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Vector bundles and p-adic Galois representations

Laurent Fargues and Jean-Marc Fontaine

Abstract. Let F be a perfect field of characteristic p > 0 complete with
respect to a non trivial absolute value. Let E be a non archimedean locally
compact field whose residue field is contained in F . To these data, we associate
a “complete regular curve” X = XF,E defined over E. If F is an algebraic
closure of F and H = Gal(F/F ), there is an equivalence of categories between
continuous finite dimensional E-linear representations of H and semistable
vector bundles over X of slope 0. To construct X we first construct the ring
B of “rigid analytic functions of the variable π on the punctured unit disk
{z ∈ F | 0 < |z| < 1}”.

Let C be the p-adic completion of an algebraic closure K of a p-adic field
K. A classical construction from p-adic Hodge theory associates to C a field
F = F (C) as above and the group GK acts on the curve X = XF (C),Qp

. We
study GK -equivariant vector bundles over X and classify those which are “de
Rham”. The two main theorems about p-adic de Rham representations are
recovered by considering the special case of semistable vector bundles of slope
0. This paper is a survey. Details and proofs will appear elsewhere.

1. Curves and vector bundles

1.1. General conventions and notations. If R is a commutative ring and
M1, M2 are R-modules, we denote by LR(M1, M2) the R-module of R-linear maps
f : M1 → M2.

If L is a field equipped with a non archimedean absolute value | | (or a valuation
v), we denote OL = {x ∈ L| | |x| ≤ 1} (or v(x) ≥ 0}) the corresponding valuation
ring, mL the maximal ideal of OL and kL = OL/mL the residue field.

As usual, if X is a noetherian scheme, we view a vector bundle over X as a
locally free coherent OX -module.

If a group G acts on the left on a noetherian scheme X, an OX-representation
of G (resp. a G-equivariant vector bundle over X) is a coherent OX -module (resp.
a vector bundle) F equipped with a semi-linear action of G in the following sense:

• for all g ∈ G, if g : X
∼−→ X is the action of g on X, one is given an

isomorphism
cg : g∗F ∼−→ F ,
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• the following cocyle condition is satisfied

cg2 ◦ g∗
2cg1 = cg1g2 , g1, g2 ∈ G

via the identification g∗
2(g∗

1F) = (g1g2)∗F .
If X = Spec(B) is affine, an OX -representation of G is nothing else than a

finite type B-module equipped with a semi-linear left action of G.

In this paper, we use freely the formalism of tensor categories (for which we
refer to [DM82]). For instance, if G is a group acting on a noetherian scheme
X, equipped with the tensor product of the underlying OX -modules, the category
RepOX

(G) of OX -representations of G is an abelian tensor category, though the full
sub-category BundX(G) of G-equivariant vector bundles is a rigid additive tensor
category. If X is a smooth geometrically connected projective curve over a perfect
field E, the full subcategory Bund0

X(G) of G-equivariant vector bundles which are
semistable of slope 0 is a tannakian E-linear category.

1.2. Complete regular curves. A regular curve X is a separated integral
noetherian regular scheme of dimension 1. In other words, X is a separated
connected scheme obtained by gluing a finite number of spectra of Dedekind rings.

Let X be a regular curve, K = OX,η its function field (i.e. the local ring at the
generic point η), |X| the set of closed point of X. For any x ∈ |X|, let vx be the
unique discrete valuation of K such that

vx(K∗) = Z and OX,x =
{
f ∈ K | vx(f) ≥ 0

}
.

The field K, the set of closed points |X| and the collection of valuations
(vx)x∈|X| on K determine completely the curve X:

i) As a set, the underlying topological space is the disjoint union of |X| and of
a set consisting of a single element η.

ii) The non empty open subsets are the complements of the finite subsets of
|X|. If U is one of them,

Γ(U,OX) =
{
f ∈ K | vx(f) ≥ 0 for all x ∈ U ∩ |X|

}
.

If X is a regular curve, the group Div(X) of Weil divisors of X is the free
abelian group generated by the [x]’s with x ∈ |X|. If f ∈ K∗, the divisor of f is

div(f) =
∑

x∈|X|

vx(f)[x] .

If X is a regular curve, a coherent OX -module is a vector bundle if and only if
it is torsion free.

A complete regular curve is a pair (X, deg) consisting of a regular curve X and
a degree map

deg : |X| → N>0

such that, for any f ∈ K∗,

(1) deg(div(f)) =
∑

x∈|X|

vx(f) deg(x) = 0 .

If X is a complete regular curve, then H0(X, OX) is a field. We call it the field
of definition of X.
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Remark. Equipped with the usual definition of the degree, a smooth projective
curve over a field is a complete regular curve. Its function field is finitely generated
over its field of definition. It won’t be the case for the curves we are going to
construct.

Let X be a complete regular curve. Let F be a coherent OX -module. The rank
of F is the dimension of its generic fiber Fη over the function field. If r is the rank
of F , choose a vector bundle E isomorphic to Or

X whose generic fiber Eη is equal to
Fη. For each closed point x ∈ |X|, let F ′

x (resp. F ′′
x ) the kernel (resp. the image) of

the natural map Fx → Fη. We set

lgx(F/E) = lgx(F ′
x) + lgx(F ′′

x /Ex)

where, if M is any OX,x-module of finite length, lgx(M) is its length and

lgx(F ′′
x /Ex) = lgx((Ex + F ′′

x )/Ex) − lgx((Ex + F ′′
x )/F ′′

x ) .

We have lgx(F/E) = 0 for almost all x. We define the degree of F

deg(F) =
∑

x∈|X|

lgx(F/E). deg(x) .

Granting to (1), it is independent of the choice of E . The degree may also be defined
by:

deg(F) = deg(Ftor) + deg(det(F/Ftor))
where

• Ftor is the torsion part of F , a finite direct sum of skyscrapers sheaves of
finite length OX,x-modules, x ∈ |X|,

• deg(Ftor) =
∑

x∈|X| lgx(Fx). deg(x),
• if L is a line bundle set deg(L) = deg(div(s)) where s is any non-zero

meromorphic section of L, div(s) being the Weil divisor associated to s,
• det(F/Ftor) is the line bundle

∧rank(F)(F/Ftor).
The point is that, since X is complete, the degree function on line bundles

deg : Div(X) −→ Z
factorizes through the group of principal divisors to give a degree function

deg : Div(X)/∼ = Pic(X) −→ Z.

If F is a non-zero coherent OX -module we define the slope of F as

µ(F) = deg(F)/rank(F) ∈ Q ∪ {+∞}
(we have µ(F ) = +∞ if and only if F is torsion).

An OX -module F is semistable (resp. stable) if µ(F ′) ≤ µ(F) (resp. if F is
non-zero and if µ(F ′) < µ(F)) for any proper OX -submodule F ′. A non-zero OX -
module is semistable of slope +∞ if and only if it is a torsion module.

The Harder-Narasimhan theorem holds:

Theorem 1.1. Let F be a non-zero coherent OX-module. There is a unique
filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fi−1 ⊂ Fi ⊂ . . . ⊂ Fm−1 ⊂ Fm = F
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by OX-submodules with Fi/Fi−1 != 0, semistable, and

µ(F1/F0) > µ(F2/F1) > . . . > µ(Fm/Fm−1) .

Moreover, for each λ ∈ Q∪{+∞}, the full sub-category Bundλ
X of the category

of coherent OX-modules whose objects are those which are semistable of slope λ is
an abelian E-linear category.

We see that, F is a vector bundle if and only if µ(F1/F0) != +∞. In this case,
the Fi’s are strict vector subbundles, i.e. the quotients F/Fi’s are torsion free,
hence also vector bundles. If, instead, the torsion sub-module Ftor is not 0, then
Ftor = F1.

2. Bounded analytic functions

2.1. The field EF,E. We fix a non archimedean locally compact field E. We
denote by p the characteristic of kE and q the number of elements of kE . We denote
by vE the valuation of E normalized by vE(E∗) = Z.

Let F be any perfect field containing kE . We denote by EF,E the unique (up
to a unique isomorphism) field extension of E, complete with respect to a discrete
valuation v extending vE such that

i) v(E∗
F,E) = vE(E∗) = Z,

ii) F is the residue field of EF,E .

There is a unique section of the projection OEF,E → F which is multiplicative.
We denote it

a &→ [a] .

If we choose a uniformizing parameter π of E, any element f ∈ EF,E may be
written uniquely

f =
∑

n#−∞
[an]πn with the an ∈ F ,

and f ∈ E if and only if all the an’s are in kE .

We see that, if E is of characteristic p, the map a &→ [a] is an homomorphism
of rings. If we use it to identify F with a subfield of E , i.e. if we set [a] = a for all
a ∈ F , we get

E = kE((π)) and EF,E = F ((π)) .

Otherwise, E is a finite extension of Qp. If W (F ) (resp. W (kE) ) is the ring of Witt
vectors with coefficients in F (resp. kE), we see that EF,E can be identified with
E ⊗W (kE) W (F ) and that, for all a ∈ F ,

[a] = 1 ⊗ (a, 0, 0, . . . , 0, . . .) .

2.2. Three sub-rings of EF,E. We now fix the perfect field F containing kE

and we assume F to be complete for a given non trivial absolute value | |. Observe
that, as F is perfect, the valuation group is p-divisible, hence the valuation is not
discrete.

If there is no risk of confusion, we set E = EF,E . We still choose a uniformizing
parameter π of E. The following subsets of E

Bb = Bb
F,E =

{ ∑

n#−∞
[an]πn

∣∣ there exists C such that |an| ≤ C, ∀n
}
,
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Bb,+ = Bb,+
F,E =

{ ∑

n!−∞
[an]πn

∣∣ an ∈ OF , ∀n
}

and A = AF,E =
{ +∞∑

n=0

[an]πn
∣∣an ∈ OF , ∀n

}

are OE-subalgebras of E and are independent of π. If a is any non-zero element of
the maximal ideal mF of OF , we have

Bb,+ = A[ 1
π ] and Bb = Bb,+[ 1

[a]

]
.

When char(E) = p, the ring Bb may be viewed as the ring of rigid analytic
functions

f : ∆ =
{
z ∈ F | 0 < |z| < 1} → F

which are such that πnf is analytic and bounded on
{
z ∈ F | 0 ≤ |z| < 1}, for

n % 0.

2.3. Prime ideals of finite degree. We set E0 = EkF ,E .
The projection OF → kF , which we denote as a &→ ã, induces an augmentation

map
ε : Bb,+ → E0 sending

∑

n!−∞
[an]πn to

∑

n!−∞
[ãn]πn .

We have ε(A) = OE0 . We say that ξ ∈ A is primitive if ξ '∈ πA and ε(ξ) '= 0. The
degree of a primitive element ξ is

deg(ξ) = vπ(ε(ξ)) ∈ N .

We see that A is a local ring whose invertible elements are exactly the primitive
elements of degree 0. A primitive element ξ ∈ A is irreducible if deg(ξ) > 0 and
ξ can’t be written as the product of two primitive elements of degree > 0. In
particular, any primitive element of degree 1 is irreducible.

We say that two primitive irreducible elements ξ and ξ′ are associated (we
write ξ ∼ ξ′) if there exists η primitive of degree 0 such that ξ′ = ξη. This is an
equivalence relation and we set

|YF,E | = |Y | =
{
primitive irreducible elements

}
/ ∼ .

If y ∈ |Y | is the class of ξ, we set deg(y) = deg(ξ).

We say that an ideal a of A, Bb,+ or Bb is of finite degree if it is a principal
ideal which is generated by a primitive element ξ of A. The degree of such an a is
the degree of ξ.

Proposition 2.3.1. Let y ∈ |Y | be the class of a primitive irreducible element
ξ. The ideal py (resp. pb,+

y , resp. pb
y) of A (resp. Bb,+, resp. Bb) generated by ξ is

prime and depends only on y. The map

y &→ py ( resp. y &→ pb,+
y , resp. y &→ pb

y )

induces a bijection between |Y | and the set of prime ideals of finite degree of A
(resp. Bb,+, resp. Bb).

To describe what are the quotients of these rings by a prime ideal of finite
degree, it is convenient to introduce the notion of p-perfect field.
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2.4. p-perfect fields. A p-perfect field is a field L complete with respect
to a non trivial non archimedean absolute value | | whose residue field kL is of
characteristic p and which is such that the endomorphism x !→ xp of OL/pOL is
surjective.

If L is the fraction field of a complete discrete valuation ring, we see that L is
a p-perfect field if and only if kL is perfect of characteristic p and mL is generated
by p.

A strictly p-perfect field is a p-perfect field L such that OL is not a discrete
valuation ring.

Let L be a field complete with respect to a non trivial non archimedean absolute
value, with char(kL) = p and OL not a discrete valuation ring. It is easy to see that

– if a is any element of the maximal ideal mL of OL such that p ∈ (a), then L
is strictly p-perfect if and only if the map

OL/(a) !→ OL/(a) sending x to xp

is onto,
– if L is of characteristic p, L is strictly p-perfect if and only L is perfect.

Let L be a p-perfect field. We consider the set

F (L) =
{
x = (x(n))n∈N | x(n) ∈ L and (x(n+1))p = x(n)} .

If x, y ∈ F (L), we set

(x + y)(n) = lim
m"→+∞

(x(n+m) + y(n+m))pm

, (xy)(n) = x(n)y(n)

(it is easy to see that the limit above exists).

Proposition 2.4.1. Let L be a p-perfect field. Then F (L) is a perfect field of
characteristic p, complete with respect to the absolute value | | defined by |x| = |x(0)|.
Moreover

i) If a ⊂ mL is a finite type (i.e. principal) ideal of OL containing p and if
u !→ ũ denote the projection OL → OL/a, the map

OF (L) → lim
←−
n∈N

OL/a

(with transition maps v !→ vp) sending (x(n))n∈N to (x̃(n))n∈N is an isomorphism
of topological rings.

ii) If L contains E as a closed subfield, the map

θL,E : Bb
F (L),E → L

sending
∑

n'−∞[an]πn to
∑

n'−∞ a(0)
n πn is a surjective homomorphism of E-

algebras (independent of the choice of π). Moreover,

(1) If OL is a discrete valuation ring, F (L) is the residue field of L equipped
with the trivial valuation and θL,E is an isomorphism.

(2) If L is strictly p-perfect, we have |F (L)| = |L| and the kernel of θL,E is a
prime ideal of Bb

F (L),E of degree 1. We have

θL,E(Bb,+
F (L),E) = L and θL,E(AF (L),E) = OL .
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Remarks. (1) If L is of characteristic p, the map x !→ x(0) is a canonical
isomorphism of the field F (L) onto the residue field of L if L is not strictly
p-perfect and onto L otherwise. Then, all the results are obvious. If L is
strictly p-perfect and if λ is the unique element of F (L) such that λ(0) = π,
then π − [λ] is a generator of ker θL,E .

(2) If L is strictly perfect of characteristic 0, it’s not always true that there
exists λ ∈ F (L) such that π − [λ] is a generator of ker θL,E (which is
equivalent to saying that λ(0) = π). This is true if F is algebraically
closed, but such a λ is not unique !

All the ideals of degree 1 are obtained by this construction: Let L be the set
of isomorphism classes of pairs (L, ι) where L is a p-perfect field containing E
as a closed subfield and ι : F (L) → F is an isomorphism of topological fields.
If (L, ι) is such a pair, let θL : Bb → L be the homomorphism deduced from
θL,E : Bb

F (L),E → L by transport de structure.

Proposition 2.4.2. The map L → {ideals of degree 1} sending the class of
(L, ι) to the kernel of θL is bijective.

2.5. Algebraic extensions of strictly p-perfect fields.

Proposition 2.5.1. Let L0 be a strictly p-perfect field containing E as a closed
subfield, F0 = F (L0) and m the kernel of the map θL0,E : Bb

F0,E → L0.
i) If L is a finite extension of L0, then L is strictly p-perfect and F (L) is a

finite extension of F (L0) of the same degree.
ii) If F is a finite extension of F0, the ideal Bb

F,Em of Bb
F,E is maximal and the

quotient of Bb
F,E by this ideal is a finite extension of L0 of the same degree.

The functor L → F (L) is an equivalence of categories between finite extensions
of L0 and finite extensions of F0. The functor F !→ Bb

F,E/Bb
F,Em is a quasi-inverse.

Remark. This equivalence extends in an obvious way to étale algebras. Hence,
we see that the small étale site of L0 can be identified with the small étale site of
F0.

2.6. Finite divisors. We can now give a complete description of the prime
ideals of finite degree.

Proposition 2.6.1. If F is algebraically closed, a primitive element is irre-
ducible if and only if it is of degree 1.

Proposition 2.6.2. Let y ∈ |Y |, d = deg(y), ξ =
∑+∞

n=0[cn]πn a primitive
element lifting y, Ly = Bb/pb

y and θy : Bb → Ly the projection. We set ||y|| =
|c0|1/d. Then:

i) The ideals pb
y and pb,+

y are maximal and

Bb,+/pb,+
y = Ly .

ii) There is a unique absolute value | |y on the field Ly such that |θy([a])|y = |a|
for all a ∈ F . Equipped with this absolute value, Ly is a p-perfect field containing
E as a closed subfield. Moreover |π|y = ||y||.

iii) The map F → F (Ly) sending a to (θy([ap−n
])n∈N is a continuous homomor-

phism of topological fields identifying F (Ly) with a finite extension of F of degree
d.

v) The ring A/py is a OE-subalgebra of OLy whose fraction field is Ly.
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We define the group Divf (Y ) of finite divisors of Y as the free abelian group
with basis the [y]’s for y ∈ |Y |. Hence any finite divisor may be written uniquely

D =
∑

y∈|Y |

ny[y] with the ny ∈ Z, almost all 0 .

The degree of such a D is
∑

y∈|Y | ny deg(y).
We denote Div+

f (Y ) the monöıd of finite effective divisors, i.e. of divisors
D =

∑
ny[y] with ny ≥ 0 for all y. From the previous proposition, one deduces:

Corollary 2.6.1. The map from Div+
f (Y ) to the multiplicative monöıd of

ideals of finite degree of A (resp. Bb,+, resp. Bb) sending
∑

y∈|Y | ny[y] onto∏
y∈|Y |(py)ny (resp.

∏
y∈|Y |(p

b,+
y )ny , resp.

∏
y∈|Y |(p

b
y)ny) is an isomorphism of

monöıds.

3. The rings of rigid analytic functions

3.1. Norms and completions. For f =
∑

n"−∞[an]πn ∈ Bb, and 0 < ρ <
1, we define

|f |ρ = max
n∈Z

|an|ρn .

We also set

|f |0 = q−r if r is the smallest integer such that ar #= 0, and |f |1 = sup
n∈Z

|an|.

For any ρ ∈ [0, 1], the map f $→ |f |ρ is a multiplicative norm on Bb, i.e. we
have

|f + g|ρ ≤ max{|f |ρ, |g|ρ} , |fg|ρ = |f |ρ|g|ρ and |f |ρ = 0 ⇐⇒ f = 0 .

For any non empty interval I ⊂ [0, 1], we denote

BI = BF,E,I

the completion of Bb for the family of the | |ρ’s for ρ ∈ I 1.

Proposition 3.1.1. Let I ⊂ [0, 1] be a non empty interval. For any ρ ∈ I, | |ρ
is a norm on BI (i.e., if b ∈ BI is #= 0, then |b|ρ #= 0). Moreover:

i) If J ⊂ I is an interval, the induced map

BI → BJ

is a continuous injective map.
ii) If I = [ρ1, ρ2] is a non empty closed interval contained in [0, 1[, then BI is

a Banach E-algebra: if we set

Ab
F,E,I = Ab

I =
{
f ∈ Bb,+ | |f |ρ1 ≤ 1 and |f |ρ2 ≤ 1

}
,

then BI = AI [1/π] where AI = AF,E,I is the π-adic completion of Ab
I .

1Say that a sequence (fn)n∈N is a Cauchy sequence over the interval I if for any ρ ∈ I and
any ε > 0, there exists N such that |fm − fn|ρ < ε if m and n are ≥ N . Say that two Cauchy
sequences (fn)n∈N and (gn)n∈N are equivalent if, for any ρ ∈ I and any ε > 0, there exists N
such that |fn − gn|ρ < ε if n ≥ N . An element of BF,E,I may be viewed as an equivalence class
of Cauchy sequences over I.
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iii) If I ⊂ [0, 1[ is not restricted to [0] = {0}, then BI is a Fréchet-E-algebra
(inverse limit of Banach E-algebras): If II is the set of closed intervals contained
in I, the map

BI → lim
←−
J∈II

BJ

is a homeomorphism of topological rings.
iv) We have B[0,1] = Bb and B[0] = E.

In what follow, if J ⊂ I, we use the injective map BI → BJ to identify BI with
a subring of BJ .

If I ⊂ [0, 1[ contains 0 then BI can be identified with a subring of E :

BI =
{ ∑

n$−∞
[an]πn ∈ E | ∀ ρ ∈ I, |an|ρn → 0 for n → +∞

}
.

If I ⊂ [0, 1[ contains 0, we set

B+
F,E,I = B+

I =
{
b ∈ BI | |b|0 ≤ 1

}
= BI ∩ OE .

Similarly if I ⊂ [0, 1] contains 1, we set

B+
I =

{
b ∈ BI | |b|1 ≤ 1

}
.

We have

B+
[0,1] = Bb,+ and A = Bb,+ ∩ OE =

{
b ∈ Bb = B[0,1] | |b|0 ≤ 1 and |b|1 ≤ 1

}

We also write
B+

F,E = B+ = B+
]0,1] and BF,E = B = B]0,1[ .

If char(E) = p and if I ⊂]0, 1[ the ring BI can be identified with the ring of
rigid analytic functions

f :
{
z ∈ F with |z| ∈ I

}
→ F .

In particular B := B]0,1[ is the ring of rigid analytic functions on the punctured
open unit disk.

Similarly, if char(E) = p and if 0 ∈ I ⊂ [0, 1[, then B+
I may be identified with

the ring of analytic functions

f :
{
z ∈ F with |z| ∈ I

}
→ F ,

though BI is the ring of meromorphic rigid analytic functions in the same range,
with no pole away from 0.

Remark. Let I ⊂]0, 1[. Let (an)n∈Z be elements in F such that, for all ρ ∈ I,
we have |an|ρn → 0 whenever n → +∞ and also when n → −∞. Then the series

∑

n∈Z
[an]πn

converges (in both directions) to an element of BI . If char(E) = p, any element of
BI may be written uniquely like that. If char(E) = 0, we don’t know if it is always
possible and, when it is possible, we don’t know if this writing is unique (but it
seems unlikely in general).
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3.2. Newton polygons. Let v the valuation of F normalized by |a| = q−v(a)

for all a ∈ F . Let I ⊂ [0, 1] be an interval containing 0. The map

(an)n∈Z #−→
∑

n∈Z
[an]πn

is a bijection between the set of sequences (an)n∈Z of elements of F such that
i) an = 0 for n & 0,
ii) for all ρ ∈ I, anρn → 0 for n → +∞

and BI . If f =
∑

n#−∞[an]πn ∈ BI is non-zero, the Newton polygon of f is the
convex hull Newt(f) of the points of the real plane of coordinates (n, v(an)) for
n ∈ Z. If J ⊂ I is an interval, NewtJ(f) is the sub-polygon of Newt(f) obtained by
deleting all segments whose slopes s are such that qs (∈ I.

Proposition 3.2.1. Let I ⊂ [0, 1] be an interval and let I be the smallest
interval containing I and 0. Then BI is a dense subring of BI . If f ∈ BI and
if (fn)n∈N is a sequence of elements of BI converging to f , then the sequence
(NewtI(fn))n∈N has a limit, i.e., for any closed interval J ⊂ I, the sequence of
the NewtJ(fn) is stationary. This limit is independent of the choice of the sequence
(fn)n∈N.

We call this limit NewtI(f).

3.3. Divisors. For any interval I ⊂ [0, 1] different from ∅, {1}, we set

|YI | =
{
y ∈ |Y | | ||y|| ∈ I

}
,

and we define the group Div(YI) of divisors of YI
2:

i) If I is closed and I ⊂ [0, 1[, we set

Div(YI) =
{ ∑

y∈|YI |

ny[y] | ny = 0 for almost all y
}

.

ii) If I ⊂ [0, 1[ is not closed and if JI denote the set of closed ideals J ⊂ I, we
set

Div(YI) =
{ ∑

y∈|YI |

ny[y] | ∀J ∈ JI , ny = 0 for almost all y with ||y|| ∈ J
}

.

iii) If 1 ∈ I, we define I ′ as the complement of 1 in I, we choose ρ0 ∈ I ′ and
we set

Div(YI) =
{ ∑

y∈|YI |

ny[y] ∈ Div(YI′) |
∑

||y||≥ρ0

ny log(||y||) > −∞
}

(independent of the choice of ρ0).

For any I, we denote by Div+(YI) the monöıd of effective divisors i.e. of divisors
D =

∑
ny[y] ∈ Div(YI) such that ny ≥ 0 for all y.

2See the remark 3.4.1 below for a geometric interpretation of these constructions.
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3.4. Closed ideals. For any y ∈ |Y |, we choose a primitive element ξy

representing y.

Proposition 3.4.1. Let I ⊂ [0, 1] be a non empty interval and y ∈ |Y |. If
||y|| #∈ I, then ξy is invertible in BI . If ||y|| ∈ I and if Ly = Bb/(ξy), the projection
of Bb to Ly extends by continuity to a surjective homomorphism of E-algebras

θy : BI → Ly

whose kernel is the maximal ideal generated by ξy.

The map
y %→ mI,y = ideal of BI generated by ξy

is an injective map from |YI | to the set of maximal ideals of BI .

Theorem 3.1. Let I ⊂ [0, 1] an interval different from ∅, {1}. For any y ∈ |YI |,
we have ∩n∈N(mI,y)n = 0. Let f ∈ BI a non-zero element. For any y ∈ |YI |, let
vy(f) be the biggest integer n such that f ∈ (my)n. Then

div(f) =
∑

y∈|YI |

vy(f)[y] ∈ Div+(YI) .

Moreover, for any ρ = q−r ∈ I with r > 0, the length µρ(f) of the projection on
the horizontal axis of the segment of NewtI(f) of slope −r is finite and

∑

||y||=ρ

vy(f) deg(y) = µρ(f) .

Corollary 3.4.1. Let I ⊂ [0, 1] an interval different from ∅, {1}. Then:
i) Any non-zero closed prime ideal of BI is maximal and principal.
ii) The map |YI | →{closed maximal ideals of BI} sending y to mI,y is a

bijection.
iii) If I ⊂ [0, 1[ and is closed, any ideal of BI is closed and BI is a principal

domain.

Proposition 3.4.2. Let I ⊂ [0, 1[ a non empty interval. For any non-zero
closed ideal a of BI and any y ∈ |YI |, let vy(a) the biggest integer n ≤ 0 such that
a ⊂ (mI,y)n. Then

div(a) =
∑

y∈|YI |

vy(a)[y] ∈ Div+(YI) .

The map
{non-zero closed ideals of BI} → Div+(YI) ,

so defined, is an isomorphism of monöıds.

Remark 3.4.1. Let I ⊂ [0, 1[ an interval different from ∅, {1}.
– If I is closed, we see that Div(YI) is nothing but the group of divisors of the

regular curve YI = Spec(BI) and that |YI | may be identified to the set of closed
points of YI .

– Otherwise, we may consider the inductive system of regular curves

YI = (YJ = SpecBJ)J∈II .

If J1 ⊂ J2 belong to II , we have morphisms of abelian groups

Div(YJ1) → Div(YJ2) and Div(YJ2) → Div(YJ1)
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induced by the fact that, if a is a non-zero ideal of BJ1 then a ∩ BJ2 is a non-zero
ideal of BJ2 , though, if b is a non zero ideal of BJ2 , then BJ1b is a non zero ideal of
BJ1 . We see that Div(YI) is the inverse limit of the Div(YJ) for J ∈ II . The direct
limit of these groups consists of the subgroup

Divf (YI) =
{ ∑

y∈|YI |

ny[y] ∈ Div(YI)
∣∣ ny = 0 for almost all y ∈ |YI |

}
.

3.5. Factorization. From the above proposition, we see that the analogue in
this context of the classical question “does there exist an analytic function which
has a given set of zeros with fixed multiplicities ” becomes the question:

“Let D ∈ Div+(YI). Does there exist f ∈ BI such that div(f) = D ?”
The answer to this question is “yes for any D” if and only if any closed ideal

is principal.
The answer to this question is obviously “yes” if I ⊂ [0, 1[ is closed. This is also

“yes” if I =]0, ρ] for some ρ ∈]0, 1[ (see cor. 3.5.1 below). But it is “no” in general.
Recall that one says that the field F is spherically complete if the intersection

of any decreasing sequence of non empty balls contained in F is non empty.
For instance, if k is an algebraically closed field of characteristic p,
i) the completion of an algebraic closure of the field k((u)) is not spherically

complete,
ii) If G is a divisible totally ordered abelian group (e.g. G = Q or R), we may

consider the subset F of all formal series of the form

f =
∑

g∈G

agg with ag ∈ k ,

such that the support of f

supp(f) = {g ∈ G | ag $= 0}

is a well ordered subset of G. Then, with the obvious addition, multiplication
and absolute value, F is an algebraically closed field which is spherically complete
[Poo93].

Proposition 3.5.1. Let I ⊂ [0, 1[ be a non closed interval. Then:
i) If F is not spherically complete, there are closed ideals of BI which are not

principal.
ii) If F is spherically complete and char(E) = p, any closed ideal of BI is

principal.

It is likely that (ii) remains true whenever char(E) = 0.

Without any assumption on F , if I is an interval whose closure contains 0, any
divisor ∑

y∈|YI |

ny[y]

such that ny = 0 if ||y|| ≥ ρ for ρ ∈ I big enough, is the divisor of a function.
More precisely, for any y ∈ |YI | we denote by dy the degree of y and we choose a
π-primitive element ξ (i.e. an element ξy ∈ A such that |ξy −πdy |1 < 1) representing
y (one can show that such an element always exists). Then:
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Proposition 3.5.2. Let I ⊂ [0, 1] an interval containing 0, not reduced to {0},
and I the complement of {0} in I. Let

D =
∑

y∈|YI |

ny[y] ∈ Div+(YI) .

i) For any ρ ∈ I, the infinite product

f≤ρ =
∏

||y||≤ρ

ξy

πdy

converges in B+
]0,1] ⊂ BI and div(f≤ρ) =

∑
||y||≤ρ ny[y].

ii) If there exists f ∈ BI such that div(f) = D then f = f≤ρf>ρ for some
f>ρ ∈ BI and div(f>ρ) =

∑
||y||>ρ ny[y].

In particular, if I =]0, 1[, f>ρ ∈ Bb
[0,1[. In this case, f ∈ B]0,1] (resp B+

]0,1]) if

and only if f>ρ ∈ Bb (resp. Bb,+).

Corollary 3.5.1. i) If I =]0, ρ] for some ρ ∈]0, 1[, any closed ideal of BI is
principal.

ii) An ideal of B]0,1[ or of B]0,1] is closed if and only if it is an intersection of
principal ideals.

3.6. Units. The ring A is a local ring. Therefore, if mA is its maximal ideal,
the multiplicative group A∗ of invertible elements of A is the complement of mA in
A. With obvious notations, we have also

A∗ = [O∗
F ] × UF with UF =

{
1 +

∞∑

n=1

[an]πn | an ∈ OF

}
.

We have also

(Bb,+)∗ = πZ × A∗ = πZ × [O∗
F ] × UF and (Bb)∗ = πZ × [F ∗] × UF .

If f is an invertible element of B]0,1[ we must have div(f) = 0, which implies that
f ∈ Bb. Therefore,

(B]0,1[)∗ = (B]0,1])∗ = (Bb)∗ and (B+)∗ = (Bb,+)∗ .

4. The curve X in the case where F is algebraically closed

4.1. Construction of the curve. The Frobenius automorphism ϕ on Bb is
the unique E-automorphism which is continuous for | |0 and induces x $→ xq on F .
It satisfies

ϕ
( ∑

n%−∞
[an]πn

)
=

∑

n%−∞
[aq

n]πn .

For any f ∈ Bb and any ρ ∈ [0, 1], we have |ϕ(f)|ρq = (|f |ρ)q. This implies that ϕ
extends by continuity to an automorphism (still denoted ϕ) of B = B]0,1[ .

We consider the graded E-algebra

Pπ = PF,E,π =
⊕

d∈N
Pπ,d with Pπ,d = PF,E,π,d =

{
b ∈ B | ϕ(b) = πdb

}
.

The natural map Pπ → B is injective and we use it to identify Pπ with a subring
of B. We have Pπ ⊂ B+.
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We define the scheme

X = XF,E = Proj Pπ .

One can show that X is independent of the choice of π: If π′ is another uniformizing
parameter of E and if X ′ = Proj Pπ′ , the function field of X ′ (viewed as a subfield
of the fraction field of B) is the function field K of X and the set of closed points
of X ′ (viewed as a subset of the set of normalized discrete valuations on K) is the
set of closed points of X.

On the other hand, the line bundles

OX(d)π =
⊕̃

n∈Z
Pπ,n+d

(with the convention that Pπ,m = 0 for m < 0) depend on the choice of π.
We have

Pπ,0 =
{
u ∈ B | ϕ(u) = u

}
= E .

4.2. The Lubin-Tate formal group. Set

#π(X) =
+∞∑

n=0

Xqn

πn
∈ E[[X]]

and Φπ(X, Y ) ∈ E[[X, Y ]] the unique formal power series ≡ X + Y
( mod (X, Y )2) such that

#π(Φπ(X, Y )) = #π(X) + #π(Y ) .

Then, Φπ(X, Y ) ∈ OE [[X, Y ]] and defines a one parameter formal group law over
OE which is a Lubin-Tate formal group over OE associated to the uniformizing
parameter π ([LT65], [Ser67], §3).

For any linearly topologized complete OE-algebra Λ, we may consider the topo-
logical OE-module Φπ(Λ): The underlying topological space is the topological space
underlying the ideal of elements of Λ which are topologically nilpotent, with the
addition (x, y) #→ Φπ(x, y) and the multiplication by α ∈ OE given by x #→ fπ,α(x)
where fπ,α(X) ∈ OE [[X]] is the unique power series ≡ αX ( mod X2) such that
#π(fα(X)) = α#π(X).

Let C be an algebraically closed field containing E, complete for an absolute
value extending the given absolute value on E. We may consider the Tate module

TC(Φπ) = LOE (E/OE , Φπ(OC)) .

This is a free-OE-module of rank one. If we denote by Φπ(OE) the inductive limit
(or the union) of the Φπ(OE′), for E′ varying through the finite extensions of E
contained in C, we have also TC(Φ) = LOE (E/OE , Φπ(OE)).

If VC(Φπ) is the one dimensional E-vector space E ⊗OE TC(Φπ), we have a
short exact sequence

(1) 0 → VC(Φπ) → LOE (E, Φπ(OC)) → C → 0

where the map LOE (E, Φπ(OC)) → C is f #→ #π(f(1)).

The perfectness of OF implies that multiplication by π on the OE-module
Φπ(OF ) is bijective, so Φπ(OF ) is an E-vector space. We see that Φπ(OF ) depends
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only on the special fiber Φπ,kE of Φπ (a formal OE-module over the residue field
kE of OE).

Proposition 4.2.1. For any x in the maximal ideal mF of OF , the series∑
n∈Z π−n[xqn

] converges in B and its sum Lπ(x) belongs to Pπ,1. The map

Lπ : Φπ(OF ) → Pπ,1

so defined is an isomorphism of topological E-vector spaces.

Remark. This construction can be generalized: For d ∈ N, one may interpret
Pd as being “the sections over OF of an E-sheaf Sd

E,π for the syntomic topology
over kE”.

In the rest of the section 4, we assume F algebraically closed.

The automorphism ϕ generates a torsion free cyclic group ϕZ of automorphisms
of B. This group acts also on |Y | and on Div(Y ) = Div(Y]0,1[). If λ, λ′ are non-zero
elements of mF such that π − [λ] and π − [λ′] have the same image in |Y |, this
implies that |λ| = |λ′|. If π − [λ] is a lifting of y ∈ |Y | and n ∈ Z then π − [λqn

] is
a lifting of ϕn(y), so if y ∈ |Y | then the ϕn(y)’s for n ∈ Z are all distinct.

This implies that it is possible to choose for each y ∈ |Y | an element λy ∈ mF

such that π − [λy] is a lifting of y and, for all y,

λϕ(y) = (λy)q .

We make such a choice once and for all. If y ∈ |Y |, the field

Ly = Bb/(π − [λy]) = B+/(π − [λy]) = B/(π − [λy])

is algebraically closed. The multiplicative map OF → OLy sending a to θy([a])
induces, by passing to the quotients, an isomorphism of rings

OF /λyOF → OLy/πOLy .

Moreover, ϕ induces a canonical isomorphism Ly → Lϕ(y).
For any linearly topologized complete OE-algebra Λ, we denote VE,π(Λ) the

E-vector space LOE (E, Φπ(Λ)).

Proposition 4.2.2. Let y ∈ |Y |. The natural maps

VE,π(OC) → VE,π(OLy/πOLy ) ← VE,π(OF /λyOF ) ← VE,π(OF )
→ Φπ(OF ) → Pπ,1

are all isomorphisms.
ii) We have a commutative diagram

0 → VC(Φπ) → VE,π(OC) → C → 0
↓ ↓ ‖

0 → Pπ,1 ∩ ker θy → Pπ,1 → C → 0

where the lines are exact and the vertical arrows are isomorphisms.

Remark. There is an explicit way to construct a generator t of Pπ,1 ∩ ker θy:
From the fact that F is algebraically closed, one deduces easily that one can find
t+ ∈ A not divisible by π such that

ϕ(t+) = (π − [λy])t+ .
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On the other hand the infinite product

t− =
+∞∏

n=0

(
1 −

[λqn

y ]
π

)

converges in B+. We may take t = t−t+.

4.3. Divisors of X. Let Div(Y )ϕ=1 the subgroup of Div(Y ) consisting of
the divisors D such that ϕ(D) = D and Div+(Y )ϕ=1 the submonöıd of Div+(Y )
consisting of effective divisors such that ϕ(D) = D.

If D =
∑

y∈|Y | ny[y] ∈ Div(Y ) we have ϕ(D) =
∑

y∈|Y | ny[ϕ(y)], therefore
D ∈ Div(X) if and only if ny = nϕ(y) for all y.

Choose ρ ∈]0, 1[. As ]ρq, ρ] ⊂ [ρq, ρ], we have ny = 0 for almost all y such that
ρq < ||y|| ≤ ρ. On the other hand, for any y ∈ |Y |, there is a unique n ∈ Z such
that ρq < ||ϕn(y)|| ≤ ρ. Therefore:

Proposition 4.3.1. For any y ∈ Y , set δ(y) =
∑

n∈Z[ϕn(y)]) ∈ Div(Y )ϕ=1
and

∆ =
{
D ∈ Div(Y ) | there exists y ∈ |Y | such that D = δ(y)

}
.

Then Div(Y )ϕ=1 (resp. Div+(Y )ϕ=1) is a free abelian group (resp. monöıd) and
the elements of ∆ form a basis.

Proposition 4.3.2. i) Let y ∈ |Y | and t a generator of Ey = Pπ,1 ∩ my. Then

div(t) = δ(y) .

ii) Let d ∈ N>0 and u ∈ Pπ,d non zero. There exists t1, t2, . . . , td ∈ Pπ,1 such
that

u = t1t2 . . . td .

Moreover, if t′1, t
′
2, . . . , t

′
d ∈ Pπ,1 are such that u = t′1t

′
2 . . . t′d, there exists σ ∈ Sd

and λ1, λ2, . . . , λd ∈ E∗ such that t′i = λitσ(i) for all i.

This proposition is an easy consequence of what we already know: (i) is formal.
To prove (ii), we observe that the ideal generated by u is fixed by ϕn for all n ∈ Z,
hence div(u) ∈ div+(Y )ϕ=1. Therefore we can write

div(u) = D1 + D2 + . . . + Dr

with Di ∈ ∆. If Di = δ(yi), if mi is the maximal ideal of B corresponding to yi and
if ti is a generator of PF,1 ∩ mi, then we must have

u = λt1t2 . . . tr

with λ ∈ B∗. Therefore, we must have r = d and ϕ(λ) = λ, hence λ ∈ E∗. The
assertion follows.

An easy consequence of this proposition is the following result:

Theorem 4.1. Let |X| be the set of closed points of X and set deg(x) = 1 for
all x ∈ |X|. Then X is a complete curve whose field of definition is E. Moreover:

i) Let D ∈ ∆, t ∈ Pπ,1 non-zero such that div(t) = D, y ∈ |Y | such that
D = δ(y) and LD = Ly. Then

a) the homogeneous ideal of Pπ generated by t defines a closed point xD of X
whose local ring is a discrete valuation ring and residue field is LD,
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b) the complement of xD in X is an affine scheme which is the spectrum of a
principal domain.

ii) The map D !→ xF is a bijection ∆ → |X| inducing canonical isomorphisms

Div(Y )ϕ=1 → Div(X) and Div+(Y )ϕ=1 → Div+(X) .

4.4. Vector bundles. For each d ∈ Z, OX(d)π is a line bundle of degree d.
Proposition 4.3.2 implies trivially:

Proposition 4.4.1. We have

Pic0(X) = 0 ,

i.e., for any d ∈ Z, a line bundle L is of degree d if and only L $ OX(d)π.

In particular, if π′ is any other uniformizing parameter, OX(1)π′ is isomorphic
(not canonically) to OX(1)π

3.

Let h be a positive integer. We may consider

Xh = Proj
⊕

d∈N
Ph,π,d with Ph,π,d =

{
ϕh(u) = πdu

}
.

If Eh denotes the unramified extension of E whose residue field is the unique
extension of degree h of the residue field kE of E which is contained in F , we
see that Xh = XF,E,h. It is a complete regular curve whose field of definition is Eh.

If x ∈ Pπ,d then x ∈ Ph,π,dh. It it easy to see that the induced map

⊕Pπ,d → ⊕Ph,π,d

induces a morphism
νh : Xh → X

which is a cyclic cover of degree h identifying XF,h with X ×Spec E Spec Eh.
For each λ ∈ Q, if λ = d/h, with d, h ∈ Z relatively prime and h > 0, we set

OX(λ)π = (νh)∗
(
OXF,h(d)π

)
.

This is a vector bundle over X of rank h and degree d, hence of slope λ.

Theorem 4.2. For any non-zero coherent OX-module F , the Harder-Narasimhan
filtration on F splits (non canonically). Moreover, if λ ∈ Q, then F is stable (resp.
semistable) of slope λ if and only if F $ OX(λ)π (resp. there is an integer n > 0
such that F $ OX(λ)⊕n

π ).

Corollary 4.4.1. The functor
{
finite dimensional E-vector spaces

}
→

{
semistable vector bundles of slope 0 over X

}

sending V to V ⊗E OX is an equivalence of tannakian categories. The functor

F !→ H0(X, F)

is a quasi-inverse.

The proof of the theorem is easily reduced to the proof of the corollary. By
dévissage, one sees that it is enough to prove the following statement:

3When F is not algebraically closed, this result remains true if and only if the residue field
kF of F is algebraically closed.
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Lemme 4.2.1. Let h be a positive integer and F be a vector bundle extension
of OX(1) by OX(−1/h). Then

H0(X, F) "= 0 .

This lemma can be deduced by elementary manipulations on modifications of
vector bundles from:

Proposition 4.4.2. Let h be a positive integer and

0 → F ′ → F → E → 0

a short exact sequence of coherent OX-modules, with E torsion of length 1. Then:
i) If F $ OX(1/h), then F ′ $ Oh

X .
ii) If F ′ $ Oh

X , then F $ OX(1/r) ⊕ Oh−r
X for some r with 1 ≤ r ≤ h.

Let C be the residue field of X at the closed point which is the support of E .
This is an algebraically closed extension of E, complete with respect to an absolute
value extending the given absolute value on E. This proposition can be translated:

i) in terms of Banach-Colmez spaces over C, i.e. the “Espaces de Banach de
dimension finie” introduced by Colmez [Col02],

ii) or in terms of free B-modules equipped with a ϕ-semi-linear automorphism,
iii) or in terms of Barsotti-Tate groups over OC .
This leads to three different proofs of the proposition which becomes a con-

sequence of the work of Colmez (loc. cit.) or of Kedlaya ([Ke05], [Ke08]) or of a
result of Laffaille ([Laf79], also proved in [GH94]) for the first part and of Drinfel’d
([Dr76], also proved in [Laf85]) for the second part.

A consequence of the previous theorem is that the geometric étale π1 of the
curve X is trivial. More precisely:

Proposition 4.4.3. Let X ′ → X be a finite étale morphism and E′ =
H0(X ′,OX′). The natural morphism

X ′ → X ×Spec E SpecE′

is an isomorphism.

4.5. The topology on OX . The multiplicative norms | |ρ for 0 < ρ < 1
extend to the fraction field of B. For each open subset U of X, we endow the ring
Γ(U,OX) ⊂ Frac(B) with the topology defined by the restriction of this family of
norms. The transition maps

Γ(U,OX) → Γ(V, OX)

for V ⊂ U open is obviously continuous. This endows OX with a natural structure
of sheaf of locally convex E-algebras 4 which plays an important role in the study
of OX -representations of certain topological groups.

4A locally convex E-vector space is a topological E-vector space whose topology can be
defined by a family of semi-norms.
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4.6. OX-representations. We denote by GF the group of continuous auto-
morphisms of the field F (an automorphism of the field F is continuous if and only
if it sends the valuation of F to a a strictly positive multiple of it). We equip GF and
its subgroups with the pointwise convergence topology, that is to say the weakest
topology making the applications

GF −→ F

g #−→ g(x)

continuous when x goes through F . If F = F̂0 where F0 is complete valued then
Gal(F0|F0) ⊂ GF is a closed subgroup and the induced topology on Gal(F0|F0) is
the usual profinite topology. By functoriality, GF acts on X. We’ll need slightly
more. The action of GF on OX is continuous, i.e., for any open subset U of X, the
subgroup

GF,U =
{
g ∈ GF

∣∣ g(U) = U
}

is a closed subgroup of GF and the natural map

GF,U × Γ(U,OX) → Γ(U,OX)

is continuous.
Let H be any closed subgroup of GF . We explained in §1.1 what is a OX -

representations of H. We now use the topology on the sheaf OX to put a continuity
condition on these representations. More precisely if E is an OX -representation of
H we require, for any open subset Uof X, the natural map

HU × Γ(U, E) → Γ(U, E)

(where HU = {h ∈ H | h(U) = U}) to be continuous.
From now on an OX-representation of H will mean a continuous one.

5. Galois descent

5.1. The curve X when F may not be algebraically closed. We don’t
assume anymore F algebraically closed and we consider the curve

X = XF,E = Proj Pπ .

We choose an algebraic closure F of F and we set H = Gal(F/F ). The absolute
value | | of F extends uniquely to F and to its completion F̃ (which is algebraically
closed). We set

B̃ = BF̃ ,E , P̃π = PF̃ ,E,π, and X̃ = XF̃ ,E = Proj P̃π .

The action of H on F extends uniquely to a continuous action on F̃ and by
functoriality to a continuous action on B̃ and P̃π. As we may identify H with
a closed subgroup of the group GF̃ of continuous automorphisms of the field F̃ , H

also acts on the curve X̃.

Theorem 5.1. i) The natural maps

B → B̃H and Pπ → P̃H
π

are isomorphisms.
ii) The map Pπ → P̃π induces a morphism of schemes

ν : X̃ → X
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independent of the choice of π.
iii) Define the degree of any closed point x ∈ X by

deg(x) = cardinality of ν−1(x) .

Then X is a complete regular curve defined over E.
iv) The morphism ν induces an isomorphism

Div(X) → (Div(X̃))H .

Let H∗ be the group of characters of H, i.e. the group of continuous homomor-
phisms from H to the multiplicative group E∗ of E. If D ∈ Div+(X) = (Div+(X̃))H

is an effective divisor of degree d ∈ N and if u ∈ P̃π,d is a generator of the homoge-
neous ideal of P̃ corresponding to D, there is ξD ∈ H∗ such that, for all h ∈ H,

h(u) = ξD(h)u

and ξD is independent of the choice of u. The map D #→ ξD extends uniquely to an
homomorphism of groups

Div(X) → H∗ .

This map induces an isomorphism

Pic0(X) → H∗ .

More precisely,

Proposition 5.1.1. Let K = OX,η the function field of X. The sequence

0 → E∗ → K∗ → Div(X) → Z × H∗ → 0 ,

where Div(X) → Z × H∗ is the map sending D to (deg(D), ξD), is exact.
Moreover, for all ξ0 ∈ H∗, there exists an infinite set of effective divisors D of

degree 1 such that ξD = ξ0.

If F is a coherent OX -module (resp. a vector bundle over X), then ν∗F may be
viewed as an OX̃ -representation of H (resp. an H equivariant vector bundle over
X̃).

Conversely, if E is an OX̃ -representation of H, we define the OX -module EH

by setting, for all open subset U of X

Γ(U, EH) = Γ(ν−1(U), E)H

(and obvious restriction maps).

Theorem 5.2. The functor

ν∗ :
{
coherent OX-modules

}
→

{
OX̃-representations of H

}

is an equivalence of tensor categories, respecting the rank, the degree and the Harder-
Narasimhan filtration.

For any OX̃-representation E of H, the OX-module EH is coherent. The functor

E #→ EH

is a quasi-inverse of the functor F #→ ν∗F .
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5.2. The étale fundamental group. Let F ′ be a finite extension of F and
E′ be a finite extension of E.

– When, the residue field kE′ is embedded in kF we have defined the curve
XF ′,E′ and the natural morphism

XF,E′ −→ XF ′,E ⊗E E′

is an isomorphism.
– Therefore, we may define in general the curve XF ′,E′ by

XF ′,E′ = XF ′,E ⊗E E′ .

We have
XF ′,E = Proj PF ′,E,π

and the obvious map PF,E,π → PF ′,E,π induces a morphism

XF ′,E → X

which is a finite étale cover of X of degree [F ′ : F ], independent of the choice of π.
Therefore

XF ′,E′ → X

is a finite étale cover of X of degree [F ′ : F ].[E′ : E].

Choose a closed point x̃ = Spec C of X̃. Then C is algebraically closed and we
denote by x the geometric point of X

Spec C → X̃ → X .

Let I the set of pairs (F ′, E′) with F ′ be a finite Galois extension of F contained
in the field F (C) introduced in §2.4 and E′ a finite Galois extension of E contained
in C.

The inclusion F ′ → F (C) induces an extension of the morphism

x : Spec C → X

to a morphism of X-schemes

Spec C → XF ′,E ,

which, using the inclusion E′ → C, extends also to a morphism of X-schemes

Spec C → XF ′,E′ .

Proposition 5.2.1. For each (F ′, E′) ∈ I, the morphism XF ′,E′ → X is a
finite étale Galois cover whose Galois group is Gal(F ′/F ) × Gal(E′/E).

Moreover the projective system

(XF ′,E′ → X)(F ′,E′)∈I

(with obvious transition maps) induces an isomorphism

πet
1 (X, x) → Gal(Es/E) × Gal(F/F ) ,

where Es (resp. F ) denote the separable closure of E in C (resp. of F in F (C)).

In particular, the geometric étale π1 of X may be identified with Gal(F/F ).
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6. de Rham GK-equivariant vector bundles

In this section, K is a field of characteristic 0 which is the fraction field of a
complete discrete valuation ring OK whose residue field k is perfect of characteristic
p > 0. We choose an algebraic closure K of K and we set GK = Gal(K/K). We
denote by C the completion of K. This is an algebraically closed field, therefore it
is a strictly p-perfect field and the field F = F (C) is algebraically closed.

6.1. The curve X = XF (C),Qp
. We consider the curve

X = XF,Qp .

We set
B = BF,Qp and B+ = B+

F,Qp
.

We have

X = Proj Pp with Pp =
⊕

d∈N
Pp,d and Pp,d =

{
u ∈ B | ϕ(u) = pdu

}
.

The natural map Pp → B is injective, with image contained in B+, and we identify
Pp with its image.

As F = F (C), we have a canonical continuous surjective homomorphism of
Qp-algebras

θ : B → C

(the restriction of θ to Bb is the map
∑

n>"−∞[an]pn #→
∑

n"−∞ a(0)
n pn).

We fix # ∈ F such that #(0) = p. Then the kernel of θ is the principal ideal
generated by p − [#]. As usual in p-adic Hodge theory [Fon94a], we denote B+

dR

the completion of Bb,+ for the (p − [#])-adic topology. This is also the completion
of B (or of B+) for the ker θ-adic topology. As θ is GK-equivariant, the action of
GK on B extends to B+

dR.
As usual (loc. cit.), we fix ε ∈ F such that ε(0) = 1 and ε(1) %= 1. We set

t = log([ε]) =
+∞∑

n=1

(−1)n+1 ([ε] − 1)n

n
∈ B+ .

Then t is a generator of the Qp-line Pp,1 ∩ ker θ. The homogeneous ideal of
Pp generated by t defines a closed point ∞ of X which is the image in |X| of the
maximal ideal ker θ of B.

Therefore ∞ is fixed under GK , its residue field is C and the completion of the
discrete valuation ring OX,∞ is B+

dR. We set

Xe = X\{∞} .

This is an affine open subset, stable under GK . We see that

Be := Γ(Xe,OX) =
{
homogeneous elements of degree 0 of Pp[ 1t ]

}

is a principal ideal domain. We set

Bcr = B+[ 1t ] .

The Frobenius ϕ on B+ extends uniquely to an automorphism of Bcr and we have

Be =
{
b ∈ Bcr | ϕ(b) = b

}
.
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Remark. The ring B+ is sometimes denoted B̃+
rig (e.g. [Ber02], §1 where F =

F (C) is denoted Ẽ, though A is denoted Ã and Bb,+ is denoted B̃+).Traditionally
[Fon94a], one defines the ring Acris as the p-adic completion of the divided
power envelop of the ring A with respect to the ideal generated by p − [!] and
B+

cris = Acris[1/p]. The inclusion of A[1/p] = Bb,+ into B+ extends by continuity
to a canonical injective map from B+ into B+

cris. Hence, we may identify B+ with
a subring of B+

cris and B+[1/t] with a subring of Bcris = B+
cris[1/t]. We then have

B+ = ∩n∈Nϕn(B+
cris) and B+[ 1t ] = ∩n∈Nϕn(Bcris) ,

so, we have also
Be =

{
b ∈ Bcris | ϕ(b) = b

}

and the definition of Be given here agrees with the definition of [FP94], chap.I,
§3.3.

6.2. Be-representations of GK . Recall that a Be-representation of GK is
a Be-module of finite type equipped with a semi-linear and continuous action of
GK . Those are the (continuous) OXe -representations of GK . They form an abelian
category. A GK-equivariant vector bundle over Spec Be is a Be-representation of
GK such that the underlying Be-module is locally free, hence free as Be is a principal
domain. It turns out that this condition is automatic:

Proposition 6.2.1. The Be-module underlying any Be-representation of GK

is torsion free. The category of Be-representations of GK is an abelian category.

Granted what we already know, the proof of this proposition is easy: The second
assertion results from the first. To show the first assertion, it is enough to show,
that if V is a Be-representation of GK such that the underlying Be-module is a
torsion module, then V = 0. We observe that the annihilator of V is a non-zero
ideal a stable under GK . Then a is the product of finitely many maximal ideals.
If m is one of them, for all g ∈ GK , g(m) must contain a. But the maximal ideals
corresponds to the closed points of Xe = X\{∞} and one can show that ∞, which
is fixed under GK , is the unique closed point of X whose orbit under GK is finite.
Therefore a = Be and V = 0.

Remarks. (1) This result implies that the tensor category of Be-representations
is a tannakian Qp-linear category.

(2) It is easy to see that B∗
e = Q∗

p. This implies that any continuous 1-cocycle

α : GK → (Be)∗

takes its values in Q∗
p. It means that, if V is a one dimensional Be-representation,

the Qp-line generated by a basis of V over Be is stable under GK . In other words,
any one dimensional Be-representation of GK comes by scalar extension from a one
dimensional p-adic representation of GK .

6.3. Vector bundles and their cohomology. Let F be a coherent OX -
module. Then

– the Be-module
Fe = Γ(Xe,F)

is of finite type,
– the completion F+

dR of the fiber at ∞ is a B+
dR-module of finite type,
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– we have a canonical isomorphism

ιF : BdR ⊗Be Fe → BdR ⊗B+
dR

F+
dR

With an obvious definition for the morphisms, the triples

(Fe,F+
dR, ιF )

with Fe a Be-module of finite type, F+
dR a B+

dR-module of finite type and

ιF : BdR ⊗Be Fe → BdR ⊗B+
dR

F+
dR

an isomorphism of B+
dR-modules form a tensor abelian category. The correspondence

F #→ (Fe,F+
dR, ιF )

just defined induces a tensor equivalence of categories. We use it to identify these
two categories.

Then F = (Fe,F+
dR, ιF ) is a vector bundle if and only if Fe is free over Be and

F+
dR is free over B+

dR. In this case, to give ιF is the same as giving an isomorphism
from F+

dR onto a B+
dR-lattice of BdR ⊗Be Fe, i.e. a sub-B+

dR-module of finite type
generating BdR ⊗Be Fe as a BdR vector space.

Therefore, we may as well see a vector bundle over X as a pair

(Fe,F+
dR)

where Fe is a free Be-module of finite rank and F+
dR is a B+

dR-lattice in FdR =
BdR ⊗Be Fe.

The cohomology of F is easy to compute: we have an exact sequence

0 → H0(X, F) → Fe ⊕ F+
dR → FdR → H1(X, F) → 0

where the middle map is (b, b′) #→ b − b′. In the special case of OX , we have
H0(X, OX) = Qp and H1(X, OX) = 0, giving rise to the “fundamental exact
sequence of p-adic Hodge theory”

0 → Qp → Be ⊕ B+
dR → BdR → 0 .

6.4. GK-equivariant vector bundles. As ∞ is stable under GK , we see
that:

– We may identity the abelian tensor category of OX -representations of GK

with the category of triples
(Fe,F+

dR, ιF )
where

i) Fe is a Be-representation of GK ,
ii) F+

dR is a BdR-representation of GK ,

iii) ιF : BdR ⊗Be Fe → BdR ⊗B+
dR

F+
dR

is a GK-equivariant isomorphism of BdR vector spaces.
– We may identify the category of GK-equivariant vector bundles over X to

the category of pairs
(Fe,F+

dR)
where

i) Fe is a Be-representation of GK ,
ii) F+

dR is a GK-stable B+
dR-lattice in FdR = BdR ⊗Be Fe.

The category of such pairs has already been considered by Berger [Ber08].
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Remark. Let F be an OX -representation of GK . The fact that ∞ is the only
closed point of X whose orbit under GK is finite implies that the torsion of F , if
any, is concentrated at ∞. If F is a vector bundle, i.e. is torsion free and if G is a
GK-equivariant modification of F (i.e. F and G have the same generic fiber), we
have Ge = Fe though G+

dR may be any GK-stable B+
dR-lattice of FdR.

6.5. The hierarchy of OX-representations. Let B? be any topological ring
equipped with a continuous action of GK . We say that a B?-representation V of
GK is trivial if the natural map

B? ⊗(B?)GK V GK → V

is an isomorphism.
We introduce the ring

Blcr = Bcr[log([!])]

of polynomials in the indeterminate log([!]) with coefficients in Bcr.
Consider the continuous maps

χ : GK → Z∗
p and η : GK → Zp

such that, for all g ∈ GK ,

g(t) = χ(g)t and g(!) = !εη(g) .

The action of GK on B+ extends to Blcr by setting, for all g ∈ GK ,

g( 1
t ) = 1

χ(g)t and g(log([!]) = log([!]) + η(g)t .

We say that a Be-representation V is de Rham (resp. log-crystalline, resp.
crystalline) if the representation BdR ⊗Be V (resp. Blcr ⊗Be V , resp. Bcr ⊗Be V ) is
trivial. We say that V is potentially log-crystalline if there is a finite extension L of
K contained in K such that V , viewed as a Be-representation of GL = Gal(K/L)
is log-crystalline.

For any property which makes sense for a Be-representation, we say that a
GK-equivariant vector bundle F = (Fe,F+

dR) over XE satisfies this property if Fe

does.
The following result is easy to prove:

Proposition 6.5.1. Let

0 → F ′ → F → F ′′ → 0

a short exact sequence of Be-representations or of GK-equivariant vector bundles.
If F is de Rham (resp. potentially log-crystalline, resp. log-crystalline, resp. crys-
talline), so are F ′ and F ′′.

Therefore we may say that an OX -representation of GK is de Rham (resp.
potentially log-crystalline, resp. log-crystalline, resp. crystalline) if it is isomorphic
to a quotient of a GK-equivariant vector bundle which has this property.

It is easy to show (see more details in §6.7 below) that:
– if F1 and F2 are two OX -representations of GK having one of those four prop-

erties, then any sub-OX -representation of F1, any quotient of F1, the representation
F1 ⊗ F2 and LOX (F1,F2) have the same properties,
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– we have the implications

crystalline =⇒ log-crystalline =⇒ potentially log-crystalline
=⇒ de Rham.

It is a deep result (see §7 below) that, conversely, any de Rham OX -representation
is potentially log-crystalline.

6.6. Log-crystalline Be-representations and (ϕ, N)-modules. Let K0 =
Frac W (k). One can show that

(Blcr)GK = K0 .

If V is any Be-representation of GK , we set

Dlcr(V ) = (Blcr ⊗Be V )GK .

This is a K0-vector space and we denote

αV : Blcr ⊗K0 Dlcr(V ) → Blcr ⊗Be V

the Blcr-linear map deduced by scalar extension from the inclusion Dlcr(V ) ⊂
Blcr ⊗Be V .

By definition V is log-crystalline if and only if αV is bijective. It is not hard
to see that αV is injective, that the dimension over K0 of Dlcr(V ) is ≤ the rank
of V over Be and that equality holds if and only if αV is bijective (this last state-
ment comes from the fact that any Be-representation of GK of rank one comes, by
scalar extension, from a one dimensional p-adic representation of GK and that any
non-zero element b ∈ Blcr such that the Qp-vector space generated by b is stable
under GK is invertible).

The Frobenius ϕ on B+ extends to Blcr by setting

ϕ( 1
t ) = 1

pt and ϕ(log([#])) = p log([#]) .

One denotes N : Blcr → Blcr the unique B+-derivation such that N(log([#])) =
−1. We get

Nϕ = pϕN .

The action of ϕ and of N commute with the action of GK . On K0 we have
N = 0 and the Frobenius ϕ is the absolute Frobenius, i.e. the unique continuous
automorphism inducing x (→ xp on the residue field.

A (ϕ, N)-module over k is a finite dimensional K0-vector space D equipped
with two operators

ϕ, N : D ⇒ D

with ϕ semi-linear with respect to the action of ϕ on K0 and bijective, N K0-linear
and Nϕ = pϕN .

With an obvious definition of the morphisms, the (ϕ, N)-modules over k form
an abelian category Mod(ϕ, N)k. It has an obvious structure of a tannakian Qp-
linear category.

Let V be a Be-representation of GK . The free Blcr-module Blcr ⊗Be V is
equipped with operators ϕ and N by setting

ϕ(b ⊗ v) = ϕ(b) ⊗ v and N(b ⊗ v) = Nb ⊗ v if b ∈ Blcr and v ∈ V ,
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commuting with the action of GK . Therefore

Dlcr(V ) = (Blcr ⊗Be V )GK

is stable under ϕ and N and becomes a (ϕ, N)-module over k.
If D is a (ϕ, N)-module over k, then GK , ϕ and N act on Blcr ⊗K0 D via

g(b ⊗ x) = g(b) ⊗ x ,ϕ(b ⊗ x) = ϕ(b) ⊗ ϕ(x) N(b ⊗ x)
= Nb ⊗ x + b ⊗ Nx for g ∈ GK , b ∈ Blcr, x ∈ D.

It is easy to see that the Be-module

Vlcr(D) =
{
v ∈ Blcr ⊗K0 D | ϕE(v) = v and Nv = 0

}

is free of rank equal to the dimension of D over K0, hence is a Be-representation
of GK .

Let RepBe,lcr(GK) be the full sub-category of the category RepBe
(GK) of

Be-representations of GK whose objects are the representations which are log-
crystalline. The proof of the following statement is straightforward and formal:

Theorem 6.1. For any (ϕ, N)-module D over k, the Be-representation Vlcr(D)
of GK is log-crystalline. The functor

Vlcr : Mod(ϕ, N)k → RepBe,lcr(GK)

is an equivalence of categories and the functor

V $→ Dlcr(V )

is a quasi-inverse.

Remarks. (1) It is easy to see that a Be-representation V of GK is crystalline
if and only if it is log-crystalline and N = 0 on Dlcr(V ).

(2) The relation Nϕ = pϕN implies that N is nilpotent on any object of
Mod(ϕ, N)k and that the kernel of N is a sub-object.

In particular, the semi-simplification of a log-crystalline Be-representation of
GK is a crystalline Be-representation of GK . If k is algebraically closed, the full
sub-category Mod(ϕ)k of Mod(ϕ, N)k whose objects are those on which N = 0 is
semi-simple ([Man63], §2). Therefore a Be-representation of GK is crystalline if
and only if it is log-crystalline and semi-simple.

(3) The category RepBe,lcr(GK) is a tannakian subcategory of RepBe
(GK),

i.e. it is stable under taking sub-objects, quotients, direct sums, tensor products,
internal hom and contains the unit representation Be. The functor Vlcr is an
equivalence of tannakian categories.

Let IK ⊂ GK the inertia subgroup. We have CIK = K̂nr, the p-adic completion
of the maximal unramified extension of K contained in K. The algebraic closure of
K̂nr in C is a dense subfield of C and IK can be identified with the Galois group
of this algebraic closure over K̂nr.

If V is any Be-representation of GK , denote by ResIK (V ) the Be-representation
of IK which is V with the action of IK deduced from the inclusion of IK into GK .

If k is the residue field of K̂nr, and Gk = Gal(k/k) = GK/IK , we have

Dlcr(V ) = (Dlcr(ResIK (V )))Gk .
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From the fact that, if K̂0,nr is the fraction field of W (k) and D is a finite dimensional
K̂0,nr vector space equipped with a semi-linear and continuous action of Gk, the
natural map

K̂0,nr ⊗K0 DGk → D

is an isomorphism, we deduce:

Proposition 6.6.1. Let V be a Be-representation of GK . Then V is log-
crystalline if and only if ResIK (V ) is log-crystalline.

6.7. Log-crystalline vector bundles and filtered (ϕ, N)-modules. As
B+ is separated for the ker θ-adic topology, we may view B+ as a subring of B+

dR

and Bcr = B+[1/t] as a sub Be-algebra of BdR = B+
dR[1/t].

Extending the p-adic logarithm by deciding that log(p) = 0, one can identify
Blcr with a sub-Bcr-algebra of BdR by setting

log([#]) = log([#]/p) = −
+∞∑

n=1

(p − [#])n

npn
.

If F = (Fe,F+
dR) is a GK-equivariant vector bundle over X, and if FdR =

BdR ⊗Be Fe = BdR ⊗B+
dR

F+
dR, we set

Dlcr(F) = Dlcr(Fe) = (Blcr ⊗Be Fe)GK and DdR(F) = (FdR)GK

If F is of rank r, then:
i) Dlcr(F) is a (ϕ, N)-module over K0 whose dimension over K0 is ≤ r with

equality if and only if F is log-crystalline.
ii) The natural map

BdR ⊗K DdR(F) → FdR

is always injective, therefore the K-vector space DdR(F) is of dimension ≤ r with
equality if and only if F is de Rham.

We see also that DdR(F) is a filtered K-vector space, i.e. a finite dimensional
K-vector space ∆ equipped with a decreasing filtration, indexed by Z, by sub K
vector spaces

. . . ⊃ F i−1∆ ⊃ F i∆ ⊃ F i+1∆ ⊃ . . .

such that F i∆ = 0 for i & 0 and = ∆ for i ' 0: The filtration is defined by

F iDdR(F) = (F iBdR ⊗B+
dR

F+
dR)GK

where F iBdR = B+
dRti is the fractional ideal of the discrete valuation ring B+

dR

which is the ith power of its maximal ideal.
The inclusion K ⊗K0 Blcr → BdR induces an injective map

K ⊗K0 Dlcr(F) → DdR(V) .

For dimension reasons, if F is log-crystalline, this map is an isomorphism,
F is de Rham and the pair Dlcr,K(F) consisting of Dlcr(F) and the filtration on
K ⊗K0 Dlcr(F) induced by this isomorphism is a filtered (ϕ, N)-module over K (cf.
[Fon94b]), i.e. it is a finite dimensional K0-vector space D, equipped with operators
ϕ, N giving to D the structure of a (ϕ, N)-module over k, plus a filtration F (i.e. a
structure of filtered K vector space) on the K vector space DK = K ⊗K0 D.

A morphism of filtered (ϕ, N)-modules over K

f : (D, F ) → (D′, F )
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is a K0-linear map commuting with ϕ and N and such that, if fK : DK → D′
K is

the K-linear map deduced from f by scalar extension, then fK(F iDK) ⊂ F iD′
K

for all i ∈ Z.
The category MFK(ϕ, N) of filtered (ϕ, N)-modules over K is an additive Qp-

linear category.
If there is no risk of confusion on the filtration, we write D = (D, F ) for any

object (D, F ) of MFK(ϕ, N). The following result is now obvious:

Theorem 6.2. The functor

Dlcr,K :
{
log-cryst. GK-equiv. vector bundles over X

}
→ MFK(ϕ, N)

is an equivalence of categories. A quasi-inverse is given by the functor Flcr defined
by

Flcr,K(D) = (Vlcr(D), F 0(BdR ⊗K DK))

where Vlcr(D) is the Be-representation of GK associated to the (ϕ, N)-module over
k underlying D and

F 0(BdR ⊗K DK)) =
∑

i∈Z
F iBdR ⊗K F−iDK ⊂ BdR ⊗K DK = BdR ⊗Be Vlcr(D) .

Remarks. (1) We say that a sequence of morphisms of log-crystalline GK-
equivariant vector bundles over X is exact if the underlying sequence of OX -modules
is exact. Similarly we say that a sequence of morphisms

. . . → (D′, F ) → (D, F ) → (D′′, F ) → . . .

of MFK(ϕ, N) is exact if, for any i ∈ Z, the induced sequence of K-vector spaces

. . . F iD′
K → F iDK → F iD′′

K . . .

is exact.
With these definitions (or rather with the restriction of this definition to

short exact sequences) these two categories are exact categories ([Qui73], §2). The
functors Dlcr,K and Flcr,K turn exact sequences into exact sequences.

(2) The category of GK-equivariant vector bundles over X and the category
MFK(ϕ, N) both have a natural structure of a Qp-linear tensor category ([Fon94b],
§4.3.4, for the later). The functors Flcr,K and Vlcr,K are tensor functors.

(3) Let F be a log-crystalline GK-equivariant vector bundle over X and let
D = Dlcr(V ). If G is a GK-equivariant modification of F , then G is still log-
crystalline and Dlcr(G) = D. Therefore, to give such a modification is the same
as changing the filtration on DK .

(4) We have a functor D → (D, Ftriv) from the category of (ϕ, N)-modules over
k to MFK(ϕ, N) consisting of adding to a (ϕ, N)-module D the trivial filtration on
DK (i.e. F i

trivDK = DK if i ≤ 0 and 0 if i > 0).
(5) Let D be a (ϕ, N)-module over k, and choose a basis e1, e2, . . . , er of D over

K0. If we set ϕ(ej) =
∑r

i=1 aijei, the p-adic valuation of the determinant of the
matrix of the aij is independent of the choice of the basis and is denoted tN (D). It
is easy to see that

rankVlcr,K(D, Ftriv) = dimK0D and deg Vlcr,K(D, Ftriv) = −tN (D).
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If now F is a filtration on D, so that Vlcr,K(D, F ) is a modification of Vlcr,K(D, Ftriv),
it’s easily to see that, if tH(D, F ) =

∑
i∈Z i.dimK(F iDK/ F i+1DK), then

rank Vlcr,K(D, F ) = rank Vlcr,K(D, Ftriv)
and deg Vlcr(D, F ) = deg Vlcr,K(D, Ftriv) + tH(D, F ).

This remark suggests to define the rank, the degree and the slope of a non-zero
filtered (ϕ, N)-module (D, F ) over K by

rank(D, F ) = dimK0 D , deg(D, F ) = tH(D, F ) − tN (D) and µ(D, F )

=
deg(D, F )
rank(D, F )

.

Let f : (D′, F ) → (D, F ) a morphism of MFK(ϕ, N), with fK : D′
K → DK the

underlying K-linear map. We say that f is strict if it is strictly compatible to the
filtrations, i.e. if fK(F iD′

K) = F iDK ∩ fK(D′
K) for all i ∈ Z. If fK is injiective, it

is equivalent to saying that f fits into a short exact sequence of MFK(ϕ, N)

0 → (D′, F ) → (D, F ) → (D′′, F ) → 0 .

A sub-object (D′, F ) of a filtered (ϕ, N)-module (D, F ) is a morphism (D′, F ) →
(D, F ) such that the (ϕ, N)-module D′ is a sub-object of D.

The strict sub-objects of an object (D, F ) correspond bijectively to the sub-
objects of the underlying (ϕ, N)-module via the map

D′ %→ (D′, F ) with F iD′
K = F iDK ∩ D′

K for all i ∈ Z .

If (D′, F ) is such a sub-object, the quotient (D, F )/(D′, F ) is the cokernel of
(D′, F ) → (D, F ).

We say that a filtered (ϕ, N)-module (D, F ) is semistable if, for any non-zero
sub-object (D′, F ) of (D, F ), we have µ(D′, F ) ≤ µ(D, F ). It is enough to check it
for strict sub-objects.

The following assertion is entirely formal:

Proposition 6.7.1. i) For any non-zero filtered (ϕ, N)-module D over K, there
is a unique filtration (called the Harder-Narasimhan filtration) by strict sub-objects

0 = D0 ⊂ D1 ⊂ . . . ⊂ Di−1 ⊂ Di ⊂ . . . ⊂ Dm−1 ⊂ Dm = D

with each Di/Di−1 non-zero and semistable such that

µ(D1/D0) > µ(D2/D1) > . . . > µ(Dm/Dm−1) .

ii) The functors Dlcr,K and Vlcr,K respect the rank, the degree, the slope and
the Harder-Narasimhan filtration.

6.8. p-adic Hodge theory. The corollary 4.4.1 implies that we have an
equivalence of tannakian categories between p-adic representations (i.e. Qp-
representations) of GK and GK-equivariant vector bundles over X which are
semistable of slope 0:

V → F(V ) = OX ⊗Qp V = (Be ⊗Qp V, B+
dR ⊗Qp V )

(with F %→ V (F) = H0(X, F) as a quasi-inverse).

We say that V is de Rham (resp. potentially log-crystalline, resp. log-crystalline,
resp. crystalline if F(V ) has this property.



VECTOR BUNDLES AND p-ADIC GALOIS REPRESENTATIONS 31

Classically one introduces [Fon94a] the ring

Bst = Bcris[log[!]] .

If V is a p-adic representation of GK , one says that V is de Rham (resp. crys-
talline, resp. semistable, resp. potentially semistable) if BdR ⊗Qp V is trivial (resp.
Bcris ⊗Qp V is trivial, resp. Bst ⊗Qp V is trivial, resp. there is a finite extension L

of K contained in K such that V is semistable as a p-adic representation of GL).

The origin of this terminology lies in the facts that, if Z is any proper and
smooth variety over K, i ∈ N and V = Hi

ét(ZK , Qp), then ([Fa89], [Ts99], [Ni08])
– the p-adic representation V is de Rham and the filtered K-vector space

DdR(V ) = DdR(F(V )) can be identified with

Hi
dR(Z) = Hi(Z,Ω•

Z/K)

equipped with the Hodge filtration,
– if there exists Z over OK proper and smooth such that

Spec K ×Spec OK Z = Z ,

then V is crystalline and Dcris(V ) = Dlcr(F(V )) is the ith-crystalline cohomology
group of the special fiber of Z (equality respecting the Frobenius and compatible
with the filtration via the de Rham comparison isomorphism),

– if there exists Z over OK proper and semistable such that

Spec K ×Spec OK Z = Z ,

then V is semistable and Dst(V ) = Dlcr(F(V )) is the ith-log-crystalline cohomol-
ogy group of the log special fiber of Z (equality respecting ϕ and N and compatible
with the filtration via the de Rham comparison isomorphism).

It is easy to check that
– the definition given in §6.5 of a de Rham and of a crystalline p-adic represen-

tation agrees with the classical definition,
– a p-adic representation V is log-crystalline (resp. potentially log-crystalline)

if and only if it is semistable (resp. potentially semistable).
We made this change of terminology to avoid confusion between the two notion

of semistability (semistable model of a variety and semistable vector bundle).

As a corollary of the proposition 6.7.1, denoting RepQp,lcr(GK) the full sub-
category of the category RepQp

(GK) of p-adic representations of GK whose objects
are the log-crystalline ones and MF0

K(ϕ, N) the full sub-category of MFK(ϕ, N)
whose objects are those which are semistable of slope 0, we get:

Theorem 6.3. For any p-adic log-crystalline representation of GK ,

Dlcr,K(V ) = Dlcr,K(OX ⊗ V )

is a filtered (ϕ, N)-module over K which is semistable of slope 0.
The category RepQp,lcr(GK) is a tannakian subcategory of RepQp

(GK) and

Dlcr,K : RepQp,lcr(GK) → MF0
K(ϕ, N)

is an equivalence of tensor categories. The functor

Vlcr,K : MF0
K(ϕ, N) → RepQp,lcr(GK) ,
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defined by

Vlcr,K(D) = Γ(X, Vlcr,K(D)) ,

is a quasi-inverse.

This important result of p-adic Hodge theory was first proved in [CF00] where
a filtered (ϕ, N)-module over K is said to be weakly admissible whenever it is
semistable of slope 0.

7. de Rham = potentially log-crystalline

To finish, we explain the main lines of the proof of:

Theorem 7.1. Any p-adic representation of GK , any Be-representation of
GK or any GK-equivariant vector bundle over X is de Rham if and only if it
is potentially log-crystalline.

The case of p-adic representations is another important result of p-adic Hodge
theory. The first proof was given by Berger [Ber02] relying on Crew’s conjecture
first proved by André [An02] and Mebkhout [Meb02].

We know that the condition of the theorem is sufficient and it is obviously
enough to show that, if V is a Be-representation of GK which is de Rham, then V
is potentially log-crystalline.

We first reduce the proof to the case where k is algebraically closed: Let
K̂nr ⊂ C the p-adic closure of the maximal unramified extension Knr of K contained
in K. Let K̂nr the algebraic closure of K̂nr. Then K̂nr is stable under the action
of the inertia subgroup IK of GK . This gives an identification of IK to the Galois
group Gal(K̂nr/K̂nr).

Proposition 7.2. Let V be a Be-representation of GK . Then V is log-

crystalline if and only if V is log-crystalline as a representation of IK = Gal(K̂nr/K̂nr).

Let k be the residue field of K̂nr and K̂0,nr the fraction field of W (k). The
group Gal(k/k) = GK/IK acts semi-linearly on the finite dimensional K̂0,nr vector
space

Dlcr,nr(V) = (Blcr ⊗Be V)IK

and we have
Dlcr(V) = (Dlcr,nr(V))Gk .

It is well known that, if n is any positive integer, the pointed set H1
cont (Gk, GLn(K̂0,nr))

is trivial. This implies that the natural map

K̂0,nr ⊗K0 Dlcr(V) → Dlcr,nr(V)

is an isomorphism. Therefore dimK0 Dlcr(V) = dimK̂0,nr
Dlcr,nr(V).

If r is the rank of V over Be, then V is log-crystalline as a Be-representation
of GK (resp. IK) if and only if dimK0 Dlcr(V) = r (resp. dimK̂0,nr

Dlcr,nr(V) = r).
The proposition follows.

From now on, we assume k algebraically closed.
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Let E be a finite extension of Qp and τ : E → K a Qp-embedding. We choose
a uniformizing parameter π of E. For d ∈ N, we consider the 1-dimensional E-
representations of GK

E{d}τ = Symmd
EVC(Φπ) and E{−d}τ = the E-dual of E{d}τ

where VC(Φπ) is the 1-dimensional representation associated to the Lubin-Tate
formal group Φπ (§4.2). If we use τ to see E as a closed subfield of C, then
VC(Φπ) = E ⊗ Tπ(Φπ) where

Tπ(Φπ) = lim
←−
n∈N

Φπ(OC)πn

is the Tate module of Φπ.
We say that a E-representation V of GK is τ -ordinary if there is a decreasing

filtration (F d
τ V )d∈Z of V by sub-E-vector spaces stable under GK such that

F dVτ = V for d % 0, F d
τ V = 0 for d & 0, each F d

τ V is stable under GK and
GK acts trivially on (F d

τ V/F d+1
τ V ) ⊗E E{−d}τ .

If π′ is an other uniformizing parameter of E, then VC(Φ′
π) and VC(Φπ) are

isomorphic. Therefore, the condition of being τ -ordinary is independent of the choice
of π.

The theorem follows from these three propositions:

Proposition 7.3. Any Be-representation V of GK which is potentially de
Rham (i.e. de Rham as a representation of GL for a suitably chosen finite extension
L of K contained in K) is de Rham.

Proposition 7.4. Let τ : E → K be a Qp-embedding of a finite extension E
of Qp into K. Any E-representation of GK which is τ -ordinary is log-crystalline.

Proposition 7.5. Let V be a Be-representation of GK which is de Rham.
There exists an integer hV ≥ 1 such that, for any finite extension E of Qp of degree
divisible by hV and any embedding τ : E → K, one can find

1) a finite extension L of K contained in K and containing τ(E),
2) a τ -ordinary E-representation V of GL = Gal(K/L),
3) a GL-equivariant Be ⊗Qp E-linear bijection

Be ⊗Qp V ( E ⊗Qp V .

The field K is naturally embedded into BdR and the proposition 7.3 becomes
a formal consequence of the fact that, for any positive integer n, the pointed set
H1(GK , GLn(K)) is trivial.

The proof of the proposition 7.4 relies on some hard computation in Galois co-
homology which can be done using the techniques of Herr [He98] to compute Galois
cohomology by the way of the theory of (φ, Γ)-modules [Fon90]. This computation
has been done by Berger showing a much more general result : any extension of
two semi-stable E-representations which is de Rham is semistable (unpublished,
see also [Ber02], §6).

The proof of the proposition 7.5 runs as follows:
Say that a GK-equivariant vector bundle F = (Fe,F+

dR) is trivial at ∞ if it is
de Rham and F+

dR = B+
dR ⊗K DdR(F).
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To any Be-representation W of GK which is de Rham, setting DdR(W) =
(BdR ⊗Be W)GK , one can associate to W the GK-equivariant vector bundle

W̃ = (W, B+
dR ⊗K DdR(W))

which is trivial at ∞. The correspondence W #→ W̃ is a functor inducing a tensor
equivalence between the category of de Rham Be-representations of GK and GK-
equivariant vector bundles over X which are trivial at ∞.

If F is any de Rham GK-equivariant vector bundle over X, then F̃e is a mod-
ification of F and F is trivial at ∞ if and only if F̃e = F .

Let
0 = F0 ⊂ F1 ⊂ . . . ⊂ Fi−1 ⊂ Fi ⊂ . . . ⊂ Fm−1 ⊂ Fm = Ṽ

be the Harder-Narasimhan filtration of Ṽ. By unicity of this filtration, each Fi is
stable under GK . Setting Vi = (Fi)e, we get a decreasing filtration

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vi−1 ⊂ Vi ⊂ . . . ⊂ Vm−1 ⊂ Vm = V
by sub-Be-representations of GK . For 1 ≤ i ≤ m, Fi and F i = Fi/Fi−1 are trivial
at ∞ (we have Fi = Ṽi and F i = Ṽi, where Vi = Vi/Vi−1).

Let µi be the slope of the semistable vector bundle F i and let hV be the smallest
positive integer such that

hV .µi ∈ Z for 1 ≤ i ≤ m .

Let E be a finite extension of Qp of degree h divisible by hV , τ a Qp-embedding
of E into K and K ′ a finite extension of K contained in K and containing τ(E).
The curve XE = XF,E is a cyclic étale cover of X of degree h equipped with an
action of GK′ and the natural morphism ν : XE → X is GK′ -equivariant.

Choose a uniformizing parameter π of E. For each d ∈ Z, the line bundle
OXE (d)π is equipped with an action of GK′ and

OX(d/h)π = ν∗OXE (d)π

is a GK′ -equivariant vector bundle over X which is semistable of slope d/h. For
1 ≤ i ≤ m, the GK′ -equivariant vector bundle

Gi = Hom(OX(µi)π,F i)

is semistable of slope 0, hence Wi = H0(X, Gi) is a p-adic representation of GK′

and Gi = OX ⊗Qp Wi.
On the other hand, Gi = W̃i where Wi is the de Rham Be-representation of

GK′

Wi = LBe(Γ(Xe,OX(µi)π),Vi) ,

hence Gi is trivial at ∞. Therefore, the natural map

B+
dR ⊗K (BdR ⊗Qp Wi)GK′ → B+

dR ⊗Qp Wi

is an isomorphism. A fortiori, the natural map

C ⊗K (C ⊗Qp Wi)GK′ ) → C ⊗Qp Wi

is an isomorphism (i.e. the p-adic representation Wi of GK′ is Hodge-Tate, with all
its Hodge-Tate weights equal to 0). A deep result of Sen [Sen73] implies that GK′

acts on Wi through a finite quotient. Therefore, one can find a finite extension L
of K ′ contained in K such that GL acts trivially on each Wi. One easily checks
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that it implies the existence of a positive integer ri and of an isomorphism of GL-
equivariant vector bundles

fi : (OX(µi)π)ri → E ⊗Qp F i .

For all d ∈ Z, there is a canonical isomorphism

(OX(d/h)π)e $ Be ⊗Qp E{d}π

and therefore, for 1 ≤ i ≤ m, if µi = di/h, we get a GL-equivariant Be⊗Qp-linear
bijection

Be ⊗Qp (E{di})ri $ E ⊗Qp Vi .

In particular, this concludes the proof when m = 1. Assume m ≥ 2. By induction,
we may assume there is a τ -ordinary representation V ′ of GL and a GL-equivariant
Be⊗Qp-linear bijection

Be ⊗Qp V ′ $ E ⊗Qp Vm−1 .

Set Be,E = Be ⊗Qp E. We get an exact sequence of Be,E-representations of GL

0 → Be,E ⊗E V ′ → E ⊗Qp V → Be,E ⊗E (E{dm})rm → 0 .

Twisting by E{−dm}, we are reduced to show, that, if we have a short exact
sequence of Be,E-representations of GL

(∗) 0 → Be,E ⊗E W ′ → W → Be,E → 0

with W ′ a τ -ordinary E-representation of GL, then W comes by scalar extension
from an E-representation of GL which is an extension of E by W ′. Setting

BdR,E = E ⊗Qp BdR , B+
dR,E = E ⊗Qp B+

dR and B̃dR,E = BdR,E/B+
dR,E ,

we get from the fundamental exact sequence (§6.3), a short exact sequence

0 → E → Be,E → B̃dR,E → 0 .

Tensoring with W ′, we get an exact sequence

0 → W ′ → Be,E ⊗E W ′ → B̃dR,E ⊗E W ′ → 0 ,

inducing an exact sequence of continuous GL-cohomology

. . . → H1
cont(GL, W ′) → H1

cont(GL, Be,E ⊗E W ′)

→ H1
cont(GL, B̃dR,E ⊗E W ′) → . . .

The short exact sequence (∗) defines an element c ∈ H1
cont(GL, Be,E ⊗E W ′). What

we need to show is that c comes from an element of H1
cont(GL, W ′) or equivalently

goes to 0 in H1
cont(GL, B̃dR,E ⊗ W ′). The map

H1
cont(GL, Be,E ⊗E W ′) → H1

cont(GL, B̃dR,E ⊗E W ′)

factors through H1
cont(GL, BdR,E ⊗E W ′) and this comes from the fact that

the extension is de Rham which means that the image of c is already 0 in
H1

cont(GL, BdR,E ⊗E W ′).

Remark. Let F a de Rham GK equivariant vector bundle over X. Choose a
finite Galois extension L of K contained in K such that F is log-crystalline as a
GL-vector bundle. Then the (ϕ, N) module over L

Dlcr,L(F)
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is equipped with an action of GL/K defined in an obvious way. This give to Dlcr,L(F)
the structure of what can be called a filtered (ϕ, N, GL/K)-module over K. The
inductive limit (in a straightforward way) of the categories of filtered (ϕ, N, GL/K)-
modules over K, when L runs through all the finite Galois extensions of K contained
in K, is the category

MFK(ϕ, N, GK)
of filtered (ϕ, N, GK)-modules over K. This is, in an obvious way, a Qp-linear tensor
category, with an obvious definition of the rank, the degree and the slope of any
non-zero object. The Harder-Narasimhan filtration of any object can be defined.

We see that the Dlcr,L’s induce a tensor equivalence of categories

de Rham GK-equivariant vector bundles over X ⇐⇒ ModK(ϕ, N, G)

respecting rank, degree, slopes and the Harder-Narasimhan filtration.

The restriction of this equivalence to semistable vector bundles of slope 0 leads
to the “classical” equivalence ([Fon94b], [Ber02]) of categories between de Rham
p-adic representations of GK and “weakly admissible” (or semistable of slope 0)
filtered (ϕ, N, GK)-modules over K.
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