Cinquième foire européenne aux éléments finis
Centre International de Rencontres Mathématiques Marseille Luminy, 17-19 mai 2007

A variation on the "infsup" condition

François Dubois

CNAM Paris and University Paris South, Orsay

Scope of the lecture

1) One field study
2) Two fields analysis
3) Three fields formulation
4) Answer to an old question put by J. F. Maître

A real Hilbert space H
$\mathcal{S}_{H}=$ unity sphere in $H:\{h \in H,\|h\|=1\}$
$\mathcal{B}_{H}=$ unity ball in $H:\{h \in H,\|h\| \leq 1\}$
H' : topological dual of Hilbert space H
If $\zeta \in H^{\prime}$, then $<\zeta, h>\in \mathbb{R}$ and $\|\zeta\|=\sup \left\{<\zeta, h>, h \in \mathcal{B}_{H}\right\}$.
Following I. Babuška (1971) :
consider two Hilbert spaces Y and Z

$$
\text { a continuous bilinear form } k: Y \times Z \longrightarrow \mathbb{R}
$$

introduce two associated linear operators

$$
\begin{aligned}
& K: Y \longrightarrow Z^{\prime}, \quad<K y, z>=k(y, z), \quad y \in Y, z \in Z \\
& K^{\prime}: Z \longrightarrow Y^{\prime}, \quad<y, K^{\prime} z>=k(y, z), \quad y \in Y, z \in Z .
\end{aligned}
$$

What are necessary and sufficient conditions to get $K \in \operatorname{Isom}\left(Y, Z^{\prime}\right)$?

On one hand, K^{-1} must be continuous :

$$
\exists \gamma>0, \forall y \in Y,\|K y\| \geq \gamma\|y\|
$$

equivalently $\quad \exists \gamma>0, \forall y \in \mathcal{S}_{Y}, \exists z \in \mathcal{B}_{Z}, k(y, z) \geq \gamma$
equivalently $\quad \exists \gamma>0, \inf _{y \in Y} \sup _{z \in Z} \frac{k(y, z)}{\|y\|\|z\|} \geq \gamma$
the famous "infsup" condition!
On the other hand,
if z is given in $\mathcal{S}_{Z}, \exists \zeta \in Z^{\prime}$ such that $\langle\zeta, z\rangle \neq 0$
the range of K is equal to Z^{\prime} then $\exists y_{0} \in Y, K y_{0}=\zeta$
then $k\left(y_{0}, z\right)=<K y_{0}, z>=<\zeta, z>\neq 0$
and

$$
\forall z \in \mathcal{S}_{Z}, \sup _{y \in Y} k(y, z)=+\infty
$$

the not so famous "infinity" condition.

Fifth European Finite Element Fair, 17-19 May 2007

Babuška's theorem (1971) :
the infsup condition

$$
\begin{array}{r}
\exists \gamma>0, \forall y \in \mathcal{S}_{Y}, \exists z \in \mathcal{B}_{Z}, k(y, z) \geq \gamma \\
\forall z \in \mathcal{S}_{Z}, \sup _{y \in Y} k(y, z)=+\infty
\end{array}
$$

and the infinity condition
are necessary and sufficient conditions to get $\quad K \in \operatorname{Isom}\left(Y, Z^{\prime}\right)$.
Second fundamental result we have the equivalence $K \in \operatorname{Isom}\left(Y, Z^{\prime}\right) \Longleftrightarrow K^{\prime} \in \operatorname{Isom}\left(Z, Y^{\prime}\right)$

We deduce from these two theorems that
if K is an isomorphism from Y onto Z^{\prime}, we have the second infsup condition $\exists \gamma^{\prime}>0, \forall z \in \mathcal{S}_{Z}, \exists y \in \mathcal{B}_{Y}, k(y, z) \geq \gamma^{\prime}$
second infinity condition

$$
\forall y \in \mathcal{S}_{Y}, \sup _{\sim \in 7} k(y, z)=+\infty
$$

Fifth European Finite Element Fair, 17-19 May 2007

Classical references :
O. Ladyzhenskaya (1963)
F. Brezzi (1974)
V. Girault and P.A. Raviart $(1979,1986)$

Consider two Hilbert spaces X and M and two continuous bilinear forms $a: X \times X \longrightarrow \mathbb{R}$

$$
b: X \times M \longrightarrow \mathbb{R}
$$

the associated linear operators

$$
\begin{array}{lll}
A: X \longrightarrow X^{\prime}, & <A u, v>=a(u, v), & u \in X, v \in X \\
B: X \longrightarrow M^{\prime}, & <B u, q>=b(u, q), & u \in X, q \in M \\
B^{\prime}: M \longrightarrow X^{\prime}, & <u, B^{\prime} q>=b(u, q), & u \in X, q \in M .
\end{array}
$$

In the framework of the first section: $\quad Y=Z=X \times M$ and

$$
k((u, p),(v, q))=a(u, v)+b(u, q)+b(v, p) .
$$

Operator $\Phi: X \times M \longrightarrow X^{\prime} \times M^{\prime}$ associated with the bilinear form $k(\bullet, \bullet)$ is defined by blocs :

$$
\Phi=\left(\begin{array}{cc}
A & B^{\prime} \\
B & 0
\end{array}\right)
$$

In order to study if Φ is an isomorphism, consider $f \in X^{\prime}, g \in Z^{\prime}$ and try to solve the system :
(1) $A u+B^{\prime} p=f$
(2) $B u=g$.

Of course the kernel V of operator B has a crucial role ;
define $V=\operatorname{ker} B=\{v \in X, \forall q \in M, b(v, q)=0\}$,
use the orthogonality decomposition in Hilbert spaces : if $u \in X$, consider $u^{0} \in V$ and $u^{1} \in V^{\perp}$ such that $u=u^{0}+u^{1}$.

Observe that the polar set $V^{0} \equiv\left\{\zeta \in X^{\prime}, \forall v \in V,\langle\zeta, v>=0\}\right.$ can be identified with the dual space $\left(V^{\perp}\right)^{\prime}$ of its orthogonal.
(1) $A u+B^{\prime} p=f$
(2) $B u \quad=g$.
the equation (2) takes the form : natural hypothesis (i) to solve (3) :
(3) $\quad u^{1} \in V^{\perp}, \quad B u^{1}=g$. $B \in \operatorname{Isom}\left(V^{\perp}, M^{\prime}\right)$ then report u^{1} inside equation (1) and test this equation against $v \in V$ to eliminate the so-called pressure p :
(4) $\quad u^{0} \in V, \quad \forall v \in V,<A u^{0}, v>=<f-A u^{1}, v>$ natural hypothesis (ii) to solve (4) : $\quad A \in \operatorname{Isom}\left(V, V^{\prime}\right)$ observe that equation (4) can also be written as $\quad f-A u \in V^{0}$ then equation (1) takes the form :
(5) $\quad p \in M, \quad B^{\prime} p=f-A u$ and has a unique solution due to the hypothesis (i) :

$$
B^{\prime} \in \operatorname{Isom}\left(M, V^{0}\right)
$$

and the fact that the right hand side in (5) belongs to polar space V^{0}.
"my version" of the Girault and Raviart's theorem (1986) :
$\Phi=\left(\begin{array}{cc}A & B^{\prime} \\ B & 0\end{array}\right)$ is an isomorphism from $X \times M$ onto its dual
if and only if the hypotheses (i) $\quad B \in \operatorname{Isom}\left(V^{\perp}, M^{\prime}\right)$

$$
\text { and (ii) } \quad A \in \operatorname{Isom}\left(V, V^{\prime}\right) \quad \text { are satisfied. }
$$

Other expression of hypothesis (i): $\left.\quad B^{\prime} \in \operatorname{Isom}\left(M,\left(V^{\perp}\right)^{\prime} \equiv V^{0}\right)\right)$ Infsup condition associated with this formulation of hypothesis (i) :

$$
\exists \beta^{\prime}>0, \forall p \in \mathcal{S}_{M}, \exists v \in \mathcal{B}_{V^{\perp}}, b(v, p) \geq \beta^{\prime}
$$

equivalently : $\quad \exists \beta^{\prime}>0, \forall p \in \mathcal{S}_{M}, \exists v \in \mathcal{B}_{X}, b(v, p) \geq \beta^{\prime}$
equivalently : $\quad \exists \beta^{\prime}>0, \inf _{p \in M} \sup _{v \in X} \frac{b(v, p)}{\|v\|\|p\|} \geq \beta^{\prime} \quad$ classical!
Observe that the infinity condition

$$
\forall v \in \mathcal{B}_{V^{\perp}}, \quad \sup _{p \in M} b(v, p)=+\infty \quad \text { is trivial }!
$$

Fifth European Finite Element Fair, 17-19 May 2007

Girault and Raviart's theorem (1986), formulated by the authors : $\Phi=\left(\begin{array}{cc}A & B^{\prime} \\ B & 0\end{array}\right)$ is an isomorphism from $X \times M$ onto its dual if and only if the hypotheses

$$
\begin{equation*}
\exists \beta^{\prime}>0, \inf _{p \in M} \sup _{v \in X} \frac{b(v, p)}{\|v\|\|p\|} \geq \beta^{\prime} \tag{i}
\end{equation*}
$$

and
(ii) $\quad A \in \operatorname{Isom}\left(V, V^{\prime}\right)$ are satisfied.

The infinity hypothesis for B^{\prime} operator is lost in this formulation due to the particularity of the situation!

Motivation :
vorticity-velocity-pressure formulation of the Stokes problem
FD (1992, 2002), FD, S. Salaün and S. Salmon (2000, 2003) :

$$
\begin{array}{ll}
\omega-\operatorname{curl} u & =0 \\
\nu \operatorname{curl} \omega+\nabla p & =g \\
\operatorname{div} u & =0
\end{array}
$$

Integrate by parts and multiply by ad hoc coefficients : abstract form W : space for vorticity, U for velocity, P for pressure three continuous linear forms

$$
\begin{aligned}
& j: W \times W \ni(\omega, \varphi) \longmapsto j(\omega, \varphi) \in \mathbb{R} \\
& r: W \times U \ni(\omega, v) \longmapsto r(\omega, v) \in \mathbb{R} \\
& d: U \times P \ni(u, q) \longmapsto d(u, q) \in \mathbb{R} \\
& \text { bilinear form } k:(W \times U \times P) \times(W \times U \times P) \longrightarrow \mathbb{R} \\
& k((\omega, u, p),(\varphi, v, q))=j(\omega, \varphi)+r(\omega, v)+r(\varphi, u)+d(u, q)+d(v, p)
\end{aligned}
$$

associated linear operators :

$$
\begin{array}{lll}
J: W \longrightarrow W^{\prime}, & <J \omega, \varphi>=j(\omega, \varphi), & \omega \in W, \varphi \in W \\
R: W \longrightarrow U^{\prime}, & <R \omega, v>=r(\omega, v), & \omega \in W, v \in U \\
R^{\prime}: U \longrightarrow W^{\prime}, & <\omega, R^{\prime} v>=r(\omega, v), & \omega \in W, v \in U \\
D: U \longrightarrow P^{\prime}, & <D u, q>=d(u, q), & u \in U, q \in P \\
D^{\prime}: P \longrightarrow U^{\prime}, & <u, D^{\prime} q>=d(u, q), & u \in U, q \in P
\end{array}
$$

linear system to solve :
(6) $J \omega+R^{\prime} u=f$
(7) $R \omega+D^{\prime} p=g$
(8) $D u \quad=h$
orthogonal decomposition of the velocity :

$$
u=u^{0}+u^{1}, u^{0} \in \operatorname{ker} D, u^{1} \in(\operatorname{ker} D)^{\perp}
$$

orthogonal decomposition of the vorticity :

$$
\omega=\omega^{0}+\omega^{1}, \omega^{0} \in \operatorname{ker} R, \omega^{1} \in(\operatorname{ker} R)^{\perp}
$$

(6) $J \omega+R^{\prime} u=f$
(7) $R \omega+D^{\prime} p=g$
(8) $D u=h$

Equation (8) takes the form :
(9) $\quad u^{1} \in(\operatorname{ker} D)^{\perp}, \quad D u^{1}=h$ $D \in \operatorname{Isom}\left((\operatorname{ker} D)^{\perp}, P^{\prime}\right)$ natural hypothesis (iii) to solve (9) : test second equation against $v \in \operatorname{ker} D$ to eliminate the pressure p :

$$
<D^{\prime} p, v>=<p, D v>=0
$$

(10) $\quad \omega^{1} \in(\operatorname{ker} D)^{\perp}, \quad \forall v \in \operatorname{ker} D,\left\langle R \omega^{1}, v\right\rangle=\langle g, v\rangle$ natural hypothesis (iv) to solve (10) : $R \in \operatorname{Isom}\left((\operatorname{ker} R)^{\perp},(\operatorname{ker} D)^{\prime}\right)$ then equation (10) implies that and equation (7) takes now the form then due to hypothesis (iii) : $g-R \omega \in(\operatorname{ker} D)^{0}$ (11) $D^{\prime} p=g-R \omega$
$D^{\prime} \in \operatorname{Isom}\left(P,(\operatorname{ker} D)^{0}\right)$
equation (11) has a unique solution

Fifth European Finite Element Fair, 17-19 May 2007
(6) $J \omega+R^{\prime} u=f$
(7) $R \omega+D^{\prime} p=g$
(8) $D u=h$

The fields u^{1}, ω^{1} and p are known.
Test equation (6) against $\varphi \in \operatorname{ker} R:\left\langle R^{\prime} u, \varphi\right\rangle=\langle u, R \varphi\rangle=0$ and report the value of ω^{1} :
(12) $\quad \omega^{0} \in \operatorname{ker} R, \quad \forall \varphi \in \operatorname{ker} R,\left\langle J \omega^{0}, \varphi\right\rangle=\left\langle f-J \omega^{1}, \varphi\right\rangle$ natural hypothesis (v) to solve (12) : $J \in \operatorname{Isom}\left(\operatorname{ker} R,(\operatorname{ker} R)^{\prime}\right)$ then equation (12) implies that $\quad f-J \omega \in(\operatorname{ker} R)^{0}$ and equation (6) takes now the form
(13) $u^{0} \in \operatorname{ker} R, R^{\prime} u^{0}=f-J \omega-R^{\prime} u^{1}$
due to hypothesis (iv) :
$R^{\prime} \in \operatorname{Isom}\left(\operatorname{ker} D,(\operatorname{ker} R)^{0}\right)$
equation (13) has a unique solution.
Note the algorithm induced by this approach : $u^{1}, \omega^{1}, p, \omega^{0}, u^{0}$.

Isomorphism Theorem with three fields
Let K be defined from $W \times U \times P$ to $W^{\prime} \times U^{\prime} \times P^{\prime}$

$$
\text { by the matrix } K=\left(\begin{array}{ccc}
J & R^{\prime} & 0 \\
R & 0 & D^{\prime} \\
0 & D & 0
\end{array}\right)
$$

then K is an isomorphism if and only if the three hypotheses
(v) $J \in \operatorname{Isom}\left(\operatorname{ker} R,(\operatorname{ker} R)^{\prime}\right)$
(iv) $R \in \operatorname{Isom}\left((\operatorname{ker} R)^{\perp},(\operatorname{ker} D)^{\prime}\right)$
(iii) $D \in \operatorname{Isom}\left((\operatorname{ker} D)^{\perp}, P^{\prime}\right)$ are satisfied

We can replace (iii) by and (iv) by

$$
\begin{array}{r}
D^{\prime} \in \operatorname{Isom}\left(P,(\operatorname{ker} D)^{0}\right) \\
R^{\prime} \in \operatorname{Isom}\left(\operatorname{ker} D,(\operatorname{ker} R)^{0}\right) .
\end{array}
$$

Note that the infinity condition associated to (iv) :

$$
\forall \varphi \in \mathcal{S}_{(\operatorname{ker} R)^{\perp}}, \sup _{u \in \operatorname{ker} D} r(\varphi, u)=+\infty \quad \text { is a priori not trivial ! }
$$

Fifth European Finite Element Fair, 17-19 May 2007
J.F. Maître (Giens, Canum 1993) :
"What is the link between the three fields infsup conditions and the classical two fields infsup conditions ?"
In other terms, $\quad\left(\begin{array}{ccc}J & R^{\prime} & 0 \\ R & 0 & D^{\prime} \\ 0 & D & 0\end{array}\right)=\left(\begin{array}{cc}A & B^{\prime} \\ B & 0\end{array}\right)$?
ok when $\quad X=W \times U, M=P, A=\left(\begin{array}{cc}J & R^{\prime} \\ R & 0\end{array}\right), \quad B=\left(\begin{array}{ll}0 & D\end{array}\right)$.
the infsup condition for B^{\prime} operator $\exists \beta^{\prime}>0, \inf _{p \in M} \sup _{v \in X} \frac{b(v, p)}{\|v\|\|p\|} \geq \beta^{\prime}$
takes the analogous form for $\mathrm{D}^{\prime}: \quad \exists \delta^{\prime}>0, \inf _{p \in P} \sup _{v \in U} \frac{d(v, p)}{\|v\|\|p\|} \geq \delta^{\prime}$
At what precise conditions operator A is an isomorphism from $\operatorname{ker} B=W \times \operatorname{ker} D$ onto its dual $(\operatorname{ker} B)^{\prime}=W^{\prime} \times(\operatorname{ker} D)^{\prime}$?

Fifth European Finite Element Fair, 17-19 May 2007

Make attention that R^{\prime} is not exactly equal to R^{\prime} restricted to $\operatorname{ker} D$! The exact isomorphism condition $\quad R^{\prime} \in \operatorname{Isom}\left(\operatorname{ker} D,(\operatorname{ker} R)^{0}\right)$ leads to an infsup condition

$$
\exists \rho^{\prime}>0, \inf _{u \in \operatorname{ker} D} \sup _{\varphi \in(\operatorname{ker} R)^{\perp}} \frac{r(\varphi, u)}{\|\varphi\|\|u\|} \geq \delta^{\prime}
$$

that can be written equivalently

$$
\exists \rho^{\prime}>0, \inf _{u \in \operatorname{ker} D} \sup _{\varphi \in W} \frac{r(\varphi, u)}{\|\varphi\|\|u\|} \geq \delta^{\prime}
$$

But the associated infinity condition

$$
\forall \varphi \in \mathcal{S}_{(\operatorname{ker} R)^{\perp}}, \sup _{u \in \operatorname{ker} D} r(\varphi, u)=+\infty
$$

remains a priori not trivial and has not to be dropped!

