Using the Lattice Boltzmann Scheme for Anisotropic Diffusion Problems

François Dubois ${ }^{12}$, Pierre Lallemand ${ }^{3}$ and Mohammed Mahdi Tekitek ${ }^{2}$
${ }^{1}$ Conservatoire National des Arts et Métiers, Paris, France.
${ }^{2}$ Numerical Analysis and Partial Differential Equations
Department of Mathematics, Paris Sud University, Orsay, France.
${ }^{3}$ Retired from Centre National de la Recherche Scientifique, Paris.
francois.dubois@math.u-psud.fr, pierre.lal@free.fr, mohamed-mahdi.tekitek@math.u-psud.fr

9 April 2008 *

Abstract

The lattice Boltzmann method is briefly introduced using moments. We use this method to model diffusion problems. We have adapted a general methodology for equivalent equations to the explicit determination of discrete gradient and fluxes for this problem. We validate this new approach with a detailed comparison with finite differences. We show some results for an anisotropic test case.

Keywords : Lattice Boltzmann Equation, anisotropic diffusion problems.

1 Lattice Boltzmann scheme

The lattice Boltzmann equation (LBE) is a numerical method based on kinetic theory to simulate various hydrodynamic systems. It uses a small number of velocities and was derived by Higuera and Jiménez [HJ89] from lattice

[^0]gas automata of Frisch et al. [FHP86]. The LBE is a mesoscopic method and deals with a small number of functions $\left\{f_{i}\right\}$ that can be interpreted as populations of fictitious "particles". The dynamics of these "particles" is such that time, space and momentum are discretized. The "particles" evolve in a succession of collision and propagation steps on the nodes of a regular lattice \mathcal{L} parametrized by a spatial scale Δx. This lattice is composed by a set $\mathcal{L}^{0} \equiv\left\{x_{j} \in(\Delta x \mathbb{Z})^{d}\right\}$ of nodes or vertices where d is the dimension of space. We define Δt as the time step of the evolution of LBE and let the celerity $\lambda \equiv \frac{\Delta x}{\Delta t}$. We choose the velocities $v_{i}, i \in(0 \ldots q)$ such that $v_{i} \equiv c_{i} \frac{\Delta x}{\Delta t}=c_{i} \lambda$, where c_{i} are vectors connecting neighbouring nodes of \mathcal{L}.

For the sake of simplicity we consider the particular D2Q9 [DDH92] model (i.e. $d=2$ two-dimensional LBE model with nine velocities $q=$ 8). In this model, we choose the velocities $c_{i}, i \in(0 \ldots 8)$ defined by: $c=(0,0),(1,0),(0,1),(-1,0),(0,-1),(1,1),(-1,1),(-1,-1),(1,-1)$. The populations f_{i} evolve according to the LBE scheme which can be written as follows [Du07]:

$$
\begin{equation*}
f_{i}\left(x_{j}, t+\Delta t\right)=f_{i}^{*}\left(x_{j}-v_{i} \Delta t, t\right), \quad 0 \leq i \leq 8 \tag{1}
\end{equation*}
$$

where the superscript $*$ denotes post-collision quantities. Therefore during each time increment Δt there are two fundamental steps: collision and advection.

In the advection step the "particles" move from a lattice node x_{j} to either itself (with the velocity $\mathbf{v}_{0}=0$), one of the four nearest neighbors (with the velocity $\mathbf{v}_{i}, 1 \leq i \leq 4$), or one of the four next-nearest neighbors (with the velocity $\left.\mathbf{v}_{i}, 5 \leq i \leq 8\right)$. The collision step consists of the redistribution of the populations $\left\{f_{i}\right\}$ at each node x_{j}. It is modeled by the operator subscript * in (1) and is best described in the space of moments m_{k} [DDH92]. They are obtained by a linear transformation of vectors f_{j} :

$$
m_{k}=\sum_{j} M_{k j} f_{j}
$$

Explicit formula for $M_{k j}$ coefficient is given in [DDH92]. Note that matrix M is invertible. The moments have an explicit physical significance (e.g. [LL00]): $m_{0} \equiv T$ is the temperature (density), m_{1} and m_{2} are x momentum, y-momentum, m_{3} is the energy, m_{4} is related to energy square,
m_{5} and m_{6} are x-energy flux and y-energy flux and m_{7}, m_{8} are diagonal stress and off-diagonal stress.

- To simulate diffusion problems, we conserve only the first moment m_{0} in the collision step and obtain one macroscopic scalar equation. For the other quantities (non-conserved moments), we assume that they relax towards equilibrium values $m_{k}^{e q}$ that are nonlinear functions of the conserved quantities and set:

$$
\begin{equation*}
m_{k}^{*}=\left(1-s_{k}\right) m_{k}+s_{k} m_{k}^{e q}, \quad 1 \leq k \leq 8 \tag{2}
\end{equation*}
$$

where $s_{k} \equiv \frac{\Delta t}{\tau_{k}}$ is a relaxation rate $\left(0<s_{k}<2\right.$ for stability). The relaxation rates s_{k} are not necessarily identical as in the so called BGK case [QHL92].

The equilibrium values $m_{k}^{e q}$ of the non-conserved moments in equation (2) determine the macroscopic behaviour of the scheme (i.e. of equation (1)). Indeed with the following choice of equilibrium values:

$$
m_{3}^{e q}=\alpha T, m_{4}^{e q}=\beta T, q_{x}^{e q}=0, q_{y}^{e q}=0, p_{x x}^{e q}=a_{x x} T \quad \text { and } \quad p_{x y}^{e q}=a_{x y} T
$$

and using Taylor expansion [Du07] or Chapman-Enskog procedure [FHH87] we find the diffusion equation up to order three in Δt :

$$
\frac{\partial T}{\partial t}-\operatorname{div}(\mathrm{K} \nabla T)=\mathrm{O}\left(\Delta t^{3}\right)
$$

where $\mathrm{K}=\left(k_{i, j}\right)_{1 \leq i, j \leq 2}$ is the diffusion tensor with

$$
\begin{aligned}
k_{11} & =\frac{\lambda^{2} \Delta t}{6}\left(\frac{1}{s_{1}}-\frac{1}{2}\right)\left(4+\alpha+3 a_{x x}\right) \\
k_{12} & =k_{21}=\frac{\lambda^{2} \Delta t}{2}\left(\frac{1}{s_{1}}+\frac{1}{s_{2}}-1\right) a_{x y} \\
k_{22} & =\frac{\lambda^{2} \Delta t}{6}\left(\frac{1}{s_{2}}-\frac{1}{2}\right)\left(4+\alpha-3 a_{x x}\right)
\end{aligned}
$$

These equations reduce to the standard isotropic diffusion equation for $a_{x x}=$ $a_{x y}=0$ and $s_{1}=s_{2}=s$, with the diffusion coefficient

$$
\kappa=\frac{\lambda^{2}}{6} \Delta t(4+\alpha)\left(\frac{1}{s}-\frac{1}{2}\right)
$$

With a given velocity field $\left(v_{x}, v_{y}\right)$, if we take $m_{1}^{e q}=\lambda v_{x} T$ and $m_{2}^{e q}=$ $\lambda v_{y} T$ the LBE scheme describes the following advection-diffusion [GdH07] equation:

$$
\frac{\partial T}{\partial t}+v . \nabla T-\mathrm{K} \Delta T=\mathrm{O}\left(\Delta t^{2}\right)
$$

- Boundary conditions

In this section we deal with boundary conditions for the lattice Boltzmann method. We explain in detail how to reconstruct classical bounce-back or anti-bounce back boundary conditions using a general Taylor expansion proposed in [Du07]. Let $\partial \Omega$ be a boundary surface cutting the link between fluid node x_{b} and an outside one $x_{e} \equiv x_{b}-\Delta x$ (see Figure 1).

Figure 1. A boundary surface cutting the link between node x_{b} (a fluid node) and $x_{e} \equiv x_{b}-\Delta x$ (a fictitious outside node).

Let $f_{i}\left(x_{b}, t\right), i \in(0 \ldots 8)$ be the population at node x_{b} and at time t. After the collision step distribution $f_{3}^{*}\left(x_{b}, t\right)$ has left the fluid and goes to the fictitious node x_{e}. At time $t+\Delta t$ we have to define the unknown population $f_{1}\left(x_{b}, t+\Delta t\right)$ which comes from node x_{e} and is equal to $f_{1}^{*}\left(x_{e}, t\right)$. So the choice of this population will determine the boundary conditions. Here we consider the case of Dirichlet boundary conditions at $\partial \Omega$ which intersects the link between x_{e} and x_{b} at $x_{e}+\frac{\Delta x}{2}$.

To have $T\left(x_{e}+\frac{\Delta x}{2}\right)$ on $\partial \Omega$ in the configuration of Figure 1 up to order 1 in Δt we perform the following scheme:

$$
\begin{aligned}
f_{1}\left(x_{b}, t+\Delta t\right) & =-f_{3}\left(x_{e}, t+\Delta t\right)+\frac{1}{36}\left(4-\alpha-2 \beta+9 a_{x x}\right) T\left(x_{e}+\frac{\Delta x}{2}\right), \\
f_{5}\left(x_{b}, t+\Delta t\right) & =-f_{7}\left(x_{2}, t+\Delta t\right)+\frac{1}{36}\left(4+2 \alpha+\beta+9 a_{x y}\right) T\left(x_{S}\right), \\
f_{8}\left(x_{b}, t+\Delta t\right) & =-f_{6}\left(x_{1}, t+\Delta t\right)+\frac{1}{36}\left(4+2 \alpha+\beta-9 a_{x y}\right) T\left(x_{N}\right) .
\end{aligned}
$$

By using moments and relation (1) we have:

$$
\begin{aligned}
f_{1}\left(x_{b}, t+\Delta t\right) & =f_{1}^{*}\left(x_{e}, t\right) \\
& =\frac{1}{36}\left(4 m_{0}+\frac{6 m_{1}^{*}}{\lambda}-m_{3}^{*}-2 m_{4}^{*}-6 m_{5}^{*}+9 m_{7}^{*}\right)\left(x_{e}, t\right), \\
f_{3}\left(x_{e}, t+\Delta t\right) & =f_{3}^{*}\left(x_{b}, t\right) \\
& =\frac{1}{36}\left(4 m_{0}-\frac{6 m_{1}^{*}}{\lambda}-m_{3}^{*}-2 m_{4}^{*}+6 m_{5}^{*}+9 m_{7}^{*}\right)\left(x_{b}, t\right) .
\end{aligned}
$$

We have the following development of non-equilibrium moments at second order on Δt (as described in [Du09]):

$$
\begin{equation*}
m_{k}^{*}=m_{k}^{e q}+\Delta t\left(\frac{1}{2}-\sigma_{k}\right) \theta_{k}+\mathrm{O}\left(\Delta t^{2}\right), \quad k \geq 2 \tag{3}
\end{equation*}
$$

where $\sigma_{k} \equiv\left(\frac{1}{s_{k}}-\frac{1}{2}\right)$ and θ_{k} is the defect of conservation defined by:

$$
\theta_{k} \equiv \partial_{t} m_{k}^{e q}+\sum_{j, \alpha} M_{k j} M_{\alpha j} \partial_{\alpha} f_{j}^{e q}
$$

The detailed expansion of these coefficients is given in [Du09] and is used below. Now we consider the quantities $f_{1}\left(x_{b}, t+\Delta t\right)+f_{3}\left(x_{e}, t+\Delta t\right)$, and we use the above identity and the different expressions of the θ_{k}, we get:

$$
\begin{aligned}
f_{1}\left(x_{b}, t+\Delta t\right)+ & f_{3}\left(x_{e}, t+\Delta t\right)= \\
& =\frac{1}{72}\left(4-\alpha-2 \beta+9 a_{x x}\right)\left(T\left(x_{e}\right)+T\left(x_{b}\right)\right)+\mathrm{O}(\Delta t) \\
& =\frac{1}{36}\left(4-\alpha-2 \beta+9 a_{x x}\right) T\left(x_{e}+\frac{\Delta x}{2}\right)+\mathrm{O}(\Delta t) .
\end{aligned}
$$

To obtain the other identities we perform similar operations on the quantities f_{5}, f_{6}, f_{7} and f_{8}. We note here that if we have homogeneous boundary conditions (i.e. $T\left(x_{e}+\frac{\Delta x}{2}\right)=0$) we obtain classical boundary condition called "anti-bounce back". Note that Ginzburg [Gi05] proposes more elaborate boundary conditions of higher order by using the Chapman-Enskog method.

- Gradient and Flux

Compared to classical numerical methods, the lattice Boltzmann method uses more parameters and variables. It turns out that in steady state situations some of these variables can be used to determine the first and second space
derivatives $\frac{\partial T}{\partial x_{\alpha}}$ and $\frac{\partial^{2} T}{\partial x_{\alpha} x_{\beta}}$ in all nodes $x \in \mathcal{L}^{0}$, and the flux along the interface of the control volume K.

The gradient of the solution on the node x_{i} at time t can be evaluated as follows. By using Taylor expansions we get a general second order expression of non-conservative moments:
(4) $m_{k}=m_{k}^{e q}-\Delta t\left(\frac{1}{2}+\sigma_{k}\right)\left[\theta_{k}-\Delta t\left(\sigma_{k} \partial_{t} \theta_{k}+\sigma_{l} \Lambda_{k \alpha}^{\ell} \partial_{\alpha} \theta_{\ell}\right)\right]+\mathrm{O}\left(\Delta t^{3}\right), k \geq 1$,
where $\Lambda_{k p}^{\ell}=\sum_{j} M_{k j} M_{p j} M_{j, \ell}^{-1}$. To determine first order space derivatives of T for the present diffusion problem, we use equation (4) for moments m_{1} and m_{2} :

$$
\begin{aligned}
& m_{1}=-\lambda^{2} \Delta t\left(\frac{1}{2}+\sigma_{1}\right)\left[\frac{\left(4+\alpha+3 a_{x x}\right)}{6} \frac{\partial T}{\partial x}+a_{x y} \frac{\partial T}{\partial y}\right]+\mathrm{O}\left(\Delta t^{3}\right), \\
& m_{2}=-\lambda^{2} \Delta t\left(\frac{1}{2}+\sigma_{2}\right)\left[a_{x y} \frac{\partial T}{\partial x}+\frac{\left(4+\alpha-3 a_{x x}\right)}{6} \frac{\partial T}{\partial y}\right]+\mathrm{O}\left(\Delta t^{3}\right) .
\end{aligned}
$$

Similarly the determination of second order space derivatives of T is obtained using equation (4) for moments m_{3}, m_{7} and m_{8} :

$$
\begin{aligned}
m_{3}= & \alpha T+\Delta t^{2}\left(\frac{1}{2}+\sigma_{3}\right) \lambda^{2}\left[\left(\sigma_{1} \frac{4+\alpha+3 a_{x x}}{6}+\sigma_{5} \frac{\alpha+\beta-3 a_{x x}}{3}\right) \frac{\partial^{2} T}{\partial x^{2}}+\right. \\
& +\left(\sigma_{2} \frac{4+\alpha+3 a_{x x}}{6}+\sigma_{6} \frac{\alpha+\beta+3 a_{x x}}{3}\right) \frac{\partial^{2} T}{\partial y^{2}} \\
& \left.+\left(\sigma_{1}+\sigma_{2}+\sigma_{5}+\sigma_{6}\right) a_{x y} \frac{\partial^{2} T}{\partial x \partial y}\right], \\
m_{7}= & a_{x x} T+\Delta t^{2}\left(\frac{1}{2}+\sigma_{7}\right) \frac{\lambda^{2}}{3}\left[\left(\sigma_{1} \frac{4+\alpha+3 a_{x x}}{6}-\sigma_{5} \frac{\alpha+\beta-3 a_{x x}}{3}\right) \frac{\partial^{2} T}{\partial x^{2}}+\right. \\
& +\left(\sigma_{6} \frac{\alpha+\beta+3 a_{x x}}{3}-\sigma_{2} \frac{4+\alpha-3 a_{x x}}{6}\right) \frac{\partial^{2} T}{\partial y^{2}} \\
& \left.+\quad\left(\sigma_{1}-\sigma_{2}+\sigma_{6}-\sigma_{5}\right) a_{x y} \frac{\partial^{2} T}{\partial x \partial y}\right],
\end{aligned}
$$

$$
\begin{aligned}
m_{8}= & a_{x y} T+\Delta t^{2}\left(\frac{1}{2}+\sigma_{8}\right) \frac{\lambda^{2}}{3}\left[\left(2 \sigma_{2}+\sigma_{6}\right) a_{x y} \frac{\partial^{2} T}{\partial x^{2}}+\left(2 \sigma_{1}+\sigma_{5}\right) a_{x y} \frac{\partial^{2} T}{\partial y^{2}}+\right. \\
& +\quad\left(\sigma_{1} \frac{4+\alpha+3 a_{x x}}{3}+\sigma_{2} \frac{4+\alpha-3 a_{x x}}{3}+\right. \\
& \left.\left.+\quad \sigma_{5} \frac{\alpha+\beta-3 a_{x x}}{3}+\sigma_{6} \frac{\alpha+\beta+3 a_{x x}}{3}\right) \frac{\partial^{2} T}{\partial x \partial y}\right]
\end{aligned}
$$

We note that we could have used the combination m_{5} and m_{6} for ∇T and m_{4}, m_{7} and m_{8} for second order space derivatives. Note that applying the new methodology with Taylor expansion instead of the Chapman-Enskog methodology [DDH92] is original in this framework of diffusion problems.

- We now show that the lattice Boltzmann method for purely diffusive problems relates to classical Fourier law. The mass flux j is generally defined as the amount of particles that cross an interface at a given time instance. The flux can be defined at the interface $\left(x_{S}, x_{N}\right) \equiv(S N)$ between two lattice nodes x_{e} and $x_{b} \equiv x_{e}+\Delta x$ as (see Figure 1):

$$
\begin{aligned}
& j_{S N}\left(x_{e}+\frac{\Delta x}{2}, t+\Delta t\right)=\lambda\left(f_{1}\left(x_{b}, t+\Delta t\right)-f_{3}\left(x_{e}, t+\Delta t\right)\right)+ \\
& +\lambda \Psi_{1}\left(f_{5}\left(x_{b}, t+\Delta t\right)-f_{7}\left(x_{2}, t+\Delta t\right)+f_{5}\left(x_{3}, t+\Delta t\right)-f_{7}\left(x_{b}, t+\Delta t\right)\right)+ \\
& +\lambda \Psi_{2}\left(f_{8}\left(x_{b}, t+\Delta t\right)-f_{6}\left(x_{1}, t+\Delta t\right)+f_{8}\left(x_{4}, t+\Delta t\right)-f_{6}\left(x_{b}, t+\Delta t\right)\right)
\end{aligned}
$$

where Ψ_{1} and Ψ_{2} are two scalars determined by:

$$
\begin{aligned}
\frac{1}{\Delta x} \int_{S N} \operatorname{div}(\mathrm{~K} . \nabla T) \cdot n_{S N} d y & =K_{11} \frac{\partial T}{\partial x}\left(x_{I}, t\right)+K_{12} \frac{\partial T}{\partial y}\left(x_{I}, t\right)+\mathrm{O}(\Delta x)= \\
& =-j_{S N}\left(x_{I}, t+\Delta t\right)+\mathrm{O}(\Delta x)
\end{aligned}
$$

where $x_{I}=x_{e}+\frac{\Delta x}{2}$ (see Figure 1). If we suppose that $\frac{\partial T}{\partial x}$ is constant along $S N$ and with the help of Taylor expansion we obtain the first equality of the above calculus. To find Ψ_{1} and Ψ_{2}, we develop the quantity $j_{S N}$ by using (3), then we choose Ψ_{1} and Ψ_{2} such that this quantity is equal to the normal flux. In the case of isotropic problems (i.e. $a_{x x}=a_{x y}=0$), we find $\Psi_{1}=\Psi_{2}=\frac{1}{2}$.

2 Numerical results

First we have tested our scheme for the following 1D problem: $-\mathrm{K} u^{\prime \prime}(x)=c$ in $] 0,1[, u(0)=u(1)=0$. We take periodic condition on y, anti-bounce
back condition on x to obtain homogeneous Dirichlet boundary conditions and the following parameters:

$$
\begin{gathered}
\alpha=-2, \beta=1, a_{x x}=a_{x y}=0 \\
s_{1}=s_{2}=1.2, s_{3}=1.8, s_{4}=1.2, s_{5}=s_{6}=1.5 \text { and } s_{7}=s_{8}=1.3 .
\end{gathered}
$$

The results concerning the ℓ^{2} relative errors between the exact affine solution $u(x)=x(1-x) c /(2 \mathrm{~K})$ and the solution calculated with the D2Q9 LBE scheme shows second order accuracy.
Second we have tested our scheme for the following 2D isotrope diffusion problem with Dirichlet and Neumann boundary conditions: $-\mathrm{K} \Delta u=f$ in $\Omega=] 0,1\left[^{2}, u=\bar{u}\right.$ on $\Gamma_{D}, \partial_{n} u=g$ on Γ_{N}, where K is a scalar, $f=-2 \mathrm{~K}$, $\Gamma_{D} \equiv\{0\} \times(0,1) \cup\{1\} \times(0,1), \bar{u}=0$ on $\{0\} \times(0,1), 1-3 y$ on $\{1\} \times(0,1)$ and $g=-3 x$ on $\Gamma_{N} \equiv(0,1) \times\{0\} \cup(0,1) \times\{1\}$. The analytical solution of this problem is: $u(x, y)=x^{2}-3 x y$. We take anti-bounce back condition on x to obtain Dirichlet boundary condition, bounce back condition on y to obtain Neumann boundary and the following parameters:

$$
\begin{gathered}
\alpha=-2, \beta=1, a_{x x}=a_{x y}=0 \\
s_{1}=s_{2}=1.2, s_{3}=1.1, s_{4}=1.4, s_{5}=s_{6}=1.5, s_{7}=s_{8}=1.5
\end{gathered}
$$

Figure 2 shows ℓ^{2} relative errors between the exact solution and the solution calculated with the D2Q9 LBE, which is second order accuracy.

Figure 2. The ℓ^{2} error between analytical solution and approximate one vs mesh size.

We have also used our algorithm to solve the following anisotropic diffusion problem so called "oblique flow":

$$
\left\{\begin{array}{rll}
-\operatorname{div}(\mathrm{K} \nabla u) & =0 & \text { in } \Omega=] 0,1\left[^{2},\right. \\
u & =\bar{u} & \text { on } \partial \Omega .
\end{array}\right.
$$

where $\mathrm{K}=R_{\theta} \operatorname{diag}\left(1,10^{-3}\right) R_{\theta}^{-1}, R_{\theta}$ is the rotation of angle $\theta=40$ degrees, and $\bar{u}=1$ on $(0,0.2) \times\{0\} \cup\{0\} \times(0,0.2), 0$ on $(0.8,1) \times\{1\} \cup\{1\} \times(0.8,1), \frac{1}{2}$ on $(0.3,1) \times\{0\} \cup\{0\} \times(0.3,1), \frac{1}{2}$ on $(0,0.7) \times\{1\} \cup\{1\} \times(0,0.7)$. Figure 3 shows the approximate solution on regular mesh (151×151), calculated by D2Q9 scheme after convergence (i.e. 5.10^{5} iterations) with $s_{1}=1.3$, $s_{2}=1.8$ and $\beta=1$ (other parameters are fixed to have K as diffusion tensor). The value of the maximum of the approximate solution in the same mesh is $T_{\max }=0.9984$ and the minimum one $T_{\min }=0.0015$. In Figure $4 a$ and b we compare ∇T calculated by centred finite difference method and by using moments m_{1} and m_{2} (Figure $4 a$) or by using m_{5} and m_{6} (Figure 4b). In Figure 5 we compare $\frac{\partial^{2} T}{\partial x_{\alpha} x_{\beta}}$ calculated by finite differences and by using non-equilibrium moments $\left(m_{3}, m_{7}\right.$ and $\left.m_{8}\right)$. Note that there are 9×151^{2} unknowns in this problem but no matrix inversion is necessary with this entirely explicit scheme.

Figure 3. Approximate solution on regular rectangular mesh $(151 \times 151$ nodes). The gray scale of the figure corresponds to a linear variation from 0 (black) to 1 (white).

Figure 4. (a) Left figure: $\frac{\partial T}{\partial x}$ vs x, right figure (b) $\frac{\partial T}{\partial y}$ vs x at $y=1 / 2$.

Figure 5. Second order spatial derivatives of temperature vs x at $y=1 / 2$.

3 Conclusion

The lattice Boltzmann scheme is a very simple second order accurate method for fluid mechanics, thermal and acoustic problems. We have obtained interesting results for a non trivial test case. However, as it is a really unstationary methodology, it is not extremely efficient to simulate elliptic diffusion problems as it takes many time steps to reach a steady state. We have performed similar work in three space dimensions based on lattice Boltzmann models to simulate anisotropic diffusion equation. Similar work has been done by I. Ginzburg [Gi07].

References

[DDH92] D'Humières D., "Generalized lattice-Boltzmann equation", AIAA Rarefied Gas Dynamics: Theory and Simulations Progress in Astronautics, vol 159, p. 450-458, 1992.
[Du07] Dubois F., "Une introduction au schéma de Boltzmann sur réseau", ESAIM: Proceedings, vol 18, p. 181-215, 2007.
[Du09] Dubois F., "Third order equivalent equation of lattice Boltzmann scheme", Discrete and Continuous Dynamical Systems-Series A, vol 23, p. 221-248, 2009.
[FHP86] Frisch U., Hasslacher B., Pomeau, Y., "Lattice-gas automata for the Navier-Stokes equation", Physical Review Lett, vol 56, p. 1505-1508, 1986.
[FHH87] Frisch U., D’Humières D. Hasslacher B., Lallemand P., Pomeau Y., Rivet J.-P., "Lattice gas hydrodynamics in two and three dimensions", Complex Systems, vol 1, p. 649-707, 1987.
[Gi05] Ginzburg I., "Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations", Advances in Water Resources, vol 28, p. 1196-1216, 2005.
[Gi07] Ginzburg I., "Lattice Boltzmann modeling with discontinuous collision components: hydrodynamic and advection-diffusion equations", J. Stat. Phys., vol 126, p. 157-206, 2007.
[GdH07] Ginzburg I., D'Humières D., "Lattice Boltzmann and analytical modeling of flow processes in anisotropic and heterogeneous stratified aquifers", Advances in Water Resources, vol 30, p. 2202-2234, 2007.
[HJ89] Higuera F.J., Jimenez, J., "Boltzmann approach to lattice gas simulations", Europhys. Lett., vol 9, p. 345-349, 1989.
[LL00] Lallemand P., Luo L.-S., "Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability", Physical Review E, vol 61, p. 6546-6562, 2000.
[QHL92] Qian Y.H., D'Humières D., Lallemand P., "Lattice BGK models for Navier-Stokes equation", Europhys. Lett., vol 17, p. 479-484, 1992.

[^0]: * Presented at the Fifth "FVCA" Conference, Aussois, 8-13 June 2008. Published p. 351358 in the Proceedings Finite Volumes for Complex Applications V; Problems E3 Perspectives, R. Eymard and J.M. Hérard (Eds), ISBN: 9781848210356, J. Wiley \& Sons, ISTE, May 2008. Edition 05 November 2008.

