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Abstra
tIn this 
ontribution, we study the transmission of a monodimensional a
ousti
 wave be-tween two �uid media with the 
lassi
al latti
e Boltzmann s
heme. The two media havethe same hydrodynami
 equations but di�erent equilibrium distributions. We take herethe 
ase where the in
ident wave is normal to the interfa
e.The theoreti
al modal study of this problem shows the presen
e of a re�e
ted wave andKnudsen modes lo
alized at the interfa
e. This analysis leads to results in good agreementwith numeri
al simulations.Keywords: Latti
e Boltzmann; a
ousti
 propagation; a
ousti
 re�e
tion.1 Introdu
tionOur motivation is to demonstrate that arti�
ial phenomena 
an o

ur at theinterfa
e between two Latti
e Boltzmann �uids that are used to simulate
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i.fr
† Progress in Computational Fluid Dynami
s, volume 8, p. 49-55, 2008.1



2 M. Tekitek, M. Bouzidi, F. Dubois and P. Lallemandthe same physi
al �uid in the large s
ale limit. We �rst brie�y re
all theLatti
e Boltzmann Equation using moments, then we study theoreti
allyan interfa
e between two D2Q9 media. We �nd three families of waves:the a
ousti
s, the Knudsen and the transverse ones. For normal in
iden
etransverse and longitudinal waves de
ouple and we determine the spatialbehaviour of the di�erent waves and give a generalization of Fresnel formulafor the simple D1Q3 model. In se
tion four we 
ompare the theoreti
alresults to the numeri
al one and analyze the Knudsen modes generated atthe interfa
e.2 D2Q9 s
hemeWe analyze the LBE model [1, 2℄(1) fi(x + vi∆t, t + ∆t) = fi(x, t) + Qi(f)(x, t), 0 ≤ i ≤ 8,where Qi(f)(x, t) =
∑8

j=0 Si,j(fj − f
eq
j )(x, t) and S is the matrix 
ollision,using moments for the 
ollision step. For the D2Q9 model, we 
onsidera regular latti
e L parametrized by a spa
e step ∆x, 
omposed by a set

L0 ≡ {xj ∈ (∆xZ) × (∆xZ)} of nodes or verti
es. We de�ne ∆t as a smalltime step of the evolution of LBE and let the 
elerity λ ≡ ∆x
∆t
. We 
hoosethe velo
ities vi, i ∈ (0 . . .8) su
h that vi ≡ ci

∆x
∆t

= ciλ, where the family ofve
tors ci is de�ned by :
ci =





(0, 0), i = 0,

(cos((i − 1)
π

2
), sin((i − 1)

π

2
)), i = 1, . . . , 4,

(cos((2i − 9)
π

4
), sin((2i − 9)

π

4
)), i = 5, . . . , 8.We note that the LBE s
heme given by (1) 
an be written as follows [3℄:(2) fi(xj, t + ∆t) = f ∗

i (xj − vi∆t, t), 0 ≤ i ≤ 8,where the supers
ript ∗ denotes post-
ollision quantities. Therefore duringea
h time in
rement ∆t there are two fundamental steps : 
ollision and ad-ve
tion.
• Following d'Humières [4℄, the 
ollision step is de�ned in the spa
e of mo-ments. We 
onsider the moments obtained by orthogonalization from the
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onserved moments : density (ρ), �ux of linear momentum (jx and jy) andthe non-
onserved moments : energy (e), square of energy (ǫ), 
omponentsof the stress tensor (pxx and pxy) and �ux of kineti
 energy (qx and qy). Theabove non-
onserved moments relax following :
m∗

k = (1 − sk)mk + skm
eq
k , 3 ≤ k ≤ 8,where sk ≡ ∆t

τk
is the relaxation ratio and τk is the relaxation time. Therelaxation rates sk are not ne
essarily identi
al as in the so 
alled BGK
ase [2℄.

• The adve
tion step des
ribes the motion of a parti
le whi
h has 
ollisionedin node xj − vi∆t having the velo
ity vj and goes to the jth neighbouringnode xj.3 Interfa
e between two D2Q9 mediaWe 
onsider two domains Ω1 ≡ {(x, y); x < 0}, Ω2 ≡ {(x, y); x > 0} andthe interfa
e Σ ≡ {(x, y); x = 0}. We suppose that we have the following
lassi
al a
ousti
s problem in ea
h domain :
(3) 




∂ρ

∂t
+ divj = 0,

∂jx

∂t
+ c2

s

∂ρ

∂x
− ζ

∂(divj)

∂x
− ν△jx = 0,

∂jy

∂t
+ c2

s

∂ρ

∂y
− ζ

∂(divj)

∂y
− ν△jy = 0,where cs is the 
elerity of sound and ζ, ν the bulk and shear kinemati
 vis-
osities and we negle
t any nonlinear e�e
ts.To simulate this equation with LBE we have to �x the equilibrium momentsas follows : eeq = −2ρ, ǫeq = αǫρ, qx = −jx, qy = −jy, peq

xx = 0, peq
xy = 0and spxx

= spxy
. Hen
e we have the sound 
elerity c2

s = λ2

3
, the bulk vis
osity

ζ = λ2∆t
3 ( 1

sǫ
− 1

2) and shear vis
osity ν = λ2∆t
3 ( 1

spxx
− 1

2) [4℄. We remark herethat the 
oe�
ient αǫ of the moment ǫ equilibrium value does not appear inthe hydrodynami
s equations. That is why we shall study the transmissionof an a
ousti
 wave between the two media Ω1 and Ω2 with di�erent 
oef-�
ients αǫ. Intuitively no hydrodynami
 re�e
ted wave o

urs. So we take
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ǫeq = αǫρ in Ω1 and ǫ̃eq = α̃ǫρ in Ω2.To study theoreti
ally this problem we perform a modal analysis of the LBEs
heme for an harmoni
 solution.3.1 Modal studyTo simplify the analysis we 
onsider the 
ase of normal in
iden
e to theinterfa
e Σ. The wave number k ≡ (kx, 0) is therefore parallel to the x-axis.Let f(x, t) = ei(ωt−k.x)φ be a solution of the LBE s
heme. The equation (1)then be
omes in Fourier spa
e :(4) f(x, t + ∆t) = eiω∆tf(x, t) = A(I + M−1CM)f(x, t),where M is the moment matrix, C the 
ollision operator and A the adve
tionoperator matrix represented by the following diagonal matrix :

A = diag(1, p, 1,
1

p
, 1, p,

1

p
,
1

p
, p), where p ≡ eik∆x.Note that p is a phase fa
tor that is unknown when simulating an a
ousti
ssituation. The above equation is a �nite di�eren
e equation whi
h has ageneral solution at time t = n∆t :(5) φ(x = m∆x, t = n∆t) = Kmznφ0,where φ0 is the initial state. Equation (4) 
an be written as :(6) z f(x, t) = G(p)f(x, t)where z = e(iω∆t) and G(p) ≡ A(I + M−1CM) is the global operator of theLBE s
heme. In our problem the frequen
y ω is imposed, so we sear
h psolution of the following dispersion equation :(7) det(G(p) − zI) = 0,
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hemes 5This equation is a polynomial fun
tion of degree 3 in (p +
1

p
). We note thatif we use the moment matrix M̃ de�ned by :




1 1 1 1 1 1 1 1 1

0 1 0 −1 0 1 −1 −1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 −2 0 2 0 1 −1 −1 1

0 1 −1 1 −1 0 0 0 0
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1

0 0 0 0 0 1 −1 1 −1




,

then the matrix M̃(G(p) − zI)M̃−1 is a blo
k diagonal matrix :
M̃(G(p) − zI)M̃−1 =




0 0 00 0 00 0 0
D1(p) 0 0 00 0 00 0 00 0 00 0 0 D2(p)0 0 0


Hen
e we have the property :

det(G(p) − zI) = det(M̃(G(p) − zI)M̃−1) = det(D1(p))det(D2(p)),so to solve (7) we have to solve det(D1(p)) = 0 and det(D2(p)) = 0, whi
hare polynomial fun
tions of degree 2 and 1 in (p +
1

p
) respe
tively. We �ndthe six solutions : p+ and p−, pK,1 and pK,2, pt,1 and pt,2, whi
h are fun
tionsof z, of the di�erent parameters of the equilibrum and of the relaxationrates of the non-
onserved moments. We also have the following asymptoti
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p+ = 1 + i

ω

cs

+ O(ω2),(8)
p− = 1 − i

ω

cs

+ O(ω2),(9)
pK,1 = α1 + β1ω + O(ω2), where α1 < −1,(10)
pK,2 = α2 + β2ω + O(ω2), where − 1 < α2 < 0,(11)
pt,1 = 1 + (αt,1 + iβt,1)

√
ω + iγt,1ω + O(ω

√
ω),(12)

pt,2 = 1 + (αt,2 + iβt,2)
√

ω + iγt,2ω + O(ω
√

ω).(13)Considering the ω-dependen
e of the previous solutions, we remark that p+and p− are asso
iated to a
ousti
 waves whi
h progress with speed ±cs, pK,1and pK,2 are asso
iated to Knudsen modes [6℄. The two solutions pt,1 and pt,2are asso
iated with transverse shear waves and they will play no role for theparti
ular situation of in
ident a
ousti
 waves normal to the boundary thatare 
onsidered later. For the sake of 
ompleteness, we indi
ate that
(αt,1 + iβt,1) =

1√
ν

(1 + i)√
2and

(αt,2 + iβt,2) = − 1√
ν

(1 + i)√
2

.The expression of the �rst terms in the expansion of the Knudsen phasefa
tor pK,1 and pK,2, α1 and α2 are 
omplex fun
tions of relaxation rates siand α. But in the parti
ular 
ase of equal relaxation rates (i. e. si = s), wehave :
pK,1 =

1 − s

z
= (1 − s) − i(1 − s)ω + O(ω2),

pK,2 =
z

1 − s
=

1

1 − s
+ i

1

1 − s
ω + O(ω2).From now on, we study 
ases where the wave ve
tor of the in
ident wave

k is normal to the interfa
e so transverse waves do not 
ontribute and thuswill not be 
onsidered any more. Now we 
an �nd the eigenve
tors φp of thematrix G(p). Let φ+ and φ− be the eigenve
tors asso
iated to p± and φK,1and φK,2 the eigenve
tors asso
iated to pK,1 and pK,2. Note that for general
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hemes 7dire
tions the simple separation of longitudinal and transverse modes doesnot exist.3.2 Analysis of the interfa
e problemThe solution fl for the left hand side of the interfa
e 
an be written as follows :(14) fl = znpm
+φ+ + β1z

npm
−φ− + η1z

npm
K,1φK,1 + δ1z

npm
K,2φK,2,with in
ident and re�e
ted a
ousti
 waves. For the right hand side of theinterfa
e we have :(15) fr = γ2z

np̃m
+ φ̃+ + η2z

np̃m
K,1φ̃K,1 + δ2z

np̃m
K,2φ̃K,2.with only transmitted waves. As we fo
us on an interfa
e lo
ated at x = 0,we set η2 = 0 and δ1 = 0 to prevent the existen
e of unphysi
al growingKnudsen modes on either sides of the boundary.We have the following four unknown 
oe�
ients :

• β1, γ2 whi
h determine the 
oe�
ients of re�e
tion r = β1
<φ−,jx>

<φ+,jx>
andtransmission t = γ2

<φ̃+,jx>

<φ+,jx>
.

• η1, δ2 whi
h determine the amplitude of the Knudsen modes.The value of the above 
oe�
ients will be determined by studying one stepof the LBE s
heme in the nodes 
losest to the interfa
e (xl = −∆x
2 is thenode on the left hand side of the interfa
e and xr = ∆x

2
is the node on theright hand side of the interfa
e).So we write the adve
tion part of the LBE s
heme whi
h is des
ribed by theequation (2) and we use (14), (15) and zφ = A(I + M−1CM)φ (i. e. φ isan eigenve
tor). This leads to :

• For i = 3 and i = 6 in xl = −∆x
2 :

√
p+φ+

3 + β1
√

p−φ−
3 + η1

√
pK,1φ

K,1
3 =(16) = γ2

√
p̃+φ̃+

3 + δ2

√
p̃K,2φ̃

K,2
3 ,
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√

p+φ+
6 + β1

√
p−φ−

6 + η1
√

pK,1φ
K,1
6 =(17) = γ2

√
p̃+φ̃+

6 + δ2

√
p̃K,2φ̃

K,2
6 .

• For i = 1 and i = 5 in xr = ∆x
2 :

1√
p+

φ+
1 + β1

1√
p−

φ−
1 + η1

1
√

pK,1
φ

K,1
1 =(18) = γ2

1√
p̃+

φ̃+
1 + δ2

1√
p̃K,2

φ̃
K,2
1 ,

1√
p+

φ+
5 + β1

1√
p−

φ−
5 + η1

1
√

pK,1
φ

K,1
5 =(19) = γ2

1√
p̃+

φ̃+
5 + δ2

1√
p̃K,2

φ̃
K,2
5 .So the system of equations (16), (17),(18) and (19) provides the unknown
oe�
ients β1, γ2, η1 and δ2 whi
h are fun
tions of the di�erent eigenve
torsand phase fa
tors p. The expansion of β1, γ2, η1 and δ2 with respe
t to ω
annot be 
al
ulated analyti
ally in the general 
ase for Multiple RelaxationTime (MRT), ex
ept for some spe
ial 
ases (e. g. BGK or for D1Q3). Nev-ertheless, we 
an �nd the expansion with respe
t to ω for a �xed value of thedi�erent parameters for LBE s
heme (i. e. relaxation rates, equilibrium mo-ments . . . ) and by using various formal 
al
ulation software. To validate ourtheoreti
al 
al
ulation we shall 
ompare it to the numeri
al results obtainedby latti
e Boltzmann automata.3.3 Interfa
e of two D1Q3 mediaLet medium Ω1 = {x ∈ R, x < 0} and medium Ω2 = {x ∈ R, x > 0} be twodomains with sound velo
ity and vis
osity c1, ν1, and c2, ν2, respe
tively. So,if we have an in
ident wave fi with a wave number k+ in medium Ω1, thenthere is a re�e
ted wave fr with a wave number k− and a transmitted one ftwith a wave number k̃+ in medium Ω2. The theoreti
al re�e
tion 
oe�
ient
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hemes 9is given by the Fresnel formula : rth = Jr

Ji
= k̃+−k+

k++k̃+
. With the help of thehydrodynami
 modes of D1Q3, and the study of the LBE algorithm in thetwo nodes at left and right of the interfa
e, we 
ondu
t an analysis similar tothe one done above for a D2Q9 interfa
e. We �nd the re�e
tion 
oe�
ient[5℄(20) rcal =

p+ − p̃+

1 − p+p̃+
,where p+ = e(ik+∆x) and p̃+ = e(ik̃+∆x).It should be mentionned that in the D1Q3 s
heme, the dispersion equation isa polynomial fun
tion of degree 1 in (p+

1

p
) and there are only two modes ofwave 
hara
ter (the a
ousti
 waves). Hen
e we 
an 
al
ulate the 
oe�
ientof re�e
tion and transmission.If we do an asymptoti
 development of p+ and p̃+ in ω, we �nd that

rth = rcal + O(ω2) =
c1 − c2

c1 + c2
+

i(ν1c2
2 − ν2c

2
1)

c1c2(c1 + c2)2
ω + O(ω2).4 Theoreti
al 
al
ulation vs numeri
al resultsIn this se
tion we 
ompare the results obtained by the modal analysis methodfor D2Q9 s
heme des
ribed in se
tion 2 and the results obtained by thenumeri
al test of D2Q9 LBE s
heme.4.1 Numeri
al testsWe simulate the transmission of waves between two a
ousti
 domains whi
hare des
ribed by the same ma
ros
opi
 problem (3) and have di�erent equi-librium moments distribution with the D2Q9 LBE s
heme. So let Ω =

[0, l]× [0, h], where l = 4000 and h = 5 be 
omposed by Ω− = [0, l
2 ] × [0, h]and Ω+ = [ l

2, l] × [0, h].
• In Ω−, we take the following 
on�guration for equilibrium moments :
eeq = −2ρ, ǫeq = αǫρ, qx = −jx, qy = −jy, peq

xx = 0, peq
xy = 0.

• In Ω+, we take the following 
on�guration for equilibrium moments :
ẽeq = −2ρ, ǫ̃eq = α̃ǫρ, q̃x = −jx, q̃y = −jy, p̃eq

xx = 0, p̃eq
xy = 0.For the various relaxation rates si we �rst take the same values in the two
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= sqy

= s̃qx
= s̃qy

and spxx
= spxy

= s̃pxx
=

s̃pxy
). Here we take periodi
 boundary 
onditions for the y dire
tion and asimple boun
e ba
k in the outer edges in x = l. In the inlet edges at x = 0we impose an harmoni
 wave Jx = sin(ω∆t) where ω = 2π

100
(implemented byboun
e-ba
k and appli
ation of 2Jx with appropriate weight fa
tors for thevelo
ities in
oming in the 
omputational domain). We take a �uid at restfor initial 
onditions and the total duration T = n∆t of the simulations is
hosen su
h that waves have not rea
hed the outlet (see Fig. 1).To determine the re�e
ted wave and the Knudsen modes, we perform an-
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Figure 1: Jx vs Nx, wave transmission between Ω
−

= {xi, i ∈ (0 . . . 2000)} where αǫ = 1and Ω+ = {xi, i ∈ (2000 . . .4000)} where α̃ǫ = 1

2
at time T = 6464.other simulation in the domain ΩR = [0, l]×[0, h]. In this domain we take thesame 
on�guration as in the domain Ω− with the same boundary 
onditionsfor the inlet edges at x = 0. This simulation gives us the referen
e solution.To see the re�e
ted wave and the Knudsen modes we draw the di�eren
ebetween the �ux Jx in Ω (the test 
ase) and the �ux Jx in ΩR (the referen
e
ase) for the same number of time steps = 6464. It should be noted herethat we have a small re�e
ted wave between two hydrodynami
ally equivalentLBE. So in Fig. 2 (for xi ∈ (1, 2, . . . .2000)) we see a re�e
ted hydrodynami
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ted waves in latti
e Boltzmann s
hemes 11wave whi
h has an amplitude of the order 10−6. We also note that J ref
x −J test

xis not null for x > 2000. Indeed there is a small 
hange in the 
elerity ofsound of order ω2 due to the 
hange of αǫ. Hen
e we have a slight di�eren
ebetween the spatial periods of J ref
x and J test

x whi
h 
an be seen at x > 2000in Fig. 2. We have the same magnitude of re�e
ted wave between two do-mains whi
h have sound 
elerity variation ∆cs ≡ (cs − c̃s) = 1.6.10−5 orshear vis
osity variation ∆ν ≡ (ν − ν̃) = 1.75.10−4.
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Figure 2: Jx vs Nx, di�eren
e between the test 
ase and referen
e 
ase.To see the Knudsen modes we fo
us on the interfa
e at x = 2000. TheseKnudsen modes are lo
alized near the interfa
e and de
ay with os
illationsfor su

essive spa
e steps ∆x as 
an be seen in Fig. 3. Obviously this prop-erty of Knudsen modes is due to the �rst terms α1 and α2 of the asymptoti
expansion (10) and (11) of pK,1 and pK,2.4.2 Comparison between numeri
al and theoreti
al resultsWith the theoreti
al method introdu
ed in se
tion 1, we have an estimationof the di�erent 
oe�
ients of the re�e
ted, transmitted and Knudsen modes.We 
ompare the predi
ted values to the results obtained in the numeri
al
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Figure 3: Details of Fig. 2 showing Knudsen modes.tests.In Fig. 4 we plot the Knudsen amplitude vs the 
oe�
ient α̃ǫ of momentequilibrium ǫ̃eq in the domainΩ+, for αǫ = 1 (i. e. ǫeq = ρ in the domainΩ−).The 
urves show that the theoreti
al method is able to estimate the Knudsenamplitude. We �nd as shown in Fig. 4, that the Knudsen amplitude η is alinear fun
tion of ∆αǫ ≡ (αǫ−α̃ǫ). For the parti
ular 
ase of equal relaxationrates, the modal analysis of the equations (7), leads to the following Knudsenamplitude :
η1 =

√
1 − s(αǫ − α̃ǫ)∆tω + O(ω2)and

δ2 = −
√

1 − s(αǫ − α̃ǫ)∆tω + O(ω2).We have also studied the dependen
e of the �rst terms α1 and α2 of theasymptoti
 expansion (10) and (11) of pK,1 and pK,2, in relaxation rates sǫ.Fig. 5 plots α1, α2 vs sǫ in the 
ase where ǫeq = ρ (i. e. αǫ = 1) in Ω− and
ǫ̃eq = ρ

2 (i. e. α̃ǫ = 1) in Ω+. The 
urves show that the theoreti
al methodgives a good estimate of the 
oe�
ients α1 and α2.
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Figure 4: Knudsen amplitude η vs α̃ǫ equilibrium parameter for LBE in Ω+, 
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Figure 5: α1, α2 vs the relaxation rate sǫ for ǫeq = ρ in Ω
−
and ǫ̃eq = 1

2
ρ in Ω+ 
al
ulatedby two methods.



14 M. Tekitek, M. Bouzidi, F. Dubois and P. Lallemand5 Con
lusionIn this 
ontribution, we have analyzed the e�e
t of a boundary between twolatti
e Boltzmann models that are hydrodynami
ally equivalent and have dif-ferent equilibrium distribution. We show that the transmission of an a
ousti
wave between these two media generates a numeri
al hydrodynami
s re�e
tedwave and Knudsen modes.We have used a theoreti
al method of analysis whi
h is based on �ndingspatial modes of the Boltzmann s
heme and a detailed study of the dynam-i
al equations at lo
al level at points 
lose to the interfa
e. Hen
e we get a
onne
tion formula. In the simple 
ase of the D1Q3 model we �nd the gener-alization of the 
lassi
al Fresnel formula where we repla
e the wave number
k by a phase fa
tor p = eik∆x. For D2Q9 models we have treated only in-
ident waves normal to the interfa
e that is 
hosen parallel to one of themi
ros
opi
 velo
ities of the model and we have determined the amplitude ofdi�erent waves generated at the interfa
e. The extension for any in
iden
eangle is more di�
ult due to the fa
t that the simple separation of longitu-dinal and transverse modes does not exist any more.The results show that dire
t simulation of a
ousti
 phenomena e.g. propa-gation in inhomogeneous media (as done in wave lo
alization studies) withLBE type te
hniques 
an be seriously a�e
ted by parasiti
 phenomena. Theyalso show that work [5℄ aimed at transfering to LBE te
hniques ideas thatare e�
ient in 
ontinuous CFD methods requires a detailed knowledge of thebehaviour of basi
 LBE models.Referen
es[1℄ Benzi, R., Su

i S. and Vergassola M. The latti
e Boltzmann equation :theory and appli
ations. Phys. Rep., vol. 222, p. 145�197 , (1992).[2℄ Qian Y.H., d'Humières D. and Lallemand P., Latti
e BGK models forNavier-Stokes equation, Europhys. Lett., vol. 17, p. 479�484, (1992).[3℄ Dubois F., Equivalent partial di�erential equations of a latti
e Boltz-mann s
heme, Computers and Mathemati
s with Appli
ations, to appear(2007).
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ation de modèles et de paramètres pour la méth-ode Boltzmann sur réseau, Thèse, Université Paris-Sud, Orsay, Fran
e,2007.[6℄ Cornubert R., d'Humières D., and Levermore D., A Knudsen layer the-ory for latti
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