α = 1/3 α = 1/2 α = 3/4Gα 1.99 1.96 1.90GL 1.00 0.99 0.99
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Figure 1: (a) Exat and approximated solutions of (3) for α = 1/3 and ∆t = T/26; (b)Error estimates in L∞ normGα-sheme is very lose to the exat solution while that one obtained by the GL-methodis overestimated.Error estimates in L∞ norms are presented in Figures 1�2 (b). In both situations, theombined Gα-Newmark sheme shows a better auray than the GL one. The rates ofonvergene presented in Table 2 are omputed with 7�9 meshes, otherwise the slopes arewrongly estimated.It should be emphasized that the order of the frational derivative does not a�etthe rate of onvergene (aording to Table 2 and Figures 1�2) when using a Newmarkintegrator. The in�uene of α is observed in the mehanial behavior of the frationaldamped osillator by means of a damping fator. In other words, when α dereases, thedamping and the time required to ahieve the quasistati time solution inrease.In order to show the in�uene of an added damping, the results presented below areomputed for a �xed value of α = 1/2 and di�erent values of the lassial damping
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Exact (Galucio et al., 2005)
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Figure 2: (a) Exat and approximated solutions of (3) for α = 3/4 and ∆t = T/26; (b)Error estimates in L∞ norm
Table 3: Rate of onvergene omputed with the L∞ norm for three values of c.

c = 0.50 c = 1.00 c = 1.50Gα 1.98 1.96 1.93GL 0.96 0.99 1.00
onstant c. Aording to Table 3 (see also Table 2), the rate of onvergene remains thesame. As in previous results, using the ombined Gα-Newmark algorithm, the order ofauray is at about 2.For illustrative purposes, the responses of the osillator omputed with the Gα-Newmarksheme are presented in Fig. 3 (a) for three values of damping: c = 0.5, 1.0, 1.5 (seeEq. (3)). These results are obtained for a semi-derivative problem. Comparing to theexat solution, the orresponding error in L∞ norm is plotted in Fig. 3 (b). One notesthat the rate of onvergene remains the same for all c.



The Gα-sheme for Approximation of Frational Derivatives 7
0 5 10 15

0

0.5

1

1.5

Time

D
is

pl
ac

em
en

t

 

 

4 5 6 7 8 9
−15

−10

−5

0

Log
2
(Number of meshes)

Lo
g 2(E

rr
or

)

 

 

 c =  0.5
 c =  1.0
 c =  1.5

 c =  0.5
 c =  1.0
 c =  1.5

Figure 3: (a) Exat and approximated solutions of (3) for α = 1/2 and ∆t = T/29; (b)Error estimates in L∞ norm4 Extension to visoelasti beams4.1 Visoelasti Constitutive EquationsThe one-dimensional frational Zener model is adopted in this setion to desribe thebehavior of a visoelasti material (Bagley and Torvik, 1983)(7) σ(t) + ταDασ(t) = Eoε(t) + E
∞

ταDαε(t)where σ and ε are the stress and the strain, Eo and E
∞

are the relaxed and non-relaxedelasti moduli, and τ is the relaxation time.In order to failitate the numerial implementation of this model, let us introdue aninternal variable as an �anelasti� strain funtion:(8) εα = ε − σ/E
∞This expression when replaed in Eq. (7) results only one frational derivative operator.4.2 AlgorithmFor the sake of brevity, �nite element onsiderations are not presented in this investigation(for more details, reader is referred to (Galuio et al., 2004)). The governing equation to



8 Ana-Cristina Galuio, Jean-François Deü and François Duboisbe solved takes the following form(9) {

Mq̈n+1 + (K + K)qn+1 = Fn+1 + Φn+1

q0 = q̇0 = 0where M and K are the mass and sti�ness matries, q the degree-of-freedom vetor and
F a mehanial load. Moreover, K and Φ are the terms arising from the visoelastibehavior of the beam suh that

K = cα
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α(10b)with cα = τα/(τα + ∆tα). We note that, as in the one-dof problem, the added sti�nessmatrix K does not depend on time, while the dissipative fore Φ depends on the historyof �anelasti� displaements, whih are updated at eah time step by

qn+1
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αIt is important to observe that the introdution of qα in the formulation does notimply an augmentation of the system. It an be onsidered as an intermediate variablein the time sheme (see (Galuio et al., 2004)).As in the previous example, the average aeleration algorithm is used to solve Eq. (9).4.3 ResultsConsider a visoelasti antilever beam of length L = 150 mm, width b = 25 mm andthikness h = 5 mm, disretized with 5 �nite elements. The mehanial harateristisof the �titious visoelasti material are: mass density ρ = 1000 kg/m3, Poisson's ratio

ν = 0.5, relaxed elasti modulus Eo = 1 MPa, non-relaxed elasti modulus E
∞

= 50 MPa,relaxation time τ = 1 ms and order of the frational derivative α = 0.5. The beam issubjeted to a transversal load at its free end suh that
F (t) =

{

Fot/t1 , 0 ≤ t ≤ t1

Fo , t ≥ t1where Fo = 0.01 N, t1 = 50 ms and T = 1 s. Additionally, the time step is ∆t = 2 msand the whole time history of �anelasti� displaements is used in the alulations.In Fig. 4, transient responses of the damped visoelasti beam are presented. Theevolution of the tip displaement and the phase-spae diagram are plotted in Fig. 4(a)



The Gα-sheme for Approximation of Frational Derivatives 9and (b), respetively. As expeted, we observe that the osillations of the visoelastibeam are damped.It should be pointed out that these preliminary results show the versatility of theGα-sheme sine its implementation is easy and without additional osts when omparedto the GL-one.
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(a) (b)Figure 4: Damped responses of the visoelasti beam: (a) Tip displaement versus time;(b) Phase-spae diagram5 ConlusionA numerial method based on the Gear sheme to approximate frational derivatives isused here to model damping in linear dynamis. This Gα-sheme is written in terms of aformal power series, where the oe�ients have to be alulated. The numerial evaluationof Gα-oe�ients is deliate due to a bad onditioning of the reurrene formula. However,with the help of formal alulus, umulative numerial errors are avoided.Two examples are presented and analyzed. In both ases, the average-aelerationalgorithm is used to integrate the governing equation. The �rst example onerns asingle degree-of-freedom osillator with a frational damping. In order to validate thepresented approah, numerial results are ompared to an exat solution for the single dof
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