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ABSTRACT Let V be a p-adic representation of Gal~Q# y
Q!. One of the ideas of Wiles’s proof of FLT is that, if V is the
representation associated to a suitable autromorphic form ~a
modular form in his case! and if V* is another p-adic repre-
sentation of Gal~Q# yQ! “closed enough” to V, then V* is also
associated to an automorphic form. In this paper we discuss
which kind of local condition at p one should require on V and
V* in order to be able to extend this part of Wiles’s methods.

Geometric Galois Representations (refs. 1 and 2; exp. III
and VIII). Let Q# be a chosen algebraic closure of Q and G 5
Gal(Q# /Q). For each prime number ,, we choose an algebra-
ic closure Q# , of Q, together with an embedding of Q# into Q# ,

and we set G, 5 Gal(Q# ,/Q,) , G. We choose a prime num-
ber p and a finite extension E of Qp.

An E-representation of a profinite group J is a finite dimen-
sional E vector space equipped with a linear and continuous
action of J.

An E-representation V of G is said to be geometric if
(i) it is unramified outside of a finite set of primes;
(ii) it is potentially semistable at p (we will write pst for

short).
[The second condition implies that V is de Rham, hence

Hodge-Tate, and we can define its Hodge-Tate numbers hr 5
hr(V) 5 dimE (Cp(r) RQp

V)Gp where Cp(r) is the usual Tate twist
of the p-adic completion of Q# p (one has ¥r[Zhr 5 d). It implies
also that one can associate to V a representation of the
Weil-Deligne group of Qp, hence a conductor NV(p), which is
a power of p].

Example: If X is a proper and smooth variety over Q and m [
N, j [ Z, then the p-adic representation Het

m(XQ# , Qp(j)) is
geometric.

[Granted the smooth base change theorem, the represen-
tation is unramified outside of p and the primes of bad
reduction of X. Faltings (3) has proved that the representation
is crystalline at p in the good reduction case. It seems that Tsuji
(4) has now proved that, in case of semistable reduction, the
representation is semistable. The general case can be deduced
from Tsuji’s result using de Jong’s (5) work on alterations].

CONJECTURE (1). If V is a geometric irreducible E-
representation of G, then V comes from algebraic geometry,
meaning that there exist X, m, j such that V is isomorphic, as a
p-adic representation, to a subquotient of E RQp

Het
m(XQ# , Qp(j)).

Even more should be true. Loosely speaking, say that a
geometric irreducible E-representation V of G is a Hecke
representation if there is a finite Zp-algebra *, generated by
Hecke operators acting on some automorphic representation
space, equipped with a continuous homomorphism r : G 3
GLd(*), ‘‘compatible with the action of the Hecke operators,’’
such that V comes from * (i.e., is isomorphic to the one we get
from r via a map * 3 E). Then any geometric Hecke

representation of G should come from algebraic geometry and
any geometric irreducible representation should be Hecke.

At this moment, this conjecture seems out of reach. Nev-
ertheless, for an irreducible two-dimensional representation of
G, to be geometric Hecke means to be a Tate twist of a
representation associated to a modular form. Such a repre-
sentation is known to come from algebraic geometry. Observe
that the heart of Wiles’s proof of FLT is a theorem (6, th. 0.2)
asserting that, if V is a suitable geometric Hecke E-
representation of dimension 2, then any geometric E-
representation of G which is ‘‘close enough’’ to V is also Hecke.

It seems clear that Wiles’s method should apply in more
general situations to prove that, starting from a suitable Hecke
E-representation of G, any ‘‘close enough’’ geometric repre-
sentation is again Hecke. The purpose of these notes is to
discuss possible generalizations of the notion of ‘‘close
enough’’ and the possibility of extending local computations in
Galois cohomology which are used in Wiles’s theorem. More
details should be given elsewhere.

Deformations (7–9). Let 2E be the ring of integers of E, p
a uniformizing parameter and k 5 2E/p2E the residue field.

Denote by # the category of local noetherian complete
2E-algebras with residue field k (we will simply call the objects
of this category 2E-algebras).

Let J be a profinite group and RepZp

f (J) the category of
Zp-modules of finite length equipped with a linear and con-
tinuous action of J. Consider a strictly full subcategory $ of
RepZp

f (J) stable under subobjects, quotients, and direct sums.
For A in #, an A-representation T of J is an A-module of finite

type equipped with a linear and continuous action of J. We say
that T lies in D if all the finite quotients of T viewed as
Zp-representations of J are objects of $. The A-representations
of J lying in $ form a full subcategory $(A) of the category
RepA

tf(J) of A-representations of J.
We say T is flat if it is f lat (N free) as an A-module.
Fix u a (flat !)-k-representation of J lying in $. For any A in

#, let F(A) 5 Fu,J(A) be the set of isomorphism classes of flat
A-representations T of J such that T/pT . u. Set F$(A) 5
Fu,J,$(A) 5 the subset of F(A) corresponding to representa-
tions which lie in $.

PROPOSITION. If H0(J, gl(u)) 5 k and dimkH1(J, gl(u)) , 1`,
then F and F$ are representable.

(The ring R$ 5 Ru,J,$ which represents F$ is a quotient of
the ring R 5 Ru,J representing F.)

Fix also a flat 2E-representation U of J lifting u and lying in
$. Its class defines an element of F$(2E) , F(2E), hence
augmentations «U:R 3 2E and «U,$:R$ 3 2E.

Set 2n 5 2E/pn2E and Un 5 U/pnU. If pU 5 ker «U and pU,$
5 ker «U,$, we have canonical isomorphisms

~~pU1p nR!y~pU
2 1p nR!!*.Ext2n@J#

1 ~Un, Un!.H1~J, gl~Un!!

ø ø ø

~pU,$1pnR$!y~pU,$
2 1pnR$!*.Ext2n,$

1 ~Un, Un!5: H$
1 ~J, gl~Un!!

Close Enough to V Representations. We fix a geometric
E-representation V of G (morally a ‘‘Hecke representation’’).
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We choose a G-stable 2E-lattice U of V and assume u 5 U/pU
absolutely irreducible (hence V is a fortiori absolutely irreduc-
ible).

We fix also a finite set of primes S containing p and a full
subcategory $p of RepZp

f (Gp), stable under subobjects, quo-
tients, and direct sums.

For any E-representation W of Gp, we say W lies in $p if a
Gp-stable lattice lies in $p.

We say an E-representation of G is of type (S, $p) if it is
unramified outside of S and lies in $p.

Now we assume V is of type (S, $p). We say an E-
representation V9 of G is (S, $p)-close to V if:

(i) given a G-stable lattice U9 of V9, then U9/pU9 . u;
(ii) V9 is of type (S, $p).
Then, if QS denote the maximal Galois extension of Q con-

tained in Q# unramified outside of S, deformation theory applies
with J 5 GS 5 Gal(QS/Q) and $ the full subcategory of RepZp

f (GS)
whose objects are T’s which, viewed as representations of Gp, are
in $p. But if we want the definition of (S, $p)-close to V to be good
for our purpose, it is crucial that the category $p is semistable, i.e.,
is such that any E-representation of Gp lying in $p is pst.

We would like also to be able to say something about the
conductor of an E-representation of Gp lying in $p. Since
H$

1 (J, gl(Un)) is the kernel of the natural map

H1~GS, gl~Un!!3H$p

1 ~Gp, gl~Un!!,

it is better also if we are able to compute H$p

1 (Gp, gl(Un)).
In the rest of these notes, we will discuss some examples of

such semistable categories $p’s.
Examples of Semi-Stable $p’s.
Example 1: The category $p

cr (application of (10); cr, crys-
talline).

For any 2E-algebra A, consider the category MF(A) whose
objects are A-module M of finite type equipped with

(i) a decreasing filtration (indexed by Z),

. . .Fili M . Fili11 M . . . .,

by sub-A-modules, direct summands as Zp-modules, with
Fili M 5 M for i ,, 0 and 5 0 for i .. 0;

(ii) for all i [ Z, an A-linear map fi : Fili M3 M, such that
fi uFili11 M5 pfi11 and M 5 (Im fi.

With an obvious definition of the morphisms, MF(A) is an
A-linear abelian category.

For a # b [ Z, we define MF[a,b](A) to be the full
subcategory of those M, such that Fila M 5 M and Filb11 M 5
0. If a , b, we define also MF]a,b](A) as the full subcategory
of MF[a,b](A) whose objects are those M with no nonzero
subobjects L with Fila11 L 5 0.

As full subcategories of MF(A), MF[a,b](A) and MF]a,b](A)
are stable under taking subobjects, quotients, direct sums, and
extensions.

If Z# p denote the p-adic completion of the normalization
of Zp in Q# p, the ring

Acris 5O3lim H0~~Spec~Z# pyp!yWn!crys, struct .sheaf!

is equipped with an action of Gp and a morphism of Frobenius
f : Acris 3 Acris. There is a canonical map Acris 3 Z# p whose
kernel is a divided power ideal J. Moreover, for 0 # i #
p 2 1, f(J[i]) , piAcris. Hence, because Acris has no p-torsion,
we can define for such an i, fi : J[i] 3 Acris as being the
restriction of f to J[i] divided out by pi.

For M in MF[2(p21),0](A), we then can define Filo(Acris R M) as
the sub-A-module of Acris RZp M, which is the sum of the images
of the FiliAcris R Fil2iM, for 0 # i # p 2 1. We can define
fo : Fil0(Acris R M)3 Acris R M as being fi R f2i on Fili Acris R
Fil2i M. If we set

U~M! 5 ~FilO~Acris ẑp
M!!f051,

this is an A-module of finite type equipped with a linear and
continuous action of Gp. We get in this way an A-linear functor

U : MF @2~p21!,0#~A! 3 RepA
ft

~Gp!

which is exact and faithful. Moreover, the restriction of U to
MF]2(p21),0](A) is fully faithful. We call $p

cr(A) the essential
image.

PROPOSITION. Let V9 be an E-representation of Gp. Then V9
lies in $p

cr if and only if the three following conditions are satisfied:
(i) V9 is crystalline (i.e., V9 is pst with conductor NV9(p) 5 1);
(ii) hr(V9) 5 0 if r . 0 or r , 2p 1 1;
(iii) V9 has no nonzero subobject V0 with V0(2p 1 1)

unramified.
Moreover (11), if X is a proper and smooth variety over Qp with

good reduction and if r,n [ N with 0 # r # p 2 2, Het
r (XQ# p

, Z/pnZ)
is an object of $p

cr(Zp).
Remarks: (i) Define $p

ff as the full subcategory of RepZp

f (Gp),
whose objects are representations which are isomorphic to the
general fiber of a finite and flat group scheme over Zp. If p Þ
2, $p

ff is a full subcategory stable under extensions of $p
cr (this

is the essential image of MF[21,0](Zp)).
(ii) Deformations in $p

cr don’t change Hodge type: if V,V9 are
E-representations of Gp, lying in $p

cr and if one can find lattices
U of V and U9 of V9 such that U/pU . U9/pU9, then hr(V) 5
hr(V9) for all r [ Z (if U/pU 5 U(M), hr(V) 5 dimkgr2rM).

Computation of H$
1

p
cr. This can be translated in terms of the

category MF(2E) . MF]2p11,0](2E).
In MF(2E), define HMF

i (Qp, M) as being the ith derived
functor of the functor HomMF(2E) (2E, 2). These groups are the
cohomology of the complex

Fil0 M O3
12f

M ¡ 0 ¡ 0 ¡ . . .

If we set tM 5 M/Fil0M, this implies lg2E
H$

1
p
cr(Qp, M) 5 lg2E

H0

1 lg2E
tM.

Hence, if U is a Gp-stable lattice of an E-representation V of
Gp lying in $p

cr, and if, for any i [ Z, hr 5 hr(V), with obvious
notations, we get H$

1
p
cr(Qp, gl(Un)) 5 ExtMF

1 ]2p11,0]
(A)(Mn, Mn)

5 ExtMF(A)
1 (Mn, Mn) 5 HMF

1 (Qp,End2E
(Mn)) and

lg2E
H$

1
p
cr(Qp,gl(Un)) 5 lg2E

H0(Qp,gl(Un)) 1 nh, where h 5
¥i,jhihj [this generalizes a result of Ramakrishna (9)].

A Special Case. Of special interest is the case where
H0(Qp,gl(u)) 5 k, which is equivalent to the representability of
the functor Fu,Gp,$p

cr. In this case, H$
1

p
cr(Qp, gl(Un)) . (2n)h11

and H$
1

p
cr(Qp,sl(Un)) . (2n)h. Moreover, because there is no

H2, the deformation problem is smooth, hence Ru,Gp
,$p

cr .
2E[[X0, X1, X2,. . .,Xh]].

Example 2: $p
na (the naive generalization of $p

cr to the
semistable case).

For any 2E-algebra A, we can define the category MFN(A)
whose objects consist of a pair (M, N) with M object of MF(A)
and N : M 3 M such that

(i) N(FiliM) , Fili21M,
(ii) Nfi 5 fi21N.
With an obvious definition of the morphisms, this is an

abelian A-linear category and MF(A) can be identified to the
full subcategory of MFN(A) consisting of M’s with N 5 0.

We have an obvious definition of the category
MFN]2p11,0](A). There is a natural way to extend U to a functor

U : MFN]2p11,0]~A! 3 RepZp

f ~Gp!

again exact and fully faithful. We call $p
cr(A) the essential

image.
There is again a simple characterization of the category

$p
na(E) of E-representations of Gp lying in $p

na as a suitable full
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subcategory of the category of semistable representations with
crystalline semisimplification. Moreover:

If p Þ 2, the category of semistable V values with hr(V) 5 0
if r ¸ {0, 21} is a full subcategory stable under extensions of
$p

na(E).
For 0 # r , p 2 1, let $p

ord,r the full subcategory of Rep Zp

f (Gp)
of T ’s such that there is a filtration (necessarily unique)

0 5 Fr11T , FrT , . . . F1T , F0T 5 T

such that griT(2i) is unramified for all i; then $p
ord,r is a full

subcategory of $p
na stable under extensions.

Again, in $p
na, deformations don’t change Hodge type. The

conductor may change.
Computation of H$

1
p
na(Qp, gl(Un)). As before, this can be

translated in terms of the category MFN(2E) .
MFN]2p11,0](2E): if we define HMFN

i (Qp, M) as the ith-derived
functor, in the category MFN(2E), of the functor
HomMFN(2E)(2E, 2), these groups are the cohomology of the
complex

Fil0M3 Fil21M Q M3 M3 03 03…

(with x ° (Nx, (1 2 f0)x) and (y, z) ° (1 2 f21)y 2 Nz).
Again, in this case, H$

1
p
na(Qp, gl(Un)) 5 ExtMFN

1 ]2p11,0]
(A)(Mn, Mn)

5 ExtMFN(A)
1 (Mn, Mn) 5 HMFN

1 (Qp, End2E
(Mn)). But,

(i) the formula for the length is more complicated, and
(ii) the (local) deformation problem is not always smooth.
Example 3: $p

st [the good generalization of $p
cr to the

semistable case, theory due to Breuil (12)].
Let S 5 Zp,u. be the divided power polynomial algebra in

one variable u with coefficients in Zp. If v 5 u 2 p, we have also
S 5 Zp,v.. Define:

(a) FiliS as the ideal of S generated by the vm/m!, for m $
i;

(b) f as the unique Zp-endomorphism such that f(u) 5 up;
(c) N as the unique Zp-derivation from S to S such that N(u)

5 2u.
For r # p 2 1, fr: FilrS 3 S is defined by fr(x) 5 p2rf(x).
If r # p 2 2, let 9}0

r be the category whose objects consist
of:

(i) an S-module },
(ii) a sub-S-module Filr} of } containing FilrS.},
(iii) a linear map fr: Filr}3}, such that fr(sx) 5 fr(s).f(x)

(where f: }3 } is defined by f(x) 5 fr(vrx)/fr(vr)), with an
obvious definition of the morphisms. We consider the full
subcategory }0

r of 9}0
r whose objects satisfy

(i) as an S-module } . Q1#i#dS/pndS for suitable integers d
and (ni)1#i#d;

(ii) as an S-module } is generated by the image of fr.
Finally, define }r as the category whose objects are objects

} of }0
r equipped with a linear endomorphism

N : } 3 }

satisfying
(i) N(sx) 5 N(s).x 1 s.N(x) for s [ S, x [ },
(ii) v.N(Filr}) , Filr},
(iii) if x [ Filr}, f1(v).N(fr(x)) 5 fr(v.N(x)).
This turns out to be an abelian Zp-linear category and we call

MFB[2r,o](Zp) the opposite category.
For A an 2E-algebra, one can define in a natural way the

category MFB[2r,o](A) (for instance, if A is artinian, an object
of this category is just an object of MFB[2r,o](Zp) equipped with
an homomorphism of A into the ring of the endomorphisms of
this object).

Breuil defines natural ‘‘inclusions’’:

MFB@2r21,o#~A! , MFB@2r,o#~A! ~if r 1 1 # p 2 2!,

MF@2r,o#~A! , MFN@2r,o#~A! , MFB@2r,o#~A!.

Moreover, the simple objects of MF[2r,o](k), MFN[2r,o](k), and
MFB[2r,o](k) are the same. Breuil extends U to MFB[2r,o](A)
and proves that this functor is again exact and fully faithful. We
call $p

st,r(A) the essential image.
Let V be an E-representation of Gp. Breuil proves that, if V

lies in $p
st,r then V is semistable and hm(V) 5 0 if m.0 or m ,

2r. Conversely, it seems likely that if V satisfies these two
conditions, V lies in $p

st,r. This is true if r 5 1, and it has been
proven by Breuil if E 5 Qp and V is of dimension 2. More
importantly, Breuil proved also

PROPOSITION (13). Let X be a proper and smooth variety over
Qp . Assume X as semistable reduction and let r, n [ N with 0 #
r # p22; then Het

r (XQ# p
, Z/pnZ) is an object of $p

st,r(Zp).
When working with $p

st,r, deformation may change the Hodge
type (the conductor also). The computation of H$

1
p
st,r(Qp,

gl(Un)) still reduces to a computation in MFB[2r,o](2E) (or
equivalently in }r). This computation becomes difficult in
general but can be done in specific examples.

Final Remarks. Let L be a finite Galois extension of Qp
contained in Q# p, 2L the ring of integers and eL 5 eL/$p.

(a) Call $p
ff,L, the full subcategory of RepZp

f (Gp) whose objects
are representations which, when restricted to Gal(Q# p/Qp), extends
to a finite and flat group scheme over 2L. If eL # p 2 1, an
E-representation V lies in $p if and only if it becomes crystalline
over L and hm(V) 5 0 for m ¸ {0, 21}). If eL , p 2 1, Conrad
(14) defines an equivalence between $p

ff,L and a nice category of
filtered modules equipped with a Frobenius and an action of
Gal(L/Qp). Using it, one can get the same kind of results as we
described for $p

cr. For eL 5 p 2 1, the same thing holds if we
require that the representation of Gal(Q# p/Qp) extends to a
connected finite and flat group scheme over 2L.

(b) More generally, Breuil’s construction should extend to
E-representations becoming semistable over L with hm(V) 5
0 if m . 0 or , 2(p 2 1)/eL (# 2(p 2 1)/eL with a ‘‘grain de
sel’’).

(c) Let RepQp(Gp)cris,L
r (resp. RepQp(Gp)st,L

r ) be the category
of Qp-representations V of Gp becoming crystalline over L
(resp. semistable) with hm(V) 5 0 if m . 0 or m , 2r. Let
$p

cris,r,L (resp. $p
st,r,L) be the full subcategory of Rep Zp

f (Gp)
consisting of T ’s for which one can find an object V of
RepQp(Gp)cris,L

r (resp. RepQp(Gp)st,L
r ) Gp-stable lattices U9 , U

of V such that T . U/U9. I feel unhappy not being able to prove
the following:

Conjecture. Cp
cr is ,r ,L (resp. Cp

st ,r ,L): Let V be a Qp-
representation of V lying in $p

cris,r,L (resp. $p
st,r,L). Then V an

object of RepQp
(Gp)cris,L

r (resp. RepQp
(Gp)st,L

r ).
The only cases I know Cp

cris,r,L are r 5 0, r 5 1, and eL #
p 2 1, r # p 2 1, and eL 5 1. The only cases I know Cp

st,r,L

are r 5 0, r 5 1, and eL # p 2 1. Of course, each time we know
the answer is yes, this implies that the category is semistable.
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