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Abstract

In this contribution, we study the transmission of a monodimensional acoustic wave be-
tween two fluid media with the classical lattice Boltzmann scheme. The two media have
the same hydrodynamic equations but different equilibrium distributions. We take here
the case where the incident wave is normal to the interface.

The theoretical modal study of this problem shows the presence of a reflected wave and
Knudsen modes localized at the interface. This analysis leads to results in good agreement
with numerical simulations.
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1 Introduction

Our motivation is to demonstrate that artificial phenomena can occur at the
interface between two Lattice Boltzmann fluids that are used to simulate
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the same physical fluid in the large scale limit. We first briefly recall the
Lattice Boltzmann Equation using moments, then we study theoretically
an interface between two D2Q9 media. We find three families of waves:
the acoustics, the Knudsen and the transverse ones. For normal incidence
transverse and longitudinal waves decouple and we determine the spatial
behaviour of the different waves and give a generalization of Fresnel formula
for the simple D1Q3 model. In section four we compare the theoretical
results to the numerical one and analyze the Knudsen modes generated at
the interface.

2 D2Q9 scheme

We analyze the LBE model [1, 2]
where Q;(f)(x, ) Z; OSJ(fJ fi)(z,t) and S is the matrix collision,

using moments for the collision qfep For the D2Q9 model, we consider
a regular lattice £ parametrized by a space step Az, composed by a set
LY = {z; € (AzZ) x (AzZ)} of nodes or vertices. We define At as a small
time step of the evolution of LBE and let the celerity A = ﬁf We choose
the velocities v;,7 € (0...8) such that v; = ¢; if = ¢;\, where the family of

vectors ¢; is defined by :
0,0), i =0,
T
¢ = ¢ (cos((i = 1)7),sin((i —1) 2))
(cos((2i — 9)”) sin((2i — 9)%
We note that the LBE scheme given by (1) can be written as follows [3]:

), i=5,...,8

(2) fi(ZUj,t—f- At) = fz*(l'] — UiAt,t), 0 <1< 8,

where the superscript * denotes post-collision quantities. Therefore during
each time increment At there are two fundamental steps : collision and ad-
vection.

e Following d’Humiéres [4], the collision step is defined in the space of mo-
ments. We consider the moments obtained by orthogonalization from the
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conserved moments : density (p), flux of linear momentum (j, and j,) and
the non-conserved moments : energy (e), square of energy (¢€), components
of the stress tensor (pg, and p,,) and flux of kinetic energy (g, and g,). The
above non-conserved moments relax following :

my = (1 — sp)my + spmy!, 3 <k <8,

where s;, = f—kt is the relaxation ratio and 7; is the relaxation time. The

relaxation rates s, are not necessarily identical as in the so called BGK
case [2].
e The advection step describes the motion of a particle which has collisioned
in node x; — v;At having the velocity v; and goes to the 4t neighbouring
node ;.

3 Interface between two D2Q9 media

We consider two domains Q1 = {(z,y);x < 0}, Q = {(z,y);z > 0} and
the interface X = {(z,y);x = 0}. We suppose that we have the following
classical acoustics problem in each domain :

)
%erivj — 0,
a]x 2ap a(dIV]) . .
(3) X gt +C$g$ a(gx ) vA\j, = 0,
Jy 20p 1v] :
—_— — — —_— A p—
| o "%y oy Vo =0

where ¢, is the celerity of sound and (, v the bulk and shear kinematic vis-
cosities and we neglect any nonlinear effects.

To simulate this equation with LBE we have to fix the equilibrium moments
as follows : e = —2p, € = acp, ¢ = —Ju, @ = —Jy, Pot = 0, Pl =

and s,,, = s,, . Hence we have the sound celerity ¢2 = %2, the bulk viscosity
¢ = XAl 1

(o — 5) and shear viscosity v = %(% — %) [4]. We remark here
€ Pxx

that the coefficient a, of the moment € equilibrium value does not appear in
the hydrodynamics equations. That is why we shall study the transmission
of an acoustic wave between the two media €2; and €2 with different coef-

ficients a,. Intuitively no hydrodynamic reflected wave occurs. So we take
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€ = a.p in Q1 and € = q,.p in Q.
To study theoretically this problem we perform a modal analysis of the LBE
scheme for an harmonic solution.

3.1 Modal study

To simplify the analysis we consider the case of normal incidence to the

interface . The wave number k = (k,, 0) is therefore parallel to the z-axis.
Let f(x,t) = /@ =F2)¢ be a solution of the LBE scheme. The equation (1)
then becomes in Fourier space :

(4) f(z,t+At) =B f(xt) = AT + M 'CM)f(x,1),

where M is the moment matrix, C' the collision operator and A the advection
operator matrix represented by the following diagonal matrix :

1 11

A =diag(1,p,1,—,1,p,—,—,p), where pzeimx.
p p D

Note that p is a phase factor that is unknown when simulating an acoustics
situation. The above equation is a finite difference equation which has a
general solution at time t = nAt :

(5) o(x =mAx,t =nAt) = K™z" ¢y,

where ¢q is the initial state. Equation (4) can be written as :

(6) zf(z,t) =G(p)f(x,1)

where z = (@2 and G(p) = A(I + M~'CM) is the global operator of the

LBE scheme. In our problem the frequency w is imposed, so we search p
solution of the following dispersion equation :

(7) det(G(p) — 2I) =0,
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1
This equation is a polynomial function of degree 3 in (p + —). We note that
p

if we use the moment matrix M defined by :

(1 1 1 1 1
0 1 0 -1
4 -1 -1 -1 -1

1
1
9
4 -2 —2 —2 —2 1 1 1
0 -2 0 2 01 -1 -1 :
0 1 -1 1 -10 0 0 0
0o 0 1 0 -1 1 1 -1 -1
0o 0 -2 0 21 1 -1 -1
\ 0 0 0 0 01 -1 1 -1)

then the matrix M(G(p) — zI)M " is a block diagonal matrix :

( 00 0)
00 0
00 0
N - Di(p) |0 0 0
M(G(p) —zl)M~! = 00 0
00 0
00 0
0 0 0 | Dyp)
\ 0 0 0 )

Hence we have the property :

— —_—

det(G(p) — zI) = det(M(G(p) — zI)M~1) = det(D1(p))det(Ds(p)),

so to solve (7) we have to solve det(D;(p)) = 0 and det(Ds(p)) = 0, which
are polynomial functions of degree 2 and 1 in (p + —) respectively. We find

the six solutions : p; and p_, px1 and pr 2, pr1 and pg o, which are functions
of z, of the different parameters of the equilibrum and of the relaxation
rates of the non-conserved moments. We also have the following asymptotic
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expansions in w :

w
(8) p+:1+ic—+0(w2),

(9) p-=1—i"+0(uw?),

Cs

(10) Pr1 =01 + fiw + O(w2), where o < —1,

(11) Pr2 =g+ Pow + O(w2), where — 1 < ap < 0,
(12) pra=1+ (a1 +iB1)vVw + ipiw + O(wyvw),
(13) pro=1+ (a2 +ifr2)vVw + it ow + O(wy/w).

Considering the w-dependence of the previous solutions, we remark that p,
and p_ are associated to acoustic waves which progress with speed %c;, px 1
and pg o are associated to Knudsen modes [6]. The two solutions p;; and p; o
are associated with transverse shear waves and they will play no role for the
particular situation of incident acoustic waves normal to the boundary that
are considered later. For the sake of completeness, we indicate that

. 1 (1+1)
(a1 + b)) = NG
and
1 (1474)

(o +if2) = _ﬁ 75

The expression of the first terms in the expansion of the Knudsen phase
factor px 1 and px 2, o and ay are complex functions of relaxation rates s;
and «. But in the particular case of equal relaxation rates (i. e. s; = s), we
have :

1—s
PEK1 = . :(1—3)—i(1—s)w+0(w2),
z 1 1
= = ' O(w?).
PK.2 1—s 1—5+21—SWjL (w)

From now on, we study cases where the wave vector of the incident wave

k is normal to the interface so transverse waves do not contribute and thus
will not be considered any more. Now we can find the eigenvectors ¢, of the
matrix G(p). Let ¢, and ¢_ be the eigenvectors associated to pL and ¢g 1
and ¢ 2 the eigenvectors associated to pr 1 and pgo. Note that for general
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directions the simple separation of longitudinal and transverse modes does
not exist.

3.2 Analysis of the interface problem

The solution f; for the left hand side of the interface can be written as follows :

(14) fi = 2"pos + 512" P00 + mz"pg 191 + 012" PR 2Pk 2,

with incident and reflected acoustic waves. For the right hand side of the
interface we have :

(15) fr = 22"y + m2"PK19K1 + 022" DR 2Pk 2-

with only transmitted waves. As we focus on an interface located at © = 0,
we set 7o = 0 and 6; = 0 to prevent the existence of unphysical growing
Knudsen modes on either sides of the boundary.

We have the following four unknown coefficients :

<¢—;jm>

2~ and
<¢+ ;jm>

® (31, 7o which determine the coefficients of reflection r = 4

<$+ajx>

transmission t = |
72 <¢+ajx>

® 7)1, 0o which determine the amplitude of the Knudsen modes.

The value of the above coefficients will be determined by studying one step

of the LBE scheme in the nodes closest to the interface (z; = —% is the
node on the left hand side of the interface and z, = % is the node on the

right hand side of the interface).
So we write the advection part of the LBE scheme which is described by the
equation (2) and we use (14), (15) and z¢ = A(I + M 'CM)¢ (i. e. ¢ is

an eigenvector). This leads to :

oFori:3andi:6inxl:—%:

VD+d3 + Bi/p—d3 + nlx/pK,lﬁbé(’l =
(16) = vy2v ]1@? + 024/ 5}(,2(%(’2,
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Vi + Bin/D-dg +my/Prads | =
(17) =7V ]1@3 + 024/ 5}(,2%{’2-

oForizlandi:5inxr:%:

IR 1 1 ki
- + /8 - + ) —

Pr o) 1 o ¢1 +m Pl 1

1 ~ 1 ~
——¢] + 09 K2

18) =~ — ,
( ) 2\/}; /—pK,Q 1

1 1 1 k1
—— 5 + fi——p5 +m T =
Ve Ve JPr1

1 ~ 1 ~
(19) = y2—=07 + So—==05 .
V P+ V PK 2
So the system of equations (16), (17),(18) and (19) provides the unknown
coefficients 31, 72, 71 and d9 which are functions of the different eigenvectors

and phase factors p. The expansion of (3, v9, 71 and o with respect to w
cannot be calculated analytically in the general case for Multiple Relaxation
Time (MRT), except for some special cases (e. g. BGK or for D1Q3). Nev-
ertheless, we can find the expansion with respect to w for a fixed value of the
different parameters for LBE scheme (i. e. relaxation rates, equilibrium mo-
ments . ..) and by using various formal calculation software. To validate our
theoretical calculation we shall compare it to the numerical results obtained
by lattice Boltzmann automata.

3.3 Interface of two D1Q3 media

Let medium Q = {z € R,z < 0} and medium Q5 = {x € R,z > 0} be two
domains with sound velocity and viscosity ¢1, 11, and cs, v, respectively. So,
if we have an incident wave f; with a wave number k™ in medium €, then
there is a reflected wave f, with a wave number £~ and a transmitted one f;
with a wave number &7 in medium Q5. The theoretical reflection coefficient
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is given by the Fresnel formula : ry, = # = EI ZI With the help of the
hydrodynamic modes of D1Q3, and the study of the LBE algorithm in the
two nodes at left and right of the interface, we conduct an analysis similar to

the one done above for a D2Q9 interface. We find the reflection coefficient|5]

p+ — D+
(20) Teal = ———=,
“ 1 —pip+
where p, = elF"A2) and p, = ik Az)

It should be mentionned that in the D1Q3 scheme, the dispersion equation is

a polynomial function of degree 1 in (p+ —) and there are only two modes of
p

wave character (the acoustic waves). Hence we can calculate the coefficient

of reflection and transmission.
If we do an asymptotic development of p, and p; in w, we find that

2) _ =0 z'(l/1022 — 1yc3)
a1+ e+ e)?

Tth = Teal + O(w + O(LUQ).

4 Theoretical calculation vs numerical results

In this section we compare the results obtained by the modal analysis method
for D2Q9 scheme described in section 2 and the results obtained by the
numerical test of D2Q9 LBE scheme.

4.1 Numerical tests

We simulate the transmission of waves between two acoustic domains which
are described by the same macroscopic problem (3) and have different equi-
librium moments distribution with the D2Q9 LBE scheme. So let Q2 =
[0,1] x [0, k], where [ = 4000 and h = 5 be composed by Q_ = [0, 1] x [0, h]
and Qy = [£,1] x [0, ).
e In 2, we take the following configuration for equilibrium moments :
el = 2/0 € = aep, @@ = —Ju, dy = ]ya e =0, peq =Y
e In ., we take the following configuration for equlhbrlum moments :
el = = —2p, € €l = 6p7 Qe = —Ja q~y = _]ya qu =0, peq = U
For the various relaxation rates s; we first take the same values in the two



10 M. Tekitek, M. Bouzidi, F. Dubois and P. Lallemand

domains. (i.e s, = 5, S¢ = 8, 84, = 8¢, = 8¢, = 8¢, and 5, =5, =5, =
5p,,). Here we take periodic boundary conditions for the y direction and a
simple bounce back in the outer edges in x = [. In the inlet edges at x =0
we impose an harmonic wave J, = sin(wAt) where w = 2% (implemented by
bounce-back and application of 2/, with appropriate weight factors for the
velocities incoming in the computational domain). We take a fluid at rest
for initial conditions and the total duration T = nAt of the simulations is
chosen such that waves have not reached the outlet (see Fig. 1).

To determine the reflected wave and the Knudsen modes, we perform an-

acoustic wave

longitudinal impulsion
o
—
p—
P——

0.5

0 500 1000 1500 2000 2500 3000 3500 4000
mesh points

Figure 1: J, vs N,, wave transmission between Q_ = {x;,7 € (0...2000)} where a, = 1
and Q4 = {z;,7 € (2000...4000)} where . = % at time 7' = 6464.

other simulation in the domain Qp = [0, 1] x [0, A]. In this domain we take the
same configuration as in the domain {2_ with the same boundary conditions
for the inlet edges at x = 0. This simulation gives us the reference solution.
To see the reflected wave and the Knudsen modes we draw the difference
between the flux J, in € (the test case) and the flux J, in Qp (the reference
case) for the same number of time steps = 6464. It should be noted here

that we have a small reflected wave between two hydrodynamically equivalent
LBE. So in Fig. 2 (for z; € (1,2,....2000)) we see a reflected hydrodynamic
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wave which has an amplitude of the order 1076, We also note that J¢/ — jiest
is not null for z > 2000. Indeed there is a small change in the celerity of
sound of order w? due to the change of a,. Hence we have a slight difference
between the spatial periods of J7¢/ and Ji**! which can be seen at z > 2000
in Fig. 2. We have the same magnitude of reflected wave between two do-

mains which have sound celerity variation Ac, = (cs — &) = 1.6.107° or
shear viscosity variation Av = (v — ) = 1.75.107%.

Hydro-wave reflected at the interface
1.5e-05

1e-05
5e-06 {”\
0

-5e-06 U

longitudinal impulsion

-1e-05 V

-1.5e-05
0 500 1000 1500 2000

mesh points

Figure 2: J, vs N,, difference between the test case and reference case.

To see the Knudsen modes we focus on the interface at x = 2000. These
Knudsen modes are localized near the interface and decay with oscillations
for successive space steps Az as can be seen in Fig. 3. Obviously this prop-
erty of Knudsen modes is due to the first terms a; and ay of the asymptotic
expansion (10) and (11) of pg 1 and pgo.

4.2 Comparison between numerical and theoretical results

With the theoretical method introduced in section 1, we have an estimation
of the different coefficients of the reflected, transmitted and Knudsen modes.
We compare the predicted values to the results obtained in the numerical

11
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Knudsen wave at the interface
1.5e-05

1e-05

Lot~
W

V\V

-1.5¢-05
1985 1990 1995 2000 2005 2010 2015

mesh points

longitudinal impulsion

Figure 3: Details of Fig. 2 showing Knudsen modes.

tests.

In Fig. 4 we plot the Knudsen amplitude vs the coefficient a, of moment
equilibrium € in the domain 2, for a, = 1 (i. e. € = pin the domain Q_).
The curves show that the theoretical method is able to estimate the Knudsen
amplitude. We find as shown in Fig. 4, that the Knudsen amplitude 7 is a
linear function of Aa, = (ae—a,). For the particular case of equal relaxation
rates, the modal analysis of the equations (7), leads to the following Knudsen
amplitude :

m = V1 — s(a. — a.)Atw + O(w?)

and
6y = —V1 — s(a, — @) Atw + O(w?).

We have also studied the dependence of the first terms «; and as of the
asymptotic expansion (10) and (11) of px 1 and pg o, in relaxation rates s..
Fig. 5 plots aq, as vs s¢ in the case where € = p (i. e. a. = 1) in Q_ and
€1 =18 (i. e. & = 1)in Q. The curves show that the theoretical method
gives a good estimate of the coefficients aq and as.
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Amplitude of the Knudsen wave as function of the alpha parameter of LBE model

Itheoretical eta X
experimentaleta M
4e-05
*
| |
X
2e-05 ' |
X
u
o
% 0
0
o
]
ki [ |
X
-2e-05 ]
X
3
-4e-05
0 05 1 15 2

alpha coefficient in the right domain

Figure 4: Knudsen amplitude 1 vs a. equilibrium parameter for LBE in €, calculated
by two methods.

Parameters of the phase vector of Knudsen waves as a function of a LBE parameter

0
Iheoreticelxl alpha_1 IO
experimental alpha_1 [0
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5 L] experimental alpha_2 W
g 05 i
2
K L
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§ 1
3 « 0
o n
g 15
o
2 "
£
)
[ [ |
2 2
]
0
£
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E g | ]
-3
0.4 0.6 0.8 1 12 14 16 18
s_epsilon parameter
Figure 5: «y, ao vs the relaxation rate s, for €9 = p in Q_ and € = %p in Q0 calculated

by two methods.
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5 Conclusion

In this contribution, we have analyzed the effect of a boundary between two
lattice Boltzmann models that are hydrodynamically equivalent and have dif-
ferent equilibrium distribution. We show that the transmission of an acoustic
wave between these two media generates a numerical hydrodynamics reflected
wave and Knudsen modes.

We have used a theoretical method of analysis which is based on finding
spatial modes of the Boltzmann scheme and a detailed study of the dynam-
ical equations at local level at points close to the interface. Hence we get a
connection formula. In the simple case of the D1Q3 model we find the gener-
alization of the classical Fresnel formula where we replace the wave number
k by a phase factor p = 2%, For D2Q9 models we have treated only in-
cident waves normal to the interface that is chosen parallel to one of the
microscopic velocities of the model and we have determined the amplitude of
different waves generated at the interface. The extension for any incidence
angle is more difficult due to the fact that the simple separation of longitu-
dinal and transverse modes does not exist any more.

The results show that direct simulation of acoustic phenomena e.g. propa-
gation in inhomogeneous media (as done in wave localization studies) with
LBE type techniques can be seriously affected by parasitic phenomena. They
also show that work [5] aimed at transfering to LBE techniques ideas that

are efficient in continuous CFD methods requires a detailed knowledge of the
behaviour of basic LBE models.
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