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ALMOST C, GALOIS REPRESENTATIONS AND VECTOR BUNDLES

JEAN-MARC FONTAINE

Abstract: Let K be a finite extension of Q, and G the absolute Galois group. Then Gk acts
on the fundamental curve X of p-adic Hodge theory (cf. [FF]) and we may consider the abelian
category M(Gx) of coherent Ox-modules equipped with a continuous and semi-linear action of
Gk.

An almost Cp-representation of Gk is a p-adic Banach space V' equipped with a linear and
continuous action of G such that there exists d € N, two Gk -stable finite dimensional sub-Q,,-
vector spaces Uy of V., U_ of C’g, and a G -equivariant isomorphism

V/Uy — ClJU_ .

These representations form an abelian category C(G ) (cf. [Fo03]). The main purpose of this paper
is to prove that C(Gg) can be recovered from M(Gg) by a simple construction (and conversely)
inducing, in particular, an equivalence of triangulated categories

D"(M(Gk)) — D"(C(Gk))

1. INTRODUCTION

1.1. We fix a prime number p, an algebraic closure @p of Q, and a finite extension K of Q,
contained in Q,. We set Gx = Gal(Q,/K) and C,, the p-adic completion of Q, on which Gk acts
by continuity.

In [FF], Laurent Fargues and I introduced the fundamental curve XQP>CZ of p-adic Hodge theory,
denoted X below, which is a separated noetherian regular scheme of dimension 1 defined over Q,
(i.e. we have H%(X,0Ox) = Q,). The structural sheaf is naturally equipped with a topology (cf.
§3.4): if U is any open subset of X, then Ox (U) is a locally convex Q,-algebra. There is a natural
action of Gk on X which is continuous. We may consider the abelian category M(Gg) of Gk-
equivariant coherent Ox-modules, that is of coherent Ox-modules equipped with a semi-linear
and continuous action of G .

Any non zero F € Ob(M(Gk)) as a degree deg(F) € Z and a rank rk(F) € N, hence also a
slope s(F) = deg(F)/rk(F) € QU {+o0} (with the convention that s(F) = +oo if F is a torsion
Ox-module). As in the classical case, one says that a coherent Ox[Gx]-module F is semi-stable
if 7 #0 and if s(F') < s(F) for any non zero subobject F’ of F.

We may consider the full sub-category M°(Gk) of M(Gk) whose objects are semi-stable of
slope 0. One of the main results of [FF] is that, if F is any object of M%(G ), then F(X) =
HY(X,F) is a finite dimensional Q,-vector space, hence is an object of the abelian category
Repg, (G k) of p-adic representations of G (that is of finite dimensional Q,-vector spaces equipped
with a linear and continuous action of Gk ) and that the functor

M°(Gk) — Repg, (Gx) , F = F(X)

is an equivalence of categories (with V = Ox ®q, V' as a quasi-inverse).
The main purpose of this paper is to discuss the following question: Is there an extension of
this result enabling us to give an analogous Galois description of all objects of M(Gk) ?
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1.2. In [Fo03], I introduced the category of almost Cp-representations of Gx: A Banach repre-
sentation of G is a p-adic Banach space (i.e. a topological Q,-vector space whose topology can
be defined by a norm and which is complete) equipped with a linear and continuous action of
Gr. With an obvious definition of morphisms, Banach representations of G form an additive
category B(G k) containing the category Repg, (Gk) as a full subcategory. By continuity, Gk acts
on the p-adic completion C), of @p and C), has a natural structure of a Banach representation.
The category C(Gg) of almost C,-representations of G is the full subcategory of B(Gx) whose
objects are those Vs for which one can find d € N, two G i-stable finite dimensional sub-Q,,-vector
spaces Uy of V and U_ of C¢ and an isomorphism V/Uy — CZ/U_ in B(Gg). This category
turns out to be abelian (loc.cit.).

The curve X has only one closed point co which is Gi-stable and the orbit under G of any
other closed point is infinite. This implies that a torsion object of M(G ) is supported at co. As
the completion of Ox  is the ring B;‘R of p-adic periods, the category M (G k) of torsion objects
of M(Gk) ( <= semi-stable objects of slope c0) can be identified to the category Rept]%R(GK)

of B;{R—modules of finite length equipped with a semi-linear and continuous action of Gx. The
topology of any BIR—module of finite length is the topology of a p-adic Banach space and we may
consider the forget functor

RGPE)ER(GK) — B(Gk) -

We proved in loc.cit. that this functor is fully faithful and that the essential image C*(G k) is
contained in C(Gk ). Hence, setting C°(Gk) = Repg, (Gk), we see that for s € {0, 0o}, the functor
F — F(X) induces an equivalence of categories

MS(GK) — CS(GK) .

Similarly, as for a smooth projective curve over a field, we defined in [FF] the Harder-Narasimhan
filtration of any F € M(Gg): this is the unique filtration

0=FcFlc..cFrlcr=F

such that all the F*/F'~1 are semi-stable and that s(F*/F~1) > s(F*1/F!) for 0 < i < r. We
call the s(F?/Fi=1), for 1 <i < r, the HN-slopes of F.

Let M=9(G k) the full subcategory of M(Gg) whose objects are effective, i.e. such that all
their HN-slopes are > 0.

Similarly let CZ%(Gk) the full subcategory of C(Gx) whose objects are effective, i.e. those Vs
which are isomorphic to a subobject (in C(Gg)) of an object of C*°(G ).

If F is any coherent Ox|[Gx|-module, then F(X) is a topological Q,-vector space equipped
with a linear and continuous action of G. The main result of this paper is:

Theorem A. If F is any coherent Ox[Gk]-module, then F(X) is an effective almost Cp-representation
of Gx. By restriction to MZ°(G ) the functor F — F(X) induces an equivalence of categories

M=2(Gg) — CZGk) .

This equivalence doesn’t extend to an equivalence between M(Gg) and C(Gk). Nevertheless
each of these two categories can be reconstructed from the other: The above functor induces an
equivalence of triangulated categories

D*(M(Gx)) — D*(C(GK))

and each of them can be reconstructed as the heart of a t-structure. More precisely:

— Denote M<°(Gk) the full sub-category of M(G) whose objects are those for which all
HN-slopes are < 0. Then t = (M=°(Gk), M<%(Gk)) is what is called a torsion pair on M(Gk).
From this torsion pair, we can construct an other abelian category f(M(Gk))" which is the full
subcategory of D?(M (G )) whose objects are those F*’s such that

Fi=0forig{0,1} , H°(F®)is an object of M<°(Gx) , H'(F®) is an object of M=°(Gk) .
There is a natural equivalence (M(Gg))! — C(Gk).
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— Similarly, denote C<°(Gf) the full sub-category of C(Gk) whose objects are those V’s for
which Hom(V, W) = 0 for all W in cC*(Gk). Then t’ = (C<°(Gk),C=°(GK)) is a torsion pair on
C(Gx) which can be used to define the abelian subcategory (C(Gx))* which is the full subcategory
of D*(C(G ) whose objects are those V* such that

Vi=0forig{0,1} , H°(V*®)is an object of C=(Gg) , H'(V*) is an object of C<%(G) .

There is a natural equivalence (C(Gg))" — M(Gx).

1.3. Contents.

In §2, we recall and slightly extend the results of [Fo03] on almost C)-representations. We
first recall (§2.1) some basic facts about locally convex spaces over a non archimedean field. We
introduce (§2.2) the category of (p-adic) ind-Fréchet representations (of Gk ). Then (§2.3), we
recall some basic facts about the ring of periods BJR and Bggr that we equip with a locally convex
topology. In §2.4, we discuss some properties of B;R—representations and Bgpg-representations (of
Gk).

We describe (§2.5) the main properties of the category C(Gk) of almost Cp-representations
and of its full subcategories C°(G ) of finite dimensional p-adic representations and C*°(G) of
BJR-representations of finite length. In §2.5, we also introduce the category C (Gk) of represen-
tations of G which are suitable limits (in the category of locally convex p-adic representations
of Gk) of almost Cp-representations. In §2.6, we recall the notion of almost split exact sequence
of B(Gk) and the fact that an extension in B(G ) of two almost C)-representations is an almost
Cp-representation if and only if the associated short exact sequence almost splits.

In §3, we study the category Repp (Gk) of Be-representations of G. We also recall and
precise some of the results of [FF] on coherent Ox[Gx|-modules. We first recall (§3.1) some basic
facts about the sub-Q,-algebras B} . and B. of Byr which are stable under the action of G and
equipped with a natural topology of locally convex algebras. Then we introduce (§3.2) Repp_(Gr)
and show that this is a Qp-linear abelian category.

We recall (§3.3) the definition of the fundamental curve X = Xq,,cy of p-adic Hodge theory
introduced in [FF] on which G acts and give a description of the category Coh(Ox) of coherent
Ox-modules. We discuss (§3.4) the topology on the structural sheaf Ox and give a description
of the category M(Gk) of coherent Ox|[Gk]-modules (§3.5). We describe (§3.6) the Harder-
Narasimhan filtration on any F € M(Gk).

We consider two full subcategories of M(G ):

— the category M°(G ), of the semi-stable objects of slope 0,

— the category M*>°(G ) of objects whose underlying O x-module is torsion.

We show (§3.7) that the global sections functor induces equivalence of categories

MO(Gg) — C%(Ggk) and M>®(Gg) — C®(Gk) .

In §3.8, we introduce two kinds of twists of the objects of M(Gx), the Tate twists and the
Harder-Narasimhan twists.

Say that a Be-representation A is trivialisable if there exists U € C°(G k) and an isomorphism
Be. ®q, U — A. In §3.9, we show that Repg_(Gk) is the smallest subcategory of itself containing
trivialisable B.-representations and stable under taking extensions and direct summands.

In §3.10, we show that, if A is a Be-representation of Gk, then the underlying topological

~

Q,-vector space equipped with its action of Gk is an object of C(G ) and that the forget functor
Repp, (Gx) — C(Gx)

is exact and fully faithful.
We conclude this section by discussing the cohomology of coherent O x-modules (§3.11) and of
coherent Ox[Gx]-modules (§3.12). We show that, taking the global sections, we get a functor

M(GK) —)C(GK) N F = ]:(X) = HO(X,O)()
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whose essential image is contained in CZ%(Gx).

The aim of §4 is to construct a left adjoint
C(GK) — M(GK) N V= Fv

of the functor F — F(X).

We show (§4.3) that any almost C)p-representation V' has a Be-hull, i.e. there is a pair V., =
(VoY) with V, a B.-representation (of Gg) and ¢¥ : V — V, a morphism in C(Gx) such that,
for all A € Repp,_ (Gk ), the map

I{OInRepB(3 (Gr) (Ve, A) — HOmCA( V, A)

o)
induced by ¢} is bijective.

Similarly with obvious definitions, we show that V has a B;R—hull Vd*]'% and a Bggr-hull Vyg.

Using the existence of these hulls and the relations between them and knowing the description
of M(Gg) given in §3.5, the construction of the functor V' +— Fy is quite simple.

The proof of the existence of these hulls relies heavily on the description of all extensions in
C(Gk) of an object of C**(G ) by an object of C°(Gk) which is given in §4.2.

The aim of §5 is to prove theorem A.

We first show (§5.1 (resp. §5.2)) that MZ%(G k) (resp. CZ°(Gk)) is the smallest full subcate-
gory of M(Gk) (resp. C(Gk)) containing M%(Gf) and M>®(Gk) (resp. C°(Gk) and C*(Gk))
and stable under extensions and direct summands.

Then (§5.3), we prove by dévissage that the functor

M=2(Gg) — C2°(Gg) , F— F(X)

is an equivalence of exact categories (see §1.5), the functor V +— Fy being a quasi-inverse.

The purpose of §6 is to extend the main result to the categories M(Gx) and C(G k).
After some general nonsense on derived categories of exact subcategories of abelian categories
(§6.1), we first extend the main result to an equivalence of of triangulated categories (§6.2),

DY*(M(Gg)) — Db(C(Gk)) .

To go further, we need to introduce the full subcategories M<°(Gk) of M(Gk) and C<°(G)
of C(G ) of coeffective objects. The main theorem said that, if F € M=Z%(Gx), then H(X, F)
has a natural structure of an object of CZ%(Gx ) and this structure determines 7. We prove (§6.3)
that, if 7 € M<%(Gg), then H'(X,F) has a natural structure of an object of C<°(G) and this
structure determines F.

Using this result, we can build C(Gg) from M(Gg) and conversely. We give two different
recipes (with independent proofs) for that. We first (§6.4) describe explicitely the heart of the
t-structure on D®(M(G)) corresponding to C(Gk) and of the t-structure on D(C(G)) cor-
responding to M(Gk)). In §6.5, we explain that (M=%(Gg), M<°(Gk)) is a torsion pair on
M(G ). One can use it to construct a new abelian category equipped with a torsion pair. Up to
equivalence, it is C(G) equipped with the torsion pair (C<%(Gk),C=°(Gk)).

1.4. A remark on possible generalisations.

The results of this paper are obviously a special case of a much more general result where K is
replaced by any reasonable rigid analytic, Berkovich or adic space. Let’s sketch a description of
the case where K is now any field complete with respect to a non archimedean non trivial absolute
value with perfect residue field of characteristic p.

— We can define the abelian category Coh(Ox, ) of coherent modules on the curve Xr. When
K is a perfectoid field, Xx is the curve X g constructed in [FF]. If K is not perfectoid, then
Xk doesn’t exist but one can define the category of coherent modules over this virtual curve.
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When K is a finite extension of QQ,, there is a natural equivalence of categories
COh(OXK) — M(GK) .

— We still have the Harder-Narasimhan filtration on Coh(Ox, ) and may consider its exact
subcategories CohZ%(Ox,. ) and Coh<°(Ox, ) which form a torsion pair ¢ on Coh(Ox, ).

— The construction of the curve X is functorial in K. If C' is the completion of a separable
closure K* of K, for any coherent Ox, -module F, we may consider the pull-back f*F of F via
f : Xe — Xk

If G = Gal(K*/K), we may consider the exact category B(G) of p-adic Banach representa-
tions of G and we have exact and faithful functors

CohZ%(0Ox,.) — B(Gx) , Fw— H'(Xc, f*F)
COh<O(OXK) _>B(GK) ) ]:’—)Hl(Xc,f*‘/—")

But, in general, these functors are not fully faithful. Working with B(G k) amounts to work
over the small pro-étale site of K and we need to work with a bigger site. A possibility is to use
the big pro-étale site Kpro¢t of K as defined by Scholze ([Scho]), §8 * and to replace

~ B(Gx) with the category Vectg, (K) of Q,-sheaves over K o¢t ;

—and C(Gx) with the category of pseudo-geometric Q,-sheaves, an abelian full subcategory of
Vectg, (K) defined by imitating the definition of C(Gk) as a full subcategory of B(Gk).

The correspondence K — X can be extended to a functor

Uw— Xy

from the category of perfectoid spaces to the category of Q,-schemes. We also have exact and
faithful functors

Coh=%(Ox,.) — Vectg,(K) , Fe (U H(Xy, f5F)

Coh~°(Ox,) — Vectg,(K) , Fw (U~ H Xy, f;F)

(where fy : Xy — Xk is the structural morphism).

It seems likely (and not so hard to prove) that these functors are fully faithful and that one
can describe their essential images Vectagp’zo(K) and Vect%iKO(K). These two functors seem to
induce an equivalence of categories

(Coh(Oxy))t — Vectd) (K)

the induced torsion pair on Vectgi (K) being t' = (Vect@?(K), Vectgf(K)).
In the case where K is the p-adic completion of an algebraic closure of QQ,,, this result has been
proved by Le Bras [LB]. We hope to come back soon on this generalisation.

1.5. Conventions and notations.
If C is a category, we often write C' € C for C € Ob(C).

An ezact subcategory of an abelian category A is a strictly full subcategory of A containing 0
and stable under extensions.

If B is an exact subcategory of A, we say that a sequence of morphisms of A is ezact if it
is exact as a sequence of morphisms in A. In particular, we have the obvious notion of a short
exact sequence. It is easy to see that, equipped with this class of short exact sequences, B is
an exact category in the sense of Quillen (cf. [Qu], see also [Lau]). Actually, any exact category
B in the sense of Quillen can be viewed as an exact subcategory of an abelian category (cf [Qu], §2).

As usual Z,(1) is the Tate module of the multiplicative group, and, for all n € N,
Zp(n) = Sym%pzp(l) Zp(_n) = ‘CZP (Zp(n)vzp) .

IMore precisely, we fix an uncountable cardinal x satisfying the properties of [Scho], lemma 4.1. The underlying
category is the category of perfectoid spaces over K which are k-small (loc. cit., def.4.3) and covering are as defined
in loc. cit., def. 8.1 (the only difference with the big pro-étale site of Scholze is that we restrict ourself to perfectoid
spaces lying over the given non archimedean field K).



6 JEAN-MARC FONTAINE

If M is any Z,-module equipped with a linear action of Gk, for all n € Z,
M(n) = M ®z, Zy(n) .

1.6. I would like to thank Laurent Fargues for helpful discussions.

2. REPRESENTATIONS OF Gg

In this paper, each time we say "representation”, we mean “representation of Gx”. In this
section, we introduce a few categories of such representations and describe some of their proper-
ties. Most of them are already known (see in particular [Fo03]) or easy consequences of known
properties.

2.1. Banach, Fréchet, ind-Banach and ind-Fréchet.

We refer to [Em| and [Schn] for basic facts about p-adic functional analysis. All results of this
paragraph are either contained or easy consequences of results contained in at least one of these
two memoirs.

We fix a non archimedean field E, i.e. a field complete with respect to a non trivial non

archimedean absolute value, and denote Op its valuation ring. In the applications in this paper,
E will be Q.

e A locally convexr E-vector space is a topological E vector space V such that the open
sub-Opg-modules of V' form a fundamental system of neighbourhood of 0,

e A Fréchet E-vector space or an E-Fréchet is a locally convex FE-vector space which is
metrisable and complete,

e A Banach E-vector space or an E-Banach is a Fréchet vector space whose topology can
be defined by a norm,

e An ind-Fréchet (resp. ind-Banach) E-vector space or an ind-E-Fréchet (resp. ind-E-
Banach) is alocally convex E-vector space V', such that one can find an increasing sequence
(Vi)nen of closed sub-FE-vector spaces such that

1) V= UnGNVna
ii) each V;,, with the induced topology, is an E-Fréchet (resp. an E-Banach),
iii) the topology of V' is the coarsest locally convex topology with these properties.

Condition (iii) is equivalent to the fact that a sub-Og-module L of V is open if and only if
LNV, isopen in V, for all n € N.

If V is a topological E-vector space, it is an E-Fréchet if and only if

i) its topology can be defined by a countable family (g, )nen of semi-norms,

ii) V' is complete.

In this situation, replacing each ¢, by ¢], = supg<;<, ¢i, we may assume that g, < g,4+1 for all
n. Then, if V,, is the Hausdorff completion of V', with respect to g,, this is an E-Banach and we
have an homeomorphism

V — lim neNVn
—

(with the inverse limit topology on the RHS). Conversely, any inverse limit, indexed by N, of
E-Banach is an E-Fréchet.

Let V be a topological E-vector space. We say that a decreasing filtration (F™V), ez by closed
sub- E-vector spaces of V' is admissible if

1) UnezF"V =V and Nyez F™V =0,

ii)if m € Zand r € N, then F"V/F™*"V  equipped with the induced topology, is an E-Banach,

iii) if m € Z, then the natural map

F™V — lim ,enF™V/F™7V
—

is an homeomorphism (with the inverse limit topology on the RHS),
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iv) a sub-Og-module L of V is open if and ounly if L N F™V is open in F"™V for all n.

The following result is obvious:

Proposition 2.1. Let V' be a topological E-vector space. Then

i) V is an ind-E-Fréchet if and only if it has an admissible filtration,

ii) V is an E-Banach (resp. an E-Fréchet, resp. an ind-E-Banach) if and only if has an
admissible filtration (F™V ),ez such that FOV =V and F'V =0 (resp. F'V =V, resp. F'V =
0).

Proposition 2.2. Let Vy and Vs two ind-E-Fréchet, (F"V1)nez an admissible filtration of Vi and
(F™"Va)nez an admissible filtration of Vo. Let u : Vi — Vo an E-linear map. The following are
equivalent:

1) the map u is continuous,

ii) for all m € Z, there exists n € Z such that u(F™Vy) C F™"V, and the induced map

F™V, — F"V,
1S continuous.

Proof : ii) = i): It’s enough to show that, if L is an open lattice in V5, then f~*(L) is open in
V4 which means that if m € Z, then f~1(L) N F™V; is open in F™V; which is indeed true as, if
n is such that f(F™V;) C F™Va, this is the inverse image of the continuous map F™V; — F"V,
which is induced by f.

i) = ii): All the F"V; are E-Fréchet. For each fixed m, so is FV; and the existence of such
an n is explained by Schneider in [Schn] (cor. 8.9). O

Corollaire 2.3. Let V be an ind-E-Fréchet and (F"V )pez an admissible filtration. Then V is an
E- Banach (resp. an E-Fréchet, resp. an ind-E-Banach) if and only if there exists m < n such
that F™V =V and F™V =0 (resp. m such that F™V =V, resp. n such that F"V =0).

Corollaire 2.4. Let V' be an ind-E-Fréchet and (F]'V)pez and (F3'V)nez two admissible filtra-
tions. For all m € Z, there exists n € Z such that F{"V C F3'V.

An ind Fréchet E-algebra is a topological FE-algebra B which has a multiplicative admissible
filtration, i.e. an admissible filtration (F"B),cz of the underlying topological E-vector space such
that, if m,n € Z, and, if b € F™B, b’ € F"B, then bb' € F™ ™ B.

A Banach (resp. Fréchet, resp. ind-Banach) E-algebra is an ind Fréchet E-algebra B which
has a multiplicative admissible filtration (F"B),cz such that F°B = B and F'B = 0 (resp.
F'B = B, resp. F'B =0).

2.2. Ind-Fréchet representations.

From now on E will be Q,. We'll say Banach, Fréchet, ind-Banach, ind-Fréchet instead of Q-
Banach, Q,-Fréchet, ind-Q,-Banach, ind-Q,-Fréchet. We’ll say Banach algebra, Fréchet algebra,...
instead of Q,-Banach algebra, Q,-Fréchet algebra,...

The category ZF (G ) of ind-Fréchet representations (of Gk ) is the category whose
— objects are ind-Fréchet equipped with a Qp-linear and continuous action of G,

— morphisms are G'x-equivariant continuous Q-linear map.

The category ZF (G k) is an additive Q,-linear category and any morphism

f:Vi— VW

has a kernel and a cokernel: the kernel is the G k-stable closed sub-Q,-vector space which is the
kernel of the underlying QQp-linear map. The cokernel is the quotient of V5 by the G i-stable closed
sub-Q,-vector space which is the closure of f(V1).

We say that a morphism f is strict if the map

Coim(f) — Im(f)
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is an homeomorphism.

Similarly one can define in an obvious way the categories B(Gk), ZB(Gk) and F(Gk) of
Banach, ind-Banach, Fréchet representations (of G ). This is coherent with the definition of
B(G k) already given in the introduction.

2.3. The rings B(J{R and Byr and their topologies.

We denote Byr the usual field of p-adic periods. Recall (cf. eg. [Fo88], §1.5) that it is the
fraction field of a discrete valuation ring B;{R, that G acts naturally on these two Q,-algebras
and that Z,(1) is naturally a G-stable sub-Z,-module of B ,. We chose a generator ¢ of Z,(1).
This is also a generator of the maximal ideal of B;{R. Therefore, for all d € Z, the d®-power of
this ideal is

Fil’Byr = Blp.t? = BJ(d)
and is stable under Gg. For each d > 0, we set
By = Bj,/Fil'Byr .

Recall ([Fo88], §1.5.3) that By has a natural structure of a Banach algebra on which the action
of Gk is continuous, that, in particular, B; = C), and that, for each d € N, the projection
Bgy1 — By is also continuous. Equipped with the topology of the inverse limit, B;{R becomes a
Fréchet algebra on which Gk acts continuously.

For all n € Z, multiplication by t" defines a bijection B;R — Fil"Bygr and we equip Fil"Byg
with the induced topology (for which the action of G is continuous (but not that multiplication
by t™ does not commute with the action of Gk).

If n € Z, then Fil"™ By is closed in Fil" Byr and we equip Byg with its natural locally convex
topology (a sub-Z,-module L of Byp is open if and only if, for all n € Z, the Z,-module LNFil" Byg
is open in Fil" Byg).

We see that Bgp is an ind-Fréchet K-algebra, with (Fil"Big)necz as a Gg-equivariant mul-
tiplicative admissible filtration. In particular By has a natural structure of an ind-Fréchet K-
representation of G .

2.4. B;FR and Bjgr-representations. Any B;R—module of finite type has a natural structure of
a K-Fréchet and any finite dimensional Bygr-vector space has a natural structure of an ind-Fréchet
K-vector space.

A B;R—représentation (resp. a Bgg-representation) (of Gk ) is a B;‘R-module of finite type
(resp. a finite dimensional Byg-vector space) equipped with a semi-linear and continuous action
of Gk. With the G g-equivariant B;R—linear maps as morphisms, these representations form a

category that we denote ReijR (Gk) (resp. Repp, . (GKk)).

The category Repg’gR (Gk) = C>®(Gk) of torsion Bj,-representations (of Gr) defined in the
introduction (§1.2) is the full subcategory of Rep B, (G k) whose objects are such that the under-
lying BC}LR—module is torsion ( <= of finite length).

Recall (e.g. [Stack], Tag 02MN) that a Serre subcategory C of an abelian category A is a strictly
full subcategory of A containing 0 which is stable under subobjects, quotients and extensions. In
particular, this is an abelian category. Given A and C, one can define the quotient category A/C
which is an abelian category, solution of the obvious universal problem.

Proposition 2.5. The category C*(G ) is a Serre subcategory of Repg+ (Gk ). The functor
dR
RepBIR(GK) — RedeR(GK) , W Bur ®B;R w
is essentially surjective and induces an equivalence

RepB:{R (GK)/COO(GK) i> RedeR (GK) :
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Proof : The essential surjectivity comes from the fact that, for any Bggr-representation W, there
is a Gi-stable lattice BJ,-lattice W . This result itself comes from the fact that if Wy is a BJ,-
lattice of W, then Wy is an ind-Fréchet K-vector space with (t"W;"),ez forming an admissible
filtration. For each w € W, the g(w)’s for g € Gk form a compact subset of W, hence it is
bounded which implies ([Schn], prop.5.6) that it is contained in t~"W," for n > 0. Hence, if
€1,€a,...,¢eq is a basis of W over Byg, there exists n € N such that g(e;) € t’”WO'Ir for1 <i<d
and g € Gk. Therefore the sub-BJl,-module W of W generated by all these g(e;)’s is also
contained in t_"W0+ and is a G i-stable B;R—lattice of W. The continuity of the action of Gx on
W implies the continuity of the action on W™ which is an object of Rep B, (Gk). We have an
obvious identification of Byr ® B, W™ to W and the functor is essentially surjective.

The rest of the proof is straightforward. O

If W is any object of C*°(G ), there is an integer d such that the underlying B,-module is
a Bg-module of finite type. As By is a Banach Q,-algebra, the underlying topological Q,-vector
space is a Banach and W has a natural structure of a p-adic Banach representation.

In [Fo03], we proved (th.3.1):

Proposition 2.6. The forget functor
C*(Gk) — B(Gk)
is fully faithful.
In other words, given a p-adic Banach representation W of Gk, there is at most one structure
of B;[R-module of finite length on W extending the action of Q, such that W becomes a torsion

B;R—representation.
We use this result to identify C°>°(G k) to a full subcategory of B(Gk).

We denote N
C*(Gk)
the full subcategory of ZF(G ) whose objects are those W’s which admit a Gg-equivariant
admissible filtration (F"W),ez such that F"W/F"W € C*(Gk) for all m < n in Z. By passing
to the limit, the previous proposition implies that, on such a W, there is a unique structure of
B ,-module such that the action of G is semi-linear and each F™W is a sub-Bz-module (and

this structure is independent of the choice of (F"W),cz). We also see that CAOO(GK) is an abelian
category and that any morphism of c> (Gk) is B;R—linear.

Moreover RepB;R (Gk) can be identified to a full subcategory of c> (Gk). The proposition 2.5
implies that this is also true for Repp, . (Gk).

Proposition 2.7. Let d € N.

i) Let W1 be an object of C*°(Gk) such that 1engtth+RW1 > d. There exists a finite extension
K’ of K contained in Q, and a G -stable sub-Bj,-module W{ of Wi of length d.

ii) Let Wo be an object of RepB;R(GK) with 1engtth+RW2 > d. There exists a finite extension
K' of K contained in Q, and a Gk -stable sub-Bjp-module W3 of Wa such that lengthB;R Wy /W5 =
d. ‘

Proof : 1) Via an obvious induction, we see that it is enough to check it for d = 1. Replacing W
by the kernel of the multiplication by ¢ in W;, we may assume that W; is a C)p-representation.

Recall some basic facts of Sen’s theory [Sen]:
Let x : Gk — Z,, be the cyclotomic character, Hx the kernel of x and L = (Cp)H % which

is also the completion of K., = @fK. We set I'x = Gx/Hg = Gal(K~/K). The character x

factors through a character I'x — Z; that we still denote x.
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For any C)-representation W (of Gk), denote W}; the union of the finite dimensional sub-
K-vector spaces of WHx stable under the action of G (acting through I'x). This is a finite
dimensional K ,-vector space equipped with a semi-linear action of I'x. With obvious notations,

— the functor

Repe, (Gx) — Repye (T'x) , W Wi

is exact and fully faithful,
— for any W € Repcp(GK), the obvious map

Cp@r. Wi — W
is an isomorphism,

—for all W € Repcp (Gk), there exists a unique endomorphism agy, g of the K -vector space

W}; such that:
for all w € W};, there is an open subgroup I'y, of I'k such that, if v € T',, then

v(w) = exp(log(x(7))-aw, k) (w)

(the series exp(Aay, k) converges to an endomorphism of W}; for a_ll small enough A € Z,).
It is easy to see that, if K7 is a finite extension of K contained in Q,,, then W};l can be identified

to (K1)oo @Kk, le( and that aw g, is the (K1)-endomorphism of WI]; deduced from ayw,x by
scalar extension.

Chose such a K containing an eigenvalue A of ayy, k-, hence also of ayy i, and chose a non zero
eigenvector wy € Wlf(1 for 04&,7 &, - There is a finite extension K " of K1 contained in @p such that,
for all v € 'k, we have

Y(wo) = exp(log(x(7))-A)-w

We can view wg as a non zero element of W};/ and we see that for all b € K’ and all v € Tk,

we have

y(bwo) = ~(b). exp(log(x(7)).A).w ,

hence the K’-line of W};, generated by wy is stable under the action of I',. Therefore the C)p-line
W/ of W; generated by wy is stable under the action of Gk .

ii) Replacing Wy by Wy /t"Ws with r big enough, we may assume that Ws is an object of
C>*(Gk). The result follows by duality from the assertion (i) applied to the Pontryagin dual
W:‘CB;’R(W25BdR/B;_R> of WQ. O

2.5. Almost C),-representations.
If V1 and V4 are two objects of ZF(G k), an almost isomorphism

f Vi~ Vo, also denoted f : Vi /Ui —> Va/Us,

is a triple f = (Uy, Ua, ]7) where U; is a finite dimensional G k-stable sub Q,-vector space of Vi,
Us is a finite dimensional Gi-stable sub Q,-vector space of V5 and

VUL = Vo Uy

an isomorphism of ind-Fréchet representations.
We say that two objects V7 and Va of ZF (G k) are almost isomorphic if there exists an almost
isomorphism
[V~ Vo
We have (cf. [Fo03], th.5.3):
Proposition 2.8. Let V be an object of B(Gk). The following are equivalent:

i) V is almost isomorphic to a torsion B;‘R—Tepresentation,
i) V is almost isomorphic to a Cp-representation,
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iii) there is d € N such that V is almost isomorphic to C’g (equipped with the natural action of
Gk ).

We denote C(Gk) the category of almost Cp,-representations (of G ), that is the full subcate-
gory of B(Gk) whose objects satisfy the equivalent conditions of the previous proposition. This
is coherent with the definition given in the introduction (§1.2).

The category C(Gk) contains C*(Gg) = Repg’i (Gk) and C°(Gk) = Repg, (Gk) as full sub-
categories. "

A weak Serre subcategory B of an abelian category A is a strictly full subcategory which is
abelian, such that the inclusion functor is exact and which is closed under taking extensions.

The following results are essentially contained in [Fo03]:

Theorem 2.9. The category C(Gk) is abelian and any morphism of C(Gx) is strict as a morphism
of B(Gk). A sequence of morphisms of C(Gg) is exact if and only if the underlying sequence of
Q,-vector spaces is ezact. The category C°(Gk) is a Serre subcategory of C(Gr)and C*(G) is
a weak Serre subcategory of C(G).

Moreover:

i) If U € C°(Gk) and W € C*(Gk), then Home g,y (W,U) = 0.

it There exists two additive functions
d:0bC(Gk)— N and h:0b(C(Gg) —Z

uniquely determined respectively by d(U) = 0 if U € C°(Gk) and d(C,) = 1 (resp. h(U) =
dimg, (U) if U € C°(Gk) and h(Cp) =0).
Furthermore, if W € C*(Gk), then d(W) = lengthp (W) and h(W) = 0.

Proof : This is essentially the theorem 5.1 of [Fo03] except for:

— The fact that C°(Gk) is a Serre’s subcategory of C(G) which is a triviality.

— The fact that C*°(G) is a weak Serre’s subcategory of C(G k). The only thing which is not
obvious is the stability under extensions of C*°(Gk ) inside of C(Gk ), which is contained in loc. cit.,
prop.6.3.

~ The fact that if U € C°(Gk) and W € C*(Gk), then Home (g, (W,U) = 0, which is the
corollary of the theorem 5.1 of loc.cit.. O

For instance, we see that, if U is a Gi-stable finite dimensional sub Q,-vector space of C),
then d(C,/U) =1 and h(C,/U) = — dimg, U.
If Ve CGg), W e C®Gg) and f : V/U, — W/U_ is an almost isomorphism, from the
diagramme
0O — Uy — V — VUL — 0
0—>U_—>W—>W¢/U_—>O

whose lines are exact, we deduce that
d(V)=dW) , hV)=nUy)—-nU-) = dimg,(U;) — dimg, (U-) .

Corollaire 2.10. i) For any V € C(Gk), we have V € CY(Gg) <= d(V) =0 (in which case
h(V) = dimg, V > 0).

ii) If g : V. — W is a monomorphism of C(Gg) with W € C>*(Gg) such that d(V) = d(W),
then g is an isomorphism.

Proof : : Looking at an almost isomorphism as above, the first assertion is immediate.
For the second, let U be the cokernel of g. We have d(U) = 0, hence U € C°(Gk), hence U = 0,
as there is no non trivial morphism from W to an object of C%(G k). O
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Remark 2.11. As C°(Gk) is a Serre subcategory of C(Gk), we may consider the quotient
C(Gx) = C(GK)/C(GK)

It is known ([Fo03], prop.7.1) that this abelian category is semi-simple with exactly one isomor-
phism class of simple objects which is the class of C}, viewed as an object of this category. Hence

C(Gk) is completely determined, up to equivalence, by the somewhat mysterious huge skew field
Dg of the endomorphisms of C), in this category (loc.cit., prop.7.2).

We denote
C(Gk)
the full subcategory of ZF(Gk) whose objects are those V’s which admit a G g-equivariant ad-
missible filtration (F"V),ez such that F"V/F"V € C(Gk) for all m < n in Z.
By passing to the limit, we see that the previous theorem implies:

~

Proposition 2.12. Any morphism of C(Gk) is strict (as a morphism of TF(Gr)) and this

~

category is abelian. A sequence of morphisms of C(Gg) is exact if and only if the underlying

sequence of Qp-vector spaces is exact. The category C(Gk) is a Serre’s subcategory of C(Gk) though

C>*(Gk) is a weak Serre’s subcategory.

Remarque 2.13. As Repy+ (Gk) and Repg, . (G ) are Serre’s subcategories of C>(G), these
dR

~

two categories are also weak Serre’s subcategory of C(G ).

2.6. Almost split exact sequences.

We say that a sequence of morphisms of ZF (G ) is ezact if the underlying sequence of Q,-vector
spaces is exact.

An almost splitting of a short exact sequence

0—V —-V —>V"—0

in ZF(Gk) is a Gk-stable closed sub-Qy-vector space S of V' such that

(1) the compositum S C V — V" is onto,
(2) the Qp-vector space S NV’ is finite dimensional.

We say that such an exact sequence almost splits if there exists such an almost splitting. This
is equivalent to saying that there exists a G i-stable finite dimensional sub-Q,-vector space U of
V' such that the sequence

00—V /U—V/U—V"—0
splits.

We observe that any almost splitting S of a short exact sequence

0—V —V-—V"—0
defines, in an obvious way, almost isomorphisms
Vs VeV iwSoVv”.
Let’s recall two results of [Fo03] (th.5.2 and prop.5.2):

Proposition 2.14. Let
0—W —W-—W"—0
a short exact sequence in ZF(Gk) with W' and W" in C*(Gg). Then W € C*(Gk) if and only

if the sequence almost splits.

Proposition 2.15. Let
0—V —V—V"—0
a short exact sequence in ZF(Gr) with V' and V" in C(Gk). Then V is in C(Gk) if and only if

the sequence almost splits.
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Corollary 2.16. Among the strictly full subcategories of B(Gk) which are abelian, containing C,
and C°(Gk) and stable under almost split extensions, there is a smallest one. This is C(G).

Proof : Clear ! O

3. B.-REPRESENTATIONS AND COHERENT O x[G]-MODULES

3.1. The topological Q,-algebras B;is and B..

Recall (cf. e.g. [Fo88], §2.3 and 4.1) that B[ ,_ is a Banach algebra equipped with a continuous
endomorphism ¢ and a continuous action of Gx commuting with ¢. There is a natural Gg-
equivariant continuous injective homomorphism of topological QQ,-algebras

l}‘%

cris

Jr
lgdl%
Jr

that we use to identify B! .  to a subring of B}, containing ¢.
For each d € N, we set
Pt ={be By | w(b) =p'b} .
This is a G g-stable closed sub-Q,-vector space of B ..
B;FR induce the same topology on P¢ which can be viewed as a Banach representation of Gx. We

have a a canonical short exact sequence

as well as of B;R. Moreover BY. and

cris

0 — Qu(d) — P* — B; —0

where Q,(d) = Q,t? and P? — By is the compositum P¢ C B, C Bl prod Bgy. In particular

we see that P? is an almost C)-representation with d(P?) = d and h(P?) = 1.
As usual, we set Bepis = B;is[l/t] that we can view as a G g-stable subring of Byg.

We have ¢(t) = pt and ¢ extends uniquely to B.;s. Moreover the natural map B;s — Bar =
BIR[I /1] is still injective and we use it to identify Be,;s to a G k-stable sub-Qy-algebra of Byrg.

Recall that

B. = {b € Bepis | ¢(b) = b}

is also a G k-stable sub-Q,-algebra of Byr. We endow it with the topology induced by the (locally
convex) topology of Byg.

Then, we have

B, = @deNFil_dBe = UgenFil B,

where, for all d € N,

Fil “B. = B.N Bzt~ = PL.t% = PY(—d)
is an almost Cp-representation (with d(P?(—d)) = d and h(P%(—d)) = 1) homeomorphic to P¢
as a Banach. Setting P¢ = P4(—d) = 0 for d > 0, we see that B, is an ind-Banach algebra with
(P~™(n))nez a Gk-stable multiplicative admissible filtration.

3.2. B.-representations.

The topology of B, induces on each B.-module of finite type a natural topology for which it
is an ind-Fréchet (actually an ind-Banach). A Be-representation (of Gk ) is a Be-module of finite
type equipped with a semi-linear and continuous action of G . With the G k-equivariant B.-linear
maps as morphisms, B.-representations form a category that we denote Repp (G ).

Proposition 3.1. The B.-module underlying any Be-representation is free of finite rank. The
category Repp (Gk) is a Qp-linear abelian category.

Proof :

Recall ([FF], th.6.5.2) that B, is a principal ideal domain. In particular it is a noetherian ring
and the fact that Repp_(Gk) is a Q-linear abelian category is obvious.

Moreover (loc.cit., prop.10.1.1), for any maximal ideal p of B, the orbit of p under the action of
G is infinite. This implies that there is no non trivial Gx-equivariant ideal of B.. If A is any non
zero B.-representation of Gk, the annihilator of its torsion sub-module is a proper G x-equivariant
ideal and must be 0. Therefore the B.-module underlying A is torsion free, hence free of finite
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rank. O

Remark 3.2. Let C, the fraction field of B.. This is the union of the fractional ideals of B.. For
each such ideal a, the choice of a generator a defines a bijection

B.—a , b—ba

and we put on a the topology defined by transport de structure, which is independent of the choice
of the generator. Hence each a is naturally an ind-Banach (Q,-vector space). If a C b are two
fractional ideals, this inclusion is continuous and a is a closed sub-Q,-vector space of b. Hence we
may endow C, with the coarsest locally convex topology such that, for all fractional ideal a, the
map a — C. is continuous (a lattice £ in C. is open if and only if £ N a is open in a for all a).

The action of Gk on C, is continuous for this topology (but C, doesn’t seem to be an object
of ZF(Gk)) and we may consider the category Repc, (Gr) of Ce-representations (of Gk ), that
is of finite dimensional C¢-vector spaces equipped with a semi-linear an continuous action of G .
This is obviously a Q,-linear abelian category.

We have an obvious exact QQ,-linear functor

Repp, (Gkx) — Repc, (Gk) , A= Ce®p, A .

This functor is fully faithful: if M € Repg, (Gk) is a Ce-representation of dimension d, there is at
most one G g-equivariant sub-B.-module of rank d because if A; and Ay are two of them, so are
Ay + As and (A1 + Az)/A; is torsion, hence 0.

Remark 3.3. If A is any B.-representation of Gk, the underlying Q,-vector space is locally
convex and A inherits a natural structure of an object of ZF (G k). We'll see later that the forget
functor

Rech (GK) — I]'—(GK)

~

is fully faithful (prop.3.11) and that its essential image is contained in C(Gk) (prop.3.12).
Proposition 3.4. Let W € C*(Gk) and A € Repg_(Gk). Then
HOIHI]:(GK)(VV, A) =0.
Proof : Let f: W — A such a morphism. We see that Bjr ®p, A is a Bgr-representation of G
and that
g:N— Bir®p, A , A= 1®A
is a morphism of ZF(Gk). But gf : W — Byr ®p, A must be BJ-linear (§2.4). As the B,-

module W is torsion though Byr ® A is torsion free, we have gf = 0, hence also f = 0 as g is
injective. O

3.3. Coherent Ox-modules.
We know that B, is a PID and we may consider the "open curve”

X, = Spec Be,

a noetherian regular affine scheme of dimension 1 whose function field is the fraction field C, of
B, that we can see as a subfield of Byr. For each closed point  of X, the local ring Ox , is a
DVR and we denote v, the corresponding valuation on C, normalised by v, (C?) = Z.

Recall (cf. [FF], §6.5.1) that the curve X = X@pxCZ can be defined as the compactification at

infinity of X.. More precisely, as Byp is the fraction field of the discrete valuation ring Bcher it is
naturally equipped with a valuation vgg: if b € Byg is # 0, then vgr(b) is the biggest n € Z such
that b € Fil" Bgr. We denote v, the restriction of vgr to C.. The topological space underlying
X is obtained from the topological space underlying X, by adding the closed point oo defined by
VUso. Hence, the function field of X is C, and, if U is any non empty open subspace of X, we have

Ox(U) ={be C, |v(b) >0, Yo e U} .
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We have X \ {oc0} = X, the ring B;{R is the completion of Ox o and Bgg is the completion of
C. for the topology defined by vs.

Consider the following category Coh(Ox ):
e an object of Coh(Ox) is a triple (Fe, Fjp, tF) with F. a B.-module of finite type, F, a
B;R—module of finite type and

.t
tF: Fyp — Bar ®B, Fe
a BIR—hnear map inducing an isomorphism of Bgr-vector spaces
Jr
Bar Bpt Fin — Bar ®p, Fe .

e a morphism (.7-'6,]:;3, tr) — (Ge, Q;R, Lg) is a pair (fe, ij) with f. : Fo — Ge a Be-linear
map and ij : }'jR — Q;FR a B;{R—linear map such that the obvious diagram commutes.

To any coherent Ox-module F, we can associate an object (Fe, ]-"JR, tx) of this category:
o F. = F(X.),
° .FIR = Byr ®0x .. Foo, the completion of the fiber of F at oo,
e the completion at oo of the general fiber is Byr ® g+ ]-"jR as well as Bgr ®p, Fe and
dR

vr : Fijp — Bag ®p, F. is the natural map.

This correspondence is obviously functorial and it’s immediate to see that it gives an equiva-
lence of categories. We use it to identify the category of coherent Ox-modules to Coh(Ox). In
this equivalence we see that the category Bund(X) of vector bundles over X, i.e. of torsion free
coherent Ox-modules, can be identified to the full subcategory of Coh(Ox) whose objects are
triples (F., Fjp, t7) such that the Be-module F, and the BJ,-module 7, are torsion free ( <>
free).

3.4. The topology on Ox. The curve X can be also described ([FF], §6.5.1) as

X = Proj P*
deN

and there is (loc.cit., th.6.5.2) a one to one correspondence between the closed points of X and
the Q,-lines in P! (the map associating to such a line the prime ideal of P = BgenP? that it
generates is a bijection between the set of these lines and the set of non zero homogeneous prime
ideals of P different from @g4~0P%). In this correspondence oo corresponds to the line generated
by t.

Moreover, if 1, xs, ..., x, are closed points of X and if, for 1 <1 < r, we chose a generator t;
of the @,-line associated to x;, we see that the Q,-algebra Ox (X \ {z1,22,...,2,}) has a natural
topology: If we set u = t1ts...1t,, we have

Ox(X \ {$1,£L‘2, .. .,,TT}) = UneNPmﬂuin

and we see that it is an ind-Banach algebra with (P"Tu_"))neN a multiplicative admissible Banach
filtration. Thus we may consider Ox as a sheaf of ind-Banach algebras (the restriction maps are
obviously continuous).

3.5. The category M(Gf).

The group Gk acts continuously on X and it makes sense to speak of the category M(G )
of coherent Ox[Gk]-modules, that is of coherent Ox-modules equipped with a semi-linear and
continuous action of G.

We see that:

— the open subset X, = Spec B, is stable under G and Gk acts continuously on the ind-
Banach algebra Be,
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— the point oo is fixed by Gx and the action of Gx on the Fréchet algebra B;FR (resp. on
the ind-Fréchet algebra Byr), completion at co of Ox o (resp. of the function field Ce of X) is
continuous.

From the description of coherent O x-modules of the previous paragraph, we see that we can
identify M(Gg) to the category whose

e objects are triple F = (}'B,FJR,L]:), where F, is a B.-representation, ]-"jR is a B;{R—
representation and
LE : ]:;_R — Bur ®B, Fe
is a Gx-equivariant homorphism of B;R—modules such that the induced Bgg-linear map
Bar ®pt Fin — Bar®p, Fe
is bijective,
e a morphism
f : (]:BVFJRvL]:) — (geag;]%Lg)
is a pair (fe,ij) with fo : Fe — G (resp. f;R : }';R — QJR) a morphism of B.-
representations (resp. B;R—representations) such that the obvious diagramme commutes.

When there is no ambiguity about the map ¢x, we write abusively
F=(Fe, F, ;R)
We also denote
Fir = Bar ®p, Fe = Bir ®c, (Ce ®p, Fe)
the completion at oo of the generic fiber F,, = C. ®p, F. of F.

The category Bundx (G k) of Gk -equivariant vector bundles over X is the full subcategory of
M (Gk) whose objects are those for which the underlying Ox-module is torsion free. From the
fact that any Be-representation is torsion free, we see that, if F is any coherent Ox [G k]-module,
there is no torsion away from oco. Therefore Bund x (Gx) is the full subcategory of M(Gx) whose
objects are those F such that the B;[R-module ]—'jR is free ( <= torsion free).

3.6. The Harder-Narasimhan filtration.
The abelian category Coh(Ox) is equipped with two additive functions, the rank and the degree
(cf [FF], chap.5)
rk : Coh(Ox) = N |, deg:Coh(Ox) —Z
The rank of F = (]:e,]:;R,L]-‘) is the rank of the B.-module F.. It is 0 if and only if F is
torsion. It’s more difficult to compute the degree. But this additive function is characterised by
the following facts:

e if D is a divisor, then
deg(L(D) =deg(D)= Y mg . D= mfa]
closed points of X
e if F is a vector bundle of rank r, then
deg(F) = deg(A"F) ,
e if F is a torsion Ox-module, then
deg(F) = Z lengthy Fou .
closed points of X
The slope of a non zero coherent Ox-module F is
slope(F) = deg(F)/rank(F) € QU {+oc}

(with the convention that the slope of a non zero torsion coherent Ox-module is +00).
As in the classical case,



ALMOST Cp, GALOIS REPRESENTATIONS AND VECTOR BUNDLES 17

e a coherent Ox-module F is semi-stable if it is non zero and if slope(F’) < slope(F) for
any non zero coherent sub-Ox-module of F,
e the Harder-Narasimhan filtration of a coherent Ox-module F is the unique increasing
filtration
0O=FyCcFHC...CFn1CFn=F
by coherent sub-O x-modules such that each F;/F;_1 is semi-stable with
slope(F; /Fo) > slope(Fa/F1) > ... > slope(Fp—1/Fm—2) > slope(Fpm/Fm-1)

The slopes of the F;/F;_1 for 1 < i < m are called the HN-slopes of F.
The Harder-Narasimhan filtration splits continuously but not canonically.

If F is an object of M(G), the unicity of the Harder-Narasimhan filtration implies that this
filtration is by subobjects in M(Gg). In general, there is no Gx-equivariant splitting of this
filtration.

3.7. The equivalences M°(G) — C°(Gg) and M>®(Gg) — C®(Gk).
For all s € QU {+o0}, we denote M?®(G ) the full subcategory of M(G k) whose objects are
semi-stable of slope s. We also write M>(Gk) = MT2(Gg).

We have HY(X,Ox) = Q,. A central result of [FF] (th.8.2.10) is that a coherent Ox-module
F is semi-stable of slope 0 if and only if it is isomorphic to O% for some positive integer r. From
that we deduce:

Proposition 3.5. If F € MY(Gg), then F(X) € C°(Gk) and
rank(F) = dimg, F(X) .
The functor
MO(Gk) — C%Gk) , Fr F(X)
is an equivalence of categories. The functor
C%(Gr) — M°(Gk) , Uwr Ox @ U = (Be @q, U, Bjp ®q, U)

1S a quasi-inverse.

If 7 € M(Gk), as there is no torsion away from infinity, 7 € M>(Gk) if and only if F, = 0.
From that, we deduce:

Proposition 3.6. If F € M*>(Gk), then F(X) = F,5 and belongs to C*(G ). Moreover
deg(F) = 1engtth+R}'(X) .
The functor
M>*(Gg) — C*(Gk) , F— F(X)
is an equivalence of categories. The functor
C*¥(Gk) — M™(Gg) , W—=W =(0,W)

1S a4 quasi-inverse.

For any s € Q, we denote M=%(Gg) (resp. M<*(Gg)) the full subcategory of M(Gk) whose
objects are those which have all their HN-slopes > s (resp. < s).

For any F € M(Gg), we denote F=° the biggest term of the Harder-Narasimhan filtration
which belongs to MZ%(Gg) and F<° = F/F=° We have a short exact sequence

0—F' —>F—F"—0
with F20 € MZ%(Gk) and F<0 € M<(G).
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The category M (G ) is equipped with a tensor product. From the classification of vector
bundles over X (cf. [FF], th.8.2.10), we get the fact that if s,t € QU {400}, if F € M*(Gk) and
if G € MY (Gk), then F ®G € M*T(Gf) (with the convention that s +¢ = +o0 if s or ¢ is +00).

The additive category Bundx (Gx) has an internal hom

(F,G) = Homo (F,G)
We see that (Homo, (F,G))e = Lp,(Fe,Ge) is the Be-module of the B.-linear maps Fo — Ge
though (Homoy (F,G))ir = EB;R (Fig+Gig) is the Bjp-module of the B} y-linear maps Fp —
Gan
In Bundx (Gk), there is also a duality: The dual of F is FY = Homoe, (F,Ox). If F,G €

Bundx (Gk), then Homo, (F,G) = FY ®G. If F is semi-stable of slope s, then F" is semi-stable
of slope —s.

3.8. Tate and Harder-Narasimhan twists.
Recall that, for any p-adic vector space V equipped with a linear action of G and n € Z, the
nth Tate’s twist of V is

V(n) =V ®q, Qp(n)
where Q,(n) = Qpt"™ C Bygr. This construction is functorial.

For any n € Z, we denote
Ox(n)r = Ox ® Qy(n) = (Be(n), Bjp(n)) = (Be.t", Bjp.t")

(where B..t" (resp. Bjp.t") is the sub Be-module (resp. Bjp-module) of Byg generated by t")
the G g-equivariant line bundle of slope 0 associated to Qp(n).

For F € M(Gg) and n € Z, the n'® Tate twist of F is
F(n)r = F @ Ox(n)r = (Fe(n), Fip(n), tx(n)) -

It has the same degree, the same rank and the same slope as F.

For any n € Z, we consider the G g-equivariant line bundle
Ox(n)un = (Be, Bjp(~n)) = (Be, Bjp-t™")
There is an obvious short exact sequence
0— Ox — Ox(n)gn — (0, Bp(—n)) — 0 if n >0,
0— Ox(n)uy — Ox — (0,B_,,) — 0 if n <0,

In particular, Ox (n)gy is a modification of Ox and is of degree n. It is semi-stable of slope n.
For F € M(Gk) and n € Z, we define the n'" Harder-Narasimhan twist of F as

Fn)un = F @ Ox(n)un = (Fe, Fip(—n),t5(—n)) = (Fe, t " Fin, tr(—n)) .

It has the same rank as F. If F is semi-stable of slope s, then F(n)gn is semi-stable of slope
S+ n.

These two construction are obviously functorial and commute with Harder-Narasimhan filtra-
tion. In particular,

—if F is semis-table of slope s, then F(n)r is semi-stable of slope s, though F(n)gy is semi-
stable of slope s 4+ n,

— the HN-slopes of F(n)r are the same as the HN-slopes of F, though the HN-slopes of F(n)gn
are the s + n for s describing the HN-slopes of F.

These constructions commute: for m,n € Z, we have

F(m)r(n)un = F(n)un(m)r .
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Remark 3.7. In [FF] (def.8.2.1) the Gk-equivariant line bundle Ox (n) gy (n)7 is denoted Ox (n).
We have to avoid confusion between the three G -equivariant line bundles Ox (n)r, Ox(n)gn
and

Ox(n) = (Be(n), Bjp) = (Be.t", Bi) -

3.9. Potentially trivialisable B.-representations. o
Let A be a Bc-representation of G and K’ a finite extension of K contained in Q,. We say that
A is G -trivialisable if there is U € C°(G ) and a G /-equivariant isomorphism of B.-modules

Be®QpU2A.

We say that A is trivialisable if it is Gg-trivialisable and potentially trivialisable if there is a
finite extension K’ of K contained in Q, such that A is G g-trivialisable.

Proposition 3.8. Any absolutely irreducible Be-representation of Gk is potentially trivialisable.

Proof : Let A such a B.-representation. Then Agr = Bir ®p, A is a Bgr-representation. Let £
be the set of G -stable B;R—lattices of Agr. We know (prop.2.5) that £ is not empty. For each
L € L, we may consider the G x-equivariant vector bundle over X

Fr=(AL).

Such an Fp, is semi-stable (otherwise the Harder-Narasimhan filtration would be non trivial and
would induce a non trivial filtration of the Be-representation (Fr). = A which is not possible as
A is irreducible).

Chose such an Fy,. Replacing F, with Fr,(n)gny with n € N big enough, we may assume that
the degree d of Fr, is > 0. By proposition 2.7, we can find a finite extension K’ of K contained in
Q, and a G';-stable sub-Bjp-lattice Ly C L such that lengthp (L/Lo) = d. Then Fr, = (A, Lo)
is a Gi/-equivariant vector bundle over X of degree d — d = 0. As the B.-representation A is
absolutely irreducible, it is irreducible as a B.-representation of Gx/. Hence, Fr, is semi-stable
of slope 0. By proposition 3.5, there is a Q-representation U of G’k such that

Fr, =~ Ox U .
Therefore A, as a Be-representation of Gk, is isomorphic to Be ®q, U. O

Corollaire 3.9. The category Repp (Gk) is the smallest full subcategory of itself containing
potentially trivialisable B.-representations and stable under taking extensions. This is also the
smallest full subcategory of itself containing trivialisable Be-representations and stable under taking
extensions and direct summands.

Proof : For any B.-representation A of Gk, one can find a finite extension K7 of K contained in
@p such that A, viewed as a B.-representation of Gk, , can be viewed as a successive extension of
absolutely irreducible B.-representations of G, and the first assumption results from the previous
proposition. Hence we may find a finite extension K’ of K contained in @p such that A, as a Be-
representation of Gk, is a successive extension of Gi/-trivialisable B.-representations. Therefore
the induced B.-representation of G

A = Be[Gk] ®p, (6,1 A = QGK] ®qic,) A

is a successive extension of trivialisable B.-representations of G . But the obvious G i -equivariant
projection A’ — A splits (as, if AV denotes the Be-dual of A and if H = Gal(K’/K), we have a
short exact sequence

0— HomRech(GK)(Av A/) — HomRepBC (GK/)(A, A) — Hl(H, AV ®Bc A/)

and, as B, is of characteristic 0, we have H*(H, A ®p, A’) = 0). Therefore, A is a direct summand
of a successive extension of trivialisable B.-representations. O
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Remark 3.10. The results of this paragraph can also be deduced from the work of Berger ([Be08]
and [Be09)]) relying (i, I')-modules on the Robba ring and B,-pairs.

~

3.10. The forget functor Repy (Gx) — C(Gk)-
Proposition 3.11. The forget functor

Repp, (Gx) — ZF(Gk)
is fully faithful.

Proof : Let A and A’ two B.-representations. We want to prove that any Gx-equivariant contin-
uous map

A5 N
is Be-linear. .
Let K’ be a finite Galois extension of K contained in Q, such that A and A’ are successive
extensions of trivialisable Be-representations of Gg/. If H = Gal(K'/K), we have

HochpBe (GK)(A,AI) = (HochpBe (GK,)(A,AI))H 5 HOIHI]:(GK)(A,AI) = (HOIHI]:(GK,)(A, A/))H .

Therefore, replacing K by K’ we may assume again that there is 7 € N and a filtration of A by
sub- B.-representations

0=AgCAC...CA_1CA. =A

such that each A;/A;_; is trivialisable.

We proceed by induction on r, the case r = 0 being trivial. Assume r > 1 and that A,./A,_1 =
Be ®q, U for some U € C%(GF). Chose a Be-linear section s : B, ® U — A of the projection
A — B, ® U. We have a decomposition of A as a B.-module into a direct sum

A=A_19s(B.U)=A_1®(B.®3s(U)) .
By induction, the restriction of o to A,_1 is Be-linear. Hence there is a unique B.-linear map
Qg - A— A

such that ap(X) = a(A) if A € A,—q1 and ap(s(u)) = as(u)) for all w € U. It is easy to check that
« is continuous and G k-equivariant. The maps

a,ag: A — A

coincide on A,_1 @ s(U) and the map « — ap induces, by going to the quotient, a morphism in
17 (Gxk)

B:A/(A—1®s(U)) — A
Recall (cf. eg [CF], prop.1.3) that Bqg = B. + B, though B. N B, = Q,. Hence, if we set

Bir = BdR/BjR, we can identify B./Q, to Bar.
Therefore we have

A Aoy ®5(U)) = (Ar/Ar—1)/U = B. @ UJU = Bag ®q, U .

and 8 € HomI]:(GK)(EdR @ U,N).
We see that Bgg is the direct limit of the By(—d), for d € N, hence

EdR RU = hj}ldeNBd(—d) ®Qp U .
Each Bg(—d) ® U is an object of C*°(G k). Hence, proposition 3.4, implies that
HOHII]:(GK)(Bd(—d) ® (J7 A/) =0.

Therefore 5 = 0 and o = g is B.-linear. O

We use this result to identify Repp (G ) to a full subcategory of ZF (G k).
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Proposition 3.12. We have R

Repp, (Gk) C C(Gk) -
More precisely, for any Be-representation A of Gy, there is a Gk -equivariant admissible filtration
(F"A)pez with F*A =0 and F"A € C(Gk) for all n. Moreover, we may chose this filtration so

that, if b € Fil ¢B, and X\ € F"A (with d € N, n € Z), then bA € F"—A.

Proof : — Assume first that A is a successive extension of trivialisable B.-representations, i.e. that
there is r € N and a filtration by sub-B,-representations

0=AgCAC...CA_1CA. =A
such that each A;/A;_1 is trivialisable. We proceed by induction on r, the case r = 0 being trivial.

Assume 7 > 1. Setting A,_; = A’ and choosing U € C°(G k) such that A, /A, 1 ~ B, ®q, U, we
may assume that we have a short exact sequence of Be-representations

0—AN —A—B.®U—70

and, using induction hypothesis, that we have an admissible filtration (F™A’),cz of A’ satisfying
the required properties. Let s : B ® U — A a B.-linear section of the projection A — B, ® U, so
that we have a decomposition of the B.-module A into a direct sum

A=N®s(B.oU)=N @ (B.®s(U)) .
The map
p:Gx xU—=N ", (g,u)— g(s(u)) —s(g(u))
is continuous. Therefore, if T is a Gg-stable lattice of U, then p(Gx x T') is compact, hence
bounded which implies ([Schn], prop.5.6) that there exists m € Z such that p(Gx x T'), hence also
p(Gg x U) is contained in F"™A’.
If, for n € Z, we set

n A/ n—m 3
FrA F"N @ (F""™B.®U) %fngm,
0 if n > m,

we see that (F™A),en is an admissible filtration satisfying the required properties.

— In the general case, we chose a finite extension K’ of K such that A is a successive extension
of trivialisable B.-representation of Gg.. Therefore we can find a G g/-equivariant decreasing
admissible filtration

(Fr/M)nez
such that, if n € Z, then F}},A € C(Gk) and that, if b € Fil"¢B,, for some d € N and \ € FrA,
then b\ € Fy ?A.

For each n € Z, denote F™A the smallest sub-Q,-vector space of A containing F}, A and stable
under Gg. This is also the image of the obvious map

Qp[Gk] ®g, (G FrA = A

If hi, ha,. .., hp, is a system of representatives of Gx /Gk+ in G, this is also Y ;" | hi(F™Ag/) C A
which is still bounded and it is clear that the (F™A), ez satisfy the required properties. O

Remark 3.13. We see immediately that Repp_ (G ) is a weak Serre subcategory of C(Gk).
3.11. Cohomology of coherent Ox-modules.

We denote Byr the B.-module Big/B.. It is not of finite type but, as the cokernel of the
inclusion B, — Bgr which is a morphism of C (Gk), it can be viewed as an object of this category.
The equalities Bgr = B, + B;FR and Q, = B, N B;{R imply that Byg, as an object of 5(GK), can
also be identified to B, /Q,.

If F = (Fe, Fig,t7) € Coh(Ox). The map

]:e—>]:dR:BdR®Be]:e 5 r—1®ax

is injective, we use it to identify F. to a sub-Be-module of F;r and we denote Far the quotient
Far/Fe.
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From [FF], prop. 8.2.3, we know:
Proposition 3.14. For any F € Coh(Ox), we have H/(X, F) =0 for i ¢ {0,1} and

FX)=HX,F)#0 <= F20=+£0,
HY(X,F)#0 = F<0x£o.

Moreover, there is a canonical exact sequence of Qp-vector spaces
(1) 0— HYX, F) — Fo @ Fiyy 25 Fap — H'(X,F) — 0
(where dr(x,y) = 1r(y) — x) which is functorial in F.

We have a commutative diagramme of (Q,-vector spaces

0 0
{ {
F. = I
{ I
0— H(X,F) — F.®F), — Far — HYX,F)—0
! _
]:J_R — Far
{ I
0 0

whose columns and the two first lines are exact. Hence we have also an exact sequence
(2) 0 — HYX,F) — Flyy 25 Fag — H (X, F) — 0
where dz(y) is the image of tx(y) in Fyr.

3.12. Cohomology of coherent Ox|G k]-modules.

We say that an almost C),-representation is effective if this object of C(Gf) is isomorphic to
a sub-object of C>(Gk). We denote C=°(Gk) the full subcategory of C(Gx) whose objects are
those which are effective.

Proposition 3.15. Let f : W — V a morphism of C(Gx) with W € C®(Gg) and V € CZ°(Gk).
Then the kernel of [ belongs to C*° (G ).

Proof : By assumption, there exists a monomorphism g : V' — W' in C(Gg) with W’ € C>*(Gk).
The kernel of f is the same as the kernel of gf : W — W’. As W and W’ are in C*(Gg), so is
this kernel. ]

Proposition 3.16. Let F € M(Gk). Then H°(X,F) € CZ%(Gk).

Proof : We see that F, ]-"jR and Fgr can be viewed as objects of the abelian category (?(GK).
The inclusion F, < F4r is a morphism of this category, hence Far can also viewed as an object
of C(Gk). The map dr of the exact sequence (2) is obviously a morphism of this category, hence

H°(X,F) =kerdr and H'(X,F) = coker dr

are objects of C(G).

For m € N, big enough, F(—m)gy has all its HN-slopes < 0 and H(X, F(—m)gy) = 0. But
this is the kernel of the map

Fin(m) — Far , b@t™ — t™b (mod F.) .
Hence we have a commutative diagramme

0 — 0 — Fiplm) — Far
I 1 |

0 — HYX,F) — Fin — Far
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(the first non zero vertical arrow sends b ® t™ to t"b) whose lines are exact. Therefore, the
compositum HO(X,F) — Fl — Fjp/t™Fis is injective and H°(X, F), subobject in C(Gk) of
f;R/tm.f;RECOO(GK) is in CZO(GK)' O

4. HULLS AND CONSTRUCTION OF THE FUNCTOR V +— Fy

4.1. Generalities.
In what follows, B is either B,, B;R or Byg.
We know (remarks 3.13 and 2.13) that Repp, (G ) can be identified to a weak Serre’s subcat-

~

egory of C(G ). We have ”inclusions” of weak Serre subcategories
RGPB;R (Gk)
\ o~
Repg,,.(Gx) — C(Gk)
s
Repp, (Gk)
Let V' be an almost C)-representation. We say that V' has a B--hull if the functor

Repg, (GKx) — Qp-vector spaces , W Homg(GK) (V, W)

is representable, i.e. if there is a (necessarily unique up to unique isomorphism) pair (Vz,:Y), with
V2 a Be-representation and Li‘,/ : V. = V7 a Gg-equivariant continuous Q,-linear map, such that,
for all Be-representation W, the map

HochpB?(GK)(V?, W) — Homg( (VW) ,

GK)

induced by /Y, is bijective.

When it is the case, we call (V7, Lr‘!/), or abusively V2, the Be-hull of V.

Our purpose is to show that such an hull always exists and to use these hulls to construct a
functor

C(GK) — M(GK) s V= Fy.
Remark 4.1. Let V be an almost Cp-representation and let Iy the class of morphisms
V=W,
of C (G) whose source is V' and target a Br-representation. With suitable conventions and abuses,
to say that V has a B-hull means that the directed inverse limit
‘/? = lim Lely WL
—

Y

exists and that the Br-module underlying this ” pro- Be-representation of G is of finite type.

Restricted to the full subcategory of C(G k) of almost C)-representations admitting a B-hull,
the correspondence V +— V5 is obviously functorial.

Let V € C(Gk) such that, with obvious notations, (V5. in/}’;r) exists, let M € Repg, . (Gx) and
f:V — M a morphism in CA(GK). We see that the sub BJ,-module W of M generated by f(V)

~

is an object of C*°(G ), hence there is a unique morphism (in C(G k) or, in this case, equivalently
in C*(Gk))
g: th% —-WcM
such that f =go Lg}’; and we have
Homg(GK)(V, M) = HOlfné‘(GK)(Vng%7 M) =

Homg(GK) (BdR ®BIR Vd-il_%, M) = HomRepB Byr ®B:{R Vd}? M) .

dR(GK)(

Therefore Vyp exists and can be identified to Byr ® B, Vd*}'%.
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The same argument applies to the case where (V1Y) exists. Hence we have:

Proposition 4.2. Let V € C(Gkg).
i) If Vd"j'% exists, then Vyr exists and is, canonically and functorially, Bor ® g+ Vd";%,
dR
ii) If V. exists, then Vyr exists and is, canonically and functorially, Bar ®p, Ve.

Proposition 4.3. Let B> as above and let V be an almost Cp-representation of G g which has a
Bo-hull (Vo,1Y). Then:

i) The image of 1Y generates Vz as a Br-module.

i) If moreover

0—V —V —=V"—0

is a short exact sequence in C(Gk), then V" has a Be-hull which is the quotient of V2 by the
sub-Be-module of V; generated by the image of V.

iii) In this situation, if V' has a Be-hull, then the sequence

Vi— Vo — V) —0

s exact.

Proof : 1) Let Wy be the sub Bz-module of V7 generated by the image of V. As Be is noetherian,
this is a Br-module of finite type. By the universal property of V-, there is a unique morphism

v : Vo — Wy such that the map V — Wy isvo L¥ and we see that V5, = Wy @ kerv. The fact that

idy, is the unique endomorphism of V7 such that v o Ly = Ly forces ker v to be 0.

ii) If W is any By-representation, we have
Homg g (V" W) = {re Homg g, (V. W) | f(V') = 0} =
{f € HochpB?(GK)(‘/?u W) | f(L"/(VI)) = O} = }IOHchpB7 (GK)(‘/?/BT’L’.‘?/(V/)? W)

iii) Let N be the kernel of the projection V2 — V3. The image of VJ in V% is clearly contained
in N. As N is the sub Br-module generated by the image of V', the map VJ — N is surjective
and

Vi— Ve — V) —0

is exact. O

4.2. Construction of trivialisable almost C,-representations.
A trivialisation of an almost Cp-representation V' is a short exact sequence

0—U—>V —W-—0

in C(Gx) with U € C°(Gx) and W € C®(Gg).

An almost C)-representation is trivialisable if it admits a trivialisation.

If Ve C(Gg), if f: V/Uy — W/U_ is an almost isomorphism with W € C(Gg) and if
V=w Xwyu_ V, we have, in C(Gk), a commutative diagramme

0 0
4 \
v, = Us
! !
o — U. — V — V — 0
[ ' )
0O — U — W — VU — 0
{ 1
0 0

and V is a quotient of V which is trivialisable as it is an extension of W by Uy € Co(Gk).
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Given U € C%(Gk) and W € C*(Gk), it is easy to construct all almost C,-representations
which are extensions of W by U:

Recall that

Bir =B.+ Bj, and B.NBj,=Q,
and that we set B
BdR = BdR/B(J{R = Be/@p .
Let U be an object of C°(Gk) and W an object of C*(G). Tensoring the exact sequence
O—>Qp—>Be—>§dR—>0
by U we get a short exact sequence in C(Gg)
O—>U—>Be®@pU—>§dR®@pU—>0

inducing a map

ouw - HomCA(GK) (V[|/|, Bir ®q, u) — EXtéA(GT')(W, U)
Homge g,y (W, Bar ©q, U) Exte (o) (W, U)

We have (cf. [Fo03], prop. 3.7):

Proposition 4.4. Let U € C°(Gk) and W € C*(Gk). The map
Suw - Homg (W, Bar ®q, U) — Exté g, (W, U)

is an isomorphism.

Hence if V is a trivialisable almost C)-representation and if
(T) 0—U—V—W;—0
is a trivialisation of V', there is a unique

pr € Homg. ¢, (Wo, Bar ®q, U)

such that the square
Vv — Wo
{ Lpr
B, ®q, U — EdR ®q, U
is cartesian.

4.3. Construction of the hulls.

Proposition 4.5. Any almost Cy-representation V has a Be-hull Ve, a B;‘R-hull Vd-"}_% and a Byg-
hull Var. We have
Var = Bir ®p. Ve = Bar ®@p+ Vi,
rankBIRV;rR = ranchVc = dideR VdR Z h(V)

and equality holds when V is trivialisable.

Moreover

i) if U € C°(Gk), then U, = B, ®q, U and U, = B, ®q, U,

i) if W € C*(Gk), then We =0 and W, =W,

i) if
(T) 0—U—V—W;—0
is a trivialisation of an almost Cp-representation V,

a) the map U, = B, ®q, U — Ve is an isomorphism,
b) we have a short exact sequence

0— Blp®q, U— Vi — Wy —0
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More precisely, Vi, is the fiber product (Bag ®q, U) Wy (where Wy — Bag ®q, U is

the map pr ).

XEdR@QPU

Proof : From the proposition 4.2, we see that the existence of V, and V 'r implies the existence of
Var and the equalities:

Var = Bir @p. Ve = Bar ®@p+ Vi
rankBIR VIR = ranchVC = dideR VdR .
i) Let U € C°(Gk). By adjunction, for any Be-representation A, we have
HomCA(GK)(U, A) = HomRCpBe(GK)(Be ®Qp U, A)
hence U, exists and is B, ®g, U. Similarly, for any object Wy € C*°(G k), we have
Home g ) (U, Wo) = Homge. ,  (Big ®q, U, Wo)
hence U, exists and is B, ®q, U. In particular, dimp,, Usr = h(U).

ii) Let W € C*(Gk). For all Be-representation A, we have Homg, aG )( ,A) = 0 (prop.3.4).
Therefore W, exists and is = 0. For any Wy € C*°(G k), we have Home g,y (W, Wo) = Homee (o) (W, Wo)
(prop.2.6) hence W, exists and is W. In particular dimp,, Wyr = 0 = h(W).

iii) Let V' a trivialisable almost Cj-representation and
(T) 0—U—V-—W;—0

a trivialisation.

a) Let A be a Be-representation. The inclusion U — V induces a map
a: Homg(GK)(K A) — HomCA(GK)(U7 A) = Hompeyp, (Gr)(Be®q,U,A) = Homg(GK)(BGQ@QP U,A)
(prop.3.11 and prop.3.12). We have a cartesian square (§4.2)

|4 — Wo
() Lp _dopr
B.®q, U — Bir®q,U

and we may use p to get a map
B : Homg g,y (Be ®q, U,A) — Homg, \(V;A)
Let f € Homg g, \(Be ®q, U, A) and fr=a(B(f)). If > b ®u; € B, ®q, U, we have

FQobi@u) =Y bi(BU)(ui)) =D bif(wi) = F_bi @ ui)

as [ is Be-linear, hence f' = f.
Let g € Homgz, . (V,A) and ¢’ = af(g)). If u € U, as p(u) = u, we have

9'(u) = Bla(g))(u) = a(g)(u) = g(u)
Hence ¢’ — g factors through a morphism in C| (Gk)
Wo — A

C(Gx)

which is necessarily 0 (th.2.9), hence ¢’ = g. Therefore we see that « is an isomorphism. It’s
implies that Ve exists and is equal to U, = Be ®@q, U.

b) We want to show that Vd} exists and is equal to

Wi = (BdR ®q, U) xédR@QpU Wy .
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Using the cartesian square () and the inclusion B, ®q, U C Bar ®q, U, we get a morphism of

-~

C(Gk)
V - W

~

and we have a commutative diagramme in C(G)

O — U — VvV — W — 0

(%) ! } I

0 — Uz — Wi — Wy — 0

whose lines are exact.
If W is any B;R—representation, we have a commutative diagramme

0 — Hom(Wy, W) — Hom(V,W) — Hom(U,W) — Ext'(W, W)

| 3 J |
0 — Hom(Wy,W) — Hom(Wy,W) — Hom(Uj, W) — Ext'(Wy, W)

(where all the Hom and Ext' are computed in C(Gx)) which implies that
HomC(GK) (V, W) — HomC(GK) (Wl, W) = Homcoo(GK) (Wl, W)

is an isomorphism. Hence Vd} exists and is equal to Wj.

— Finally, let V' be any object of C(Gf). We can find an exact sequence

0—U-—V-—V-—0

with V trivialisable. The existence of V, and 17;]'% implies (prop.4.3) the existence of V, and V.
The exactness of the sequence

UdR —>‘7dR —>VdR —0

implies that
dimp,, Var > dimp,, Vg — dimp,,, Usr = h(V) — h(U) = h(V) .

4.4. The functor V — Fy.
For any almost C)-representation V', denote

w Vi — Var = Bar @B, Ve
the natural map. It induces an isomorphism Bir ® B, VJ}} — Vyr. Therefore
]:V = (th{7‘/eu LV)

is a coherent Ox[Ggk|-module. This construction is clearly functorial and we get an additive
functor

C(GK)—>M(GK) s V'—>]:V

From the universal properties of the functor V Vdﬁ% and V — V., we deduce the fact that
V = Fy is left adjoint to F — F(X).

5. THE EQUIVALENCE MZ%(Gg) — CZ9(Gk)

5.1. A characterisation of effective coherent Ox |G k]-modules.

Theorem 5.1. The category M=°(G) is the smallest strictly full subcategory of M(Gr) con-
taining M°(G) and M>®(Gg) and stable under taking extensions and direct summands.

Lemma 5.2. Let s be a positive rational number. There exists Gs € M*(G ) which is an extension
of an object of M>(Gx) by an object of M°(G).
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The lemma implies the theorem: As a subcategory of M (G ), the category MZ°(G) is obviously
stable under taking extensions and direct summands. Hence, it suffices to show that any F €
M=9(G ) can be written as a direct summand of successive extensions of direct summands of
objects which are extensions of an object of M>(Gi¢) by an object of M%(G ). Using the Harder-
Narasimhan filtration, it is enough to show that, if F is semi-stable of slope s > 0, then F is such
a direct summand.

If s =0, then F € M%(G) though, if s = +00, then F € M*>(Gx) and we may assume that
s is a positive rational number.

Let G, as in the lemma, so that we have a short exact sequence

0—G—G,—G® —0

with G0 € M°(Gk) ans G° € M*™(G). As G is a vector bundle (it has no torsion), its dual GY
is well defined and semi-stable of slope —s. Therefore

Fo=F®G
is semi-stable of slope 0. We have a short exact sequence
0 —Fo®G — Fo@Gs — Fo@GF —0
and Fy ® Gy is an extension of F0 ® G € M*>(Gk) by F' ® G € MY (Gk).
But, with obvious notations,
Fo®Gs=F®G ®G, =F®End(G,) .
If End®(Gs) is the sub sheaf of elements of trace 0 in End(Gs), we have
End(G,) = Ox @ End®(Gs)

hence

Fo®Gs = F® (Ox ® End®(G,)) = F @& (F ® End’(Gy))
and F is a direct summand of F° ® G,. O

Proof of the lemma: We may assume K = Q,. Recall ([FF], prop. 10.5.3, see also [CF], §5) that
o A filtered p-module over Q, is a pair (D, Fil) consisting of
a) a p-module over Qp, i.e. a finite dimensional Qp-vector space D equipped with an
automorphism ¢ : D — D,
b) an exhausted and separated decreasing filtration (Fil"D),ez.
e There is a fully faithful additive functor

(D, Fﬂ) — ]'—D,Fil

from the category of filtered ¢-modules over Q,, to the category of Gg,-equivariant vector
bundles over X (the essential image consists of those equivariant vector bundles which are
crystalline, i.e. those F’s such that the natural map

G
Bcris ®Qp (Bcris (X>BC ‘Fe) " — ch’s (®B(3 ‘Fe

is bijective): we have Fp gy = (‘FDﬁFil,e"FZJr,Fil,dﬁ where
— Fp File is the Be-module (Beris ®q, D),=1 which implies that

Fprildr = Bar @B, Fp,e = Bar @q, D ,
~ T pinar = Fil’(Bar ©g, D) = 3, Fil " Bar @ Fil"D.

Set s = d/h with d, h positive integers, prime together.
Consider the ¢p-module D over @, whose underlying Q,-vector space is of dimension h, with
(er)rez/nz as a basis and
_ e 0 rH1#£0,
wler) = {p—deo if r+1=0
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We equip D with two distincts filtrations Fil and Fily:

. D if n<—d
< —_ )
prrp = {0 <00 ey e Qe it —d<n<o0,
0 if n>0 ;
0 it n>d

Set Gs = Fpru and GY = Fp i, Both are coherent Ox|[Gk]-module of rank h. As the
polynomial X" —p~9 is irreducible over Q,, the Q,[p]-module D is irreducible which implies that
Gs and GY are stable, hence semi-stable. An easy computation shows that deg(G,) = d though
deg(GY) = 0, hence G, is semi-stable of slope d/h = s though GY is semi-stable of slope 0, hence
belongs to M%(Gk). We see that G0, = Gy and that (G2)}, C (Gs)ar. Therefore G is a
subobject of Gy and the cokernel G2° is torsion, i.e. belongs to M*>(Gk). O

5.2. Some properties of effective almost C),-representations.

Recall (§1.5) that an exact subcategory of an abelian category is a strictly full subcategory
containing 0 and stable under extensions. For instance the previous theorem shows that M=°(Gx)
is an exact subcategory of M(G).

Theorem 5.3. Let V € C(Gk). The following are equivalents:

i) V is effective (i.e. V € CZ°(Gk)),

ii) there is a finite extension K' of K contained in Gp such that V', as an object of C(Gk') is
a successive extension of objects belonging either to C°(Gr) or to C*(Gk),

iii) V belongs to the smallest strictly full subcategory of C(G k) containing C°(Gk) and C*°(Gk)
and stable under taking extensions and direct summands.

Moreover C=°(G ) is an exact subcategory of C(G ).

Before proving this theorem, let’s state an other result. Recall (§4.4) that, to any V € C(Gk),
we associated the coherent Ox[Gx|-module

Fy = (VdE,Ve, ) .
We have
(F)in=Via » (Fv)e=Ve and tx, =ty .
Therefore, if we set Vg = Fyvar = Var/Ve, we have (cf. §3.12) an exact sequence
(©) 0 — HY(X, Fy) — Vi 25 Vg — HY(X, Fy) — 0
(where Ty = Tx, is the compositum of ¢y with the projection Vyr — Vyr/Ve) and, as V C Vg is
injective, the image of V' in V,}, is contained in Fy (X) = H°(X, Fv).

Proposition 5.4. Let V € CZ°(G k). Then,
i) we have h(V) > 0 and dimp,, Var = h(V),
ii) we have V € C*(Gg) < h(V) =0,
111) the sequence
0—V — Vi =5V —0
s exact,
iv) the map V. — H°(X, Fy) is bijective and Fy € M=°(G).
Moreover, the restriction to C=°(G ) of the four functors C(Gk) — C(Gk)

VHV(;}_% , Ve V., Vi Vg VHVdR

and of the functor
C(GK) — M(GK) s V= Fv

are exact.
Proof of the theorem and beginning of the proof of the proposition:

For any V € CZ°(G ), we denote dy the infimum of the d(W)’s for all W € C*°(G ) such that
V' is isomorphic to a subobject of W (note that d(V) < dy).
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Denote K the set of finite extensions L of K contained in Q,. For any L € K, let C*(GL) the full
subcategory of C(G,) whose objects can be written as a successive extension of objects belonging
either to C%(Gp) or to C*(GL).

We now show the assertion (i) of the proposition and the implication (i) = (ii) of the theorem,
i.e. that, if V € CZ%(Gk), then

dimp,, Var = h(V) (which implies that h(V') > 0) and there exists K’ € K such that V € C*(Gg) :

We proceed by induction on dy, the case dy = 0 being trivial.

Let V .C W an embedding of V into an object W € C*(G ) satisfying d(W) = dy > 0. We
can find (cf. prop.2.7) K1 € K and a G, -stable sub-B,-module W’ of W of length 1. Setting
W' = W/W' V' =V NW and denoting V" the image of V in W”, we get a commutative
diagramme in C(Gk,)

o — VvV — VvV — V' — 0

1 { 1

o — W — W — W’ — 0

whose rows are exact and vertical arrows are injective which implies that V' and V" belong to
C=%(Gk,). We have d(V') < d(W') = 1. From corollary 2.10, we get that either d(V’) = 1 in
which case V' = W’ or d(V') = 0 which implies that V' € C°(Gk,).

~If V' = W', we have h(V') = 0 and (V')}, = W’ hence V), =0,

~If V' € C°(Gk,), we have h(V') = dimg, V' and V], = Bar ®q, V'

In both cases, we have dimp,, Vj = h(V’). By induction, we have dimp,,, V5 = h(V"). The
exactness of the sequence

Vig — Var — Vi — 0
implies that
dideR Var < dideR Vd/R + dideR lek = h(VI) + h(V”) = h(V) s

hence, as dimp,, Var > h(V) (prop.4.5), we get dimp,, Vair = h(V), i.e the assertion (i) of the
proposition.

Also by induction, as V" belongs to CZ°(G,), there is K’ € K containing K; such that
V" € C'(Gg). Then V, as a representation of G-, is an extension of V' by either an object of
C>®(Gk) (if d(V') = 1) or by an object of C°(Gk-) (if d(V') = 0). In both cases, V belongs to
C'(Gr).

Therefore, given V € C=%(Gx), there is K’ € K and a filtration of V by subobjects in C*(G k)

o=VycWhc...cV,_,CV,=V

such that, if i = 1,2,...,7, then V;/V;_; belongs either to C°(Gx) or to C>(Gx). This proves
the implication (i) = (ii) of the theorem.

In particular, we have h(V) = >_7_; h(V;/Vi—1) which is > 0 unless h(V;/Vi—1) = 0 for all 1,
which means that V;/V;_; belongs to C*°(Gk). As C>°(Gk) is stable under taking extensions, we
get the equivalence

h(V)=0 < V eC=%Gk)

which is the assertion (ii) of the proposition.

The implication (ii) = (iii) of the theorem is obvious: If V satisfies (ii), the induced repre-
sentation Q,[G'x]|®q, (@, V belongs to C’(Gr) and V is a direct summand of this representation.

As a full subcategory of C(Gf), the category C=9(G ) is obviously stable under taking direct
summands. Hence, we see that the implication (iii) = (i) of the theorem and the fact that
CZ%(Gk) is an exact subcategory of C(G ) result from the following:
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Lemma 5.5. Assume we have a short exact sequence in C(Gk)
(1) 0—Vo—V —Vo—0
with Vo € CZ%(Gx) and Vi belonging either to C°(Gx) or to C*(Gx). Then Vi € CZ9(G ) and

the sequence
+ + +
0— Voar — Vilar — Volar — 0
15 exact.

Proof of the lemma:
— Assume first that Vy belongs to C°(Gk): we have a commutative diagramme

O — Vv — Vi — VB — 0

1 1 1
Vour — Viar — Voar — 0
whose rows are exact, the maps V) — VO+dR and Vo — V2+d r, being injective. I claim that the map
VOTd R Vde is injective. As VOTd R = B;R ®q, Vo is a torsion free B;R—module, it is enough to
check that V. qr — Vi 4r is injective. If it were not true, we would have
dideR Vl,dR < dideR %,dR + dideR ‘/2,dR = h(VQ) + h(Vé) = h(Vl) .

As we have (prop.4.5) dimp,, V1.ar > h(V1), this can’t happen. This forces V; — Vl'de to be also
injective, hence V; € CZ%(Gk).

— Assume now V; belongs to C>°(Gx). As the sequence (1) almost splits (prop.2.15), we can
find an extension S in C®(Gk) of Vo by a U € C°(Gk) such that V; = Vy @y S. By what we just
saw, S € CZ9(G ) and we have a commutative diagramme

O — U — S — VB — 0

1 1 1
+ + +
0 » Ugg » Sir » Vaoar > 0
whose line are exacts and vertical arrows are injective.

We also have a commutative diagramme

o — U — Woes — Vi — 0

1 4 S

Ul — WaeS; — Viyz — 0
(the map U — W @ S send u to (u, —u)) whose rows are exact and the two first vertical arrows
are injective.

The injectivity of UJR — S;R implies the injectivity of U;R - Wa S:{R. To finish the proof
we only need to show that the map V; — VlJ)rd R is injective or, with obvious identifications, that
inside of W & S}, we have

Uzn(WaS)=U.
Assume (w,s) € W @ S belongs to UJR. This implies that s € SN UJR which is U as the map
Vo — VJdR is injective. We then need w = —s and (w, s) is the image of —s € U. O

Proof of the exactness of the functors V.= Vyr, V= V. and V — Vyg: If
0—V —V —=V"—0
is a short exact sequence in CZ°(Gx ), we know that the sequences
vV — V. — V/ — 0
ViR — Var — Vi — 0
are exact. As
dimp,,, Var = h(V) = (V") + h(V") = dimp,, V,p = dimp,,, V)

the map V), — Vyr must be injective and the functor V' — Vyp is exact.
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As the B.-modules V/, V. and V" are torsion free and as
rankp_ (V)) = dimp,, Vyp , rankg, (Vo) = dimp,, Var ,rankp, (V)") = dimp,, V)x

the same argument shows the exactness of V' +— V.
We then have a commutative diagramme

0 0 0
1 \ \

o — VvV — V. — V/ — 0
1 3 1

0 — Vg — Var — V) — 0
j i _%

0 — VdR — VdR — VdR — O
1 1 1
0 0 0

whose three columns and the two first rows are exact. This implies the exactness of the last row.

Lemma 5.6. Let
0—V —wV —=V"'"—0

a short exact sequence in C=°(Gg). Assume the sequences
0— V' — (V)i — Vg — 0
and .
0— V" — (V")ig — Var — 0
are exact. Then the sequences
00—V —VhH—Vir—0

and
0— (V)ig — Vi — (V)i — 0

are exact.

Proof of the lemma: We have a commutative diagramme:

0 0 0
1 1 {

0o — \% — V.  — % — 0
4 \ 4

0 — (Vgg — Vig — (Vg — 0
' y !
4 \ 4
0 0 0

whose first and third rows are exact. By assumption, the first and the third columns are also
exact. We also now that, except may be in (V') 15, the second line is exact and, as V € C=%(Gg),
that the map V — Vd} is injective. By diagramme chasing, we get the fact that the second line
and the second column are also exact. (]

End of the proof of the proposition:
We first prove (iii), i.e. for all V € CZ9(G ), the exactness of the sequence

0—V—V 25 Vig —0

a) If V e C>®(Gk), as Vd-"}_% =V and Vyr = Var = 0, exactness is obvious.
b) If V € C°(Gk), this sequence can be rewritten

0—V — Bj,®q,V — Bir®q, V—0
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and exactness is deduced by tensoring with V' from the exactness of
0—Q, — B — Bar — 0

(recall that Byg = Be + B;R though Byr = Bar/Be. and that B. N B;‘R =Qp)-

¢) In general, we proceed by induction on the smallest integer ry such that there is K/ € K
with the property that V is a successive extension of ry objects belonging either to C°(G ) or
to C*°(G k). Replacing K by K’ if necessary, we may assume K’ = K. We just proved it’s OK if
ry = 1. Assume 7y > 2, so that we can find a short exact sequence in C=°(Gx)

0—V —V-—V"—0
with ry7 and ry» < ry. Then, by induction, the sequences
0 — Vi — (V)ixg — Viar — 0
0 — V' — (V"ip — (Var — 0

are exact and the result follows from the two assertions of the previous lemma.

From the exact sequence (C), we see that V = H°(X, Fy) and that H'(X, Fy) = 0 hence that
F € M2°(Gk), which proves (iv).

We are left to prove the exactness of the functors V +— Vd} and V — Fy, i.e. that, if
00—V —V —=V"—0
is a short exact sequence in CZ°%(G¢), then the sequences
0— (V)ig — Vg — (V")gp — 0
and
0— Fv — Fyv — Fyr — 0
are exact. As we now know the assertion (iii) of the proposition, the exactness of the first sequence
is a consequence of the previous lemma. Finally, we see that exactness of the second is equivalent
to the exactness of
0— (V)ig — Vg — (V") i — 0
and of
00—V —V,—V'—0

and we are done. O

Proposition 5.7. Let V € C(Gk). Any decreasing sequence of subobjects of V
VioVeoD. ..oV, D Vo1 Do
s stationary.
Proof : Chose V € C=%(Gk) such that V is a quotient of V. For all n € N, set
IA/n =V Xy Vi .

The XA/n form a dgcreasing sequence of subobject of 1% and, for all n € N, we have a canonical
isomorphism V,, /V;,41 >~ V,,/V,,41. In particular
Vn+1 =V, <— ‘7n+1 = ‘771 .

Replacing V' by V and the V,.’s by the Vn’s if necessary we ay assume that V', therefore also the
V,,’s are in C=20.

As d(Vp41) < d(V,,) and d(V,,) > 0, there is an integer m such that d(V,,) = d(V,,4+1) for n > m.

Forn > m, we have d(V,,/V,,11) = 0, hence V;, /V,, 11 € C°(G ) and, if we set h,, = dimg, (Vi /Vai1)
(€ N), we have h(Vy11) = h(Vy) — hy. As Vp1 € C2%(Gk), we have h(V,,41) > 0. Therefore,
there is an integer m’ > m such that h, = 0 if n > m/. This implies that V,,11 = V. O
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Remark 5.8. On the other hand, there are objects of C(Gk) which admit non stationary in-
creasing sequences of subobjects. For instance, it is easy to see that C, contains infinitely many
subobjects belonging to C°(Gx). From that, one can constructs non stationary increasing se-
quences

VocWiCc...CcV,C Vo1 C...

of subobjects of C), belonging to C°(G).

5.3. The main result.
We may consider the functors

M=%Gk) — C=°(Gk) , Fr— F(X)

and
C2%Gg) — M2°Gk) , V= Fy.

Theorem 5.9. The functor
M=(Gg) — CZ°(Gk) , Fr F(X)
is an equivalence of exact categories and
C2%(Gk) — M=2(Gk) , V= Fy
1S a4 quasi-inverse.

Proof : — As the functor V +— Fy is left adjoint to F +— F(X) (§4.4), we are reduced to check
that
(1) if V € CZ%(G k), the map V — Fy(X) coming from adjonction is an isomorphism,
(2) if F € M=°(Gk), the map Fr, (x) — F coming from adjonction is an isomorphism,
(3) if
0—V —V—=V"—0

is a short exact sequence of CZ°(Gx), the sequence
0— Fyvv — Fy — Fyr — 0

is exact,
(4) if
0—F —F—F"—0

is a short exact sequence of MZ%(G), the sequence
0— F(X)— F(X)— F'(X)—0

is exact.

(1) and (3) have already been proved (prop.5.4) and (4) results from the fact that, if 7' €
MZ2(Gg), then H' (X, F') =0 (prop.3.14).

Let’s prove (2): Let M the full subcategory of M=%(G r¢) whose objects are those F’s for which
Fry(x) — F is an isomorphism. It is obviously stable under taking direct summands. By exact-
ness of the functors F — F(X) and V — Fy, it is stable under extensions. It contains M%(G )
and M*(G). Then theorem 5.1 implies that M = M=Z%(G). O

6. FrRoM M(Gg) TO C(Gx) AND CONVERSELY

6.1. Some general nonsense. Let A be an abelian category and B be an exact subcategory of
A. Recall (cf. eg [Lau], §1.1) that one can define the derived category of bounded complexes of
B that we denote D% (B): in the triangulated category K°(B) of bounded complexes of B up to
homotopies, the full subcategory A of bounded acyclic complexes (in B) form a null system and
we set

DY (B) = K*(B)/N .
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Let A be an abelian category, B an exact subcategory of A and D a strictly full subcategory of
B which is a Serre’s subcategory of A (hence D is abelian),
— We say that the exact embedding B — A is left big with respect to D if,

(1) any quotient in A of an object of B belongs to B,
(2) for any object A of A, one can find a short exact sequence

0—A—B—D—0

of A with B an object of B and D an object of D.

— We say that the exact embedding B — A is right big with respect to D if B°P — A°P is left
big with respect to D°P which amounts to requiring that,

(1) any subobject in A of an object of B belongs to 5,
(2) for any object A of A, one can find a short exact sequence

0—D—B—A—0

of A with B an object of B and D an object of D.

We say that an exact embedding B < A is left big (resp. right big) if one can find a Serre’s
subcategory D of A contained in B such that B < A is left big (resp. right big) with respect to
D.

Proposition 6.1. Let B — A an exact embedding which is either left big or right big. Then the
natural functor

D(B) — D"(A)
is an equivalence of triangulated categories.

It is a formal consequence of the more precise following statement:

Proposition 6.2. Let B — A be an exact embedding and D a Serre’s subcategory of A contained
in B such that B — A is left big (resp. right big) with respect to D and let A® a bounded complex
of A. Then,

i) there exists a short exact sequence of bounded complezes of A
0—A*—B*—>D®*—0 (resp. 0—D®*— B*— A®*—0)

with B® a bounded complex of B and D® an acyclic complex of D,
0—A* 5 B*—=D*—=0(resp. 0-D*—B*—A°—0)

is an other short exact sequence of the same kind, there exists a a third short exact sequence of
the same kind

05 A* B D" 50 (resp. 0D"*—B'*—A°>0)
together with morphisms of complexes
B* > B'* and B* -+ B"* (resp. B"* = B* and B"* — B/')

such that the diagramme

A* B — B'* «+ B°
, v % Ny (resp. N )
B®* — B°*® «+ B°® A°

s commutative.

Proof of (i): It is enough to prove it in the case were the strict embedding is right big. Assume
it is the case. To prove (i), by induction, we are reduced to prove:
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Lemma 6.3. Let r € Z and let
0— Dy — B — A®* =0

a short exact sequence of bounded complexes of A. Assume that D? is an acyclic complex of D,
that D' = 0 for n > r and that B} is an object of B for all n < r. Then, there exists a short
exact sequence of bounded complexes of A

0—=Dy =By —A* =0

where D7,y is an acyclic complex of D with D',y =0 for n > r+1 and B}, an object of B for
allm <r+1.

Proof of the lemma: We can identify B]' to A™ for n > r. Granted to right bigness of B < A, we
can find a short exact sequence

0—D—B—A"—0
with B an object of B and D an object of D. Set

Bl for n<r—-1,
- Brlx, B for n=r—1,
L B for n=r,

Bl=A" for n>r.

We have a commutative diagramme

0 0
{ {
D = D
{ {

—-B/;} — By, — B, — B -
l 1 1 I
—-Br~? - Bt - Br — Bttt
{ 4
0 0

whose rows are complexes and columns are exact. Hence we have a quasi-isomorphism By, | — B;.
Moreover B)', ; is an object of B for all n < 7+ 1 (for n = r — 1, this is due to the fact that B:_;%
is a subobject of BI~1 @& B which belongs to B).
The compositum
By, — By — A®
is a surjective morphism of complexes which is a quasi-isomorphism. Then the kernel D7, is
acyclic. As it is the complex

.= DI D2 DI D=0 50—

we see that D)', | = 0 for n > r + 1 and that all the D}, ; belong to D (for n = r — 1, this is due
to the fact that we have a short exact sequence

0—D'—D}—D-—0

r+1
with D" = coker (D7=3 — DI =?) € D, hence, as D:;% is an extension in A of D € D by D" € D,
it belongs to D). O

Proof of (ii): We just take, for each n € Z, the fiber product
B = B™ x 4u B".
For each n, we have an exact sequence
0— D" — B — A" —0

with D"" = D' @ D™ and all the required properties are obviously fulfilled. O
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6.2. The equivalence of triangulated categories.

Theorem 6.4. The equivalence of categories of theorem 5.9 extends uniquely to an equivalence of
triangulated categories

DY*(M(Gg)) — Db(C(Gk)) .

Proof : Uniqueness is obvious.
Recall (§5.3) that M=%(Gk) is an exact subcategory of M(Gx) though CZ%(G k) is an exact
subcategory of C(G).

— The category M>(G) is a Serre’s subcategory of M(G) contained in M=%(Gk) and any

quotient 7" in M(Gk) of an object F of M=%(Gk) is in M=°(G)
(as Fe M2%(Gg) <= HY X, F)=0 = HYX,F")=0 < F" e M=°Gk)).

If 7 € M(Gk), for all n € N, as, for all n € N, the HN-slopes of F(n)gn are the s + n for s
describing the HN-slopes of F (cf. §3.8), for n > 0, we have F(n)yy € M=9(Gk).

Tensoring with F the short exact sequence (§3.8)

00— O0x — Ox(’n)HN — (O,Bn(—n)) —0

we get a short exact sequence

0— F — F(n)un — (0,F 5 @t Ba(-n)) — 0

As F(n)mgn belongs to M=9(Gx) and (0, Fj, ®pt B, (—n)) belongs to M>(G), it shows that
the exact embedding MZ%(Gg) — M(Gg) is left big with respect to M>(Gk). Therefore
(prop.6.1) the natural functor

Di(er)(MZ°(G)) — D*(M(Gx))

is an equivalence of triangulated categories.

— Similarly, the category C°(G ) is a Serre’s subcategory of C(G ) contained in C=%(Gk) and
any subobject in C(Gk) of an object of C=9(G ) belongs to C=%(Gk).

Let V € C(Gk) and chose an almost isomorphism V/Uy ~ W/U_ with W € C>*(Gk) (cf.
§2.5). Set

V =V XW/U, W

(where the map V' — W/U_ is the compositum of the projection V' — V /U, with the isomorphism
VU, — W/U_).

We have a diagramme

0 — U_

l
S+ T+ D+ T o
l
<
l
o

whose line and column are exacts. The column shows that V € C 20(Gk) and, therefore, the line
shows that V is a quotient of an object of C=°(Gk) by an object of C°(G k). In other words, the
exact embedding CZ°(G ) — C(G) is right big with respect to C°(G ). Hence (prop.6.1) the
natural functor

Dg(GK)(CZO(GK)) — D"(C(Gk))

is an equivalence of triangulated categories.
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As the equivalence MZ%(Gg) — CZ°(Gk) is an equivalence of exact categories, it extends
uniquely to an equivalence of triangulated categories

Dy M (Gr)) — Dg () (C7°(Gk)) -

— It is now clear that there is a unique equivalence of triangulated categories
D*(M(Gk)) — D"(C(Gk))
such that the square
D?\A(GK)(MZO(GK)) — DZ(GK)(CZO(GK))

1 1
D"(M(Gk)) — D*(C(Gk))
is commutative and that this equivalence extends the equivalence of the theorem 5.9. O

6.3. The equivalence M<°(Gx) — C<%(Gk). We say that a coherent Ox |G k]-module is co-
effective if all its HN slopes are < 0. We saw (prop.3.14) that F € M(G) is co-effective if and
only if H%(X, F) = 0. The full subcategory of M(Gx) whose objects are co-effective is M<9(G )
and is stable under taking subobjects and extensions.

Any F € M(Gf) as a biggest quotient F<? belonging to M<°(Gx )and the sequence

0—F2' —F—F"—0

is exact.

We say that an almost C)-representation V' is co-effective if, for all W € C*(Gk), we have
Home G,y (VW) = 0. We denote C<%(G ) the full subcategory of C(Gk) whose objects are
co-effective. It is obviously stable undertaking quotients and extensions.

Proposition 6.5. Let V' be an almost Cy,-representation. The following are equivalent

1) V is co-effective,

i) Vi =0,

1) Fy = 0.

If this is the case, then B

Ve=Var=V4r=0.
Proof : The equivalence (i) <=> (ii) results from the universal property of V,}, and (ii) <= (iii) is
trivial. If Vd} =0, we have Vgr = Bqr Qg+ VdJ% =0, hence also V, = 0 as the map V., — Vyg is
. dR

injective and therefore Vg = Vyr/Ve = 0. O

Proposition 6.6. Let V € C(G). The set of subobjects of V in C(Gr) belonging to C<°(G )
has a biggest element V<C and the set of quotients of V in C(Gr) belonging to CZ°(Gk) as a
biggest element V=0, Moreover V<0 (resp. V=) is the kernel (resp. the image) of the natural
map V — Vd";%. The sequence

0—V<l Vv —-Vv20 50
1S exact.
Proof : If V! and V" are subobjects of V belonging to C<%(G ), we see that V' + V" also. Hence
to show the existence of V<" it is enough to show that any increasing sequence
VocWvic...cV,CVyy C...

of subobjects of V' belonging to C<Y(G) is stationary. As the sequence of the integers d(V;,) is
increasing and bounded by d(V'), there exists m € N such that d(V,) = d(V;,,) for all n > m.
For such an n, we have d(V;,4+1/V,) = 0, hence V,,11/V;, € C°(Gk). This implies V,,11 = V,, as,
otherwise, the compositum of the projection of V,, 11 onto V,, with the injective map

Voi1/ Vo — BJR XqQ, Vos1/Va) , v=>1®@w
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would be a non zero morphism from V,,11 to an object of C*°(G).

IV and V' are quotients of V belonging to C=%(G), then the image of V — V' oV also
(as it is a subobject of VeV e C=%(Gk)). Hence to show the existence of V=0 it suffices to
show that any sequence

o=V =V, — ... =V, ¥,

of quotients of V' (belonging to C<°(G)) is stationary. If V, is the kernel of the projection
V — V,, the sequence (V,,),en is a decreasing sequence of objects of C(Gk), hence is stationary
(prop.5.7), therefore the sequence of the V,,’s also.

Set Vo = ker(V — V5). We obviously have V<0 C V; and to show the equality it is enough
to show that Vo € C<%(G k). Otherwise, we could find a non zero morphism f : V% — W with
W € C*®(Gk). Let Vi =ker f and consider the short exact sequence

0—W/W —V/Vi —V/Vh —0

As Vy/Vi injects into W, it belongs to C=°(Gk). As V/Vy injects into V., it also belongs
to C2%(Gk). Therefore, as CZ%(G) is stable under extensions, V/V; € CZ%(Gk). Hence the
sequence

0— (Vo/Vi)gr — (V/Vi)gr — (V/Vo)ir — 0

is exact. As obviously (V/V1)in = (V/Vo)ir = Vi, it contradicts the fact that, as V5/V; is a non
zero object of CZ%(Gk), we have (Vo /Vi) 1, # 0.

Let Vo = im(V — V;%). As the map Vo — Vi is injective, V5 belongs to C=%(G ) and is,
therefore a quotient of V=%, The kernel V3 of the projection V=0 — V5 belongs also to CZ%(G )
(as this category is stable under taking subobjects) and we have an exact sequence in C=°(Gx)

00—V — V20 5V, —0

Therefore the sequence
+ >0,+ +
00— Vi3yr — Vir » Valar — 0

is also exact.
As V29 is a quotient of V, we see that Vd%O’Jr is a quotient of Vng%' But clearly V;rdR = Vng%'

Therefore V7" = Vi, and V1, = 0. As V5 € C29(G), this implies V3 = 0, hence V=0 = V.

The exactness of
0—VLL -V —Vv20 0

is now clear. (]
Remarks 6.7. i) To any V € C(Gk), we just associated the canonical short exact sequence
0—V<l Vv —-Vv20 50
It’s worth to compare with the canonical short exact sequence
0—F—=F—F"—0

associated to any F € M(Gg).

ii) We know that, for any F € M(G), the natural map F=(X) — F(X) is an isomor-
phism.The two previous propositions together imply that, for any V € C(Gg), the natural map
Fv + Fy=o is an isomorphism. In particular, Fy always belongs to MZ%(G ).

It is clear that M<Y(Gk) is an exact subcategory of M(Gk), though C<%(Gk) is an exact
subcategory of C(G).



40 JEAN-MARC FONTAINE

Proposition 6.8. If F € M(Gg), then H (X, F) € C<°(Gk) and the map H' (X, F)
HY (X, F<Y) is an isomorphism.
Moreover, the functor

M=Gk) — C%Gk) , Fr H'(X,F)
is an equivalence of exact categories.

Proof :
If F € M(Gk), we may find a short exact sequence in M(Gr)

0—F —F —F' —0

with 70 € M=%(Gg). As HY(X,FY) = 0, we see that H'(X, F) is the cokernel of H(X, F%) —
H°(X, F'), hence belongs to C(Gk).

We know that H'(X, F) is a quotient of F4r therefore also of Fyg. If f : HY (X, F) — W were a
non zero morphism of C(G ) with W € C*(Gk), the compositum Fyr — H'(X,F) — W would
be a non zero morphism in c> (Gk) and, therefore, would be B;R—linear. As multiplication by ¢ is
invertible in F4r and nilpotent in W, the map must be 0 which implies that H'(X, F) € C<°(Gk).

If A is an object of an abelian category and d € Z, we denote A[d] the bounded complex in A
which is A in degree —d and 0 elsewhere.
Denote

I': D*(M(Gk)) — D*(C(Gk)) (resp. A: D*(C(Gk)) — D*(M(Gk)) )
the functor extending F +— F(X) (resp. V = Fy). If F € M<Y(Gf) and if
0—F —F —F'—0

is as above (observe that 70 € M=2%(Gg) = F' € M=9(Gk)), we see that (with obvious
conventions)

L(F[0) =D(F° = F') = (H'(X, F°) = HO(X, F')) = H'(X, F)[-1]
(as F € M<Y(Gg) and F* € MZ9(G k), the sequence
0— H'(X, 7% — H(X,F') — H'(X,F) —0

is exact).

Let V € C<°(Gk). We can find a short exact sequence in C(G)
0— V' —V—V-—0
with V1 € C29(G ) which implies V° € C=°(Gk). With obvious conventions, we have
AV[-1]) = AV = V) = (Fyo — Fyr) = FJ0]
with F the kernel of Fyjo — Fyu (as V € C<%(Gk), we have V5 = V. = 0 which implies that
Fvo = (Vg , Vo o) — Fyr = (Vg , Vil o)

is an epimorphism).
We have a commutative diagramme

0 0 0
3 \ 3
0 — HYYX,F) — V° — V!
\: 1 1
0 —  Fin — Vi — v
| \ \
0 — Fe — VP — V!

whose rows and columns are exact. The injectivity of V? — V1 implies that H°(X,F) = 0, i.e.
that F € M<9(Gg).
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Finally, we see that, if we view
— M<%(Gk) as the full subcategory of D?(M(Gx)) whose objects are of the form F[0] with

F € M<9(Gk),

— C<%(G) as the full subcategory of D’(C(Gk)) whose objects are of the form V[—1] with
Ve C<O(GK),

then I induces the required equivalence of categories. O

6.4. t-Structures and hearts.
The functors

I': D*(M(Gk)) — D*(C(Gk)) and A : D'(C(Gk)) — D*(M(Gk))
are as in the proof of the previous proposition.

Let (DJSV?,D%/?) be the canonical t-structure on D®(M(Gk)): we see that DJSV? (resp. D/ZV?)
is the full subcategory of DY(M(Gf)) whose objects are those F* such that H'(F*) = 0 for
i >0 (resp. i < 0). Therefore if we denote I‘(Df/?) (resp. I‘(D/ZV?)) the essential image under T’
of DJSV? (resp. D/ZV?)7 we see that (I‘(DJSV?),I‘(D/ZV?)) is a t-structure on D*(C(Gk)) whose heart
I‘(Df/?) N I‘(D/ZV?) is an abelian category equivalent via A to M(G ).

Similarly, let (D5, DZ°) the canonical t-structure on D’(C(Gg)): hence D5° (resp . DZ°)
is the full subcategory of D*(CGx) whose objects are those V* such that H'(V®) = 0 for i > 0
(resp. @ < 0). Therefore if we denote A(DCSO) (resp. A(DCZO)) the essential image under A of
DZ° (resp. DZ'), we see that (A(DZ"), A(DZ")) is a t-structure on D*(M(Gk)) whose heart
A(DCSO) N A(DCZO) is an abelian category equivalent via I' to C(G).

Proposition 6.9. i) I‘(D/ZV?) (resp. I‘(Di?)) is the full subcategory of D*(C(Gk)) whose objects
are those V*’s such that H"(V®) =0 for r < 0 and H°(V*) € C=°(Gk) (resp. H"(V*®) =0 for
r>1 and H'(V*®) € C<°(Gk)).

ii) A(DCZO) (resp. A(DCSO)) is the full subcategory of D*(M(Gc)) whose objects are those F*’s
such that H"(F®) =0 for r < —1 and H~Y(F*) € M<°(Gxk) (resp. H"(F*) =0 for r > 0 and
HO(F*) e M=%(Gk)).

Proof: Let’s prove that the description of I‘(D/ZV?) is correct (the proof of the three other statements
are similar):
Any object F of DJZV? can be represented by a bounded complex F* such that ¢ = 0 for i < 0.
From the fact that, for any F € M(Gk), one can find a short exact sequence
0—F —Fo—F1 —0

with Fo, F1 € M=Z%(G k) and the fact that any quotient, in M(G ), of an object of MZ%(G ) still
belongs to M=%(G ), one easily deduces that the complex F* is quasi-isomorphic to a bounded
complex F§ with F§ = 0 for r < 0 and F§ € M=%Gk) for all » € N. Therefore I'(E) is
represented by the bounded complex

e — 00— — 0= FX) — Fo(X) — .. — F(X) — FTHX) — ..
whose all term belong to C=%(Gk). In particular, as C=°(G) is stable under taking subobjects
in C(Gg), we see that I'(F) belongs to the full subcategory DCZB\/( of D*(C(Gx)) whose objects
are those Vs such that H" (V) = 0 for » < 0 and H°(V) € C=2°(Gk).

Conversely, any object V. of DCZSM(G k) can be represented by a complex Vi such that Vj =0
for r < 0 and that the kernel of V° — V1 belongs to CZ°(Gf). Using the fact that, for any
V € C(Gk) one can find a short exact sequence in C(G)

0—Vi— Vo —V—0

with V1,V € C2%(G k), one easily deduces that the complex V is quasi-isomorphic to a bounded
complex V*® with V" =0 for r < 0 and V" € CZ9(G) for r > 0.
We have a short exact sequence

0— (Vi) — V?—av® —o0
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The inclusion dV° C V1 implies that dV° € C20(Gk). As V), = H°(V*), we have (V0)4—o €
C=%(Gk). We know that C=9(G), as a full subcategory of C(Gk), is stable under extension.
Therefore VY € C=°(Gk).

As all the V"™’s belong to C=9(G ), we see that A(V) is represented by the bounded complex

i —™ 00— ... —= 00— Fyo — Fy1 — ... — Fyr —> Fyrer —> ...

hence belong to D/ZV?. O

6.5. Torsion pairs in M(Gk) and in C(Gk).

The langage of torsion pairs (cf. [HRS], chap.1) is very convenient to give an explicite de-
scription of the way to go from M(Gk) to C(Gg) and conversely. The results of this subsection
and of the next one are independent of those of the previous one and give an other proof of the
description of the heart of the ¢-structures we considered (prop.6.9).

Recall (loc. cit.) that a torsion pair in an abelian category A is a pair ¢ = (AT, A7) of full
subcategories of A containing 0 such that:

(1) If B is an object of AT and C is an object of A~, then Hom 4(B,C) = 0,
(2) for any object A of A, there is a short exact sequence in A
0— AT —A—A4" —0
with AT € Ob(AT) and A~ € Ob(A™).
Condition (1) implies that the exact sequence of (2) is unique up to a unique isomorphism and
that the correspondences A — AT and A — A~ are functorial.

We define the heart A? of t as the full subcateogry of the derived category D®(.A) whose objects
are those A® such that

H™'(A*) € Ob(A7), H°(A®) € Ob(A"), H"(A®) =0ifn ¢ {-1,0}.

Proposition 6.10. Let t = (AT, A7) be a torsion pair in an abelian category A. Consider the
full subcategories D=0 = D°(A) and D20 = DZ°(A) of D = D(A) defined by
(1) Ob(D=") = {A® € Ob(D"(A)) | H'(A®*) € Ob(AT) and H"(A®*) =0 for all n > 1},
(2) Ob(D=%) = {A® € Ob(D(A)) | H°(A®*) € Ob(A~) and H"(A®*) =0 for all n < 0}.
Then (D=°, D29 is a t-structure on D whose heart is A’.

Proof : To show that (D2° D<) is a t-structure, we have to check (cf. [KS], def. 10.1.1) that
(with standard notations)

(1) D=1 ¢ D=0 and D>! C DY,

(2) Homp(X,Y) =0 for X € Ob(D=") and Y € Ob(D=1),

(3) For any X € Ob(D), there exists a distinguished triangle Xo — X — X3 - in D

with Xo € Ob(D2%) and X, € Ob(D>).
(1) is obvious. (2) is clear as, if f: X — Y with X € Ob(D=%) and Y € Ob(D=1), we have
H"(f) =0forn <0 (as H*(Y) = 0), forn > 1 (as H"(X) = 0) and for n = 1 (as H(X) €
Ob(A*) and H'(Y) € Ob(A™)). Let’s check (3): we have H'(X) = X} _/dX°. Let U =
(H'(X))" where H'(X) is the inverse image of H'(X) in X]_,. We have a short exact sequence
of complexes

0—Xg—X—>X7 —0

where
X" ifn <1, 0 ifn <1,
Xy=< U ifn=1, and X7=XYU ifn=1,
0 ifn>1 X" ifn>1

which gives the desired distinguished triangle.
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We have A* = DN D20 and the last assertion is obvious. O
In particular, A’ is an abelian category ([KS], prop. 10.1.11).

Denote A}, the full subcategory of A" whose objects are those A® such that A™ = 0 for n ¢ {0,1}.
To give an object A® of A} amounts to give a morphism

dy=d% + A° — A

of A such that ker(d) is an object of A~ and coker (d4) an object of A™.
The inclusion functor A4 — A’ is obviously an equivalence of categories: there is even a
canonical quasi-inverse
A — AL
it sends A°® to A7 /dA™? — (A%)4—0.

We have an obvious functor
AT = AL A (00— A) .

It is easy to check that this functor is fully faithful and we denote Ag’f its essential image.
Similarly, it is easy to check that the functor

1yt AT AL A (A —0)

is fully faithful and we denote A6’+ its essential image.
It is also easy to check that ¢ = (A", A7) is a torsion pair in Aj.

Proposition 6.11. i) t = (M=°(Gg), M<%(Gk)) is a torsion pair in M(Gg).
i) t' = (C<°(G),CZ%(Gk)) is a torsion pair in C(Gk).

Proof : 1) We already know (§6.3) that, for any object F of M(G k), we have a canonical exact
sequence
0—F0—F—F"—0
with 720 € MZ0(Gf) and F<* € M<(Gk).
If f:F — G is a morphism of M(G), it sends F=° to G=°. Therefore if F € M=%(G)
(= F2'=F)and if G € M<(Gk) (<= G=°=0), we have f = 0.
ii) We already know (prop.6.6) that, for any object V of C(Gk), we have a canonical exact
sequence
0—V—V—V2—0
with V<0 € C<%(Gk) and V=0 € CZ°(Gk). Let f : Vi — Vo be a morphism of C(Gf) with
Vi € C<9(Gk) and Vy € C=%(Gk). We can find a monomorphism Vo — W with W € C®(Gk).
As any morphism from V; to W is 0, the compositum V3 — Vo — W is 0, hence f = 0. O

Denote Ar' (M (Gx)) the full subcategory of the categories of arrows of MZ%(Gx ) whose objects
are those dr : F® — F' such that kerdr € M<°(Gk). Denote (M(Gk))h, the full subcategory
of (M(Gk))§ whose objects are of the form

dr : FO = F!

with % and F! objects of MZ°(Gx).

As MZ%(Gy) is stable by taking quotients, (M(Gx))h, and Ar*(M(Gk)) have the same ob-
jects. With obvious conventions, (M(Gf))f, is the category deduced from Ar'(M(Gg)) by
working up to homotopies and inverting quasi-isomorphisms.

Proposition 6.12. The inclusion functor
(M(Gx))oo — (M(Gx))p

is an equivalence of categories.
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Proof : Tt means that any object dr : F¥ — F! of (M(Gk))} is quasi-isomorphic to an object of
(M(Gk))Epy- Indeed, we may find a monomorphism F° — G° of M(Gg) with G° € M=%(Gk).
Set

G'=¢"e Fo F !
We have a short exact sequence

0-—G —» G — cokerdr — 0

where ?0 is a quotient of GY. Then coker dr € M=°(Gk) by assumption and GO also because
MZ0(G) is stable under taking quotients. As it is also stable under extensions, G! also belongs to
MZ9(G ). Hence, G° — G' is an object of (M (G ))§, which is quasi-isomorphic to F° — F!. [

Similarly, denote Ar’ (C(Gk)) the full subcategory of the categories of arrows of C=°(Gk)
whose objects are those dy : VO — V! such that cokerdy € C<°(Gg). Denote (C(Gx )b, the full
subcategory of (C(Gx))5 whose objects are of the form

dy VO = V!
with V0 and V1 objects of CZ%(Gk).

As C29(G ) is stable by taking subobjects, (C(Gx))h, and Ar? (C(Gk)) have the same objects.

With obvious conventions, (C(Gx))b, is the category deduced from Art,(C (Gk)) by working up
to homotopies and inverting quasi-isomorphisms.

Proposition 6.13. The inclusion functor
(C(GK)oo — (C(GK))
is an equivalence of categories.

Proof : The proof is entirely similar to the proof of the previous proposition: It means that any
object dy : VO — V1 of (C(Gg)l is quasi-isomorphic to an object of (C(Gx))5. Indeed, we may
find an epimorphism W1 — V1 of C(G¥) with V! € CZ%(Gk). Set

WO =W Xy VV1
We have a short exact sequence
0 — kerdy — W° — W' —0

where W’ is a subobject of G°. Then kerdy € CZ°(Gf) by assumption and W' also because
CZ%(G) is stable under taking subobjects. As it is also stable under extensions, W9 also be-
longs to C29(Gg). Hence, VO — V! is an object of (C(Gx))h, which is quasi-isomorphic to
VO Vi (]

Theorem 6.14. i) The functor
[: A (M(Gg)) — C(Gk) , (dr: F® — F') s coker (FO(X) — F' (X))
factors uniquely through a functor

I M(GK)tOO — C(GK)

and I' is an equivalence of categories.
ii) The functor

3 : Artl(C(GK)) — M(GK) s (dv : VO — Vl) — ker(]-'vo — ]:Vl)
factors uniquely through a functor
A C(Gg)by — M(Gk)

and A is an equivalence of categories.
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Proof : Let’s prove (i). Set M = Ar'(M(Gg)) and M = M(Gg)b,. If dr = F° — Flis an
object of one of these categories we denote it also dr or F° — F!.

We see that M has an obvious structure of an exact category and that the natural functor
M= M is exact. .

~ Let M* (resp. M™) the full subcategory of M (resp. M) whose objects are those dz’s
such that coker dz = 0. For such an object, as kerdr € M<°(Gf) though F° and F*! belong to
MZ%(G), the long exact sequence of coherent cohomology associated to the exact sequence of
M(Gk)

0 — kerdr — F* — F' — 0

is reduced to
0 — FUX) — FYX) — H'Y(X,kerdr) — 0

Granted to the proposition 6.8, this shows that the restriction of T to M+ factors through a
functor

' Mt - Cc<%Gg)
which is an equivalence of categories.
— Let M~ (resp. M) the full subcategory of M (resp. M) whose objects are those dr such

that F° = 0. The natural functor M~ — M~ is an equivalence of categories and, granted to
the theorem 5.9, the restriction of I' to M™ factors through an equivalence of categories

M — CZO(GK)
— For any dr € M , we have a canonical short exact sequence

0 —dr, —dr —dr_  —0

with dr, = (F* = im dr) € M* and dr_ = 0—FY e M~ and this construction is functorial.
Moreover, we see that the sequence

0 — [(dr,) — T(dr) — T(dr ) — 0

is exact.

From these facts, we see that T factors through a functor I' : M — C (Gk) and that this functor
is faithful. It is also straightforward to check that it is exact.

We are left to check the essential surjectivity: Let V € C(Gk). We can find a short exact
sequence in C(G)

0—U-—V -V -0

with U € C%(Gx) and V € C2°(Gk). Let F~ be the kernel of the morphism Fyy — Fp of M(Gk).
As the functor global section is left exact, we have an exact sequence

0— F (X) — Fu(X) — Fp(X)

But Fy(X) =U, Fp(X) = V and the map U — V is the given map which is injective. Therefore
F~(X) = 0 which means that 7~ € M<°(Gk) and

d]: = (]:U — ]'—‘7)

is an object of M. Clearly T'(dx) = V, i.e. T is essentially surjective.
The proof of (ii) is entirely similar and we leave it to the reader. (]

Remark 6.15. The category M(Gxk)t, is a full subcategory of D’(M(G)) though C(G)
is a full subcategory of D*(C(Gk)). The functor I' of the previous theorem is the restriction
to M(Gxk)t, of the functor T' : D*(M(Gk)) — D(C(Gk)) considered in §6.4. Similarly, the
functor A of the previous theorem is the restriction to C(Gg )b, of the functor A : D*(C(Gk)) —
DY(M(G)) considered in §6.4.
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