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Vector bundles and p-adic Galois representations

Laurent Fargues and Jean-Marc Fontaine

ABSTRACT. Let F' be a perfect field of characteristic p > 0 complete with
respect to a non trivial absolute value. Let E be a non archimedean locally
compact field whose residue field is contained in F'. To these data, we associate
a “complete regular curve” X = Xp g defined over E. If F is an algebraic
closure of F' and H = Gal(F/F), there is an equivalence of categories between
continuous finite dimensional E-linear representations of H and semistable
vector bundles over X of slope 0. To construct X we first construct the ring
B of “rigid analytic functions of the variable m on the punctured unit disk
{ze F|0<|z| <1}

Let C be the p-adic completion of an algebraic closure K of a p-adic field
K. A classical construction from p-adic Hodge theory associates to C' a field
F = F(C) as above and the group G acts on the curve X = Xp(c) g, We
study G g-equivariant vector bundles over X and classify those which are “de
Rham”. The two main theorems about p-adic de Rham representations are
recovered by considering the special case of semistable vector bundles of slope
0. This paper is a survey. Details and proofs will appear elsewhere.

1. Curves and vector bundles

1.1. General conventions and notations. If R is a commutative ring and
My, My are R-modules, we denote by Lg(Mi, Ms) the R-module of R-linear maps
f : Ml — MQ.

If L is a field equipped with a non archimedean absolute value | | (or a valuation
v), we denote O = {z € L| | |z| < 1} (or v(z) > 0}) the corresponding valuation
ring, mz, the maximal ideal of O and k, = Op/my the residue field.

As usual, if X is a noetherian scheme, we view a vector bundle over X as a
locally free coherent Ox-module.

If a group G acts on the left on a noetherian scheme X, an Ox -representation
of G (resp. a G-equivariant vector bundle over X) is a coherent Ox-module (resp.
a vector bundle) F equipped with a semi-linear action of G in the following sense:

e forall g € G,if g: X =5 X is the action of g on X, one is given an
isomorphism
ey g F = F,
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e the following cocyle condition is satisfied

Cgy © ggcgl = Cg1g25 91,92 e
via the identification g3 (g7 F) = (g1g2)* F.

If X = Spec(B) is affine, an Ox-representation of G is nothing else than a
finite type B-module equipped with a semi-linear left action of G.

In this paper, we use freely the formalism of tensor categories (for which we
refer to [DM82]). For instance, if G is a group acting on a noetherian scheme
X, equipped with the tensor product of the underlying O x-modules, the category
Repp, (G) of Ox-representations of G is an abelian tensor category, though the full
sub-category Bundx (G) of G-equivariant vector bundles is a rigid additive tensor
category. If X is a smooth geometrically connected projective curve over a perfect
field E, the full subcategory Bund% (G) of G-equivariant vector bundles which are
semistable of slope 0 is a tannakian E-linear category.

1.2. Complete regular curves. A regular curve X is a separated integral
noetherian regular scheme of dimension 1. In other words, X is a separated
connected scheme obtained by gluing a finite number of spectra of Dedekind rings.

Let X be a regular curve, K = Ox,, its function field (i.e. the local ring at the
generic point 1), | X| the set of closed point of X. For any = € |X|, let v, be the
unique discrete valuation of K such that

0,(K*) =7Z and Ox,={f€k|v.(f) >0} .

The field K, the set of closed points |X| and the collection of valuations
(vx)xa x| on K determine completely the curve X:

i) As a set, the underlying topological space is the disjoint union of | X| and of
a set consisting of a single element 7.

ii) The non empty open subsets are the complements of the finite subsets of
| X|. If U is one of them,

D(U,O0x)={feK|vy(f) >0 forallz € Un|X|} .

If X is a regular curve, the group Div(X) of Weil divisors of X is the free
abelian group generated by the [z]’s with = € | X|. If f € K*, the divisor of f is

div(f) = > v(f)a] .
z€|X|

If X is a regular curve, a coherent Ox-module is a vector bundle if and only if
it is torsion free.

A complete regular curve is a pair (X, deg) consisting of a regular curve X and
a degree map
deg : |X] — Nso
such that, for any f € K*,
(1) deg(div(f)) = > v.(f)deg(x) = 0.
z€|X|

If X is a complete regular curve, then H%(X, Ox) is a field. We call it the field
of definition of X.
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REMARK. Equipped with the usual definition of the degree, a smooth projective
curve over a field is a complete regular curve. Its function field is finitely generated
over its field of definition. It won’t be the case for the curves we are going to
construct.

Let X be a complete regular curve. Let F be a coherent O x-module. The rank
of F is the dimension of its generic fiber F,, over the function field. If 7 is the rank
of F, choose a vector bundle £ isomorphic to O% whose generic fiber &, is equal to
F,. For each closed point z € |X|, let F,, (resp. F,/) the kernel (resp. the image) of
the natural map F, — F,. We set
where, if M is any Ox ,-module of finite length, lg, (M) is its length and

lg, (F /€x) =18, ((Ex + ) [Ex) — g, ((Ex + F) ) FY) -
We have lg, (F/E) = 0 for almost all z. We define the degree of F
deg(F) = Y 1g,(F/€). deg(x) .
€| X|
Granting to (1), it is independent of the choice of £. The degree may also be defined
by:
deg(F) = deg(Fior) + deg(det(F/Fior))
where

e Fior is the torsion part of F, a finite direct sum of skyscrapers sheaves of
finite length Ox z-modules, = € | X/,

o deg(Fior) = Zme\)q Ig, (Fz). deg(z),
e if £ is a line bundle set deg(L) = deg(div(s)) where s is any non-zero
meromorphic section of £, div(s) being the Weil divisor associated to s,
o det(F/Fior) is the line bundle A" V) (F/ Fioy).
The point is that, since X is complete, the degree function on line bundles

deg : Div(X) — Z
factorizes through the group of principal divisors to give a degree function
deg : Div(X)/~ = Pic(X) — Z.
If F is a non-zero coherent Ox-module we define the slope of F as
w(F) = deg(F)/rank(F) € QU {+o0}
(we have u(F) = 400 if and only if F is torsion).

An Ox-module F is semistable (vesp. stable) if u(F') < u(F) (resp. if F is
non-zero and if p(F’) < p(F)) for any proper Ox-submodule F’. A non-zero Ox-
module is semistable of slope +oo if and only if it is a torsion module.

The Harder-Narasimhan theorem holds:

THEOREM 1.1. Let F be a non-zero coherent Ox-module. There is a unique
filtration

O=FyCcHhHC...CF,iqnCcFCc...CFpn1CFn=F
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by Ox -submodules with F;/F;_1 # 0, semistable, and
/l(}—l/]'—()) > ,u(]'—z/}—l) >0 > ,u(]:m/fm_l) .

Moreover, for each A\ € QU {+oo}, the full sub-category Bundy of the category
of coherent Ox-modules whose objects are those which are semistable of slope \ is
an abelian E-linear category.

We see that, F is a vector bundle if and only if p(F1/Fo) # +o0. In this case,
the F;’s are strict vector subbundles, i.e. the quotients F/F;’s are torsion free,
hence also vector bundles. If, instead, the torsion sub-module Fi,, is not 0, then
ftor = ‘7:1-

2. Bounded analytic functions

2.1. The field £r . We fix a non archimedean locally compact field E. We
denote by p the characteristic of kg and ¢ the number of elements of kg. We denote
by vg the valuation of E normalized by vg(E*) = Z.

Let F be any perfect field containing k. We denote by £ g the unique (up
to a unique isomorphism) field extension of F, complete with respect to a discrete
valuation v extending vg such that

i) v(E5g) = ve(E") = ,

ii) F' is the residue field of £r 5.

There is a unique section of the projection Og,, , — F' which is multiplicative.

We denote it
a v [a] .

If we choose a uniformizing parameter m of E, any element f € £r g may be

written uniquely
f= Z [a,]7"™ with the a,, € F,
n>>—oo

and f € E if and only if all the a,,’s are in kg.

We see that, if E is of characteristic p, the map a — [a] is an homomorphism
of rings. If we use it to identify F' with a subfield of &, i.e. if we set [a] = a for all
a € F, we get

E=kg((r)) and Epp = F((7)) .
Otherwise, E is a finite extension of Q. If W (F) (resp. W (kg) ) is the ring of Witt
vectors with coefficients in F' (resp. kg), we see that Ep g can be identified with
E ®w(kp) W(F) and that, for all a € F,

[a] =1® (a,0,0,...,0,...).

2.2. Three sub-rings of £ . We now fix the perfect field F' containing kg
and we assume F' to be complete for a given non trivial absolute value | |. Observe
that, as F is perfect, the valuation group is p-divisible, hence the valuation is not
discrete.

If there is no risk of confusion, we set £ = Ep . We still choose a uniformizing
parameter 7 of E. The following subsets of £

B = B%,E ={ Z [an]7™ | there exists C such that |a,| < C, Vn },
n>-—oo
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B"" =Byl ={ > [a)r" | an € Op, ¥n }
n>>—oo
“+oo
and A= App = {Z[an}w" }an € Op, Vn '}
n=0
are Og-subalgebras of £ and are independent of 7. If @ is any non-zero element of
the maximal ideal mp of Op, we have

B A1) and B — B

When char(FE) = p, the ring B® may be viewed as the ring of rigid analytic
functions
fiA={zeF|0<|z[<1} = F

which are such that 7" f is analytic and bounded on {z € F | 0 < |z| < 1}, for
n > 0.

2.3. Prime ideals of finite degree. We set &, = &, E.
The projection O — kg, which we denote as a +— @, induces an augmentation
map
e: B"" — & sending Z [an]m™ to Z [@n]m™ .
n>>—oo n>>—oo
We have e(A) = Og,. We say that £ € A is primitive if £ ¢ 7A and £(€) # 0. The
degree of a primitive element & is

deg(§) = vr(e(€)) €N .

We see that A is a local ring whose invertible elements are exactly the primitive
elements of degree 0. A primitive element £ € A is irreducible if deg(¢) > 0 and
¢ can’t be written as the product of two primitive elements of degree > 0. In
particular, any primitive element of degree 1 is irreducible.

We say that two primitive irreducible elements £ and &' are associated (we
write & ~ £') if there exists n primitive of degree 0 such that £’ = &n. This is an
equivalence relation and we set

|Yr,g| = |Y| = {primitive irreducible elements}/ ~ .
If y € |Y| is the class of £, we set deg(y) = deg(§).
We say that an ideal a of A, B»* or BY is of finite degree if it is a principal

ideal which is generated by a primitive element £ of A. The degree of such an a is
the degree of &.

PROPOSITION 2.3.1. Let y € |Y| be the class of a primitive irreducible element
&. The ideal p,, (resp. p;’;*, resp. pZ) of A (resp. B>T, resp. B®) generated by € is
prime and depends only on y. The map
y— py (resp.y i plt, resp.y —ph )
induces a bijection between |Y| and the set of prime ideals of finite degree of A
(resp. B¥T, resp. B®).

To describe what are the quotients of these rings by a prime ideal of finite
degree, it is convenient to introduce the notion of p-perfect field.
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2.4. p-perfect fields. A p-perfect field is a field L complete with respect
to a non trivial non archimedean absolute value | | whose residue field kj, is of
characteristic p and which is such that the endomorphism = — zP of O /pOy is
surjective.

If L is the fraction field of a complete discrete valuation ring, we see that L is
a p-perfect field if and only if &, is perfect of characteristic p and my, is generated
by p.

A strictly p-perfect field is a p-perfect field L such that Op is not a discrete
valuation ring.

Let L be a field complete with respect to a non trivial non archimedean absolute
value, with char(kz) = p and Oy, not a discrete valuation ring. It is easy to see that

—if a is any element of the maximal ideal my, of Oy, such that p € (a), then L
is strictly p-perfect if and only if the map

OL/(a) — Or/(a) sending = to zP

is onto,
—if L is of characteristic p, L is strictly p-perfect if and only L is perfect.

Let L be a p-perfect field. We consider the set
F(L)={z = (@™)pen | 2™ € L and (2"FD)P =M}
If x,y € F(L), we set
(x4+y)™ = lim (2™ 4 yFmP™ (1)) = g0y (n)

mi——+oo

(it is easy to see that the limit above exists).

PROPOSITION 2.4.1. Let L be a p-perfect field. Then F(L) is a perfect field of
characteristic p, complete with respect to the absolute value | | defined by |x| = |2(0)].
Moreover

i) If a C my, is a finite type (i.e. principal) ideal of Oy containing p and if
u+— @ denote the projection Op, — Or/a, the map

OF(L) — lim Op/a
neN

(with transition maps v — vP) sending (™)pen to (x(W)),en is an isomorphism
of topological rings.
1) If L contains E as a closed subfield, the map

9L7E : B%(L),E — L

sending Y, lan]m™ to Y0, a7 s a surjective homomorphism of E-

algebras (independent of the choice of 7). Moreover,
(1) If Or, is a discrete valuation ring, F(L) is the residue field of L equipped
with the trivial valuation and 01, g is an isomorphism.
(2) If L is strictly p-perfect, we have |F(L)| = |L| and the kernel of 01, g is a
prime ideal of B%(L) g of degree 1. We have

9L7E(B;:(+L),E) =L and 9L7E(AF(L),E) = OL .
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REMARKS. (1) If L is of characteristic p, the map z — 2 is a canonical
isomorphism of the field F'(L) onto the residue field of L if L is not strictly
p-perfect and onto L otherwise. Then, all the results are obvious. If L is
strictly p-perfect and if \ is the unique element of F'(L) such that AO = 7,
then m — [A] is a generator of ker 6, .

(2) If L is strictly perfect of characteristic 0, it’s not always true that there
exists A € F(L) such that 7 — [A] is a generator of kerf; g (which is
equivalent to saying that \(©) = m). This is true if F is algebraically
closed, but such a A is not unique !

All the ideals of degree 1 are obtained by this construction: Let £ be the set
of isomorphism classes of pairs (L,:) where L is a p-perfect field containing E
as a closed subfield and ¢ : F(L) — F is an isomorphism of topological fields.
If (L,t) is such a pair, let 6 : B® — L be the homomorphism deduced from
0Lk : B%(L%E — L by transport de structure.

PROPOSITION 2.4.2. The map L — {ideals of degree 1} sending the class of
(L,¢) to the kernel of 0y, is bijective.

2.5. Algebraic extensions of strictly p-perfect fields.

PROPOSITION 2.5.1. Let Lg be a strictly p-perfect field containing E as a closed
subfield, Fy = F(Lo) and wm the kernel of the map 01, 5 : By, 5 — Lo.

i) If L is a finite extension of Lo, then L is strictly p-perfect and F(L) is a
finite extension of F(Lg) of the same degree.

it) If F is a finite extension of Fy, the ideal B%Em of BEE is mazimal and the
quotient of B%’E by this ideal is a finite extension of Lo of the same degree.

The functor L — F(L) is an equivalence of categories between finite extensions
of Lo and finite extensions of Fy. The functor F +— B%yE/B%Em 1S @ quasi-inverse.

REMARK. This equivalence extends in an obvious way to étale algebras. Hence,
we see that the small étale site of Ly can be identified with the small étale site of
Fo.

2.6. Finite divisors. We can now give a complete description of the prime
ideals of finite degree.

ProproSITION 2.6.1. If F' is algebraically closed, a primitive element is irre-
ducible if and only if it is of degree 1.

PROPOSITION 2.6.2. Let y € |Y|, d = deg(y), § = :i%[cn]w a primitive

element lifting y, L, = Bb/pz and 0, : B® — L, the projection. We set ||y|| =
lco|*/ . Then:
i) The ideals pg and piﬁ are mazimal and

Bb,Jr/pZ,Jr =T

n

Y -

it) There is a unique absolute value | |, on the field L, such that |0,([a])|, = |a]
for all a € F. Equipped with this absolute value, L, is a p-perfect field containing
E as a closed subfield. Moreover ||, = ||y||.

iii) The map F — F(L,) sending a to (0,([a” "])nen is a continuous homomor-
phism of topological fields identifying F'(L,) with a finite extension of F of degree
d.

v) The ring A/py is a Op-subalgebra of O, whose fraction field is L,,.
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We define the group Divy(Y') of finite divisors of Y as the free abelian group
with basis the [y]’s for y € |Y|. Hence any finite divisor may be written uniquely

D= Z nyly] with the n, € Z, almost all 0 .
yelY|
The degree of such a D is 3 oy ny deg(y).

We denote Div}'(Y) the monoid of finite effective divisors, i.e. of divisors
D =} nyly] with n, > 0 for all y. From the previous proposition, one deduces:

COROLLARY 2.6.1. The map from Div?(Y) to the multiplicative monoid of
ideals of finite degree of A (resp. B®*, resp. B®) sending Zye‘y‘ny[y] onto

[L,epy (py)™ (resp. Hy€|YI(pZ’+)"y, resp. Hye‘y‘(pg)"y) is an isomorphism of
monoids.

3. The rings of rigid analytic functions

3.1. Norms and completions. For f =3 [an]T™ € B®, and 0 < p <

1, we define

n>—oo

J— '
|flp = max|an|p" .
We also set

|flo = ¢ " if r is the smallest integer such that a, # 0, and |f|; = su}Z) |an].
ne

For any p € [0,1], the map f — |f|, is a multiplicative norm on BP, i.e. we
have

|f+g|p < max{|f|p, |g‘p} s ‘fg|p = ‘f|p|g‘p and |f|p =0+ f=0.
For any non empty interval I C [0, 1], we denote
B =Brgr
the completion of B’ for the family of the | |,’s for p € I 1.

PROPOSITION 3.1.1. Let I C [0,1] be a non empty interval. For any p€ I, | |,
is a norm on By (i.e., if b € By is # 0, then |b|, # 0). Moreover:
i) If J C I is an interval, the induced map

B — By

1$ a contlinuous injective map.
it) If I = [p1, pa] s a non empty closed interval contained in [0, 1], then By is
a Banach E-algebra: if we set

A%‘,E,I = Ab = {f € Bb’+ | ‘f‘pl S 1 and |f|p2 S ]-} )
then Br = Ar[1/7] where A; = Ap g1 is the m-adic completion of AY.

1Say that a sequence (fn)nen is a Cauchy sequence over the interval I if for any p € I and
any € > 0, there exists N such that |fm — fn|p, < € if m and n are > N. Say that two Cauchy
sequences (fn)nen and (gn)nen are equivalent if, for any p € I and any € > 0, there exists N
such that |fn — gnlp < € if n > N. An element of Br g may be viewed as an equivalence class
of Cauchy sequences over I.
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i) If I C [0,1] is not restricted to [0] = {0}, then By is a Fréchet-E-algebra
(inverse limit of Banach E-algebras): If Iy is the set of closed intervals contained
in I, the map

B[ — lim Bt]
=
18 a homeomorphism of topological rings.
iv) We have By 1) = B® and B = €.

In what follow, if J C I, we use the injective map By — By to identify B; with
a subring of Bj.

If I C [0, 1] contains 0 then B can be identified with a subring of &:

Br={ Z lap]n™ € E|V p eI, |ay|p™ — 0 for n — +oo} .
n>—oo

If I C [0, 1] contains 0, we set
Blt,E,I =Bf ={beB;||blo<1} =B/ N0 .
Similarly if I C [0, 1] contains 1, we set
Bf ={beBr| bl <1} .

We have
By =B"" and A= B"*N0Og = {b€ B" =By | [blo < 1 and [p]; <1}
We also write
Bfp=Bt = B}J&l] and Bpp = B = By 1| .

If char(E) = p and if I CJ0, 1] the ring By can be identified with the ring of
rigid analytic functions

f:{zEFwith\z|€I}—>F.

In particular B := Bjg i is the ring of rigid analytic functions on the punctured
open unit disk.

Similarly, if char(E) = p and if 0 € I C [0, 1[, then B; may be identified with
the ring of analytic functions

f:{zeFwith|z] eI} - F,
though By is the ring of meromorphic rigid analytic functions in the same range,

with no pole away from 0.

REMARK. Let I CJ]0,1[. Let (an)nez be elements in F' such that, for all p € I,
we have |a,|p™ — 0 whenever n — +o00 and also when n — —oco. Then the series

Z[anhn

nez

converges (in both directions) to an element of Bj. If char(E) = p, any element of
B may be written uniquely like that. If char(F) = 0, we don’t know if it is always
possible and, when it is possible, we don’t know if this writing is unique (but it
seems unlikely in general).
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3.2. Newton polygons. Let v the valuation of F' normalized by |a| = g (@
for all @ € F. Let I C [0, 1] be an interval containing 0. The map

(anhnez — 3 lan)"

nez

is a bijection between the set of sequences (ay,)ncz of elements of F' such that

i) an, =0 for n < 0,

ii) for all p € I, a,p™ — 0 for n — 400
and Br. If f =37 o lan|7" € By is non-zero, the Newton polygon of f is the
convex hull Newt(f) of the points of the real plane of coordinates (n,v(ay)) for
n € Z.1f J C I is an interval, Newt ;(f) is the sub-polygon of Newt(f) obtained by
deleting all segments whose slopes s are such that ¢* & I.

PROPOSITION 3.2.1. Let I C [0,1] be an interval and let 1 be the smallest
interval containing I and 0. Then By is a dense subring of Br. If f € Br and
if (fa)nen 45 a sequence of elements of By converging to f, then the sequence
(Newtr(fn))nen has a limit, i.e., for any closed interval J C I, the sequence of
the Newt ;(fy,) is stationary. This limit is independent of the choice of the sequence

(fn)nEN~
We call this limit Newt;(f).

3.3. Divisors. For any interval I C [0, 1] different from (), {1}, we set
Vil ={y e [Y]|llyll € I},

and we define the group Div(Y7) of divisors of Y%
i) If I is closed and I C [0, 1], we set

Div(Y7) = { Z nyly] | ny = 0 for almost all y} .
ye|Yr|

ii) If I C [0,1] is not closed and if J; denote the set of closed ideals J C I, we
set

Div(Y7) = { Z nylyl | VJ € Jr,n, =0 for almost all y with ||y|| € J} .
yE‘Y[

iii) If 1 € I, we define I’ as the complement of 1 in I, we choose py € I’ and
we set

Div(Yr) ={ Y mylyl € Div(Yr) | > nylog(llyl)) > —oc}
yelYrl llyl1=po

(independent of the choice of pg).

For any I, we denote by Div' (Y7) the monoid of effective divisors i.e. of divisors
D = 3" nyly] € Div(Y7) such that n, > 0 for all y.

23ee the remark 3.4.1 below for a geometric interpretation of these constructions.
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3.4. Closed ideals. For any y € |Y|, we choose a primitive element §,
representing y.

PRrROPOSITION 3.4.1. Let I C [0,1] be a non empty interval and y € |Y|. If
llyl|| & I, then &, is invertible in By. If ||y|| € I and if L, = B/(&,), the projection
of B to L, extends by continuity to a surjective homomorphism of E-algebras

0y:Br — Ly
whose kernel is the maximal ideal generated by &, .

The map
y — my, = ideal of By generated by &,
is an injective map from |Y7| to the set of maximal ideals of Bj.

THEOREM 3.1. Let I C [0,1] an interval different from 0,{1}. For any y € |Y1|,
we have Npen(myy)™ = 0. Let f € By a non-zero element. For any y € |Y7|, let
vy (f) be the biggest integer n such that f € (my)". Then

div(f) = D vy ()l € Div* (V) .
y€E|YT|
Moreover, for any p = ¢~" € I with r > 0, the length p,(f) of the projection on
the horizontal azxis of the segment of Newtr(f) of slope —r is finite and

Z vy(f) deg(y) = po(f) -

llyll=p

COROLLARY 3.4.1. Let I C [0,1] an interval different from 0,{1}. Then:

1) Any non-zero closed prime ideal of By is mazimal and principal.

it) The map |Yr| —{closed mazimal ideals of Br} sending y to my, is a
bijection.

i) If I C [0,1] and is closed, any ideal of By is closed and By is a principal
domain.

PROPOSITION 3.4.2. Let I C [0,1] a non empty interval. For any non-zero
closed ideal a of By and any y € |Y7|, let vy(a) the biggest integer n < 0 such that
a C (myzy)". Then

div(a) = Y v,(a)fy] € Divt (V) .
yE[Yr]
The map
{non-zero closed ideals of Br} — Div*(Y7) ,

so defined, is an isomorphism of monoids.

REMARK 3.4.1. Let I C [0,1] an interval different from @, {1}.

—If I is closed, we see that Div(Y7) is nothing but the group of divisors of the
regular curve Y7 = Spec(Bj) and that |Y7| may be identified to the set of closed

points of Y7.
— Otherwise, we may consider the inductive system of regular curves

Yr = (Y = SpecBy) ez, -
If J; C Js belong to Z7, we have morphisms of abelian groups

Div(Yy,) — Div(Yy,) and Div(Yy,) — Div(Yy,,)
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induced by the fact that, if a is a non-zero ideal of By, then a N By, is a non-zero
ideal of By,, though, if b is a non zero ideal of B ,, then B b is a non zero ideal of
Byj,. We see that Div(Y7) is the inverse limit of the Div(Y}) for J € Z;. The direct
limit of these groups consists of the subgroup

Div(Y7) = { Z ny[y] € Div(Y7)| ny = 0 for almost all y € [Y]} .
ye|Yr|

3.5. Factorization. From the above proposition, we see that the analogue in
this context of the classical question “does there exist an analytic function which
has a given set of zeros with fixed multiplicities ” becomes the question:

“Let D € Div'(Y7). Does there exist f € By such that div(f) = D ?”

The answer to this question is “yes for any D” if and only if any closed ideal
is principal.

The answer to this question is obviously “yes” if I C [0,1[is closed. This is also
“yes” if I =]0, p] for some p €]0, 1] (see cor. 3.5.1 below). But it is “no” in general.

Recall that one says that the field F' is spherically complete if the intersection
of any decreasing sequence of non empty balls contained in F' is non empty.

For instance, if k is an algebraically closed field of characteristic p,

i) the completion of an algebraic closure of the field k((u)) is not spherically
complete,

ii) If G is a divisible totally ordered abelian group (e.g. G = Q or R), we may
consider the subset F' of all formal series of the form

f= Zagg with a4 € k|
geqG

such that the support of f
supp(f) = {9 € G | a4 # 0}

is a well ordered subset of G. Then, with the obvious addition, multiplication
and absolute value, F' is an algebraically closed field which is spherically complete
[Poo93].

PROPOSITION 3.5.1. Let I C [0,1] be a non closed interval. Then:

i) If F is not spherically complete, there are closed ideals of By which are not
principal.

1) If F is spherically complete and char(E) = p, any closed ideal of By is
principal.

It is likely that (ii) remains true whenever char(E) = 0.

Without any assumption on F', if I is an interval whose closure contains 0, any

divisor

yE|Yr|

such that n, = 0 if ||y|| > p for p € I big enough, is the divisor of a function.
More precisely, for any y € |Y7| we denote by d, the degree of y and we choose a
m-primitive element £ (i.e. an element &, € A such that |§, —7%|; < 1) representing
y (one can show that such an element always exists). Then:
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PROPOSITION 3.5.2. Let T C [0,1] an interval containing 0, not reduced to {0},
and I the complement of {0} in I. Let

D= )" nylyl € Divi(vy) .
yE|YT]|
i) For any p € I, the infinite product
_ Sy
fSP - H 7y

llyll<p

converges in B]+o,1] C Br and div(f<p) = 321 1<p "wlyl-

ii) If there exists f € By such that div(f) = D then f = f<,f>, for some
f>p € By and div(fsp) = 3215 "wly]-

In particular, if I =0,1], f>, € Bf)O,l[' In this case, f € Bjoq) (resp B]-g,u) if
and only if f~, € B® (resp. B®*).

COROLLARY 3.5.1. %) If I =]0, p] for some p €]0,1[, any closed ideal of By is
principal.

i4) An ideal of By or of Bjo 1) is closed if and only if it is an intersection of
principal ideals.

3.6. Units. The ring A is a local ring. Therefore, if my4 is its maximal ideal,
the multiplicative group A* of invertible elements of A is the complement of m 4 in
A. With obvious notations, we have also

A* = [0}] xUp with Up = {1+ [ax]7" | an € Op} .
n=1
We have also
(B¥ ) =72 x A* =7 x [0f] x Up and (B®)* =72 x [F*] x U .
If f is an invertible element of Bjg 1| we must have div(f) = 0, which implies that
f € BY. Therefore,

(Bjoa)" = (Bjoa)" = (B")* and (BT)" = (B"*)".
4. The curve X in the case where F' is algebraically closed

4.1. Construction of the curve. The Frobenius automorphism ¢ on B is
the unique E-automorphism which is continuous for | |o and induces z — 27 on F'.

It satisfies
o( D lanr™) = > ladln".

n>>—oo n>>—oo
For any f € B and any p € [0, 1], we have [p(f)|p,« = (|f|,)?. This implies that ¢
extends by continuity to an automorphism (still denoted @) of B = Bjg 1] -

We consider the graded E-algebra
P, = PF,E,ﬂ' = @Pﬂ-,d with Pﬂ-,d = PF,E,ﬂyd = {b €eB | (p(b) = de} .
deN

The natural map P, — B is injective and we use it to identify P, with a subring
of B. We have P, C Bt.
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We define the scheme
X = XF,E = Pl"Oj Pﬂ- .
One can show that X is independent of the choice of 7: If 7" is another uniformizing
parameter of E and if X’ = Proj Py, the function field of X’ (viewed as a subfield
of the fraction field of B) is the function field K of X and the set of closed points
of X' (viewed as a subset of the set of normalized discrete valuations on K) is the

set of closed points of X.
On the other hand, the line bundles

OX (d)fr = @ Pﬂ,n+d

nez

(with the convention that P ,,, = 0 for m < 0) depend on the choice of 7.
We have
Pro={ueB|pu)=u}=E.

4.2. The Lubin-Tate formal group. Set

400 1rgn
X4
LX) =3 e B
n=0
and ®,(X,Y) € FE[X,Y]] the unique formal power series = X + Y

( mod (X,Y)?) such that
Lo(D,(X,Y)) = £ (X) + £:(Y) .

Then, ¢,(X,Y) € Og[[X,Y]] and defines a one parameter formal group law over
Op which is a Lubin-Tate formal group over O associated to the uniformizing
parameter m ([LT65], [Ser67], §3).

For any linearly topologized complete Og-algebra A, we may consider the topo-
logical Og-module ®,(A): The underlying topological space is the topological space
underlying the ideal of elements of A which are topologically nilpotent, with the
addition (z,y) — ®x(z,y) and the multiplication by oo € O given by x — fr o(2)
where fr o(X) € Og[[X]] is the unique power series = aX ( mod X?2) such that
lr(fa(X)) = aln(X).

Let C be an algebraically closed field containing E, complete for an absolute
value extending the given absolute value on E. We may consider the Tate module

TC((I)W) = [:OE (E/OEa(I)‘rr(OC)) .

This is a free-Og-module of rank one. If we denote by ®,(OF) the inductive limit
(or the union) of the ®,(Og), for E' varying through the finite extensions of £
contained in C, we have also T¢(®) = Lo, (E/Og, ®,(0F)).

If Vo(®,) is the one dimensional E-vector space E ®p, Tc(P,), we have a
short exact sequence

() 0 Vo(®4) = Log (B, ®,(0c)) — C — 0
where the map Lo, (B, $:(0c)) — C'is f = £:(f(1).

The perfectness of Op implies that multiplication by 7 on the Og-module
®,(OF) is bijective, so ®,(OF) is an E-vector space. We see that ©,(Op) depends
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only on the special fiber @, of ®, (a formal Og-module over the residue field

ProrosiTION 4.2.1. For any x in the mazimal ideal mp of Op, the series
S nez ™ "[x?"] converges in B and its sum Lr(z) belongs to Py 1. The map
Ly :®,(0p) — Pr1
so defined is an isomorphism of topological E-vector spaces.
REMARK. This construction can be generalized: For d € N, one may interpret

Py as being “the sections over O of an E-sheaf S%,W for the syntomic topology
over kg”.

In the rest of the section 4, we assume F' algebraically closed.

The automorphism ¢ generates a torsion free cyclic group ¢? of automorphisms
of B. This group acts also on |Y] and on Div(Y") = Div(Yjo (). If A, X" are non-zero
elements of mp such that m — [A] and m — [A\'] have the same image in |Y|, this
implies that [A| = |N|. If 7 — [\] is a lifting of y € |Y| and n € Z then © — [\?"] is
a lifting of ¢"(y), so if y € |Y| then the ¢"(y)’s for n € Z are all distinct.

This implies that it is possible to choose for each y € |Y| an element A\, € mp
such that 7 — [A,] is a lifting of y and, for all y,

Aoy = (Ay)? -
We make such a choice once and for all. If y € |Y|, the field
Ly =B/(m —[\)) = BY/(m = [N)) = B/ (7~ [\))
is algebraically closed. The multiplicative map Op — O, sending a to 6,([a])
induces, by passing to the quotients, an isomorphism of rings
OF//\yOF — OLy/ﬂ'OLy .

Moreover, ¢ induces a canonical isomorphism L, — L)
For any linearly topologized complete Og-algebra A, we denote Vg (A) the
E-vector space Lo, (E, ®-(A)).

PROPOSITION 4.2.2. Let y € |Y|. The natural maps
Vex(Oc) = Ve(OL,/70L,) + VE£(OF /AOF) « VE 2(OF)
g <I)71'((,)F) — Ir1

are all isomorphisms.
i1) We have a commutative diagram
0 — Vo (Pr) — Vg(0Oc) — C — 0
! ! |
0 — PriNnkerf, — P - C — 0

where the lines are exact and the vertical arrows are isomorphisms.

REMARK. There is an explicit way to construct a generator t of Pr 1 Nkerf,:
From the fact that F' is algebraically closed, one deduces easily that one can find
t4+ € A not divisible by 7 such that

P(t4) = (m = [Ay])t4 -
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On the other hand the infinite product
+oo [/\q"

t,:H(k%)

n=0
converges in B*. We may take t = ¢_t,.

4.3. Divisors of X. Let Div(Y),—; the subgroup of Div(Y’) consisting of
the divisors D such that ¢(D) = D and Div'(Y),—; the submonoid of Divt(Y)
consisting of effective divisors such that (D) = D.

If D =3 ey nyly] € Div(Y) we have ¢(D) =
D € Div(X) if and only if n, = ny,) for all y.

Choose p €]0,1[. As ]p?, p] C [p?, p], we have n, = 0 for almost all y such that
p? < |ly|| < p. On the other hand, for any y € [Y], there is a unique n € Z such
that p? < ||¢"(y)|| < p. Therefore:

yey| Tyle(y)], therefore

PROPOSITION 4.3.1. For anyy € Y, set 6(y) = > ,cz[¢"(®)]) € Div(Y)p—1
and
A={DeDiv(Y)| there exists y € |Y| such that D = 6(y)} .
Then Div(Y)y—1 (resp. Divt(Y),=1) is a free abelian group (resp. monoid) and
the elements of A form a basis.
PROPOSITION 4.3.2. i) Let y € |Y| and t a generator of Ey = P, 1 Nmy. Then
div(t) = 6(y) .
it) Let d € Nsg and u € Py g non zero. There exists t1,ta,...,tq € Pr1 such
that
u:tth...td .
Moreover, if t),t5,...,t,, € Pr1 are such that u = tit}, ...t there exists 0 € Gy
and A1, A, ..., g € E* such that t; = Nt () for all i.

This proposition is an easy consequence of what we already know: (i) is formal.
To prove (ii), we observe that the ideal generated by w is fixed by " for all n € Z,
hence div(u) € div'(Y),—;. Therefore we can write

div(u) =Dy + Dy + ...+ D,
with D; € A If D; = 6(y;), if m; is the maximal ideal of B corresponding to y; and
if t; is a generator of Pr; Nm;, then we must have
u = )\tth.. .tr

with A € B*. Therefore, we must have r = d and ¢(A) = A, hence A € E*. The
assertion follows.

An easy consequence of this proposition is the following result:

THEOREM 4.1. Let | X| be the set of closed points of X and set deg(xz) =1 for
all x € |X|. Then X is a complete curve whose field of definition is E. Moreover:

i) Let D € A, t € Pr1 non-zero such that div(t) = D, y € |Y| such that
D =6(y) and Lp = L. Then

a) the homogeneous ideal of P, generated by t defines a closed point xp of X
whose local ring is a discrete valuation ring and residue field is Lp,
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b) the complement of xp in X is an affine scheme which is the spectrum of a
principal domain.
it) The map D — xp is a bijection A — |X| inducing canonical isomorphisms

Div(Y)y=1 — Div(X) and Div'(V),—1 — Divt(X) .

4.4. Vector bundles. For each d € Z, Ox(d), is a line bundle of degree d.
Proposition 4.3.2 implies trivially:

PRrROPOSITION 4.4.1. We have
Pic®(X)=0,
i.e., for any d € Z, a line bundle L is of degree d if and only L ~ Ox(d).

In particular, if 7’ is any other uniformizing parameter, Ox (1), is isomorphic
(not canonically) to Ox (1).>.

Let h be a positive integer. We may consider
Xy, =Proj @ Pura with Pyra= {¢"(u) =%} .
deN
If Ej denotes the unramified extension of E whose residue field is the unique
extension of degree h of the residue field kg of E which is contained in F, we

see that X}, = Xg g 1. It is a complete regular curve whose field of definition is E,.
If x € Py 4 then x € Py 4. It it easy to see that the induced map

SPrq — ®Phrd
induces a morphism
Vp © Xh — X
which is a cyclic cover of degree h identifying Xz with X Xgpec £ Spec Ej,.
For each A € Q, if A = d/h, with d, h € Z relatively prime and h > 0, we set

Ox(Nx = 1)+ (Oxp (d)r) -
This is a vector bundle over X of rank h and degree d, hence of slope .

THEOREM 4.2. For any non-zero coherent Ox -module F, the Harder-Narasimhanfl]
filtration on F splits (non canonically). Moreover, if X\ € Q, then F is stable (resp.
semistable) of slope X if and only if F ~ Ox(N\), (resp. there is an integer n > 0
such that F ~ Ox (\)&").

COROLLARY 4.4.1. The functor
{ﬁnite dimensional E-vector spaces} —
{semistable vector bundles of slope O over X}
sending V to V ®g Ox is an equivalence of tannakian categories. The functor
Fr H(X,F)
1S a quasi-tnverse.
The proof of the theorem is easily reduced to the proof of the corollary. By

dévissage, one sees that it is enough to prove the following statement:

3When F is not algebraically closed, this result remains true if and only if the residue field
kr of F' is algebraically closed.
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LEMME 4.2.1. Let h be a positive integer and F be a vector bundle extension
of Ox (1) by Ox(—1/h). Then

H(X,F)#0.

This lemma can be deduced by elementary manipulations on modifications of
vector bundles from:

PROPOSITION 4.4.2. Let h be a positive integer and
0—-F - F—-£—0

a short exact sequence of coherent Ox-modules, with £ torsion of length 1. Then:
i) If F ~ Ox(1/h), then F' ~ O%.
i) If F' =~ O% , then F ~ Ox(1/r) ® O™ for some r with 1 <r < h.

Let C be the residue field of X at the closed point which is the support of £.
This is an algebraically closed extension of F, complete with respect to an absolute
value extending the given absolute value on E. This proposition can be translated:

i) in terms of Banach-Colmez spaces over C, i.e. the “Espaces de Banach de
dimension finie” introduced by Colmez [Col02],

ii) or in terms of free B-modules equipped with a ¢-semi-linear automorphism,

iii) or in terms of Barsotti-Tate groups over Oc.

This leads to three different proofs of the proposition which becomes a con-
sequence of the work of Colmez (loc. cit.) or of Kedlaya ([Ke05], [Ke08]) or of a
result of Laffaille ([Laf79], also proved in [GH94]) for the first part and of Drinfel’d
([Dr76], also proved in [Laf85]) for the second part.

A consequence of the previous theorem is that the geometric étale w1 of the
curve X is trivial. More precisely:

PROPOSITION 4.4.3. Let X' — X be a finite étale morphism and E' =
H(X',Ox/). The natural morphism

X" — X Xgpec B SpecE’
is an isomorphism.

4.5. The topology on Ox. The multiplicative norms | |, for 0 < p < 1
extend to the fraction field of B. For each open subset U of X, we endow the ring
I'(U,Ox) C Frac(B) with the topology defined by the restriction of this family of
norms. The transition maps

F(U, Ox) i F(V, Ox)

for V' C U open is obviously continuous. This endows Ox with a natural structure
of sheaf of locally convex E-algebras 4 which plays an important role in the study
of Ox-representations of certain topological groups.

A locally convex E-vector space is a topological E-vector space whose topology can be
defined by a family of semi-norms.
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4.6. Ox-representations. We denote by Gr the group of continuous auto-
morphisms of the field F' (an automorphism of the field F is continuous if and only
if it sends the valuation of F' to a a strictly positive multiple of it). We equip Gr and
its subgroups with the pointwise convergence topology, that is to say the weakest
topology making the applications

gr — F
g — g()
continuous when x goes through F. If ' = Fy where Fj is complete valued then
Gal(Fp|Fo) C G is a closed subgroup and the induced topology on Gal(Fp|Fyp) is
the usual profinite topology. By functoriality, Gr acts on X. We’ll need slightly
more. The action of G on Ox is continuous, i.e., for any open subset U of X, the
subgroup
Gru={9€Gr | g(U)=U}

is a closed subgroup of Gr and the natural map
Gru xI'(U,0x) — I'(U, Ox)

is continuous.

Let H be any closed subgroup of Gr. We explained in §1.1 what is a Ox-
representations of H. We now use the topology on the sheaf Ox to put a continuity
condition on these representations. More precisely if £ is an Ox-representation of
H we require, for any open subset Uof X, the natural map

Hy xT'(U, &) - T(U, )

(where Hy = {h € H | h(U) = U}) to be continuous.
From now on an Ox -representation of H will mean a continuous one.

5. Galois descent

5.1. The curve X when F' may not be algebraically closed. We don’t
assume anymore F' algebraically closed and we consider the curve

X IXF’E IPI"Oj Pﬂ- .

We choose an algebraic closure F of F and we set H = Gal(F/F). The absolute
value | | of F extends uniquely to F and to its completion F' (which is algebraically
closed). We set

B =B;

Fp> Pr=Pp

& . and X:XﬁE:PronSﬂ.

The action of H on F extends uniquely to a continuous action on F and by
functoriality to a continuous action on B and JSW. As we may identify H with
a closed subgroup of the group Gz of continuous automorphisms of the field F , H
also acts on the curve X.

THEOREM 5.1. i) The natural maps
B — BY andPﬂﬁﬁf

are isomorphisms.
ii) The map Py — Py induces a morphism of schemes

viX > X
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independent of the choice of m.
111) Define the degree of any closed point x € X by
deg(x) = cardinality of v~ (x) .

Then X is a complete regular curve defined over E.
i) The morphism v induces an isomorphism

Div(X) — (Div(X)) .

Let H* be the group of characters of H, i.e. the group of continuous homomor-
phisms from H to the multiplicative group E* of E. If D € Div™(X) = (Div*t ()N())H
is an effective divisor of degree d € N and if u € ﬁmd is a generator of the homoge-
neous ideal of P corresponding to D, there is £p € H* such that, for all h € H,

h(u) = &p(h)u

and &p is independent of the choice of u. The map D — £p extends uniquely to an
homomorphism of groups

Div(X) — H* .
This map induces an isomorphism
Pic®(X) — H* .
More precisely,
PROPOSITION 5.1.1. Let K = Ox,, the function field of X. The sequence
0—E"—-K*"—-Div(X) - ZxH"—0,

where Div(X) — Z x H* is the map sending D to (deg(D),&p), is exact.
Moreover, for all &g € H*, there exists an infinite set of effective divisors D of
degree 1 such that ép = &.

If F is a coherent Ox-module (resp. a vector bundle over X), then v*F may be
viewed as an O g-representation of H (resp. an H equivariant vector bundle over

o Conversely, if £ is an O g-representation of H, we define the Ox-module gl
by setting, for all open subset U of X
LUER) =T 1 (U), &)
(and obvious restriction maps).
THEOREM 5.2. The functor

V¥ {coherent Ox -modules } — {O;(—representations of H}

s an equivalence of tensor categories, respecting the rank, the degree and the Harder-
Narasimhan filtration.
For any O ¢ -representation € of H, the O x-module EM s coherent. The functor

Ew EH

s a quasi-inverse of the functor F +— v*F.
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5.2. The étale fundamental group. Let F’ be a finite extension of F' and
E’ be a finite extension of E.

— When, the residue field kg/ is embedded in kr we have defined the curve
X/ g and the natural morphism

XF,E’ —)XF/’E ®E E/

is an isomorphism.
— Therefore, we may define in general the curve Xp/ g by

Xpp=Xpp®pE .
We have
Xp g = Proj Pr g«
and the obvious map Pr g » — Pr/ g induces a morphism
Xpp— X

which is a finite étale cover of X of degree [F’ : F], independent of the choice of 7.
Therefore

XF/,E' — X
is a finite étale cover of X of degree [F’ : F|.[E : E].
Choose a closed point # = Spec C of X. Then C is algebraically closed and we
denote by T the geometric point of X
Spec C' — X - X.

Let Z the set of pairs (F', E') with F’ be a finite Galois extension of F' contained
in the field F(C) introduced in §2.4 and E’ a finite Galois extension of E contained
in C.

The inclusion F’ — F(C) induces an extension of the morphism

T :Spec C — X
to a morphism of X-schemes
Spec C — Xpr g
which, using the inclusion E' — C, extends also to a morphism of X-schemes
Spec C — Xpr g .

PROPOSITION 5.2.1. For each (F',E') € I, the morphism Xp g — X is a
finite étale Galois cover whose Galois group is Gal(F’'/F') x Gal(E'/E).
Moreover the projective system

(Xprgr = X)(pr ez
(with obvious transition maps) induces an isomorphism
(X, T) — Gal(E*/E) x Gal(F/F) ,
where E* (resp. F) denote the separable closure of E in C (resp. of F in F(C)).

In particular, the geometric étale 71 of X may be identified with Gal(F/F).
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6. de Rham Gg-equivariant vector bundles

In this section, K is a field of characteristic 0 which is the fraction field of a
complete discrete valuation ring O whose residue field k is perfect of characteristic
p > 0. We choose an algebraic closure K of K and we set Gx = Gal(K/K). We
denote by C the completion of K. This is an algebraically closed field, therefore it
is a strictly p-perfect field and the field F' = F(C) is algebraically closed.

6.1. The curve X = Xr(c)g,- We consider the curve

X =Xpg, -
We set
B = Brg, and B* = Bo
We have
X =Proj P, with P, =P P,a and P,a={u€ B|p(u)=p'u} .

deN

The natural map P, — B is injective, with image contained in BT, and we identify
P, with its image.

As F = F(C), we have a canonical continuous surjective homomorphism of

Q,-algebras
0:B—C
(the restriction of 6 to B® is the map Y., . [an]p™ — >, oo aglo)p”).

We fix w € F such that @(® = p. Then the kernel of 4 is the principal ideal
generated by p — [w]. As usual in p-adic Hodge theory [Fon94a], we denote B,
the completion of BT for the (p — [w])-adic topology. This is also the completion
of B (or of BT) for the ker f-adic topology. As 6 is G k-equivariant, the action of
Gk on B extends to BJR.

As usual (loc. cit.), we fix € € F such that ¢ =1 and (V) # 1. We set

o ([e] = 1"

t =log([e]) = Y _(~1)"*!

n=1

e Bt .
n

Then ¢ is a generator of the Qp-line P, N ker#. The homogeneous ideal of
P, generated by t defines a closed point co of X which is the image in |X| of the
maximal ideal ker 6 of B.

Therefore oo is fixed under G, its residue field is C' and the completion of the
discrete valuation ring Ox  is B;R. We set

Xe = X\{o0} .
This is an affine open subset, stable under G . We see that
B :=T(X,,Ox) = {homogencous elements of degree 0 of P,[1] }
is a principal ideal domain. We set
Be, = B[1] .
The Frobenius ¢ on BT extends uniquely to an automorphism of B, and we have

B, ={b€ B | p(b) =b} .
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REMARK. The ring B is sometimes denoted ﬁ:ig (e.g. [Ber02], §1 where F =
F(C) is denoted E, though A is denoted A and B** is denoted BT).Traditionally
[Fon94a], one defines the ring A..;s as the p-adic completion of the divided
power envelop of the ring A with respect to the ideal generated by p — [w] and
Bl.. = Acus[1/p]. The inclusion of A[1/p] = B** into BT extends by continuity
to a canonical injective map from Bt into B} .. Hence, we may identify BT with
a subring of B .. and B*[1/t] with a subring of B..;s = B}, [1/t]. We then have

cris
B+ = ﬂn€N<pn(B+ ) and B+[%} = mneNQDn(Bcris) 5

so, we have also

B, = {b € Beris | (b)) = b}
and the definition of B, given here agrees with the definition of [FP94], chap.I,
§3.3.

6.2. B.-representations of Gg. Recall that a B.-representation of G is
a B.-module of finite type equipped with a semi-linear and continuous action of
Gk . Those are the (continuous) Ox, -representations of G k. They form an abelian
category. A G g-equivariant vector bundle over Spec B, is a B.-representation of
Gk such that the underlying B.-module is locally free, hence free as B, is a principal
domain. It turns out that this condition is automatic:

PROPOSITION 6.2.1. The B.-module underlying any Be-representation of G
is torsion free. The category of B.-representations of G 1is an abelian category.

Granted what we already know, the proof of this proposition is easy: The second
assertion results from the first. To show the first assertion, it is enough to show,
that if V' is a B.-representation of G such that the underlying B.-module is a
torsion module, then V' = 0. We observe that the annihilator of V is a non-zero
ideal a stable under G'x. Then a is the product of finitely many maximal ideals.
If m is one of them, for all g € Gk, g(m) must contain a. But the maximal ideals
corresponds to the closed points of X, = X\{co} and one can show that oo, which
is fixed under G, is the unique closed point of X whose orbit under G is finite.
Therefore a = B, and V = 0.

REMARKS. (1) This result implies that the tensor category of B.-representationsf]
is a tannakian Q,-linear category.
(2) It is easy to see that B} = Q. This implies that any continuous 1-cocycle

a:Gr — (Be)"

takes its values in Q. It means that, if V' is a one dimensional B.-representation,

the Qp-line generated by a basis of V' over B, is stable under Gg. In other words,
any one dimensional B.-representation of G comes by scalar extension from a one
dimensional p-adic representation of G .

6.3. Vector bundles and their cohomology. Let F be a coherent Ox-
module. Then
— the B.-module
Fe=T(Xe, F)
is of finite type,
— the completion fJR of the fiber at co is a B;R—module of finite type,
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— we have a canonical isomorphism
tF : Bar ®B, Fe — Bar @pt Fin
With an obvious definition for the morphisms, the triples
(Fer Finoir)
with F, a B.-module of finite type, F jR a B;R—Inodule of finite type and
tF: Bir ®@p, Fe — Bar ©p+. Fin
an isomorphism of B;R—modules form a tensor abelian category. The correspondence
F i (Fe, Finiir)

just defined induces a tensor equivalence of categories. We use it to identify these
two categories.

Then F = (Fe, FIR, tF) is a vector bundle if and only if F, is free over B, and
f;’R is free over B;‘R. In this case, to give t# is the same as giving an isomorphism
from f;R onto a BJR—lattice of Byr ®p, Fe, i.€. a sub-BjR—module of finite type
generating Bgr ®p, F. as a Bgr vector space.

Therefore, we may as well see a vector bundle over X as a pair

(Fe, Fir)

where F. is a free B.-module of finite rank and F;R is a B;‘R—lattice in Fgr =
Bar ®pB, Fe.
The cohomology of F is easy to compute: we have an exact sequence

0— HO(X,f) — Fe @FIR — Fyr — HI(X,_F) — 0
where the middle map is (b,0') — b — b'. In the special case of Ox, we have

H°(X,0x) = Q, and HY(X,0Ox) = 0, giving rise to the “fundamental exact
sequence of p-adic Hodge theory”

0—-Qp,— B.® Bl — Bar — 0.

6.4. Gi-equivariant vector bundles. As oo is stable under G, we see
that:

— We may identity the abelian tensor category of O x-representations of G g
with the category of triples

(fe, ‘7:;12’ L]:)

where

i) F. is a Be-representation of G,

ii) f;R is a Bgg-representation of G,

iii) t7 : Bir ®p, Fo — Bar @1 Fin

is a Gi-equivariant isomorphism of Byr vector spaces.

— We may identify the category of Gi-equivariant vector bundles over X to
the category of pairs

(Fe, ]—';R)

where

i) F. is a Be-representation of G,

ii) f;‘R is a Gg-stable B;’R—lattice in Far = Bar @B, Fe.

The category of such pairs has already been considered by Berger [Ber08].
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REMARK. Let F be an Ox-representation of Gg. The fact that oo is the only
closed point of X whose orbit under G is finite implies that the torsion of F, if
any, is concentrated at co. If F is a vector bundle, i.e. is torsion free and if G is a
G k-equivariant modification of F (i.e. F and G have the same generic fiber), we
have G, = F. though g;R may be any G k-stable B;R—lattice of Fyr.

6.5. The hierarchy of Ox-representations. Let B” be any topological ring
equipped with a continuous action of Gx. We say that a B’-representation V of
G is trivial if the natural map

B’ ®pryex VO =V

is an isomorphism.
We introduce the ring

Blcr = Bcr [lOg( [w} )]

of polynomials in the indeterminate log([w]) with coeflicients in B.,.
Consider the continuous maps

X:Gx = Zy and n:Gx =7,
such that, for all g € G,
g(t) = x(g)t and g(w) = we"@) .

The action of Gx on BT extends to By, by setting, for all g € Gk,

g(}) = by and gllog([]) = log([=]) + n(g)t -

We say that a B.-representation V is de Rham (resp. log-crystalline, resp.
crystalline) if the representation By ®p, V' (resp. Bier ®p, V, resp. Be @p, V) is
trivial. We say that V' is potentially log-crystalline if there is a finite extension L of
K contained in K such that V, viewed as a B.-representation of G, = Gal(K/L)
is log-crystalline.

For any property which makes sense for a B.-representation, we say that a
G k-equivariant vector bundle F = (F,, Ffz) over Xp satisfies this property if F,
does.

The following result is easy to prove:

PROPOSITION 6.5.1. Let
0-F -F—=F"=0

a short exact sequence of Be-representations or of G g -equivariant vector bundles.
If F is de Rham (resp. potentially log-crystalline, resp. log-crystalline, resp. crys-
talline), so are F' and F".

Therefore we may say that an Ox-representation of G is de Rham (resp.
potentially log-crystalline, resp. log-crystalline, resp. crystalline) if it is isomorphic
to a quotient of a G k-equivariant vector bundle which has this property.

It is easy to show (see more details in §6.7 below) that:

—if 1 and F; are two O x-representations of G g having one of those four prop-
erties, then any sub-O x-representation of Fi, any quotient of F7, the representation
F1 ® Fo and Lo, (Fi1, F2) have the same properties,
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— we have the implications
crystalline = log-crystalline = potentially log-crystalline
= de Rham.

It is a deep result (see §7 below) that, conversely, any de Rham O x-representation
is potentially log-crystalline.

6.6. Log-crystalline B.-representations and (¢, N)-modules. Let Ky =
Frac W (k). One can show that

(Bier) % = Ko .
If V is any B.-representation of Gx, we set
Dier(V) = (Bier ®5, V)95 .
This is a Ky-vector space and we denote
av : Bier @k, Dier(V) — Bier @B, V

the Bje--linear map deduced by scalar extension from the inclusion Dy..(V) C
Blcr ®Be V.

By definition V' is log-crystalline if and only if ay is bijective. It is not hard
to see that ay is injective, that the dimension over Ky of Dj.-(V) is < the rank
of V over B, and that equality holds if and only if ayy is bijective (this last state-
ment comes from the fact that any Be-representation of G of rank one comes, by
scalar extension, from a one dimensional p-adic representation of G and that any
non-zero element b € By, such that the Qp-vector space generated by b is stable
under G is invertible).

The Frobenius ¢ on B, extends to Bj., by setting
¢(3) = 5; and p(log([w])) = plog([a]) .

One denotes N : By — By, the unique B -derivation such that N (log([=])) =
—1. We get
Ny =ppN .
The action of ¢ and of N commute with the action of Gx. On Ky we have
N = 0 and the Frobenius ¢ is the absolute Frobenius, i.e. the unique continuous
automorphism inducing = +— zP on the residue field.

A (o, N)-module over k is a finite dimensional Ky-vector space D equipped

with two operators
o, N:D=D

with ¢ semi-linear with respect to the action of ¢ on Ky and bijective, N Kj-linear
and Ny = ppN.

With an obvious definition of the morphisms, the (¢, N)-modules over k form
an abelian category Mod(¢, N)j. It has an obvious structure of a tannakian Q-
linear category.

Let V be a Be-representation of Gg. The free Bj..-module B, ®p, V is
equipped with operators ¢ and N by setting

pb®v)=pb)@vand Nb®v)=Nb®uv ifb€ B, andv eV,
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commuting with the action of G . Therefore
Dier(V) = (Bier ®p, V)

is stable under ¢ and N and becomes a (p, N)-module over k.
If D is a (¢, N)-module over k, then Gk, ¢ and N act on B, @k, D via

gb®x)=g(b) @z, p(b@z)=0(b) @ p(z) N(b® )
=Nbx+b® Nx for g € Gg,b € Bjer,x € D.

It is easy to see that the B.-module
Vier(D) = {11 € Bier ®k, D | op(v) =v and Nv = 0}

is free of rank equal to the dimension of D over Ky, hence is a Be-representation
of G K-

Let Repp, ;.-(Gk) be the full sub-category of the category Repp (Gr) of
Be—representafions of Gk whose objects are the representations which are log-
crystalline. The proof of the following statement is straightforward and formal:

THEOREM 6.1. For any (p, N)-module D over k, the B.-representation Ve (D)
of Gk is log-crystalline. The functor

Vier : Mod(p, N)g — Repp_ ;. (GK)
is an equivalence of categories and the functor
V = Dy (V)
1S @ quasi-inverse.

REMARKS. (1) It is easy to see that a B-representation V' of Gk is crystalline
if and only if it is log-crystalline and N = 0 on Dy (V).

(2) The relation Ny = ppN implies that N is nilpotent on any object of
Mod(p, N)i, and that the kernel of N is a sub-object.

In particular, the semi-simplification of a log-crystalline B.-representation of
Gk is a crystalline B-representation of Gk . If k is algebraically closed, the full
sub-category Mod(p)y of Mod(p, N ), whose objects are those on which N =0 is
semi-simple ([Man63], §2). Therefore a B.-representation of G is crystalline if
and only if it is log-crystalline and semi-simple.

(3) The category Repp_;..(Gx) is a tannakian subcategory of Repg, (Gk),
i.e. it is stable under taking sub-objects, quotients, direct sums, tensor products,
internal hom and contains the unit representation B.. The functor V., is an
equivalence of tannakian categories.

Let I C Gk the inertia subgroup. We have C'x = lA(m«, the p-adic completion
of the maximal unramified extension of K contained in K. The algebraic closure of
I?m in C' is a dense subfield of C' and Ik can be identified with the Galois group
of this algebraic closure over IA(M.

If V is any B.-representation of Gk, denote by Resy, (V) the B.-representation
of I which is V' with the action of I deduced from the inclusion of [x into G.

If % is the residue field of K,,,, and Gj, = Gal(k/k) = G /I, we have

Dier(V) = (Dier(Resr, (V)
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From the fact that, if &, 0.nr 18 the fraction field of W (k) and D is a finite dimensional
IA(O,M vector space equipped with a semi-linear and continuous action of Gy, the
natural map

[?O,nr R K, DS D

is an isomorphism, we deduce:

PROPOSITION 6.6.1. Let V' be a B.-representation of Gk. Then V is log-
crystalline if and only if Resy, (V') is log-crystalline.

6.7. Log-crystalline vector bundles and filtered (p, N)-modules. As
BT is separated for the ker f-adic topology, we may view B as a subring of B;’R
and B, = B[1/t] as a sub B-algebra of Byr = Bjj[1/t].

Extending the p-adic logarithm by deciding that log(p) = 0, one can identify
B with a sub-B,,.-algebra of Byr by setting

n

_ =)
log([w]) = log([w]/p) = = >_ "= -

If F = (fe,fJR) is a Gg-equivariant vector bundle over X, and if Fyp =
Bar ®p, Fe = Bir @py, Fip, We set

Dier(F) = Dyer(F) = (Bier @p, F)% and Dyr(F) = (Far)“*

If F is of rank r, then:

i) Dier(F) is a (@, N)-module over Ky whose dimension over Ky is < r with
equality if and only if F is log-crystalline.

ii) The natural map

Bir @Kk Dar(F) — Fir
is always injective, therefore the K-vector space Dyg(F) is of dimension < r with
equality if and only if F is de Rham.

We see also that Dyr(F) is a filtered K-vector space, i.e. a finite dimensional
K-vector space A equipped with a decreasing filtration, indexed by Z, by sub K
vector spaces

LD FTIAD FIAD FTTIAD L

such that F?*A =0 for i > 0 and = A for i < 0: The filtration is defined by
F'Dar(F) = (F'Bir @ pt. Fin)®

where F'Byr = BJxt' is the fractional ideal of the discrete valuation ring B,
which is the i*" power of its maximal ideal.
The inclusion K ®g, Bjer — Bar induces an injective map

K ®ry Dier(F) — Dar(V) -

For dimension reasons, if F is log-crystalline, this map is an isomorphism,
F is de Rham and the pair D, i (F) consisting of Dj.,-(F) and the filtration on
K ®k, Dier(F) induced by this isomorphism is a filtered (¢, N)-module over K (cf.
[Fon94b]), i.e. it is a finite dimensional Ky-vector space D, equipped with operators
o, N giving to D the structure of a (¢, N)-module over k, plus a filtration F (i.e. a
structure of filtered K vector space) on the K vector space Dg = K @, D.

A morphism of filtered (¢, N)-modules over K

f+(D,F) = (D', F)
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is a Ko-linear map commuting with ¢ and N and such that, if fx : Dxg — D) is
the K-linear map deduced from f by scalar extension, then fx(F'Dg) C FD)
for all i € Z.

The category MF i (¢, N) of filtered (¢, N)-modules over K is an additive Q,-
linear category.

If there is no risk of confusion on the filtration, we write D = (D, F') for any
object (D, F) of MFk (¢, N). The following result is now obvious:

THEOREM 6.2. The functor
Dierk : {log-cryst. Gk -equiv. vector bundles over X} — MFg(p,N)

is an equivalence of categories. A quasi-inverse is given by the functor Fi.. defined
by
Fier,i (D) = Vier(D), F*(Bar ®k D))

where Ve (D) is the Be-representation of Gk associated to the (p, N)-module over
k underlying D and

F°(Br ®x Dr)) = Z F'Byr ®k F~'Dg C Bar ®k Dk = Bar @, Vier(D) .
i€Z
REMARKS. (1) We say that a sequence of morphisms of log-crystalline G k-

equivariant vector bundles over X is ezact if the underlying sequence of O x-modules
is exact. Similarly we say that a sequence of morphisms

... (D',F)— (D,F)— (D", F) — ...
of MFk (p, N) is ezact if, for any ¢ € Z, the induced sequence of K-vector spaces
...F'Dy — F'Dg — F'D}. ...

is exact.

With these definitions (or rather with the restriction of this definition to
short exact sequences) these two categories are exact categories ([Qui73], §2). The
functors Dy x and Fier x turn exact sequences into exact sequences.

(2) The category of Gg-equivariant vector bundles over X and the category
MFk (¢, N) both have a natural structure of a Q,-linear tensor category ([Fon94b],
§4.3.4, for the later). The functors Fier k and Vi, ik are tensor functors.

(3) Let F be a log-crystalline Gk-equivariant vector bundle over X and let
D = Dy (V). If G is a Gg-equivariant modification of F, then G is still log-
crystalline and Dj..(G) = D. Therefore, to give such a modification is the same
as changing the filtration on Dg.

(4) We have a functor D — (D, Fy.;,) from the category of (¢, N)-modules over
k to MF i (¢, N) consisting of adding to a (¢, N)-module D the trivial filtration on
Dy (ie. F,,Dx = Dk if i <0 and 0 if i > 0).

(5) Let D be a (¢, N)-module over k, and choose a basis e, ea, ..., e, of D over
Ky. If we set ¢(e;) = >.i_, ajje;, the p-adic valuation of the determinant of the
matrix of the a;; is independent of the choice of the basis and is denoted ¢y (D). It
is easy to see that

I‘al’lleC,nK(D, Ftriv) = dimKOD and deg VlCT,K(Dv Ftri’u) = —tN(D).
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If now F is a filtration on D, so that Vi, i (D, F) is a modification of Viey i (D, Firiv) i}
it’s easily to see that, if ¢ty (D, F) = Y, i.dimg (F'Dg/ F" D), then
rank Ve, k (D, F) = rank Vie, g (D, Firiv)
and deg Vi, (D, F) = degVier k (D, Firiv) + tu (D, F).
This remark suggests to define the rank, the degree and the slope of a non-zero
filtered (p, N)-module (D, F') over K by
rank(D, F') = dimg, D , deg(D,F) =tu(D,F) —ty(D) and u(D, F)
_ deg(D, F)
" rank(D, F)’
Let f : (D', F) — (D, F) a morphism of MFg (¢, N), with fx : D}y — Dk the
underlying K-linear map. We say that f is strict if it is strictly compatible to the
filtrations, i.e. if fx(F'D}) = F'Dg N fx (D)) for all i € Z. If fx is injiective, it
is equivalent to saying that f fits into a short exact sequence of MF (¢, N)
0—(D',F)— (D,F)— (D",F)—0.

A sub-object (D', F) of a filtered (¢, N)-module (D, F') is a morphism (D', F') —
(D, F) such that the (¢, N)-module D’ is a sub-object of D.

The strict sub-objects of an object (D, F) correspond bijectively to the sub-
objects of the underlying (¢, N)-module via the map

D' — (D', F) with F'D} = F'Dy N Dj for alli € Z .
If (D',F) is such a sub-object, the quotient (D, F)/(D’,F) is the cokernel of
(D', F) — (D, F).

We say that a filtered (¢, N)-module (D, F) is semistable if, for any non-zero
sub-object (D', F) of (D, F), we have u(D’, F) < u(D, F). It is enough to check it
for strict sub-objects.

The following assertion is entirely formal:

PROPOSITION 6.7.1. i) For any non-zero filtered (¢, N)-module D over K, there
is a unique filtration (called the Harder-Narasimhan filtration) by strict sub-objects

0=DycDyc...cD;ycD;Cc...CDp_1CD,=D
with each D;/D;_1 non-zero and semistable such that
1(D1/Do) > p(D2/D1) > ... > p(Dpy/Din—1) -

ii) The functors Dicr x and Vier i respect the rank, the degree, the slope and
the Harder-Narasimhan filtration.

6.8. p-adic Hodge theory. The corollary 4.4.1 implies that we have an
equivalence of tannakian categories between p-adic representations (i.e. Qp-
representations) of Gk and Gg-equivariant vector bundles over X which are
semistable of slope 0:

V = F(V)=0x®q, V = (B:®q, V.Bjr ®q, V)
(with F — V(F) = H*(X, F) as a quasi-inverse).

We say that V' is de Rham (resp. potentially log-crystalline, resp. log-crystalline,
resp. crystalline if F(V') has this property.
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Classically one introduces [Fon94a] the ring
Bst = Beris[log[w]] .
If V is a p-adic representation of G, one says that V is de Rham (resp. crys-
talline, resp. semistable, resp. potentially semistable) if Bap ®q, V is trivial (resp.
Beris ®q, V is trivial, resp. Bs; ®q, V' is trivial, resp. there is a finite extension L
of K contained in K such that V is semistable as a p-adic representation of Gr,).

The origin of this terminology lies in the facts that, if Z is any proper and
smooth variety over K, i € Nand V = H.,(Z%,Q,), then ([Fa89], [Ts99], [Ni08])

— the p-adic representation V' is de Rham and the filtered K-vector space
Dyr(V) = Dar(F(V)) can be identified with

Hyp(Z) = H'(Z,9%)x)

equipped with the Hodge filtration,

— if there exists Z over Ok proper and smooth such that

Spec K Xgpec 0 2 =2,

then V is crystalline and Deyis(V) = Dy (F(V)) is the it*-crystalline cohomology
group of the special fiber of Z (equality respecting the Frobenius and compatible
with the filtration via the de Rham comparison isomorphism),

— if there exists Z over Ok proper and semistable such that

Spec K Xgpec 0 2 =2,

then V is semistable and Dy (V) = Dje.(F(V)) is the i*'-log-crystalline cohomol-
ogy group of the log special fiber of Z (equality respecting ¢ and N and compatible
with the filtration via the de Rham comparison isomorphism).

It is easy to check that

— the definition given in §6.5 of a de Rham and of a crystalline p-adic represen-
tation agrees with the classical definition,

— a p-adic representation V is log-crystalline (resp. potentially log-crystalline)
if and only if it is semistable (resp. potentially semistable).

We made this change of terminology to avoid confusion between the two notion
of semistability (semistable model of a variety and semistable vector bundle).

As a corollary of the proposition 6.7.1, denoting Repg, ;. (Gx) the full sub-
category of the category Repg, (Gk) of p-adic representations of Gk whose objects

are the log-crystalline ones and MF% (o, N) the full sub-category of MFx (¢, N)
whose objects are those which are semistable of slope 0, we get:

THEOREM 6.3. For any p-adic log-crystalline representation of G,
chr,K(V) = chr,K(OX & V)

is a filtered (v, N)-module over K which is semistable of slope 0.
The category Repg, ;.,(Gk) is a tannakian subcategory of Repg, (G ) and

DlCT,K : Repr,lc’r(GK) - MF(}((@? N)
is an equivalence of tensor categories. The functor
VlCT,K : MF([)((()O, N) - Rep@p,lcr(GK) )
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defined by
‘/lc'r,K(D) = F(X7 VZCT,K(D)) )

1S a quasi-tnverse.

This important result of p-adic Hodge theory was first proved in [CF00] where
a filtered (¢, N)-module over K is said to be weakly admissible whenever it is
semistable of slope 0.

7. de Rham = potentially log-crystalline
To finish, we explain the main lines of the proof of:

THEOREM 7.1. Any p-adic representation of G, any Be-representation of
Gk or any Gg-equivariant vector bundle over X is de Rham if and only if it
is potentially log-crystalline.

The case of p-adic representations is another important result of p-adic Hodge
theory. The first proof was given by Berger [Ber02] relying on Crew’s conjecture
first proved by André [An02] and Mebkhout [Meb02].

We know that the condition of the theorem is sufficient and it is obviously
enough to show that, if V is a Be-representation of G which is de Rham, then V
is potentially log-crystalline.

We first reduce the proof to the case where k is algebraically closed: Let
K, C C the p-adic closure of the maximal unramified extension K, of K contained

in K. Let K nr the algebraic closure of IA(m,. Then ?m is stable under the action
of the inertia subgroup Iy of Gk . This gives an identification of Ik to the Galois

group Gal(K i/ Kpy).

PROPOSITION 7.2. Let V be a Be-representation of Gxk. Then V is log-
crystalline if and only if V is log-crystalline as a representation of [ = Gal(f/(\'nr/f?m.).l

Let k be the residue field of IA(M and IA(O,W the fraction field of W (k). The
group Gal(k/k) = Gk /Ix acts semi-linearly on the finite dimensional I?o,nr vector
space

chr,m'(v) = (BlCT' @B, V)IK
and we have

Dier(V) = (Dicrnr (V) .
It is well known that, if n is any positive integer, the pointed set HZ,., (G, GLn(IA(OmT))I
is trivial. This implies that the natural map

Z:)(\vO,n'r ®KU DICT(V) - chr,nr(v)

is an isomorphism. Therefore dimg, D, (V) = dimROm Dicrnr (V).

If r is the rank of V over B., then V is log-crystalline as a B.-representation
of Gk (resp. Ir) if and only if dimg, Dier(V) = r (resp. dimg  Diernr(V) =1).
The proposition follows.

From now on, we assume k algebraically closed.
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Let E be a finite extension of Q, and 7: £ — K a Qp-embedding. We choose
a uniformizing parameter m of E. For d € N, we consider the 1-dimensional FE-
representations of Gx

E{d}, = Symm%LVe(®,) and E{—d}, = the E-dual of E{d},

where Vo (@) is the 1-dimensional representation associated to the Lubin-Tate
formal group @, (§4.2). If we use 7 to see E as a closed subfield of C, then
Ve (®r) = E ® Ty (P,) where

Tre(®r) = lim @, (O¢)xn
neN

is the Tate module of @ .

We say that a E-representation V' of Gk is T7-ordinary if there is a decreasing
filtration (F2V)4ez of V by sub-E-vector spaces stable under Gy such that
FiV, =V for d < 0, FIV = 0 for d > 0, each FIV is stable under G and
Gk acts trivially on (FAV/FIYV) @ B{-d},.

If 7' is an other uniformizing parameter of F, then Vo (®)) and Vo (P, ) are
isomorphic. Therefore, the condition of being 7-ordinary is independent of the choice
of .

The theorem follows from these three propositions:

PROPOSITION 7.3. Any Be-representation V of Gk which is potentially de
Rham (i.e. de Rham as a representation of G, for a suitably chosen finite extension
L of K contained in K ) is de Rham.

PROPOSITION 7.4. Let 7 : E — K be a Qu-embedding of a finite extension E
of Qp into K. Any E-representation of Gk which is T-ordinary is log-crystalline.

PROPOSITION 7.5. Let V be a Be-representation of G which is de Rham.
There exists an integer hy > 1 such that, for any finite extension E of Q, of degree
divisible by hy and any embedding T : E — K, one can find

1) a finite extension L of K contained in K and containing 7(E),

2) a T-ordinary E-representation V of G, = Gal(K/L),

3) a Gr-equivariant B, ®q, E-linear bijection

Be®QpV2E®va.

The field K is naturally embedded into Bz and the proposition 7.3 becomes
a formal consequence of the fact that, for any positive integer n, the pointed set
HY(Gg,GL,(K)) is trivial.

The proof of the proposition 7.4 relies on some hard computation in Galois co-
homology which can be done using the techniques of Herr [He98] to compute Galois
cohomology by the way of the theory of (¢, I')-modules [Fon90]. This computation
has been done by Berger showing a much more general result : any extension of
two semi-stable E-representations which is de Rham is semistable (unpublished,
see also [Ber02], §6).

The proof of the proposition 7.5 runs as follows:
Say that a G g-equivariant vector bundle F = (F,, F, ) is trivial at oo if it is
de Rham and Fj,;, = Bl ®k Dar(F).
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To any B.-representation W of G which is de Rham, setting Dyr(W) =
(Bar ®p, W)X, one can associate to W the Gx-equivariant vector bundle

W = (W, B:{R ®K DdR(W))
which is trivial at co. The correspondence W +— W is a functor inducing a tensor
equivalence between the category of de Rham B.-representations of Gx and G-
equivariant vector bundles over X which are trivial at co.
If F is any de Rham G g-equivariant vector bundle over X, then .7-:6 is a mod-
ification of F and F is trivial at oo if and only if F, = F.

Let
0=FgCcFhHcCc..CFaCFC...CFp1CFn=V
be the Harder-Narasimhan filtration of V. By unicity of this filtration, each F; is
stable under Gg. Setting V; = (F;)., we get a decreasing filtration
0O=VYVoCWViC...CV, 1 CV;C...C V1 CVpy =V
by sub-B.-representations of Gx. For 1 <i < m, F; and F; = F;/F;_1 are trivial
at oo (we have F; = Y, and F; = V;, where V; = Vi/Vie1).
Let p; be the slope of the semistable vector bundle F; and let hy be the smallest
positive integer such that
hy.u; €7 for 1<i<m.

Let E be a finite extension of Q,, of degree h divisible by hy, 7 a Q,-embedding
of E into K and K’ a finite extension of K contained in K and containing 7(E).
The curve Xg = Xp g is a cyclic étale cover of X of degree h equipped with an
action of G and the natural morphism v : Xg — X is G g -equivariant.

Choose a uniformizing parameter 7= of E. For each d € Z, the line bundle
Ox,(d), is equipped with an action of Gk and

Ox (d/h)w = v.0x, (d)w

is a Ggr-equivariant vector bundle over X which is semistable of slope d/h. For
1 < i < m, the Gg/-equivariant vector bundle

Gi = Hom(Ox (1), Fi)

is semistable of slope 0, hence W; = H%(X,G;) is a p-adic representation of G-
and G; = Ox ®Qp W;.

On the other hand, G; = W, where W; is the de Rham B,.-representation of
GK/

Wi = Lp, (T(Xe, Ox (pti)=), Vi) »
hence G; is trivial at co. Therefore, the natural map
Bjr ®x (Bar ®g, W)~ — B @, Wi
is an isomorphism. A fortiori, the natural map
C @K (C ®g, Wi)9") — C ®q, Wi

is an isomorphism (i.e. the p-adic representation W; of Gk~ is Hodge-Tate, with all
its Hodge-Tate weights equal to 0). A deep result of Sen [Sen73] implies that Gk
acts on W; through a finite quotient. Therefore, one can find a finite extension L
of K' contained in K such that G, acts trivially on each W;. One easily checks
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that it implies the existence of a positive integer r; and of an isomorphism of G-
equivariant vector bundles

fi: (Ox(pi)=)"" = E®q, Fi .
For all d € Z, there is a canonical isomorphism

(Ox(d/h)x)e ~ Be ®q, E{d}~
and therefore, for 1 < i < m, if p; = d;/h, we get a Gr-equivariant B.®gq,-linear
bijection

Be @q, (E{di})" ~ E®q, Vi .
In particular, this concludes the proof when m = 1. Assume m > 2. By induction,
we may assume there is a 7-ordinary representation V' of G and a G -equivariant
Be®Qp—linear bijection

B, ®Qp V ~F ®Qp V-1 .
Set Be,r = Be ®q, £. We get an exact sequence of B g-representations of G,
0— Be,E ®F V/ — F ®Qp V- Be,E ®F (E{dm})rm —0.

Twisting by E{—d,,}, we are reduced to show, that, if we have a short exact
sequence of B, g-representations of G,

(*) O—>BeyE®EW/—>W—>Be7E—>O

with W’ a 7-ordinary FE-representation of G, then W comes by scalar extension
from an E-representation of G which is an extension of E by W’. Setting

Barg = E ®q, Bar , Bjp = E ®q, Bjp and Bar g = Bar.g/Bin 5 »
we get from the fundamental exact sequence (§6.3), a short exact sequence
0—>E—>BeyE—>§dR,E—>O.

Tensoring with W', we get an exact sequence

0—-W - B.g®sW' — Barp Qe W' —0,
inducing an exact sequence of continuous G'1.-cohomology

o= Hiony(GL, W) — Hyo(Gr, Be,p @ W)
— H} o (Gr,Bapp @ W') — ...

The short exact sequence (*) defines an element ¢ € H},,
we need to show is that ¢ comes from an element of H!

- cont
goes to 0 in HL,,(Gr, Bar.g ® W'). The map
Hclont(GLV BQ,E QF W/) - Hclont(GIMEdR,E QF W/)

factors through HY .,(Gr,Birr ®r W’) and this comes from the fact that
the extension is de Rham which means that the image of ¢ is already 0 in
H.yni(Gr, Bar,e @5 W').

REMARK. Let 7 a de Rham G equivariant vector bundle over X. Choose a
finite Galois extension L of K contained in K such that F is log-crystalline as a
Gr-vector bundle. Then the (¢, N) module over L

chr,L(}-)

(GL, Be,E RE W/) What
(GL, W) or equivalently
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is equipped with an action of Gy, defined in an obvious way. This give to Dy, 1.(F)
the structure of what can be called a filtered (¢, N, G k)-module over K. The
inductive limit (in a straightforward way) of the categories of filtered (¢, N, G,k )-
modules over K, when L runs through all the finite Galois extensions of K contained
in K, is the category

MFk(p,N,Gk)

of filtered (p, N, G )-modules over K. This is, in an obvious way, a Q,-linear tensor

category, with an obvious definition of the rank, the degree and the slope of any

non-zero object. The Harder-Narasimhan filtration of any object can be defined.
We see that the Dy, 1’s induce a tensor equivalence of categories

de Rham Gi-equivariant vector bundles over X <= Modg (¢, N,G)

respecting rank, degree, slopes and the Harder-Narasimhan filtration.

The restriction of this equivalence to semistable vector bundles of slope 0 leads
to the “classical” equivalence ([Fon94b], [Ber02]) of categories between de Rham
p-adic representations of Gx and “weakly admissible” (or semistable of slope 0)
filtered (g, N, Gk )-modules over K.
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