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The lattice Boltzmann scheme in his actual form has been developed with the contributions
of Lallemand, Succi, d’Humières, Luo [1, 2, 3, 4] and many others. In order to derive
the equivalent partial differential equations, a classical of the Chapman Enskog expansion is
popular in the lattive Boltzmann community (see e.g. [4]). A main drawback of this approach
is the fact that multiscale expansions are used without a clear mathematical signification of
the various variables and functions. Independently of this framework, we have proposed in [5,
6] the Taylor expansion method to obtain formally equivalent partial differential equations.
The infinitesimal variable is simply the time step (proportional to the space step with the
acoustic scaling). This approach has been experimentaly validated in various contributions
[7, 8]. A third order extension for fluid flow has been proposed in [9] and an efficient
implementation up to fourth order accuracy is presented in [10].
In this contribution, we consider a regular lattice L composed by vertices x separated by
distances that are simple expressions of the space step ∆x. A discrete time t is supposed
to be an integer multiple of a time step ∆t > 0. A very general lattice Boltzmann scheme
with q discrete velocities of the form

fj(x, t + ∆t) = f ∗
j (x− vj ∆t, t) , 0 ≤ j < q .

The distribution f ∗ after relaxation is defined with moments m such that

mk =
∑
j

Mk` fj .
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The d’Humières matrix [3] M is invertible and we decompose the moments in the following
way:

m ≡
(
W

Y

)
.

The conserved variables W are not modified after relaxation: W ∗ = W . The microscopic
variables Y are changed in a nonlinear way by the relaxation process:

Y ∗ = Y + S (Φ(W )− Y ) .

The matrix S is invertible, and ofter chosen as diagonal. It is supposed to be fixed in
the asymptotic process presented hereafter. The equilibrium values Y eq = Φ(W ) are given
smooth functions of the conserved variables. When Y ∗ is evaluated, we have simply

f ∗ = M−1m∗ .

We introduce the momentum-velocity operator matrix Λ defined by the relation

Λk` =
∑
j, α

Mkj v
α
j (M−1)j` ∂α , 0 ≤ k, ` < q .

It is nothing else than the advection operator seen in the space of moments. Then we have
an exponential form of the discrete iteration of the lattice Boltzmann scheme:

m(x, t + ∆t) = exp(−∆tΛ) m∗(x, t) .

With this general framework, we follow in this contribution the Chapman-Enskog formalism
proposed by Chen–Doolen [11] and Qian–Zhou [12]. We suppose that ∆t ≡ ε is an infinites-
imal parameter and we expand the nonconserved moments as differential nonlinear function
of the conserved variables:

Y = Φ(W ) + εΨ1(W ) + ε2 Ψ2(W ) + O(ε3) .

Then we suppose that a multi-scale approach is present for the time dynamics:

∂t = ∂t1 + ε ∂t2 + ε2 ∂t3 + O(ε3) .

Then we prove that the conserved quantities W follow the following multi-time dynamics :

∂t1W + Γ1(W ) = 0 , ∂t2W + Γ2(W ) = 0 , ∂t3W + Γ3(W ) = 0 .

The differential operators Γ1(W ), Ψ1(W ), Γ2(W ), Ψ2(W ) and Γ3(W ) of this expansion
are recursively determined as a function of the data vj, M , Φ(W ) and S. We compare
our result with the particular third order expansion proposed in [9] and the linear approach
presented in [10]. The previous operators Γj(W ) and Ψi(W ) are of order j and are exactly
the ones derived in our fourth order expansion of lattice Boltzmann schemes with the Taylor
expansion method [13].
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