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ABSTRACT

We propose a new method for the numerical resolution of the full
potential model of transonic flow. This method is based on a mixed finite
element formulation taking into account both the velocity and the stream
function of the flow and previously proposed by AMARA [1]. The nonlinearity
is treated with an adaptation of the ENGQUIST-OSHER [12] numerical scheme.
The complete problem is solved iteratively with the Newton’s algorithm. We
detail essentially the two-dimensional case and present numerical tests on
a nonlifting NACA 0012 airfoil.

-I-  INTRODUCTION

The modelling of transonic flow in the atmosphere is well known. The
most important physical phenomena are the nonlinear waves of perfect gas
such as the shock waves or the rarefactions. Therefore if we neglect all
the viscous effects and heat transfer, the gas is a perfect fluid submitted
to the Euler equations of fluid dynamics. In the following, we adopt also
several hypotheses and approximations that lead to the transonic full
potential model. First we restrict ourselves to stationary fluid flows.
Second we suppose that the total enthalpy is constant at the upstream



infinity. Therefore the latter is constant (thanks to the Rankine-Hugoniot
retations for the Euler equations) for all the points that are linked to
the upstream infinity by a stream 1line. In the following we assume that
this hypothesis is realized everywhere, 1i.e. that the total enthalpy is a
constant. Our third hypothesis concerns the 1isoentropy and the
irrotationality of the flow at the upstream infinity. Then this property
remains true as long as the flow is regular. Moreover in transonic flow
regimes the production of entropy and vorticity across the shock waves can
be neglected (refer e. g. to LANDAU-LIFSCHITZ [22], SERRIN [29] or GERMAIN
[13]1). The fourth hypothesis concerns the thermodynamic laws satisfied by
the air. Classicaly for transonic flow regimes the air is a polytropic
diatomic perfect gas, then the heat capacities are two constants and their
ratio y is equal to 7/5 =1.4 .

We detail now the equations of this classical model. Our primitive
unknown is the velocity field. So we first write all the equations only in
terms of this field u. We introduce a reference Mach number M, and we
adimensionalize the density p and the velocity u such that p=1 and {u|=1 if
the local Mach number M is equal to M,. We get simply:

1

12 2 Ty-1
o = 1+YTM0(1-|UI )]7 (1.1)

thanks to the hypothesis of isoentropy, isoenthalpy and polytropic perfect
gas. The momentum q is by definition

q=pu (1.2)
It satisfies the mass-conservation Taw

divg=0 (1.3)
Moreover the irrotationality condition is written simply :

curl u = 0 (1.4)

We notice that the latter equation is exact for two-dimensional flows
around wings. Indeed 1ift can mathematically be produced because the domain
is not simply connected. Then the Kutta-Joukovsky condition (the velocity
remains bounded in the vicinity of the corners) allows the determiation of
the 1ift coefficient. We refer to DJAOUA [8] for the case of incompressible
two-dimensional flows. In three-dimensional situations the domain external



to a wing or a transonic glider is simply connected thus 1ift is really
induced by the vorticity. In fact curl u is then a measure, even for
incompressible flows. In the latter case, the vorticity is concentrated on
a surface of contact discontinuity where the tangential components of u are
discontinuous. We refer to HESS {18] for the formulation of the problem in
those more complicated three-dimensional situations.

In this paper we restrict ourselves to twodimensional problems and in
that case the equation (1.4) is valid everywhere. The usual way to
re-formulate the problem (1.1)-(1.4) 1is to introduce the potential ¢
associated with the condition of irrotationality:

u=grad ¢ (1.5)

Replacing the representation (1.5) into the equations {1.1)-(1.3) we obtain
the so called Transonic Full Potential Equation

div { P [ |grad ¢]2 ] grad ¢ } =0 (1.6)

The density p(|grad ¢|?) in the equation {1.6) is given by the formulae
(1.1).(1.5).

The numerical resolution of (1.6) with the finite difference method
has been intensively studied {see e.g. JAMESON [20], CHATTOT-COULOMBEIX-DA
SILVA [5], HAFEZ-SOUTH-MURMAN [17], HOLST [19] among others). Moreover
approximations of the full transonic potential equation using finite
element methods have been also applied with success (see e. g.
BRISTEAU-PIRONNEAU-GLOWINSKI-PERIAUX-PERRIER-POIRIER [4], and HABASHI-HAFEZ
[15] ).

We recall that the representation (1.5) is well adapted to
irrotational velocity fields on simply <connected domains. For
two-dimensional lifting flows, we must add to (1.5) some special function
that takes into account the possibility of 1ift (e.g. GIRAULT-RAVIART [14])
or we must consider ¢ as a multivalued function. Moreover the
representation (1.5) 1is founded on the irrotationality condition (1.4)
which is an approximation. On the other hand the conservation of the mass
(1.3) is exact for general stationary Euler or Navier-Stokes equations.
This remark motivates the introduction of the stream function ¥ satisfying

q=curl ¥ (1.7)



The major problem arising when we use this representation is due to the
determination of the density. For transonic flows where {1.1) is valid, the
density is not a function of the momentum q (see Figure 1). Thus the
equation (1.4) cannot be rewritten as a single equation involving only the
stream function as an unknown. This double root problem (discussed in
detail by SELLS [28]) has been solved previously by HAFEZ-LOVELL [16] with
finite differences and by AMARA [1] (see also AMARA-JOLY-THOMAS [2]) thanks
to a mixed finite element formulation. The present work is an extension of
the method proposed in [1].

In the second section of this paper we recall the discrete mixed
finite element formulation for two-dimensional transonic flows governed by
the equations (1.1)-(1.4) and (1.7). In Section III we detail our treatment
of the nonlinear terms, based on the upwind ENGQUIST-OSHER [12] numerical
scheme. The first numerical tests of the method for a non-1ifting NACA 0012
profile at various Mach numbers at infinity are presented in Section IV.

-11- VELOCITY-STREAM FUNCTION MIXED FORMULATION
FOR TRANSONIC POTENTIAL FLOWS.

1} Discretization spaces

We consider a bounded domain O of R? and a mesh T, composed by
quadrangular finite elements (the extension to triangular meshes is
straightforward). The velocity u is supposed to be constant in each element
K :

u e @ x@ (2.1)

The discrete space Qg is generated by discontinuous piecewise constant
functions on each finite elTement :

Q) = { w:f+R w, eR,VKeT, } (2.2)

This choice implies that the numerical accuracy is at best of first order.
The stream function ¥ is dicretized by bilinear continuous finite elements:

¥, e Q(K) ,VYKeT, (2.3)



The space Q, {K) is defined as follows. Let K, be the unity square [0,1]x[0,1]
and Q, (K,) be the following space of polynomial functions :

Q, (Ky) = { w,: K= R, 3a,b,c,d eR, wy(x,y) = a+ bx+cy+ dxy } (2.4)

Given a quadrangle K there exists a unique function F, € Q (K;) applying K
onto K, and we set

-1
Q, (K) = { w: K= R, 3w, €Q(Kj), wix,y) = wy( F (x,¥)), ¥(x,y)eK } (2.5)

For more details about this classical isoparametric quadrangle we refer to
CIARLET [6].

We suppose also that we have decomposed the boundary T=6Q of the
domain into two parts:

I = I, ur, (2.6)

The portion I, corresponds to a Dirichlet boundary condition for the stream
function ¥: then we introduce the set Q? of the continuous functions
satisfying {(2.3) in each element K of 7., and that are null for all the
vertices of the mesh T that are not lying on . Conversely we set

¢ - { : 9 ~ R continuous, @lxe 0,(K) VKeT, p(x})=0 ¥ xeT, } (2.7)

The stream function finally satisfies:
ve , v-veq (2.8)

The integer N, (resp N,) denotes the number of elements {resp vertices
that are not 1lying on Iy} of the mesh I,. The dimension of the
discretization space Q) x Q) associated with the velocity (resp Q
associated with the stream function) is 2.N, (resp N.).

2) Nonlinear mixed formulation

We first detail the discretization of the momentum q introduced in
(1.2). We choose q as a nonlinear function of the pair (u,¥) whose value is
supposed to be constant in each finite element:

q = q{u,¥) € Q) xQ (2.9)




The dependance of the momentum (2.9) towards the stream function is
realized by the choice of an upwind element KA(K) for each element K, as
follows. Let KI’KZ’K3’K4 be the four quadrangles of Th neighbouring the
given element K {see Figure 2). The mass flux entering 1into K from the

element Kj (j=1 to 4) is exactly equal to the difference ¥, - ¥ of
i i

i+l i

the stream function between the vertices LI and i defining the interface
Kj—K" The upwind element KA(K) is defined as the one realizing the maximum
of this mass-flux among the four neighbouring elements.

¥ - v, > . .sup [ ¥ - ¥, ] (2.10)
TA(K)+1 Teatk) Jj=1,2,3,4 1, i

With this choice, the direction KA(K) - K follows approximately the flow
field. Moreover the criterium (2.10) is easy to implement once the stream
function is known.

When the function KA(K) is determined for all the elements of the
mesh, the momentum is a nonlinear function of both the velocities u. and

Uy a () in the quadrangles K and KA{K) respectively:

alu, ) [, = Ay, o) » YKeT, (2.11)

The choice of the function Q{.,.) will be detailed in the next sub-section.

Therefore, we can now give the mixed variational formulation of the
discrete problem. The boundary conditions are of two types: the stream
function is supposed to be given on T :

¥ = ¥ onT ¥ given in Q0 (2.12)

and on the part T,, we suppose that the tangential component of the
velocity is given :

u.t = g on T {(2.13)

N

where t 1is the unity vector tangent to 90 and issued from the external
normal n by a rotation of angle +n/2 (see Figure 5). Thus we multiply the
representation (1.7) by a test function v in Q) x @) and integrate on the
domain . We obtain

J q{u,¥).v dx - J curlé.vdx = 0 , VveQ)xQ (2.14)
0 H]



Moreover, we multiply the equation (1.4) by a scalar test function ¢ lying
in Q?w Integrating by parts and using (2.13) we get:

I u.curl ¥ dx  + I pgdy =0, Veed (2.15)
Q a0

The discrete nonlinear mixed variational formulation for solving the
transonic problem in the domain Q takes the form:

Find a pair (u,¥) satisfying the functional relations (2.1)
and (2.8) repectively and the variational eguations (2.14)(2.15}).

We recall that this problem is entirely defined by the data (E,g)
related to the boundary conditions (2.8) and (2.13) and by the nonlinear
dependance of the momentum towards the velocity described by the formula
(2.11).

We dintroduce some definitions. For ¢ 1lying in the discrete space
Q?+EE, the vector By belongs to Q)xQ) and is defined by

I Bp.v dx = - J curly.v dx Vv e QixQf (2.16)
Q Q
We define G as the line vector of order N, such that
Gy = J g ¢ dy Veed (2.17)
T
and vol{K) as the Lebesgue measure of K:
vol(K) = [ dx VKeT, (2.18)
K

We re-write the problem (2.14)-(2.15) thanks to these notations:

u e Qf xQ ., b -ve Qh
VOT(K) QU ¢, b) + BE =0 (2.19)
tBu = G

The notation *B denotes the transpose of the (rectangular) matrix B. The
problem (2.19) 1is nonlinear but we recognize the typical pattern of the
mixed formulations (e.g. BREZZI [3]).



Remark 2.1. This formulation (2.19) can be extended for three-dimensional
problems. The velocity u remains constant 1in each element (tetrahedron,
prism or hexahedron) and the vector potential ¥ is dicretized with the
finite element introduced by NEDELEC [25]. In [9] we have analysed
theoretically a linear problem formulated with a mixed formulation of the
type (2.19). On the other hand DUBOIS-DUPUY have presented in [10] a three-
dimensional transonic flow simulation using that type of mixed formulation
and a determination of the flux function Q(u,,,u ) founded on an upwinding
of the density which is described in the next section.

3) Nonlinear evaluation of the momentum.

We detail in this section the way to compute the momentum (2.11) in a
finite element K as soon as the upwind element KA is known. Since the
pioneering work of EBERLE [11], the upwinding of the density is well known.
We write it in terms of the momentum:

Qugysu) = A4, sY) U (2.20)

with an upwind density ; evaluated thanks to the scheme

p(uKA’uK) = aKA,K Py + (I-QKA,K) Py (2.21)

The values and p, are computed from the moduli of the associated

P
velocities wiiﬁ help of (1.1}). The coefficient ¢,  can be found in
BRISTEAU et al [4], HAFEZ-SOUTH-MURMAN [17], or HOLST [19] and we have used
the formula proposed by AMARA [1]. Our present scheme is based on the
upwinding of the momentum itself and can be viewed as an adaptation of the
ENGQUIST-OSHER [12] scheme to the transonic full potential problem. This
kind of adaptation was previously proposed by OSHER-HAFEZ-WHITLOW [26] for
the full potential equation (1.16) in the context of finite differences.

We suppose for a while that the velocities u,, and u . are normal to

KA
the interface separating the elements KA and K. The evolution in time of
the density is then 1locally described by the nonlinear scalar concave

hyperbolic equation

~a~’3+—3{ 1 z U SR 0 2.22
ot " ax | l " ome ’] } ) (2-22)

associated with the initial datum (Figure 2.3)

, x<@0

%h)={?ﬁ (2.23)

" , Xx>0.
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The system {2.22)(2.23) 1is a Riemann problem associated with the
scalar conservation law (2.22). The solution p(x,t) is self-similar and
therefore remains constant at the interface between KA and K along the time
evolution (see e.g. LAX [23] or SMOLLER [30] for the mathematical
foundations of the hyperbolic conservation laws). The numerical scheme
proposes an approximate computation (denoted by ¢) of the flux function
associated with the conservation law (2.22) for x/t=0. Under the hypothesis
made previously on the velocity vectors u,, and u,, the numerical flux

KA
corresponds to the modulus of the momentum Q(u ,,u ). Therefore we have

|Q(UKA1UK)| = ¢(UKA’UK) (2.24)

The numerical flux characterizes the choice of the nonlinear numerical
scheme. We detail at the end of this section the adaptation of the
ENGQUIST-OSHER scheme to the conservation law (2.22). When the flow is
aligned with the direction of the interface separating KA and K, the
modulus computed thanks to (2.24) is exactly the component of the momentum
Q in the direction normal to the interface (Figure 3). In the general case,
our choice of the upwinding eTement KA(K) assumes that the direction KA-K
is not far from the direction of the flow, which is given in the element K
by the velocity u,. Thanks to these phenomenological considerations we
define our momentum function by:

u
Qu,>u) = $lu,,u) TGKT inKeT, (2.25)
K
The definition of our nonlinear treatment will be complete after
having specified the function ¢(.,.) related to the Engquist-Osher scheme.
We first write the flux of the equation (2.22) in terms of the velocity:
1

-1 -1
q(u) = l 1+ 15" M2 (1-]ul?) }7 |l (2.26)

and following [12], we split it into a supersonic part g(u) plus a subsonic
part e(u):

(u) = { 0 lul < v, (2.27)
i g(u) - Q,,, lul >y, "
[ alu) lu| < u
e(u) = { . ol s o (2.28)
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The parameters Q and u_ are defined on the Figure 4 and are easily

ma X
evaluated from the equation (2.26). Then the numerical flux function is

defined by

Plu, u) = glu,) + efu) . (2.29)

-1IT - QUASI-NEWTON ALGORITHM FOR THE NUMERICAL RESOLUTION.

The discrete problem (2.19) that results from the mixed variational
formulation couples the unknowns u and ¥. We note that the flux function
Q(uKA(K),uK) is defined thanks to the choice of the upwind element KA({K)
related to the value of the stream function ¥. We remark also that KA(K) is
not derivable towards the stream function field. In the following, we
suppose that the upwind element KA(K) associated with each finite element K
is fixed. More precisely the direction of the flow is supposed to be
sufficiently well known in order to be sure that the upwind element KA(K)
remains the same during the iterations of the algorithm. Therefore the
momentum Q(uKA(K},uK) is considered in the following only as a function of
the velocity field.

We introduce the notations

X=(u,g) e () xQ (3.1)
F(X) = [:;l(K{ Q[(;UKA(K}’UK) + B(g+¥) ] (3.2)

Then F is a C! function of the unknown X which takes its value in the space
(QF)2xQ" (the first 1ine of F(X) must be considered element by element) and
the equation (2.19) takes the simplie algebraic form:

F(X) = 0 (3.3)

We have used a classical Newton’s algorithm for the numerical resolution of
the nonlinear equation (3.3):

X0 given in (Q0) x (QF) (3.4)
dF(Xm).6X + F(X") =0 (3.5)
) URR I U7 LY { (3.6)

In the equation {3.5) dF(X") denotes the jacobian matrix of the function F,
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evaluated at the m° iteration; we have updated this matrix every 10
iterations, i.e. we have taken in (3.5) the following value for m :

n
m = 1+ 10%integer part(Ia) (3.7)

The relaxation factor &' in the equation (3.6) 1is computed thanks to the
relations

ul

0 <w 1

su < 0.01 (3.8)
K
h

— 1A

" ma
K e

where éu, denotes the increment of the velocity field inside the finite
element K associated with the increment 6X=(6u,8%)}. To be complete, we
precise that the value of the reference Mach number M, (cf the equations
(1.1) and {2.26)) has been chosen as a constant for all the computations:

My =1 (3.9)
The matrix dF(X) around the state Xz(u,@-a) is sparse. The first 2*N_ lines
correspond to the coupling (2.14) of each element K with itself (diagonal
2*2 blocks aQ/du ), with its upwind element KA (nondiagonal 2*2 block
aQ/au, ) and with the (four) vertices neighbouring K (B block that takes
into account the degrees of freedom related to the stream function). The
Tast N lines result from the equation (2.15) and couples each vertex with
the velocity vectors inside the four neighbouring elements ({block
associated with the transpose of the matrix B).

K KA
*% L2
K —f> *%k *%k
B + 2N
aQ aQ
au, ou,
‘B 0 N
2 N N
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The Tinear system (3.5) is a priori difficult to inverte. The null N_*N
block assures that dF(X")} 1is neither diagonally dominant nor positive
definite (i.e. (dF(X").y,y) > 0, Vy#0 ). For instance, conjugate gradient
methods are applicable only if a good preconditioning technique has been
devised (see e.g. JOLY [21]). So we have chosen to inverte the Tinear
system (3.5) according to an exact L.U factorization (with pivoting) of the
matrix dF{X™) (routine FOIBRF of the NAG [24] library).

We specify now the expression of the 2x2 matrices 4Q/du,, and 90Q/du, .
Let us denote by x(s) the Heaviside function

| s>0
X(s) = { 0 < <0 (3.11)

For L equal to K or KA(K) we denote by p (resp ¢, u, v ) the density
(resp sound velocity, x and y components of the velocity u ) inside the

element L.
( uL = (UL }VL)
p. = plu)
1 (3.12)
¢ =
We derive the expression (2.25) towards u,, and u . We obtain easily
2
9 Ay X(IUKAI-CKA) [ 1- lgﬁéffq] U Uen Ue Vea ] (3.13)
Uy, |u IUKA Cea Ve Ugp Ve Yka J
and
2
9N _ A X(CK;|UK|) (1- lELl) Uy ”g el .
u, |u, | ¢, uo v Vi
(3.13)
$(u,,,u,) v2 U Vi
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-1V - NUMERICAL TESTS ON THE NACA 0012 PROFILE

1) Generalities

We present in this section the first numerical results obtained with
the method described above. We have chosen the classical NACA 0012 profile
in non-1ifting configurations (1ifting test cases can be produced with the
same formulation and analogous boundary conditions, thank to the use of a
stream function rather than a scalar potential as we mentioned in the
introduction). The boundary conditions (2.12)(2.13) are specified on the
figure 5. The mesh used for the computations is displayed on the figure 6;
it contains 350 elements and 21 points on the airfoil. It is a relatively
coarse mesh but the order of the associated matrix dF(X) (cf equation
(3.5)) is

2 NE + NS = 2*350 + 360 = 1060 (4.1)

This order has been practically the maximum admissible to get interesting
numerical results in a reasonable computing time. The initial state (3.4)
corresponds to the uniform flow at infinity for classical values of the
infinite Mach number : 0.80, 0.85, 0.90, 0.95, 1.20. On the other hand, for
the values 1.00, 1.05, 1.10 of the upstream Mach number, we have chosen the
initial state as the solution of the previous test case. The machine
accuracy {Cray2 computer} has been obtained after 200 nonlinear iterations
of the Newton algorithm (this corresponds to 20 L*U factorizations). A
typical evolution of the residual

= n+1_.n 4.2
o o el /g I -2

is presented on Figure 7.

2) Analysis of a first family of test cases

The test cases at M = 0.80 and 0.85 are classical (refer e.g. to the
different contributions ?n RIZZI-VIVIAND [27], and to BRISTEAU et al [4]).
The isomach curves are displayed on the Figures 8 and 9. The jumps on the
discrete shock waves corresponds to the values given by the authors of
[27], as we can see on the Figure 12.
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The case M = 0.90 presents an oblique shock wave attached to the
trailing edge o? the airfoil (Figure 10). Our results are comparable with
those presented previously by BRISTEAU et al [4]. A fishtail shock is
present when M = 0.95. This kind of structure characterizes the transonic
flow fields wﬁen the Mach number 1is close to one; it has been observed
previously by JAMESON and HOLST in [27] and by HABASHI-HAFEZ [15]. Our
result (Figure 11) contains aiso a fishtail shock wave , and this fact was
not a priori expected. Indeed the hypotheses done when we have derived the
numerical scheme (2.29) are clearly not realized in an oblique shock. On
the other hand, the Tlocation of the secondary straight shock wave is
varying with the authors [27,15]. Our value corresponds to 0.5 times the
chord downstream to the trailing edge of the profile, that is comparable
with the value given previously by HABASHI-HAFEZ [15].

A supersonic upstream value (M = 1.20) for the Mach number has been
presented by HABASHI-HAFEZ [15] ang OSHER-HAFEZ-WITHLOW [26]. We observe a
detached shock wave located 0.4 times the chord upstream to the leading
edge as in [15,26]. This wave is smeared by our mesh width, particularly
coarse in this region (Figure 13).

Our results on the classical test cases presented in this section show
the great possibilities of the numerical scheme. The formulation is robust
and admits subsonic as well as supersonic upstream Mach numbers.

3) New test cases

The upstream Mach numbers 1.00, 1.05, 1.10 on a NACA 0012 airfoil have

not been proposed previously at our knowledge. The test at M = 1.00 is
particularly singular. On the one hand the mathematical 00t_ype of the
linearized problem 1is parabolic (rather than elliptic when M < 1 and
hyperbolic when M > 1 ). "
On the other handmthe initialization of the computation in the whole domain
by the uniform value of the flow at infinity leads to a singular matrix in
the equation (3.5). This fact is due to the singularity of the 2x2 matrices
0Q/du, and 3Q/3u,, (formulae (3.12)(3.13)) when

u = (¢,0), YKeT, (4.3)
This numerical condition expresses the parabolicity of this flow. Thus we

have initialized this test case by the solution of the case M = 0.95 as we
[+4]
have mentioned in Section 1. No particular numerical problem has arisen



15

and the results are displayed on Figure 14. The Figures 15 and 16 present
the isomach curves in the domain for the cases at M = 1.05 and 1.10. The
Figure 17 shows the same field along the profile and ?he line following the
trailing edge. In the three cases, a fishtail shock is present and its
structure is growing up with the parameter M . The bow shock becomes
visible at M = 1.10 (Figure 16) and for M = 1"0? this wave is captured on
our mesh. Inwthe limiting case (M = 1.00) :0 bow wave exists (according to
COLE-COOK [7]). A1l those resu]tsmare qualitatively correct if we refer to
the previous work of JAMESON [20] on the 65.15.10 airfoil for infinite
upstream Mach numbers around 1.

CONCLUSION

For the numerical resolution of the full potential model of transonic
flows, we have proposed a nonlinear formulation involving both a mixed
finite element method, a stream function and an upwinding of the momentum
based on the ENGQUIST-OSHER [12] scheme. The main point of this formulation
is a strong coupling between the velocity and the stream function involving
a very large matrix of mixed type in the Newton iterations of the
algorithm. This fact actually 1limits the method to coarse meshes in
twodimensional problems. Nevertheless a wide range of infinite upstream
Mach numbers (0.80 to 1.20 including flows at Mach 1) has been applied with
success to a nonlifting NACA 0012 airfoil.
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Figure 1 Momentum |pu| as a function of the density p according to

jsenthalpy and isentropy hypotheses. A given value of Icur1¢|
corresponds to two possible values of the density.
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Figure 2 Neighbouring quadrangles K, ,K;,K, and K, of a given finite
o element K. The upwind element KA(K) realizes the maximum of

the incoming mass flux accross the four edges of K.
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Figure 3 Riemann problem associated with the upwinding between the
elements K and KA.



a(fu])

0o, t————= - o(|ul)

max

supersonic

subsonic branch

branch

&> uf

Lo N (D

Figure 4 The Engquist-Osher decomposition (2.29) of the nonlinear
function gq{u) (cf (2.26}).
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Figure 5
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Boundary conditions for the computation of a nonlifting
two-dimensional profiie. On [, the stream function is given
by the relation (2.12) and on the portion I of the boundary,

the tangential component of the yelocity is given by the

equation (2.13).
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Figure 6 View of the mesh for the computations around a noniifting NACA
0012 wing (36%11 vertices, 21 points on the profile).
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Figure 7 Residual (4.2) of the density during the iterations 250 to 350
of the algorithm (3.4)-(3.6) for the test case M = 0.90.
o]



.goo

Figure 8 Mach number contours for NACA 0012 at M = 0.80



Figure § Mach number contours for NACA 0012 at M = 0.85
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Figure 10 Mach number contours for NACA 0012 at M = 0.90



Figure 11 Mach number contours for NACA 0012 at M = 0.95
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Figure 12 Synthesis of the results (NACA 0012) for the range 0.80 to
1.00 of Mach numbers.
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Figure 13 Mach number contours for NACA 0012 at M = 1.00
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Figure 14 Mach number contours for NACA 0012 at M = 1.05
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Figure 15

Mach number contours for NACA 0012 at M = 1.10
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Figure 16

Mach number contours for NACA 0012 at M = 1.20
x



1.9

T T T - - T + L | 4 T T T T

T T T t T T T T T

S —
1.4} i
1] ]
1.2+ ‘”//#ﬂﬂﬁ;d—'#dhﬁ\\\‘\\\\\\\\ )
ol \\ .:
- |
.8 S
P :
+6 .
sl ;
4t .

0 5 e s ze 15 VT

Figure 17 Synthesis of the results (NACA 0012) for the range 1.00 to

1.20 of Mach numbers.




