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2 François Dubois, Pierre Lallemand and Mohammed Mahdi Tekitekgas automata of Frish et al. [FHP86℄. The LBE is a mesosopi methodand deals with a small number of funtions {fi} that an be interpreted aspopulations of �titious �partiles�. The dynamis of these �partiles� is suhthat time, spae and momentum are disretized. The �partiles� evolve in asuession of ollision and propagation steps on the nodes of a regular lattie
L parametrized by a spatial sale ∆x. This lattie is omposed by a set
L0 ≡ {xj ∈ (∆xZ)d} of nodes or verties where d is the dimension of spae.We de�ne ∆t as the time step of the evolution of LBE and let the elerity
λ ≡ ∆x

∆t
. We hoose the veloities vi, i ∈ (0 . . . q) suh that vi ≡ ci

∆x
∆t

= ciλ,where ci are vetors onneting neighbouring nodes of L.For the sake of simpliity we onsider the partiular D2Q9 [DDH92℄model (i.e. d = 2 two-dimensional LBE model with nine veloities q =
8). In this model, we hoose the veloities ci, i ∈ (0 . . . 8) de�ned by:
c = (0, 0), (1, 0), (0, 1), (−1, 0), (0,−1), (1, 1), (−1, 1), (−1,−1), (1,−1).The populations fi evolve aording to the LBE sheme whih an be writ-ten as follows [Du07℄:(1) fi(xj, t + ∆t) = f ∗

i (xj − vi∆t, t), 0 ≤ i ≤ 8,where the supersript ∗ denotes post-ollision quantities. Therefore duringeah time inrement ∆t there are two fundamental steps: ollision and ad-vetion.In the advetion step the �partiles� move from a lattie node xj to eitheritself (with the veloity v0 = 0), one of the four nearest neighbors (with theveloity vi, 1 ≤ i ≤ 4), or one of the four next-nearest neighbors (with theveloity vi, 5 ≤ i ≤ 8). The ollision step onsists of the redistribution of thepopulations {fi} at eah node xj. It is modeled by the operator subsript ∗in (1) and is best desribed in the spae of moments mk [DDH92℄. They areobtained by a linear transformation of vetors fj:
mk =

∑

j

Mk jfj.Expliit formula for Mk j oe�ient is given in [DDH92℄. Note that ma-trix M is invertible. The moments have an expliit physial signi�ane(e.g. [LL00℄): m0 ≡ T is the temperature (density), m1 and m2 are x-momentum, y-momentum, m3 is the energy, m4 is related to energy square,
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m5 and m6 are x-energy �ux and y-energy �ux and m7, m8 are diagonalstress and o�-diagonal stress.
• To simulate di�usion problems, we onserve only the �rst moment m0in the ollision step and obtain one marosopi salar equation. For theother quantities (non-onserved moments), we assume that they relax to-wards equilibrium values meq

k that are nonlinear funtions of the onservedquantities and set:(2) m∗
k = (1 − sk) mk + skm

eq
k , 1 ≤ k ≤ 8,where sk ≡ ∆t

τk
is a relaxation rate (0 < sk < 2 for stability). The relaxationrates sk are not neessarily idential as in the so alled BGK ase [QHL92℄.The equilibrium values meq

k of the non-onserved moments in equation (2)determine the marosopi behaviour of the sheme (i.e. of equation (1)).Indeed with the following hoie of equilibrium values:
meq

3
= αT, meq

4
= βT, qeq

x = 0, qeq
y = 0, peq

xx = axxT and peq
xy = axyTand using Taylor expansion [Du07℄ or Chapman-Enskog proedure [FHH87℄we �nd the di�usion equation up to order three in ∆t:

∂T

∂t
− div(K∇T ) = O(∆t3),where K = (ki,j)1≤i,j≤2 is the di�usion tensor with

k11 = λ2∆t
6

( 1

s1

− 1

2
)(4 + α + 3axx)

k12 = k21 = λ2∆t
2

( 1

s1

+ 1

s2

− 1)axy

k22 = λ2
∆t
6

( 1

s2

− 1

2
)(4 + α − 3axx) .These equations redue to the standard isotropi di�usion equation for axx =

axy = 0 and s1 = s2 = s, with the di�usion oe�ient
κ =

λ2

6
∆t(4 + α)(

1

s
−

1

2
).With a given veloity �eld (vx, vy), if we take meq

1
= λvxT and meq

2
=

λvyT the LBE sheme desribes the following advetion-di�usion [GdH07℄equation:
∂T

∂t
+ v.∇T − K∆T = O(∆t2).
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• Boundary onditionsIn this setion we deal with boundary onditions for the lattie Boltzmannmethod. We explain in detail how to reonstrut lassial boune-bak oranti-boune bak boundary onditions using a general Taylor expansion pro-posed in [Du07℄. Let ∂Ω be a boundary surfae utting the link between �uidnode xb and an outside one xe ≡ xb − ∆x (see Figure 1).
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Figure 1. A boundary surfae utting the link between node xb (a �uidnode) and xe ≡ xb − ∆x (a �titious outside node).Let fi(xb, t), i ∈ (0 . . .8) be the population at node xb and at time t. Afterthe ollision step distribution f ∗
3 (xb, t) has left the �uid and goes to the�titious node xe. At time t+∆t we have to de�ne the unknown population

f1(xb, t + ∆t) whih omes from node xe and is equal to f ∗
1 (xe, t). So thehoie of this population will determine the boundary onditions. Here weonsider the ase of Dirihlet boundary onditions at ∂Ω whih intersets thelink between xe and xb at xe + ∆x

2
.To have T (xe + ∆x

2
) on ∂Ω in the on�guration of Figure 1 up to order 1in ∆t we perform the following sheme:

f1(xb, t + ∆t) = −f3(xe, t + ∆t) + 1

36
(4 − α − 2β + 9axx) T (xe + ∆x

2
),

f5(xb, t + ∆t) = −f7(x2, t + ∆t) + 1

36
(4 + 2α + β + 9axy) T (xS),

f8(xb, t + ∆t) = −f6(x1, t + ∆t) + 1

36
(4 + 2α + β − 9axy) T (xN).
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f1(xb, t + ∆t) = f ∗

1 (xe, t)

=
1

36
(4m0 +

6m∗
1

λ
− m∗

3 − 2m∗
4 − 6m∗

5 + 9m∗
7)(xe, t),

f3(xe, t + ∆t) = f ∗
3 (xb, t)

=
1

36
(4m0 −

6m∗
1

λ
− m∗

3 − 2m∗
4 + 6m∗

5 + 9m∗
7)(xb, t).We have the following development of non-equilibrium moments at seondorder on ∆t (as desribed in [Du09]):(3) m∗

k = meq
k + ∆t

(

1

2
− σk

)

θk + O(∆t2), k ≥ 2,where σk ≡
(

1

sk
− 1

2

) and θk is the defet of onservation de�ned by:
θk ≡ ∂tm

eq
k +

∑

j,α

Mk jMα j∂αf eq
j .The detailed expansion of these oe�ients is given in [Du09℄ and is usedbelow. Now we onsider the quantities f1(xb, t + ∆t) + f3(xe, t + ∆t), andwe use the above identity and the di�erent expressions of the θk, we get:

f1(xb, t + ∆t) + f3(xe, t + ∆t) =

= 1

72
(4 − α − 2β + 9axx) (T (xe) + T (xb)) + O(∆t)

= 1

36
(4 − α − 2β + 9axx) T (xe + ∆x

2
) + O(∆t).To obtain the other identities we perform similar operations on the quanti-ties f5, f6, f7 and f8. We note here that if we have homogeneous boundaryonditions (i.e. T (xe + ∆x

2
) = 0) we obtain lassial boundary onditionalled �anti-boune bak�. Note that Ginzburg [Gi05℄ proposes more elab-orate boundary onditions of higher order by using the Chapman-Enskogmethod.

• Gradient and FluxCompared to lassial numerial methods, the lattie Boltzmann method usesmore parameters and variables. It turns out that in steady state situationssome of these variables an be used to determine the �rst and seond spae
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∂xα

and ∂2T
∂xαxβ

in all nodes x ∈ L0, and the �ux along the interfaeof the ontrol volume K.The gradient of the solution on the node xi at time t an be evaluated asfollows. By using Taylor expansions we get a general seond order expressionof non-onservative moments:(4) mk = meq
k −∆t(

1

2
+σk)

[

θk − ∆t(σk∂tθk + σlΛ
ℓ
kα∂αθℓ)

]

+O(∆t3), k ≥ 1,where Λℓ
kp =

∑

j Mk j Mp j M−1

j,ℓ . To determine �rst order spae derivativesof T for the present di�usion problem, we use equation (4) for moments m1and m2:
m1 = −λ2∆t

(

1

2
+ σ1

) [

(4 + α + 3axx)

6

∂T

∂x
+ axy

∂T

∂y

]

+ O(∆t3),

m2 = −λ2∆t

(

1

2
+ σ2

) [

axy

∂T

∂x
+

(4 + α − 3axx)

6

∂T

∂y

]

+ O(∆t3).Similarly the determination of seond order spae derivatives of T is obtainedusing equation (4) for moments m3, m7 and m8:
m3 = αT + ∆t2

(

1

2
+ σ3

)

λ2

[ (

σ1

4 + α + 3axx

6
+ σ5

α + β − 3axx

3

)∂2T

∂x2
+

+
(

σ2

4 + α + 3axx

6
+ σ6

α + β + 3axx

3

)∂2T

∂y2

+
(

σ1 + σ2 + σ5 + σ6

)

axy

∂2T

∂x∂y

]

,

m7 = axxT + ∆t2
(1

2
+ σ7

)λ2

3

[ (

σ1

4 + α + 3axx

6
− σ5

α + β − 3axx

3

)∂2T

∂x2
+

+
(

σ6

α + β + 3axx

3
− σ2

4 + α − 3axx

6
)
∂2T

∂y2

+ (σ1 − σ2 + σ6 − σ5) axy

∂2T

∂x∂y

]

,
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m8 = axyT + ∆t2

(

1

2
+ σ8

)

λ2

3

[

(2σ2 + σ6)axy

∂2T

∂x2
+ (2σ1 + σ5)axy

∂2T

∂y2
+

+
(

σ1

4 + α + 3axx

3
+ σ2

4 + α − 3axx

3
+

+ σ5

α + β − 3axx

3
+ σ6

α + β + 3axx

3

) ∂2T

∂x∂y

]

.We note that we ould have used the ombination m5 and m6 for ∇T and
m4, m7 and m8 for seond order spae derivatives. Note that applying thenew methodology with Taylor expansion instead of the Chapman-Enskogmethodology [DDH92℄ is original in this framework of di�usion problems.
• We now show that the lattie Boltzmann method for purely di�usiveproblems relates to lassial Fourier law. The mass �ux j is generally de�nedas the amount of partiles that ross an interfae at a given time instane.The �ux an be de�ned at the interfae (xS, xN) ≡ (SN) between two lattienodes xe and xb ≡ xe + ∆x as (see Figure 1):
jSN(xe +

∆x

2
, t + ∆t) = λ (f1(xb, t + ∆t) − f3(xe, t + ∆t)) +

+λΨ1 (f5(xb, t + ∆t) − f7(x2, t + ∆t) + f5(x3, t + ∆t) − f7(xb, t + ∆t)) +

+λΨ2 (f8(xb, t + ∆t) − f6(x1, t + ∆t) + f8(x4, t + ∆t) − f6(xb, t + ∆t)) ,where Ψ1 and Ψ2 are two salars determined by:
1

∆x

∫

SN

div(K.∇T ).nSNdy = K11

∂T

∂x
(xI, t) + K12

∂T

∂y
(xI , t) + O(∆x) =

= −jSN(xI, t + ∆t) + O(∆x),where xI = xe + ∆x
2

(see Figure 1). If we suppose that ∂T
∂x

is onstant along
SN and with the help of Taylor expansion we obtain the �rst equality of theabove alulus. To �nd Ψ1 and Ψ2, we develop the quantity jSN by using (3),then we hoose Ψ1 and Ψ2 suh that this quantity is equal to the normal �ux.In the ase of isotropi problems (i.e. axx = axy = 0), we �nd Ψ1 = Ψ2 = 1

2
.2 Numerial resultsFirst we have tested our sheme for the following 1D problem: −Ku′′(x) = cin ]0, 1[, u(0) = u(1) = 0. We take periodi ondition on y, anti-boune



8 François Dubois, Pierre Lallemand and Mohammed Mahdi Tekitekbak ondition on x to obtain homogeneous Dirihlet boundary onditionsand the following parameters:
α = −2, β = 1, axx = axy = 0,

s1 = s2 = 1.2, s3 = 1.8, s4 = 1.2, s5 = s6 = 1.5 and s7 = s8 = 1.3 .The results onerning the ℓ2 relative errors between the exat a�ne solution
u(x) = x(1 − x)c/(2K) and the solution alulated with the D2Q9 LBEsheme shows seond order auray.Seond we have tested our sheme for the following 2D isotrope di�usionproblem with Dirihlet and Neumann boundary onditions: −K∆u = f in
Ω =]0, 1[2, u = u on ΓD, ∂nu = g on ΓN , where K is a salar, f = −2K,
ΓD ≡ {0}× (0, 1)∪{1}× (0, 1), u = 0 on {0}× (0, 1), 1−3y on {1}× (0, 1)and g = −3x on ΓN ≡ (0, 1) × {0} ∪ (0, 1) × {1}. The analytial solutionof this problem is: u(x, y) = x2 − 3xy. We take anti-boune bak onditionon x to obtain Dirihlet boundary ondition, boune bak ondition on y toobtain Neumann boundary and the following parameters:

α = −2, β = 1, axx = axy = 0,

s1 = s2 = 1.2, s3 = 1.1, s4 = 1.4, s5 = s6 = 1.5, s7 = s8 = 1.5 .Figure 2 shows ℓ2 relative errors between the exat solution and the solutionalulated with the D2Q9 LBE, whih is seond order auray.
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Using the Lattie Boltzmann Sheme for Anisotropi Di�usion Problems 9We have also used our algorithm to solve the following anisotropi di�usionproblem so alled �oblique �ow�:
{

−div(K∇u) = 0 in Ω =]0, 1[2 ,

u = u on ∂Ω .where K = Rθ diag(1, 10−3) R−1

θ , Rθ is the rotation of angle θ = 40 degrees,and u = 1 on (0, 0.2)×{0}∪{0}×(0, 0.2), 0 on (0.8, 1)×{1}∪{1}×(0.8, 1), 1

2on (0.3, 1)×{0}∪{0}× (0.3, 1), 1

2
on (0, 0.7)×{1}∪{1}× (0, 0.7). Figure 3shows the approximate solution on regular mesh (151 × 151), alulatedby D2Q9 sheme after onvergene (i.e. 5.105 iterations) with s1 = 1.3,

s2 = 1.8 and β = 1 (other parameters are �xed to have K as di�usiontensor). The value of the maximum of the approximate solution in the samemesh is Tmax = 0.9984 and the minimum one Tmin = 0.0015. In Figure 4 aand b we ompare ∇T alulated by entred �nite di�erene method and byusing moments m1 and m2 (Figure 4a) or by using m5 and m6 (Figure 4b).In Figure 5 we ompare ∂2T
∂xαxβ

alulated by �nite di�erenes and by usingnon-equilibrium moments (m3, m7 and m8). Note that there are 9 × 1512unknowns in this problem but no matrix inversion is neessary with thisentirely expliit sheme.

Figure 3. Approximate solution on regular retangular mesh (151 × 151nodes). The gray sale of the �gure orresponds to a linear variation from 0(blak) to 1 (white).
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Figure 5. Seond order spatial derivatives of temperature vs x at y = 1/2.3 ConlusionThe lattie Boltzmann sheme is a very simple seond order aurate methodfor �uid mehanis, thermal and aousti problems. We have obtained inter-esting results for a non trivial test ase. However, as it is a really unstationarymethodology, it is not extremely e�ient to simulate ellipti di�usion prob-lems as it takes many time steps to reah a steady state. We have performedsimilar work in three spae dimensions based on lattie Boltzmann modelsto simulate anisotropi di�usion equation. Similar work has been done byI. Ginzburg [Gi07℄.
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