Lattice Boltzmann scheme and finite volumes *

François Dubois^{1 2}

¹ Conservatoire National des Arts et Métiers, Paris, EU.

² Numerical Analysis and Partial Differential Equations

Department of Mathematics, Paris Sud University, Orsay, EU

francois.dubois@math.u-psud.fr

We denote by \mathcal{L} a lattice, Δx a typical scale associated with this lattice, Δt a time step, $\lambda \equiv \frac{\Delta x}{\Delta t}$ a typical celerity of the problem, x a vertex of this lattice, $y_j \equiv x + \Delta t v_j$, $(0 \leq j \leq J)$ the set of neighbouring nodes around the vertex x. We suppose that the family $(v_j)_{0 \leq j \leq J}$ of celerities is symmetric relatively to the origin :

$$\forall j \in \{0, \cdots, J\}, \quad \exists ! \sigma(j) \in \{0, \cdots, J\}, \quad v_j + v_{\sigma(j)} = 0.$$

Let $f_j(x,t)$ be a distribution of particles on the lattice \mathcal{L} at the vertex x and discrete time t. We assume that the density $\rho \equiv \sum_j f_j$ and the momentum $q \equiv \sum_j v_j f_j$ are conserved during the collision step and we denote by $f_j^*(x,t)$ the distribution after this step : $\rho = \sum_j f_j = \sum_j f_j^* = \rho^*$, $q = \sum_j v_j f_j = \sum_j v_j f_j^* = q^*$. Then the dynamics of the lattice Boltzmann scheme takes the simple form [2]

$$f_j(x, t + \Delta t) = f_j^*(x - v_j \Delta t, t), \quad x \in \mathcal{L}, \ 0 \le j \le J.$$

We introduce a cell K(x) around the vertex x such that its boundary $\partial K(x)$ is composed by J edges $a_j(x)$ separating the nodes x and y_j : $\partial K(x) = \bigcup_j a_j(x)$, $a_j(x) = \partial K(x) \cap \partial K(y_j) = a_{\sigma(j)}(y_j)$. We denote by |K(x)| and $|a_j(x)|$ the measures of K(x) and $a_j(x)$ respectively. Then the conservation of mass and momentum takes the discrete form

$$\frac{1}{\Delta t} \left[\begin{pmatrix} \rho \\ q \end{pmatrix} (x, t + \Delta t) - \begin{pmatrix} \rho \\ q \end{pmatrix} (x, t) \right] + \frac{1}{|K(x)|} \sum_{j} |a_j(x)| \begin{pmatrix} \psi_j \\ \zeta_j \end{pmatrix} (x) = 0$$

with a mass flux $\psi_j(x)$ and a flux of impulsion $\zeta_j(x)$ between the vertices x and y_j defined according to

$$\psi_j(x) = \frac{|K(x)|}{\Delta t |a_j(x)|} (f_j^*(x) - f_{\sigma(j)}^*(y_j)), \ \zeta_j(x) = \frac{|K(x)|}{\Delta t |a_j(x)|} v_j (f_j^*(x) + f_{\sigma(j)}^*(y_j))$$

and satisfying the conservation property :

$$\psi_j(x) + \psi_{\sigma(j)}(y_j) = 0, \qquad \zeta_j(x) + \zeta_{\sigma(j)}(y_j) = 0$$

This remark makes a clear link between the lattice Boltzmann scheme and the finite volume method. In the particular case of D_1Q_3 and D_2Q_9 models (see *e.g.* [3] for a precise description of the latter), this remark is the starting point of a complete development of a new boundary condition procedure that is more efficient than [1] and will be presented at the Conference.

The author thanks François Alouges for a short and precise interaction about finite volumes and Pierre Lallemand for regular scientific exchanges on the present subject.

[1] M. Bouzidi, M. Firdaouss, P. Lallemand, *Physics of Fluids*, vol. 13, nº 11, p. 3452-3459, 2001.

- [2] F. Dubois, Computers and Mathematics with Applications, to appear.
- [3] P. Lallemand, L.S. Luo, *Physical Review E*, vol. **61**, n° 6, p. 6546-6562, 2000.

^{*26} April 2006.