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2 Mahdi Tekitek, M'hamed Bouzidi, François Dubois and Pierre Lallemand1 IntrodutionPhysial wave phenomena often take plae in unbounded domains. The numerial studyof suh phenomena requires to reate a �nite omputational region and thus to introduearti�ial boundaries. The aim of these boundaries is to absorb all the waves and reduethe re�etion of waves within the omputational domain as muh as possible. Among thelassial absorbing methodologies [3, 7, 1℄ we hoose to simulate the perfetly mathedlayer method using the Lattie Boltzmann method.
Ω

Ω Ω− +

PMLθFigure 1: Left: Domain of interest Ω and bu�er/sponge domain (PML). Right: interfaebetween the aoustis domain Ω− and the �PML� domain Ω+.The perfetly mathed layer (PML) method was introdued by Bérenger [1℄ in the ontextof eletromagneti wave propagation by surrounding the trunated physial domain ofinterest with a bu�er/sponge layer whih has the property of absorbing all inoming waveswithout re�etion for any frequeny and any inident angle (see Fig. 1). Hu applies in1996 [5℄ the PML approah to aeroaousti problem modeled with the linearized Eulerequation for the domain of interest Ω− (see Fig 1):(1) 
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Towards Perfetly Mathing Layers for Lattie Boltzmann Equation 3where the oe�ient σ is introdued for the absorption of waves in the PML. We willrefer to it as zero-order damping term in this work and it will be assumed to be nonnegative. We note that when σ = 0, we are left with the original aoustis equationswith: ρ = ρx + ρy. We notie here that the mass ρ is assumed to be ontinuous at theinterfae between the domain of interest Ω− and the PML Ω+.Our work is strutured as follows. We �rst onstrut a Bérenger Lattie Boltzmann(BLB) sheme to model an absorbing medium without damping terms and we study theproperties of this new model. Then we propose a method to simulate damping termsby hanging the advetion step. In setion three we show numerial tests of an interfaebetween lassial D2Q9 medium and BLB medium. Finally in setion �ve we proposea method to redue re�eted waves in the simple ase of wave inident normal to theinterfae.2 Bérenger Lattie Boltzmann shemeIn this setion we onstrut the BLB sheme whih has equations (2) as equivalent maro-sopi equations up to order 1 relatively ∆t (de�ned below). First we reall the lassialD2Q9 [6℄ sheme.2.1 Classial D2Q9 shemeWe onsider the lassial D2Q9 [8℄ model. Let L a regular lattie parametrized by a spaestep ∆x, omposed by a set L0 ≡ {xj ∈ (∆xZ) × (∆xZ)} of nodes or verties. ∆t isthe time step of the evolution of LBE and λ ≡ ∆x
∆t

is the elementary elerity. We hoosethe veloities vi, i ∈ (1 . . . 9) suh that vi ≡ ci
∆x
∆t

= ciλ, where the family of vetors {ci}is de�ned by: c = (0, 0), (1, 0), (0, 1), (−1, 0), (0,−1), (1, 1), (−1, 1), (−1,−1), (1,−1).The LBE is a mesosopi method and deals with a small number of funtions {fi} that anbe interpreted as populations of �titious �partiles�. The populations fi evolve aordingto the LBE sheme whih an be written as follows [2℄:(3) fi(xj , t + ∆t) = f ∗
i (xj − vi∆t, t), 1 ≤ i ≤ 9,where the supersript ∗ denotes post-ollision quantities. Therefore during eah timeinrement ∆t there are two fundamental steps: advetion and ollision.

• The advetion step desribes the motion of a partile whih has ollisioned in node
xj − vi∆t having the veloity vj and goes to the jth neighbouring node xj .
• Following d'Humières [6℄, the ollision step is de�ned in the spae of moments. Thenine moments {mℓ} are obtained by a linear transformation of vetors fj :

mℓ =
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j=1

Mℓ jfj , 1 ≤ ℓ ≤ 9 ,



4 Mahdi Tekitek, M'hamed Bouzidi, François Dubois and Pierre Lallemandwhere the matrix M ≡ (Mℓ j)1≤ℓ,j≤9 is given by:
(4) M =




0 λ 0 −λ 0 λ −λ −λ λ

0 0 λ 0 −λ λ λ −λ −λ

1 1 1 1 1 1 1 1 1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 −2 0 2 0 1 −1 −1 1

0 0 −2 0 2 1 1 −1 −1




.

The moments have an expliit physial signi�ane [8℄: m1 ≡ jx and m2 ≡ jy are x-momentum, y-momentum, m3 ≡ ρ is the density (density), m4 and m5 are diagonal stressand o�-diagonal stress, m6 is the energy, m7 is related to energy square, and m8, m9 arex-heat �ux and y-heat �ux. Note that we have hanged the usual order of moments tosimplify the introdution of the Bérenger Lattie Boltzmann sheme.To simulate �uid problems, we onserve the �ux momentum jx, jy and the density moment
ρ in the ollision step and obtain three marosopi salar equation. The other quantities(non-onserved moments) are assumed to relax towards equilibrium values m

eq
ℓ following:(5) m∗

ℓ = (1 − sℓ)mℓ + sℓm
eq
ℓ , 4 ≤ ℓ ≤ 9,where sℓ (sℓ > 0, for ℓ ≥ 4) are relaxation rates, not neessarily equal to a single value asin the so alled BGK ase [9℄. The equilibrium values m

eq
i of the non onserved momentsin equation (5) determine the marosopi behavior of the sheme (i.e. equation (3)). In-deed with the following hoie of equilibrium values (negleting non-linear ontributions):

m
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eq
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eq
9 = −jy and using Taylorexpansion [2℄ we �nd the aoustis equations up to order two in ∆t:(6) 
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, 4 ≤ ℓ ≤ 9, and in the ase of s5 = s4. Values of the sound speed

cs, bulk visosity ζ and shear visosity ν are cs = λ√
3
, ζ = c2

s∆tσ6 and ν = λ2∆t
3

σ4.2.2 Bérenger Lattie Boltzmann sheme (BLB)To have a perfetly mathed layer for lattie Boltzmann method, we onstrut a LattieBoltzmann sheme whih models the bu�er of Bérenger (BLB). At �rst we propose a



Towards Perfetly Mathing Layers for Lattie Boltzmann Equation 5sheme whih has the aousti PML equations (2) as marosopi behavior without zero-order damping term (i.e. σ = 0). Later, we hange the advetion step of the BLB shemeto add the terms proportional to σ.As there are four marosopi equations (2) in the Bérenger sheme, we need to use fouronserved quantities in the ollision step. For simpliity, we keep the lassial D2Q9 velo-ity set (hopefully this will allow simple boundaries between the LBE and BLB domains),and we replae the list of moments generated with matrix M , by those generated with anew matrix MB given below.
(7) MB =




0 λ 0 −λ 0 λ −λ −λ λ

0 0 λ 0 −λ λ λ −λ −λ

1 1 1 1 1 1 1 1 1

MB
4 1 MB

4 2 MB
4 3 MB

4 4 MB
4 5 MB

4 6 MB
4 7 MB

4 8 MB
4 9

0 0 0 0 0 1 −1 1 −1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 −2 0 2 0 1 −1 −1 1

0 0 −2 0 2 1 1 −1 −1




,

Note that M and MB di�er only in the de�nition of the fourth moment, that we all m
′

4and whih will be onserved in ollision (i.e. s
′

4 = 0) to get a fourth marosopi equation.Later we shall identify m3 to ρ ≡ ρx + ρy and m
′

4 to ρx − ρy.To simplify later formula, we introdue oe�ients γ1···9 suh that
MB

4 1 = γ3 − 4(γ5 − γ6)

MB
4 2 = λγ1 + γ3 + γ4 − γ6 − 2γ7 − 2γ8

MB
4 3 = λγ2 + γ3 − γ4 − γ6 − 2γ7 − 2γ9

MB
4 4 = −λγ1 + γ3 + γ4 − γ6 − 2γ7 + 2γ8

MB
4 5 = −λγ2 + γ3 − γ4 − γ6 − 2γ7 + 2γ9

MB
4 6 = λ(γ1 + γ2) + γ3 + γ5 + 2γ6 + γ7 + γ8 + γ9

MB
4 7 = λ(−γ1 + γ2) + γ3 − γ5 + 2γ6 + γ7 − γ8 + γ9

MB
4 8 = −λ(γ1 + γ2) + γ3 + γ5 + 2γ6 + γ7 − γ8 − γ9

MB
4 9 = λ(γ1 − γ2) + γ3 − γ5 + 2γ6 + γ7 + γ8 − γ9 .We note that this orresponds to MB

4• = (γ1, γ2, . . . , γ9).M . For the non onserved mo-ments, we take new equilibrium values, m
eq
5 = 0, m

eq
6 = axρx + ayρy, m

eq
7 = cxρx + cyρy,

m
eq
8 = c1

λ
jx and m

eq
9 = c2

λ
jy. We now determine the equivalent set of equations of themodel de�ned above at �rst order in ∆t and we try and identify these equations with theset of equations 2 with no linear damping (σ = 0). In addition we impose that the matrix
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MB is invertible. Using a �rst order Taylor expansion in ∆t of the BLB sheme [2℄, weobtain
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Towards Perfetly Mathing Layers for Lattie Boltzmann Equation 7The identi�ation between a suitable linear ombination of equations (8), (9), (10), (11)and the PML system (2) where σ = 0 leads to the following requirements:
γ1 = γ2 = γ8 = γ9 = 0 ,
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.For γ3,4,5,6,7 we �nd two possible sets of solutions for γ3,4,5,6,7:

i) γ3 = γ6 + 2γ7, γ4 = 1 , ii) γ5 = 0.Note that there are some free parameters left (γ5,6,7 for the �rst ase or γ3,4,6,7 for theseond one). To have a stable sheme, we have found that only the seond is aeptable.2.3 Dissipation properties of BLB sheme without damping termsTo study the dissipation properties of the BLB sheme without absorbing terms (i.e.
σ = 0), we determine the marosopi equations up to order 2 relatively to ∆t.Proposition 1. In the ase where s6 = s7, s8 = s9, cs = λ√
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Axx = −
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6γ4
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Ayy = −
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σ8(3(γ6 + γ7) + γ4)(2(γ7 − γ6) + γ3 + 1) .We note that this model is not isotropi.Proof. To obtain the marosopi equations we an use the usual Chapman-Enskog anal-ysis [4℄ or Taylor expansion [2℄. The details are given in [10℄. In general the seond orderspae derivatives in the preeding equations are not isotropi. To obtain isotropy, the fol-lowing onditions have to be met: Axx = Byy, Ayy = Bxx, Axy = Bxy and Axx−Axy = Ayy,where Axx,yy,xy and Bxx,yy,xy are the oe�ients appearing in the equivalent equations ofthe model BLB (see proposition 1). This an be satis�ed only for s5 = 0. This fat intro-dues a new onservation law whih is inompatible with the Bérenger model. Thereforeour model is not isotropi.2.4 Stability analysisWe study numerially the stability of the BLB sheme by using the Von Neumann analysis.It onsists in onsidering the solution of the sheme for a plane wave fj(xi, t) = φje

i(ωt−k.xi)and by using the Fourier transform of the equation (3). We obtain the following equation:(12) f(xi, t + ∆t) = G(p, q)f(xi, t),where p = eikx∆x, q = eiky∆x, (kx, ky) = k and G(p, q) = A(p, q)M−1
B CMB. The advetionoperator A(p, q) an be written as follows:
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A = diag

(
1, p, q, 1

p
, 1

q
, pq, q

p
, 1

pq
, p

q

)
, the moments matrix MB is given by (7) and theollision matrix is given by:

C=




1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 − s5 0 0 0 0

axs6
ax−ay

2
s6 0 0 0 1 − s6 0 0 0

cxs7
cx−cy

2
s7 0 0 0 0 1 − s7 0 0

0 0 c1
λ
s8 0 0 0 0 1 − s8 0

0 0 0 c2
λ
s9 0 0 0 0 1 − s9




.

Let introdue z = eiω∆t, then equation (12) beomes:
zf(xi, t) = G(p, q)f(xi, t).So the stability relies on the eigenvalue problem for the operator G. Therefore we omputenumerially the eigenvalues zα and the stability ours when Re(lnzα) < 0 (i.e. |zα| < 1)for all wave vetor k.For the ase where sound speed cs = λ√

3
we �nd that the BLB sheme is not stablefor the �rst hoie: γ5 6= 0, γ3 = γ6 + 2γ7 and γ4 = 1. So we take the seond hoie(i.e. γ5 = 0). We �nd that the BLB algorithm is stable for the following on�guration:

γ4 = 1, γ3 = γ6 + 2γ7, γ6 ∈ [0.88, 3.22], γ7 ∈ [0.77, 2.22], s5 ∈]0, 1.6[, s6,7 ∈]0, 1.66[ and
s8,9 ∈]0, 1.8[. Figures 2(a), 2(b), 2() and 2(d) show the real part of logarithm of theeigenvalues as funtion of wave vetor k. We see that for this hoie of the parameters theBLB algorithm is stable. We note that we have not �nd situations where the attenuationis less 10−2 typially (i.e. one order of magnitude greater than the lassial D2Q9).2.5 BLB with damping termsUntil now we studied the ase of BLB without absorbing terms (i.e. σ = 0 in the systemof equations (2)) to represent only the non-re�eting property of the BLB sheme. Tomodel the zero-order damping terms we propose to hange the advetion step of the BLBsheme as follows:Proposition 2. If we modify the advetion step of the BLB sheme as follows:

fj(xi, t + ∆t) = f ∗
j (xi − vj∆t, t) −

9∑

ℓ=1

σ̃B
ℓ,jf

∗
ℓ (xi − vℓ∆t, t) , 1 ≤ j ≤ 9.
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(d)Figure 2: Real part of logarithmi eigenvalues of the BLB model versus |k|. The value ofthe parameters are γ3 = 7, γ6 = 3, γ7 = 2, γ4 = 1 and cs = 1√
3
. The relaxation parametersare s5 = 1.4, s6 = 1.6, s7 = 1.65, s8 = 1.3 and s9 = 1.8. (a) For θ = 0 angle of wavevetor k (i.e. k is parallel to Ox). (b) For θ =

π

12
. (c) For θ =
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π

4
.where the matrix σ̃B ≡ (σ̃B

ℓ,j)1≤ℓ,j≤9, is given by:
σ̃B

2, • = σ∆t
4

(1 + a1, 4, 0, 0, 0, a2 + 3, a2 − 1, a2 − 1, a2 + 3) ,

σ̃B
4, • = σ∆t

4
(1 + a1, 0, 0, 4, 0, a2 − 1, a2 + 3, a2 + 3, a2 − 1) ,and σ̃B

ℓ,j = 0 for ℓ 6= (2, 4), 1 ≤ j ≤ 9, with
a1 = γ3 − 4(γ6 − γ7) , a2 = γ3 + 2γ6 + γ7.We simulate the terms of damping proportional to σ in the PML system of equations (2).We note here that we give the matrix σ̃ only for the ase where the BLB sheme is stable.Proof. We use here the Taylor expansion [2℄ for the above equation to �nd the marosopiequivalent equations (2). So we write the Taylor expansion up to order 2 on ∆t of the
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fj(xi, t) + ∆t∂tfj(xi, t) =

(
f ∗

j (xi, t) − ∆tvj∇f ∗
j (xi, t)

)

−

9∑

ℓ=1

σ̃B
j,ℓ (f ∗

ℓ (xi, t) − ∆tvℓ∇f ∗
ℓ (xi, t)) + O(∆t2),With the help of the moment matrix MB, using the fat f ∗

j = f
eq
j +O(∆t) and negletingthe terms in (∆t2), we obtain:

mℓ + ∆t ∂tmℓ = m∗
ℓ − ∆t

∑

j=1,9

MB
ℓ,jv

β
j ∂βf

eq
j −

9∑

j=1

MB
ℓ,j

9∑

p=1

σ̃B
j,pf

eq
p (x, t) + O(∆t2).We rewrite the above equation as follows:

m∗
ℓ − mℓ = ∆t ∂tmℓ + ∆t

∑

j=1,9

MB
ℓ,jv

β
j ∂βf

eq
j +

9∑

j=1

Ψℓ,jf
eq
j (x, t) + O(∆t2),(13)where the matrix (Ψℓ,j)1≤ℓ,j,≤9 = MB.σ̃B is the produt of matrix MB and σ̃B. So withthe help of the matrix Ψ we alulate the terms: ∑9

j=1 Ψℓ,jf
eq
j (x, t), for ℓ = 1..9whih is equal to: σ∆tjx for ℓ = 1, 0 for ℓ = 2, σ∆t

ρ+(ρx−ρy)
2

= σ∆tρx for ℓ = 3 and
σ∆t

ρ+(ρx−ρy)
2

= σ∆tρx for ℓ = 4. Now we write equation (13) for the four onservedmoments (i.e. ℓ = {1, 2, 3, 4}) and with the help of m∗
ℓ = mℓ we obtain the PML system(2) with absorption.3 Numerial test of interfaesIn this setion we present numerial simulations for aousti waves normally inident toan interfae between a lassial D2Q9 medium (on the left) and various situations onthe right: �rst a BLB without absorption then BLB with absorption and �nally lassialD2Q9 with absorption. Beause we have hosen the same veloity set for both media thesheme (3) is used at all points, inluding those at the interfae.3.1 Classial D2Q9/BLB without absorptionSo let Ω = [0, l] × [0, h], where l = 4000 and h = 5 be omposed by Ω− = [0, l

2
] × [0, h]and Ω+ = [ l

2
, l] × [0, h].

• In Ω−, we use the lassial D2Q9 sheme with the following relaxation rates: s4 = s5 =

1.95, s6 = 1.97, s7 = 1.9 and s8 = s9 = 1.7.
• In Ω+, we use the BLB sheme without absorption and we take the following on�gura-tion for di�erent parameters: γ3 = 7, γ4 = 1, γ6 = 3, γ7 = 2, cs = 1√

3
, s5 = 1.8, s6 = 1.6,
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NxFigure 3: Interfae test in the ase of normal inidene between lassial D2Q9 aoustimedium and BLB without absorption medium. (a) jtest
x vs Nx wave transmission between

Ω− (D2Q9 medium) and Ω+ (BLB without absorption medium) at time T = 6000. (b)

jtest
x − jref

x vs Nx, di�erene between the test and referene ases.
s7 = 1.6 and s8 = s9 = 1.7.Here we take periodi boundary onditions for the y diretion and a simple boune bakin the outer edges in xi = l. In the inlet edges at xi = 0 we impose an harmoni wave
jx = sin(ω∆t) where ω = 2π

100
(implemented by boune-bak and appliation of 2jx withappropriate weight fators for the veloities inoming in the omputational domain). Wetake a �uid at rest for initial onditions and the total duration T = n∆t of the simulationsis hosen suh that waves have not reahed the outlet (see Fig. 3(a)). We note here thatthe aousti wave is more absorbed for xi > 2000 Fig. 3(a), and this is due to the hangeof visosity in the BLB medium.To determine the re�eted wave, we perform another simulation in the domain ΩR =

[0, l] × [0, h]. In this domain we take the same on�guration as in the domain Ω− withthe same boundary onditions for the inlet edges at xi = 0. This simulation gives us thereferene solution. To see the re�eted wave and the Knudsen modes that are generatedat the interfae we draw the di�erene between the �ux jtest
x in Ω (the test ase) and the�ux jref

x in ΩR (the referene ase) for the same number of time steps = 6000. It should benoted here that we have a small re�eted wave between lassial D2Q9 aousti mediumand BLB without absorption medium. So in Fig. 3(b) (for xi ∈ (1, 2, . . . .2000)) we see are�eted aousti wave whih has an amplitude of the order 3.10−3. This re�eted aoustiwave is generated by the hange in the visosity between the two media. As indiatedabove, the BLB sheme is anisotropi and is not stable for parameters orresponding toa visosity as small as that an be obtained with D2Q9 (for more details see [11℄).
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x vs Nx wave transmission between Ω−(D2Q9 medium) and Ω+ (BLB with absorption medium) at xi = 2000 and time T = 6000.

(b) jtest
x − jref

x vs Nx, di�erene between the test and referene ases.3.2 Classial D2Q9/BLB with absorptionTo test this interfae we make the same simulation as above, but now we only hangethe Ω+ medium. Indeed in Ω+ we use the BLB sheme with absorption (i.e. hangingthe advetion step as desribed in proposition 2). We take the following parameters:
γ3 = 7, γ4 = 1, γ6 = 3, γ7 = 2, cs = 1√

3
, s5 = 1.8, s6 = 1.6, s7 = 1.6, s8 = s9 = 1.7and σ(xi) = 10−7(xi − 2000)2. Figure 4(a) shows that the transmitted aousti wave isabsorbed (for xi > 2000) in the BLB with absorption medium. We note also that there�eted aousti wave (see Fig. 4(b)) in the D2Q9 medium has the same amplitude asin the ase D2Q9/BLB without absorption.3.3 Classial D2Q9/ Classial D2Q9 with absorptionNow to test the lassial D2Q9/lassial D2Q9 with absorption we only hange themedium Ω+. So we take the following D2Q9 sheme where we have only hanged theadvetion step in Ω+:

fj(xi, t + ∆t) = (Id − σ̃)f ∗
j (xi − vj∆t, t) , 1 ≤ j ≤ 9,where the matrix σ̃ ≡ (σ̃ℓ,j)1≤ℓ,j≤9 is given by:





σ̃2,• = σ∆t
2

(1, 2, 1, 0, 1, 2, 0, 0, 2)

σ̃4,• = σ∆t
2

(1, 0, 1, 2, 1, 0, 2, 2, 0)

σ̃ℓ,j = 0 for ℓ 6= (2, 4) , 1 ≤ j ≤ 9 .
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x vs Nx wave transmission between Ω− (D2Q9medium) and Ω+ (D2Q9 with absorption medium) at time T = 6000. (b) jtest
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x vs

Nx, di�erene between the test and referene ases.This sheme has the following marosopi equation up to order 1 in ∆t:





∂tρ + σρ + ∂xjx + ∂yjy = O(∆t),

∂tjx + σjx + c2
s∂xρ = O(∆t),

∂tjy + c2
s∂yρ = O(∆t).In Ω+ we take the following onditions: m

eq
4 = m

eq
5 = 0, m

eq
6 = −2ρ, m

eq
7 = ρ, m

eq
8 = −jx,

m
eq
9 = −jy , s4 = s5 = 1.9, s6 = 1.8, s7 = 1.75, s8 = s9 = 1.7, and σ(xi) = 10−7(xi−2000)2.Figure 5(a) shows that the transmitted wave is absorbed (for xi > 2000) in the D2Q9with absorption medium. We note here that this interfae generates a very small re�etedwave (see Fig. 5(b)) in normal inidene whih is due to the hange of the speed of soundin the two media (for more details see [10, 11℄).3.4 Comparison between numerial interfaesThe BLB without absorption sheme generates an undesired re�eted aousti wave inthe domain of interest. The BLB with absorption sheme is stable and does not generateany additional re�eted wave. Finally the lassial D2Q9 sheme with absorption is moree�ient but it generates a small re�eted wave for normal inidene. Thus we propose anew method to anel re�eted wave.4 Towards anellation of re�eted wavesLet Ω−, Ω+ be two one dimensional aousti domains simulated by D1Q3 sheme withsound veloity, relaxation rate and visosity (cs, s, ν) and (c̃s, s̃, ν̃) respetively (e.g. ν =
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∆t c2

s (1
s
− 1

2
)). So we have the following re�etion oe�ient [11℄:(14) r =

p+ − p̃+

1 − p+p̃+

=
cs − c̃s

cs + c̃s

+
i(ν c̃2

s − ν̃ c2
s)

csc̃s(cs + c̃s)2
ω + O(ω2),where p+ = e(ik+∆x), p̃+ = e(iek+∆x), ω is the frequeny of inident wave and k+, k̃+ arethe progressive wave vetors in Ω− and Ω+ respetively.In order to anel the re�eted wave we propose to hange the advetion step at theinterfae. Thus the new f1 in node xr = ∆x

2
is a linear ombination of f ∗

1 in node
xl = −∆x

2
and f ∗

1 in node xl −∆x (see Fig. 6). Whereas we keep the same advetion stepfor f2 whih goes in the opposite diretion. Thus we propose the following sheme at theinterfae:
{

f1(t + ∆t, xi) = δ1f
∗
1 (t, xi − ∆x) + δ2f

∗
1 (t, xi − 2∆x) in xi = ∆x

2
,

f2(t + ∆t, xi) = f ∗
2 (t, xi + ∆x) in xi = −∆x

2
,where δ1 and δ2 are two salar oe�ients whih are �xed in order to anel the re�etedwave.

Σ

∆x

xl ∆x x l xr

xx∆ ∆Figure 6: Connetion at interfae.Proposition 3. For D1Q3 monodimensional aousti interfae, we �nd oe�ients δ1and δ2 in anelling terms of order 0 and 1 in ω of the re�etion oe�ient given inequation (14). We have:
δ1 =

ν

∆t

(λ + c̃s)

(λ − c̃s)(λ + cs)2
−

ν̃

∆t

cs(λ − cs)

c̃s(λ + cs)(λ − c̃s)2
+

(λ + c̃s)(λ − cs)

(λ − c̃s)(λ + cs)
,

δ2 =
ν̃

∆t

cs(λ − cs)

c̃s(λ + cs)(λ − c̃s)2
−

ν

∆t

(λ + c̃s)

(λ − c̃s)(λ + cs)2
.Proof. To �nd oe�ients δ1 and δ2 we alulate the theoretial expression of the re�etionoe�ient taking into aount the new advetion step at interfae. Then we resolve theequation r = O(ω2) (for more details see [10℄).

• Numerial test: Let Ω− = {xi, i = 1..1000} and Ω− = {xi, i = 1001..2000} with soundveloity and visosity (cs = 0.577, ν = 0.001) and (c̃s = 0.479, ν̃ = 0.2). Figure 7(a) showsthat there is a re�eted wave whih has an amplitude of the order 10−1. By using thenew proposed method (see proposition 3) we have redued the re�eted wave. In �gure 7(b) the re�eted wave has an amplitude about 10−4.
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Figure 7: jtest
x − jref

x vs Nx: di�erene between test and referene ases at T = 1500,
(a) without hanging the advetion step at interfae and (b) with interpolation of theadvetion step at the interfae.5 ConlusionWe have proposed a new sheme alled BLB to model the perfelty mathed layer ofBérenger. Unfortunately this sheme generates a re�eted wave in the domain of interestand this is due to the non isotropi property of BLB. The method used here to obtaina fourth marosopi equation (as in the Bérenger sheme) needs to be tested for moreompliated shemes than D2Q9 in order to model �rst order equations without obtainingunsatisfatory seond order equations (by this we mean anisotropi visous terms). Wehave also proposed a method to model the zero-order damping terms. This methodonsists in hanging the advetion sheme. This method is stable and does not generatea re�eted wave.We have proposed a new method to anel the re�eted wave for normal inidene basedon a loal modi�ation of the propagation rules near the interfae. Future work ouldbe the extension of the this method for two and three dimensional interfae and for anyinidene angle.Referenes[1℄ J.-P. Bérenger, A perfetly mathed layer for the absorption of eletromagneti waves,Journal of Computational Physis, 114, p. 185�200, 1994.[2℄ F. Dubois, Une introdution à l'équation de Boltzmann sur réseau, ESAIM Proeed-ing , 28, p. 181�215, 2007.
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