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AbstratIn this ontribution, we study the transmission of a monodimensional aousti wave be-tween two �uid media with the lassial lattie Boltzmann sheme. The two media havethe same hydrodynami equations but di�erent equilibrium distributions. We take herethe ase where the inident wave is normal to the interfae.The theoretial modal study of this problem shows the presene of a re�eted wave andKnudsen modes loalized at the interfae. This analysis leads to results in good agreementwith numerial simulations.Keywords: Lattie Boltzmann; aousti propagation; aousti re�etion.1 IntrodutionOur motivation is to demonstrate that arti�ial phenomena an our at theinterfae between two Lattie Boltzmann �uids that are used to simulate
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2 M. Tekitek, M. Bouzidi, F. Dubois and P. Lallemandthe same physial �uid in the large sale limit. We �rst brie�y reall theLattie Boltzmann Equation using moments, then we study theoretiallyan interfae between two D2Q9 media. We �nd three families of waves:the aoustis, the Knudsen and the transverse ones. For normal inidenetransverse and longitudinal waves deouple and we determine the spatialbehaviour of the di�erent waves and give a generalization of Fresnel formulafor the simple D1Q3 model. In setion four we ompare the theoretialresults to the numerial one and analyze the Knudsen modes generated atthe interfae.2 D2Q9 shemeWe analyze the LBE model [1, 2℄(1) fi(x + vi∆t, t + ∆t) = fi(x, t) + Qi(f)(x, t), 0 ≤ i ≤ 8,where Qi(f)(x, t) =
∑8

j=0 Si,j(fj − f
eq
j )(x, t) and S is the matrix ollision,using moments for the ollision step. For the D2Q9 model, we onsidera regular lattie L parametrized by a spae step ∆x, omposed by a set

L0 ≡ {xj ∈ (∆xZ) × (∆xZ)} of nodes or verties. We de�ne ∆t as a smalltime step of the evolution of LBE and let the elerity λ ≡ ∆x
∆t
. We hoosethe veloities vi, i ∈ (0 . . .8) suh that vi ≡ ci

∆x
∆t

= ciλ, where the family ofvetors ci is de�ned by :
ci =





(0, 0), i = 0,

(cos((i − 1)
π

2
), sin((i − 1)

π

2
)), i = 1, . . . , 4,

(cos((2i − 9)
π

4
), sin((2i − 9)

π

4
)), i = 5, . . . , 8.We note that the LBE sheme given by (1) an be written as follows [3℄:(2) fi(xj, t + ∆t) = f ∗

i (xj − vi∆t, t), 0 ≤ i ≤ 8,where the supersript ∗ denotes post-ollision quantities. Therefore duringeah time inrement ∆t there are two fundamental steps : ollision and ad-vetion.
• Following d'Humières [4℄, the ollision step is de�ned in the spae of mo-ments. We onsider the moments obtained by orthogonalization from the



On numerial re�eted waves in lattie Boltzmann shemes 3onserved moments : density (ρ), �ux of linear momentum (jx and jy) andthe non-onserved moments : energy (e), square of energy (ǫ), omponentsof the stress tensor (pxx and pxy) and �ux of kineti energy (qx and qy). Theabove non-onserved moments relax following :
m∗

k = (1 − sk)mk + skm
eq
k , 3 ≤ k ≤ 8,where sk ≡ ∆t

τk
is the relaxation ratio and τk is the relaxation time. Therelaxation rates sk are not neessarily idential as in the so alled BGKase [2℄.

• The advetion step desribes the motion of a partile whih has ollisionedin node xj − vi∆t having the veloity vj and goes to the jth neighbouringnode xj.3 Interfae between two D2Q9 mediaWe onsider two domains Ω1 ≡ {(x, y); x < 0}, Ω2 ≡ {(x, y); x > 0} andthe interfae Σ ≡ {(x, y); x = 0}. We suppose that we have the followinglassial aoustis problem in eah domain :
(3) 




∂ρ

∂t
+ divj = 0,

∂jx

∂t
+ c2

s

∂ρ

∂x
− ζ

∂(divj)

∂x
− ν△jx = 0,

∂jy

∂t
+ c2

s

∂ρ

∂y
− ζ

∂(divj)

∂y
− ν△jy = 0,where cs is the elerity of sound and ζ, ν the bulk and shear kinemati vis-osities and we neglet any nonlinear e�ets.To simulate this equation with LBE we have to �x the equilibrium momentsas follows : eeq = −2ρ, ǫeq = αǫρ, qx = −jx, qy = −jy, peq

xx = 0, peq
xy = 0and spxx

= spxy
. Hene we have the sound elerity c2

s = λ2

3
, the bulk visosity

ζ = λ2∆t
3 ( 1

sǫ
− 1

2) and shear visosity ν = λ2∆t
3 ( 1

spxx
− 1

2) [4℄. We remark herethat the oe�ient αǫ of the moment ǫ equilibrium value does not appear inthe hydrodynamis equations. That is why we shall study the transmissionof an aousti wave between the two media Ω1 and Ω2 with di�erent oef-�ients αǫ. Intuitively no hydrodynami re�eted wave ours. So we take
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ǫeq = αǫρ in Ω1 and ǫ̃eq = α̃ǫρ in Ω2.To study theoretially this problem we perform a modal analysis of the LBEsheme for an harmoni solution.3.1 Modal studyTo simplify the analysis we onsider the ase of normal inidene to theinterfae Σ. The wave number k ≡ (kx, 0) is therefore parallel to the x-axis.Let f(x, t) = ei(ωt−k.x)φ be a solution of the LBE sheme. The equation (1)then beomes in Fourier spae :(4) f(x, t + ∆t) = eiω∆tf(x, t) = A(I + M−1CM)f(x, t),where M is the moment matrix, C the ollision operator and A the advetionoperator matrix represented by the following diagonal matrix :

A = diag(1, p, 1,
1

p
, 1, p,

1

p
,
1

p
, p), where p ≡ eik∆x.Note that p is a phase fator that is unknown when simulating an aoustissituation. The above equation is a �nite di�erene equation whih has ageneral solution at time t = n∆t :(5) φ(x = m∆x, t = n∆t) = Kmznφ0,where φ0 is the initial state. Equation (4) an be written as :(6) z f(x, t) = G(p)f(x, t)where z = e(iω∆t) and G(p) ≡ A(I + M−1CM) is the global operator of theLBE sheme. In our problem the frequeny ω is imposed, so we searh psolution of the following dispersion equation :(7) det(G(p) − zI) = 0,



On numerial re�eted waves in lattie Boltzmann shemes 5This equation is a polynomial funtion of degree 3 in (p +
1

p
). We note thatif we use the moment matrix M̃ de�ned by :




1 1 1 1 1 1 1 1 1

0 1 0 −1 0 1 −1 −1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 −2 0 2 0 1 −1 −1 1

0 1 −1 1 −1 0 0 0 0
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1

0 0 0 0 0 1 −1 1 −1




,

then the matrix M̃(G(p) − zI)M̃−1 is a blok diagonal matrix :
M̃(G(p) − zI)M̃−1 =




0 0 00 0 00 0 0
D1(p) 0 0 00 0 00 0 00 0 00 0 0 D2(p)0 0 0


Hene we have the property :

det(G(p) − zI) = det(M̃(G(p) − zI)M̃−1) = det(D1(p))det(D2(p)),so to solve (7) we have to solve det(D1(p)) = 0 and det(D2(p)) = 0, whihare polynomial funtions of degree 2 and 1 in (p +
1

p
) respetively. We �ndthe six solutions : p+ and p−, pK,1 and pK,2, pt,1 and pt,2, whih are funtionsof z, of the di�erent parameters of the equilibrum and of the relaxationrates of the non-onserved moments. We also have the following asymptoti
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p+ = 1 + i

ω

cs

+ O(ω2),(8)
p− = 1 − i

ω

cs

+ O(ω2),(9)
pK,1 = α1 + β1ω + O(ω2), where α1 < −1,(10)
pK,2 = α2 + β2ω + O(ω2), where − 1 < α2 < 0,(11)
pt,1 = 1 + (αt,1 + iβt,1)

√
ω + iγt,1ω + O(ω

√
ω),(12)

pt,2 = 1 + (αt,2 + iβt,2)
√

ω + iγt,2ω + O(ω
√

ω).(13)Considering the ω-dependene of the previous solutions, we remark that p+and p− are assoiated to aousti waves whih progress with speed ±cs, pK,1and pK,2 are assoiated to Knudsen modes [6℄. The two solutions pt,1 and pt,2are assoiated with transverse shear waves and they will play no role for thepartiular situation of inident aousti waves normal to the boundary thatare onsidered later. For the sake of ompleteness, we indiate that
(αt,1 + iβt,1) =

1√
ν

(1 + i)√
2and

(αt,2 + iβt,2) = − 1√
ν

(1 + i)√
2

.The expression of the �rst terms in the expansion of the Knudsen phasefator pK,1 and pK,2, α1 and α2 are omplex funtions of relaxation rates siand α. But in the partiular ase of equal relaxation rates (i. e. si = s), wehave :
pK,1 =

1 − s

z
= (1 − s) − i(1 − s)ω + O(ω2),

pK,2 =
z

1 − s
=

1

1 − s
+ i

1

1 − s
ω + O(ω2).From now on, we study ases where the wave vetor of the inident wave

k is normal to the interfae so transverse waves do not ontribute and thuswill not be onsidered any more. Now we an �nd the eigenvetors φp of thematrix G(p). Let φ+ and φ− be the eigenvetors assoiated to p± and φK,1and φK,2 the eigenvetors assoiated to pK,1 and pK,2. Note that for general



On numerial re�eted waves in lattie Boltzmann shemes 7diretions the simple separation of longitudinal and transverse modes doesnot exist.3.2 Analysis of the interfae problemThe solution fl for the left hand side of the interfae an be written as follows :(14) fl = znpm
+φ+ + β1z

npm
−φ− + η1z

npm
K,1φK,1 + δ1z

npm
K,2φK,2,with inident and re�eted aousti waves. For the right hand side of theinterfae we have :(15) fr = γ2z

np̃m
+ φ̃+ + η2z

np̃m
K,1φ̃K,1 + δ2z

np̃m
K,2φ̃K,2.with only transmitted waves. As we fous on an interfae loated at x = 0,we set η2 = 0 and δ1 = 0 to prevent the existene of unphysial growingKnudsen modes on either sides of the boundary.We have the following four unknown oe�ients :

• β1, γ2 whih determine the oe�ients of re�etion r = β1
<φ−,jx>

<φ+,jx>
andtransmission t = γ2

<φ̃+,jx>

<φ+,jx>
.

• η1, δ2 whih determine the amplitude of the Knudsen modes.The value of the above oe�ients will be determined by studying one stepof the LBE sheme in the nodes losest to the interfae (xl = −∆x
2 is thenode on the left hand side of the interfae and xr = ∆x

2
is the node on theright hand side of the interfae).So we write the advetion part of the LBE sheme whih is desribed by theequation (2) and we use (14), (15) and zφ = A(I + M−1CM)φ (i. e. φ isan eigenvetor). This leads to :

• For i = 3 and i = 6 in xl = −∆x
2 :

√
p+φ+

3 + β1
√

p−φ−
3 + η1

√
pK,1φ

K,1
3 =(16) = γ2

√
p̃+φ̃+

3 + δ2

√
p̃K,2φ̃

K,2
3 ,
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√

p+φ+
6 + β1

√
p−φ−

6 + η1
√

pK,1φ
K,1
6 =(17) = γ2

√
p̃+φ̃+

6 + δ2

√
p̃K,2φ̃

K,2
6 .

• For i = 1 and i = 5 in xr = ∆x
2 :

1√
p+

φ+
1 + β1

1√
p−

φ−
1 + η1

1
√

pK,1
φ

K,1
1 =(18) = γ2

1√
p̃+

φ̃+
1 + δ2

1√
p̃K,2

φ̃
K,2
1 ,

1√
p+

φ+
5 + β1

1√
p−

φ−
5 + η1

1
√

pK,1
φ

K,1
5 =(19) = γ2

1√
p̃+

φ̃+
5 + δ2

1√
p̃K,2

φ̃
K,2
5 .So the system of equations (16), (17),(18) and (19) provides the unknownoe�ients β1, γ2, η1 and δ2 whih are funtions of the di�erent eigenvetorsand phase fators p. The expansion of β1, γ2, η1 and δ2 with respet to ωannot be alulated analytially in the general ase for Multiple RelaxationTime (MRT), exept for some speial ases (e. g. BGK or for D1Q3). Nev-ertheless, we an �nd the expansion with respet to ω for a �xed value of thedi�erent parameters for LBE sheme (i. e. relaxation rates, equilibrium mo-ments . . . ) and by using various formal alulation software. To validate ourtheoretial alulation we shall ompare it to the numerial results obtainedby lattie Boltzmann automata.3.3 Interfae of two D1Q3 mediaLet medium Ω1 = {x ∈ R, x < 0} and medium Ω2 = {x ∈ R, x > 0} be twodomains with sound veloity and visosity c1, ν1, and c2, ν2, respetively. So,if we have an inident wave fi with a wave number k+ in medium Ω1, thenthere is a re�eted wave fr with a wave number k− and a transmitted one ftwith a wave number k̃+ in medium Ω2. The theoretial re�etion oe�ient



On numerial re�eted waves in lattie Boltzmann shemes 9is given by the Fresnel formula : rth = Jr

Ji
= k̃+−k+

k++k̃+
. With the help of thehydrodynami modes of D1Q3, and the study of the LBE algorithm in thetwo nodes at left and right of the interfae, we ondut an analysis similar tothe one done above for a D2Q9 interfae. We �nd the re�etion oe�ient[5℄(20) rcal =

p+ − p̃+

1 − p+p̃+
,where p+ = e(ik+∆x) and p̃+ = e(ik̃+∆x).It should be mentionned that in the D1Q3 sheme, the dispersion equation isa polynomial funtion of degree 1 in (p+

1

p
) and there are only two modes ofwave harater (the aousti waves). Hene we an alulate the oe�ientof re�etion and transmission.If we do an asymptoti development of p+ and p̃+ in ω, we �nd that

rth = rcal + O(ω2) =
c1 − c2

c1 + c2
+

i(ν1c2
2 − ν2c

2
1)

c1c2(c1 + c2)2
ω + O(ω2).4 Theoretial alulation vs numerial resultsIn this setion we ompare the results obtained by the modal analysis methodfor D2Q9 sheme desribed in setion 2 and the results obtained by thenumerial test of D2Q9 LBE sheme.4.1 Numerial testsWe simulate the transmission of waves between two aousti domains whihare desribed by the same marosopi problem (3) and have di�erent equi-librium moments distribution with the D2Q9 LBE sheme. So let Ω =

[0, l]× [0, h], where l = 4000 and h = 5 be omposed by Ω− = [0, l
2 ] × [0, h]and Ω+ = [ l

2, l] × [0, h].
• In Ω−, we take the following on�guration for equilibrium moments :
eeq = −2ρ, ǫeq = αǫρ, qx = −jx, qy = −jy, peq

xx = 0, peq
xy = 0.

• In Ω+, we take the following on�guration for equilibrium moments :
ẽeq = −2ρ, ǫ̃eq = α̃ǫρ, q̃x = −jx, q̃y = −jy, p̃eq

xx = 0, p̃eq
xy = 0.For the various relaxation rates si we �rst take the same values in the two



10 M. Tekitek, M. Bouzidi, F. Dubois and P. Lallemanddomains. (i.e se = s̃e, sǫ = s̃ǫ, sqx
= sqy

= s̃qx
= s̃qy

and spxx
= spxy

= s̃pxx
=

s̃pxy
). Here we take periodi boundary onditions for the y diretion and asimple boune bak in the outer edges in x = l. In the inlet edges at x = 0we impose an harmoni wave Jx = sin(ω∆t) where ω = 2π

100
(implemented byboune-bak and appliation of 2Jx with appropriate weight fators for theveloities inoming in the omputational domain). We take a �uid at restfor initial onditions and the total duration T = n∆t of the simulations ishosen suh that waves have not reahed the outlet (see Fig. 1).To determine the re�eted wave and the Knudsen modes, we perform an-

-1

-0.5

 0

 0.5

 1

 0  500  1000  1500  2000  2500  3000  3500  4000

 l
o
n
g
it
u
d
in

a
l 
im

p
u
ls

io
n
 

 mesh points 

acoustic wave

Figure 1: Jx vs Nx, wave transmission between Ω
−

= {xi, i ∈ (0 . . . 2000)} where αǫ = 1and Ω+ = {xi, i ∈ (2000 . . .4000)} where α̃ǫ = 1

2
at time T = 6464.other simulation in the domain ΩR = [0, l]×[0, h]. In this domain we take thesame on�guration as in the domain Ω− with the same boundary onditionsfor the inlet edges at x = 0. This simulation gives us the referene solution.To see the re�eted wave and the Knudsen modes we draw the di�erenebetween the �ux Jx in Ω (the test ase) and the �ux Jx in ΩR (the referenease) for the same number of time steps = 6464. It should be noted herethat we have a small re�eted wave between two hydrodynamially equivalentLBE. So in Fig. 2 (for xi ∈ (1, 2, . . . .2000)) we see a re�eted hydrodynami



On numerial re�eted waves in lattie Boltzmann shemes 11wave whih has an amplitude of the order 10−6. We also note that J ref
x −J test

xis not null for x > 2000. Indeed there is a small hange in the elerity ofsound of order ω2 due to the hange of αǫ. Hene we have a slight di�erenebetween the spatial periods of J ref
x and J test

x whih an be seen at x > 2000in Fig. 2. We have the same magnitude of re�eted wave between two do-mains whih have sound elerity variation ∆cs ≡ (cs − c̃s) = 1.6.10−5 orshear visosity variation ∆ν ≡ (ν − ν̃) = 1.75.10−4.
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Figure 2: Jx vs Nx, di�erene between the test ase and referene ase.To see the Knudsen modes we fous on the interfae at x = 2000. TheseKnudsen modes are loalized near the interfae and deay with osillationsfor suessive spae steps ∆x as an be seen in Fig. 3. Obviously this prop-erty of Knudsen modes is due to the �rst terms α1 and α2 of the asymptotiexpansion (10) and (11) of pK,1 and pK,2.4.2 Comparison between numerial and theoretial resultsWith the theoretial method introdued in setion 1, we have an estimationof the di�erent oe�ients of the re�eted, transmitted and Knudsen modes.We ompare the predited values to the results obtained in the numerial
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Figure 3: Details of Fig. 2 showing Knudsen modes.tests.In Fig. 4 we plot the Knudsen amplitude vs the oe�ient α̃ǫ of momentequilibrium ǫ̃eq in the domainΩ+, for αǫ = 1 (i. e. ǫeq = ρ in the domainΩ−).The urves show that the theoretial method is able to estimate the Knudsenamplitude. We �nd as shown in Fig. 4, that the Knudsen amplitude η is alinear funtion of ∆αǫ ≡ (αǫ−α̃ǫ). For the partiular ase of equal relaxationrates, the modal analysis of the equations (7), leads to the following Knudsenamplitude :
η1 =

√
1 − s(αǫ − α̃ǫ)∆tω + O(ω2)and

δ2 = −
√

1 − s(αǫ − α̃ǫ)∆tω + O(ω2).We have also studied the dependene of the �rst terms α1 and α2 of theasymptoti expansion (10) and (11) of pK,1 and pK,2, in relaxation rates sǫ.Fig. 5 plots α1, α2 vs sǫ in the ase where ǫeq = ρ (i. e. αǫ = 1) in Ω− and
ǫ̃eq = ρ

2 (i. e. α̃ǫ = 1) in Ω+. The urves show that the theoretial methodgives a good estimate of the oe�ients α1 and α2.



On numerial re�eted waves in lattie Boltzmann shemes 13

-4e-05

-2e-05

 0

 2e-05

 4e-05

 0  0.5  1  1.5  2

e
ta

 c
o
e
ff
ic

ie
n
t

alpha coefficient in the right domain

Amplitude of the Knudsen wave as function of the alpha parameter of LBE model

theoretical eta
experimental eta
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14 M. Tekitek, M. Bouzidi, F. Dubois and P. Lallemand5 ConlusionIn this ontribution, we have analyzed the e�et of a boundary between twolattie Boltzmann models that are hydrodynamially equivalent and have dif-ferent equilibrium distribution. We show that the transmission of an aoustiwave between these two media generates a numerial hydrodynamis re�etedwave and Knudsen modes.We have used a theoretial method of analysis whih is based on �ndingspatial modes of the Boltzmann sheme and a detailed study of the dynam-ial equations at loal level at points lose to the interfae. Hene we get aonnetion formula. In the simple ase of the D1Q3 model we �nd the gener-alization of the lassial Fresnel formula where we replae the wave number
k by a phase fator p = eik∆x. For D2Q9 models we have treated only in-ident waves normal to the interfae that is hosen parallel to one of themirosopi veloities of the model and we have determined the amplitude ofdi�erent waves generated at the interfae. The extension for any inideneangle is more di�ult due to the fat that the simple separation of longitu-dinal and transverse modes does not exist any more.The results show that diret simulation of aousti phenomena e.g. propa-gation in inhomogeneous media (as done in wave loalization studies) withLBE type tehniques an be seriously a�eted by parasiti phenomena. Theyalso show that work [5℄ aimed at transfering to LBE tehniques ideas thatare e�ient in ontinuous CFD methods requires a detailed knowledge of thebehaviour of basi LBE models.Referenes[1℄ Benzi, R., Sui S. and Vergassola M. The lattie Boltzmann equation :theory and appliations. Phys. Rep., vol. 222, p. 145�197 , (1992).[2℄ Qian Y.H., d'Humières D. and Lallemand P., Lattie BGK models forNavier-Stokes equation, Europhys. Lett., vol. 17, p. 479�484, (1992).[3℄ Dubois F., Equivalent partial di�erential equations of a lattie Boltz-mann sheme, Computers and Mathematis with Appliations, to appear(2007).
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