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INTRODUCTION

This text is an introduction to our work [I2] on curves and vector bundles in p-adic Hodge
theory. This is a more elaborate version of the reports [13] and [14]. We give a detailed construc-
tion of the ”fundamental curve of p-adic Hodge theory” together with sketches of proofs of the
main properties of the objects showing up in the theory. Moreover, we explain thoroughly the
classification theorem for vector bundles on the curve, giving a complete proof for rank two vector
bundles. The applications to p-adic Hodge theory, the theorem ”weakly admissible implies ad-
missible” and the p-adic monodromy theorem, are not given here but can be found in [13] and [14].

We would like to thank the organizers of the EPSRC Durham Symposium ” Automorphic forms
and Galois representations” for giving us the opportunity to talk about this subject.

1. HOLOMORPHIC FUNCTIONS OF THE VARIABLE 7

1.1. Background on holomorphic functions in a p-adic punctured disk after Lazard
([25]).

1.1.1. The Frechet algebra B. Let F' be a complete non-archimedean field for a non trivial valuation
v: F — RU{+o0},

with characteristic p residue field. We note | - | = p~*() the associated absolute value. Consider
the open punctured disk
D*={0<|z| <1} C AL
as a rigid analytic space over F, where z is the coordinate on the affine line. If I CJ0,1[ is a
compact interval set
D ={|z| € I} C D",
an annulus that is an affinoid domain in D* if T = [py, p2] with p1,p2 € /|F*|. There is an
admissible affinoid covering
D= |J D;

I1C]o,1]

The first author acknowledges support from ANR-10-BLAN-0114 ” ArShiFo”.
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where I goes through the preceding type of compact intervals.

Set now
B = ODY
= {Zanz” | an, € F, ¥p €]0,1] lim |a,|p" = 0}
i [n|—+o00

the ring of holomorphic functions on D*. In the preceding description of B, one checks the infinite
set of convergence conditions associated to each p €]0,1[ can be rephrased in the following two
conditions
liminf 22 >0
(1) n——+oo n
lim
n—-+4oo

For p €]0,1[ and f =", an,2™ € B set

v(a_y) — to0.

|flp = sup{|an|p"}.
nez

If p=p~" with r > 0 one has |f|, = p~*(/) with
vp(f) = inf {v(a,) + nr}.
neEL
Then ||, is the Gauss supremum norm on the annulus {|z| = p}. It is in fact a multiplicative norm,
that is to say v, is a valuation. Equipped with the set of norms (|-|,),ejo0,1[, B is a Frechet algebra.

The induced topology is the one of uniform convergence on compact subsets of the Berkovich space
associated to D*. If I C]0,1[ is a compact interval then

B;r = O(Dy)

equipped with the set of norms (| - |,),er is a Banach algebra. In fact if I = [p1, p2] then by the
maximum modulus principle, for f € By

sup |fp‘ = Sup{|f|l)17 ‘f|ﬂ2}
pel

One then has
B = lim By
—
1c]o,1]
as a Frechet algebra written as a projective limit of Banach algebras.
For f =5, a,z" € B one has

= lim = sup |an| € [0, +00].
7h = limfl, = sup lan| € [0, +oc]

We will later consider the following closed sub-Og-algebra of B

BT = {feB||flh <1}
— {Zanz"€B|an€(’)F}
nez

= {Zanz” | an € Op, lim v(@—n) = —|—oo}.

n—-+oo n
ne”Z

Set now
B® = {feB|3NeN, 2NfecOD) and is bounded on D}

Z anz" | an € F, 3C Vn |ay| < C}.
n>>>—oo
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This is a dense sub-algebra of B. In particular one can find back B from B? via completion with
respect to the norms (| - |,),ej0,1- In the same way

Bt = B'NBT

= { Z anz”|an€(9p}

= Op[][:]

is dense in Bt and thus one can find back Bt from B®t via completion.

1.1.2. Zeros and growth of holomorphic functions. Recall the following properties of holomorphic
functions overs C. Let f be holomorphic on the open disk of radius 1 (one could consider the
punctured disk but we restrict to this case to simplify the exposition). For p € [0, 1] set

M(p) = sup |f(2)|.
|z|=p
The following properties are verified:

e the function p — —log M(p) is a concave function of log p (Hadamard),
e if f(0) # 0, f has no zeros on the circle of radius p and (aq,...,a,) are its zeros counted
with multiplicity in the disk of radius p, then as a consequence of Jensen’s formula

—log|f(0)| = Y (~log lail) = np —log M (p).
i=1

In the non-archimedean setting we have an exact formula linking the growth of an holomorphic

function and its zeros. For this, recall the formalism of the Legendre transform. Let
p: R —] — 0o, +o0]
be a convex decreasing function. Define the Legendre transform of ¢ as the concave function (see
figure
f(g)@) : ]07+OO[ — [—OO,—I—OO[
A — in%{ap(m) + Az}
xTE

FIGURE 1. The Legendre transform of ¢ evaluated at the slope A where by definition
the slope is the opposite of the derivative (we want the slopes to be the valuations of
the roots for Newton polygons).

If ¢1,p2 are convex decreasing functions as before define ¢ * o as the convex decreasing
function defined by

(pr*@2)(@) = inf {pi(a)+p2(b)}-

We have the formula

ZL(p1xp2) = ZL(p1) + ZL(p2).
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One can think of the Legendre transform as being a “tropicalization” of the Laplace transform:

tropicalization

(R, +, x) (R, inf, +)
Laplace transform ~~~> Legendre transform

usual convolution % ~~~> tropical * just defined
The function ¢ is a polygon, that is to say piecewise linear, if and only if .#Z(p) is a polygon.
Moreover in this case:

e the slopes of Z(y) are the xz-coordinates of the breakpoints of ¢,
e the x-coordinates of the breakpoints of .Z () are the slopes of .

Thus .Z and its inverse give a duality
slopes «— x-coordinates of breakpoints.

From these considerations one deduces that if ¢; and (5 are convex decreasing polygons such
that Vi = 1,2, Y\ €]0,+o0[, L (p;)(A) # —oo then the slopes of ¢; * g are obtained by concate-
nation from the slopes of ¢ and the ones of .

For f =3, czanz™ € B set now
Newt(f) = decreasing convex hull of {(n,v(ay))}nez-

This is a polygon with integral z-coordinate breakpoints. Moreover the function r — v,.(f) defined
on )0, o0 is the Legendre transform of Newt(f).

Then, the statement of the “p-adic Jensen formula” is the following: the slopes of Newt(f) are
the valuations of the zeros of f (with multiplicity).

Example 1.1. Take f € O(D), f(0) # 0. Let p =p~" €]0,1] and (a,...,a,) be the zeros of f
in the ball {|z| < p} counted with multiplicity. Then, as a consequence of the fact that r — v,.(f)
is the Legendre transform of a polygon whose slopes are the valuations of the roots of f, one has
the formula (see ﬁgure@)

W(F(0)) = () = nr + 3 v(a)

FIGURE 2. An illustration of the “p-adic Jensen formula”. The numbers over each line
are their slopes.

Finally, remark that B is characterized in terms of Newton polygons:

Bt = {f € B | Newt(f) C upper half plane y > 0}.
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1.1.3. Weierstrass products. For a compact interval I = [p1, p2] CJ0, 1[ with py, p2 € /|F*| the
ring By is a P.I.D. with Spm(B;) = |D;|. In particular Pic(ID;) = 0. Now let’s look at Pic(D*). In
fact in the following we will only be interested in the submonoid of effective line bundles

Pict(D*) = {[.Z] € Pic(D*) | H*(D*,.%) # 0}.
Set

Div™(D*) = {D = Z mglz] | my € N, VI C]0, 1] compact supp(D) NDy is ﬁnite}
z€|D*|

the monoid of effective divisors on D*. There is an exact sequence

0 — B\ {0}/B* -2 Divt(D*) — Pict(D*) — 0.
We are thus led to the question: for D € Divt(D*), does there exist f € B\ {0} such that
div(f)=D?

This is of course the case if supp(D) is finite. Suppose thus it is infinite. We will suppose
moreover F' is algebraically closed (the discrete valuation case is easier but this is not the case we
are interested in) and thus |D*| = mp \ {0} where mp is the maximal ideal of Op.

Suppose first there exists pg €]0, 1[ such that supp(D) C {0 < |z| < pp}. Then we can write

D= Zal a; € mp \ {0}, hm |a1|—0
>0

The infinite product
400 a
me-7).
i=0
converges in the Frechet algebra B and its divisor is D.
We are thus reduced to the case supp(D) C {po < |2| < 1} for some po €]0, 1[. But if we write

D= Zal hm |az\—1
>0

then neither of the infinite products “[[;>¢ (1—%)” or “Tli>o (1 - a%)” converges. Recall that
over C this type of problem is solved by introducing renormalization factors. Typically, if we
are looking for a holomorphic function f on C such that div(f ) ZneN[ n] then the prod-
uct “z[[nen (L4 £)” does not converge but z[[,en [(1+2) e n] = e‘Yzl"(z) does. In our non
archimedean setting this problem has been solved by Lazard.

Theorem 1.2 (Lazard [25]). If F' is spherically complete then there exists a sequence (h;)i>0 of
elements of B* such that the product [[;>q [(z — a;).hi] converges.

Thus, if F is spherically complete Pict(D*) = 0 (and in fact Pic(D*) = 0). In the preceding
problem, it is easy to verify that for any F' there always exist renormalization factors h; € B\ {0}
such that [],>o [(# — ai).h;] converges and thus an f € B\ {0} such that div(f) > D. The difficulty
is thus to introduce renormalization factors that do not add any new zero.

Let’s conclude this section with a trick that sometimes allows us not to introduce any renormal-
ization factors. Over C this is the following. Suppose we are looking for a holomorphic function on
C whose divisor is ), cz[n]. The infinite product “z [,z {0} (1 - 7) does not converge. Never-

§1n7rz

theless, regrouping the terms, the infinite product z [],,>4 [(1 — 7) (1 + )} = converges. In
the non archimedean setting there is a case where this trick works. This is the followmg Suppose
E|Q, is a finite extension and F is an algebraic closure of E. Let LT be a Lubin-Tate group law
over Og. Its logarithm log .+ is a rigid analytic function on the open disk DD with zeros the torsion
points of the Lubin-Tate group law,

LT = {z €mz | In > 1, [7"]7(z) = 0}.



6 LAURENT FARGUES AND JEAN-MARC FONTAINE

- I (-3)

CeLT[m]\{0}
does not converge since in this formula |(| — 1. Nevertheless, the infinite product

A0 I (7))

n>1 CeLT[n\LT [x"—1]

The infinite product

converges in the Frechet algebra of holomorphic functions on D and equals log, . This is just a
reformulation of the classical formula

log, .+ = ngrfww_" [T cT-

1.2. Analytic functions in mixed characteristic.

1.2.1. The rings B and BT. Let E be a local field with uniformizing element 7 and finite residue
field F,. Thus, either F is a finite extension of Q, or E = F,((7)). Let F|F, be a valued complete
extension for a non trivial valuation v : F — R U {4o00}. Suppose moreover F is perfect (in
particular v is not discrete).

Let &|E be the unique complete unramified extension of F inducing the extension F|F, on the
residue fields, Og/mOgs = F. There is a Teichmiller lift [-] : FF — Og and

& = { Z [xp]7™ |z € F} (unique writing).
n>>—oo
If charE = p then [-] is additive, &|F, and & = F((n)). If E|Q, then
& = W@E(F)[%] = W(F) ®W(]Fq) E
the ramified Witt vectors of F. There is a Frobenius ¢ acting on &,

o(Ylealn") = Y latin".

If E|Q, then on W (F) @wr,) £ one has ¢ = cpép ® Id where in this formula ¢ = p/ and g, is
the usual Frobenius of the Witt vectors. In this case the addition law of Wo , (F) is given by

(2) Z[mn}ﬂ" + Z[yn]ﬂ'” = Z[Pn(xo, Ty Y0y e YT

n>0 n>0 n>0

where P, € F, [X fiin Y7 are generalized polynomials. The multiplication law is given

j—n
) }OSZ’J <n
in the same way by such kind of generalized polynomials.

Definition 1.3.

(1) Define
B — { 3 [ealn" € & | 3C, Yn |z, gc}
n=>>—oo
Bbt = { Z [x]7" € & | xp GOF}
n>>—oo

Wor(Or)[£] if E|Q,
= Orl[nll3] if B =TFy((n)).
(2) Forz =Y, [x,|7" € B® and r > 0 set

vp(x) = Tllren;{v(;vn) +nr}.

If p=q7" €]0,1] set |z[, = ¢~ ).
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(3) Forx =13, [z,)m" € B® set
Newt(x) = decreasing convex hull of {(n,v(xp))}nez.

In the preceding definition one can check that the function v, does not depend on the choice
of a uniformizing element 7. In the equal characteristic case, that is to say E = F,((7)), setting
z = 7 one finds back the rings defined in section [1.1

For = € B the function r — v,(z) defined on |0, +oc[ is the Legendre transform of Newt(x).
One has vo(z) = lir% vy (x). The Newton polygon of z is +oo exactly on | — 00, v, (2)[ and moreover
T—r

Em Newt(x) = vp(x). One has to be careful that since the valuation of F' is not discrete, this
o0
limit is not always reached, that is to say Newt(x) may have an infinite number of strictly positive

slopes going to zero. One key point is the following proposition whose proof is not very difficult
but needs some work.

Proposition 1.4. For r >0, v, is a valuation on Bb.

Thus, for all p €]0,1], ||, is a multiplicative norm. One deduces from this that for all z,y € B,
Newt(xy) = Newt(x) * Newt(y)

(see|l.1.2)). In particular the slopes of Newt(xy) are obtained by concatenation from the slopes of
Newt(x) and the ones of Newt(y). For example, as a consequence, if a1,...,a, € mg \ {0}, then

Newt ((m — [a1]) ... (7 — [an]))
is 400 on | — 00, 0], 0 on [n, +o0o[ and has non-zero slopes v(ay),...,v(ay).

Definition 1.5. Define
o B = completion of B® with respect to (| - |,)pejo,1s
o BT = completion of B** with respect to (| - |,)pejo,1]s
e for I C]0,1[ a compact interval By= completion of B® with respect to (| - |,)per-

The rings B and BT are E-Frechet algebras and B is the closure of B®* in B. Moreover, if
I'={[p1,p2] CJ0O, 1], for all f €B

sup |f|p = SUP{|f|p1v ‘f|p2}
pel

because the function r — v,.(f) is concave. Thus, By is an F-Banach algebra. As a consequence,
the formula
B = lim By
—
I1C]o,1]
expresses the Frechet algebra B as a projective limit of Banach algebras.

Remark 1.6. Of course, the preceding rings are not new and appeared for example under different
names in the work of Berger ([2]) and Kedlaya (|21]). The new point of view here is to see them
as rings of holomorphic functions of the variable 7. In particular, the fact that v, is a valuation
(prop. had never been noticed before.

The Frobenius ¢ extends by continuity to automorphisms of B and BT, and for [p1, p2] CJ0, 1]

to an isomorphism ¢ : By, 5, = By 09

Remark 1.7. In the case E = Fy((m)), setting z = 7 as in section the Frobenius ¢ just

defined is given by @(Zn xnzn) =3, 222" This is thus an arithmetic Frobenius, the geometric
one being Y, Tp2" = Y, 2"

The ring BT satisfies a particular property. In fact, if z € B®* and r > 7/ > 0 then
/

3) vy () > (o).
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Thus, if 0 < p < p’ < 1 we have

Bt
[p:p']
where for a compact interval I C]0,1[ we note B for the completion of B®* with respect to the

(I-1p)per, and B := B?p}. One deduces that for any py €]0,1[, B} is stable under ¢ and

B = () ¢"(B},)

n>0

_pt +
=B/ cB},

the biggest sub-algebra of Blfo on which ¢ is bijective.

Suppose E = Q,, and choose p € |[F*|N]0, 1[. Let a € F such that |a| = p. Define
B, , = (p-adic completion of the P.D. hull of the ideal W(Op)[a] of W (OF) ) ®z, Q,.

cris,p

This depends only on p since W(Op)[a] = {x € W(Op) | |x|o > p}. We thus have

Bh, = (Won[5] ) L)

One has
Bf, c B, 6 Cc B/

cris,p pp—1*

B+ = ﬂ wn (B:—ris,p)7
n>0

From this one deduces

the ring usually denoted “B;Eg” in p-adic Hodge theory. The ring B;t‘is, , appears naturally in

comparison theorems where it has a natural interpretation in terms of crystalline cohomology.
But the structure of the ring B is simpler as we will see. Moreover, if k C Op is a perfect
sub-field, Ko = W(k)q and (D, ¢) a k-isocrystal, then

=Id =Id
(D @Ko B:—Tis,p)w = (D QKo BJF)SD
because ¢ is bijective on D. Replacing B;‘is,p by BT is thus harmless most of the time.

Remark 1.8. Suppose E|Q, and let (xy,)nez be a sequence of Op such that lim W = +4o00.

n—+o0o
Z[zn]ﬂn

neZ

Then, the series

converges in BT. But:

e we don’t know if each element of BT is of this form,
e for such an element of BT we don’t know if such a writing is unique,
e we don’t know if the sum or product of two element of this form is again of this form.

The same remark applies to B.

Nevertheless, there is a sub E-vector space of BT where the preceding remark does not apply.
One can define for any Og-algebra R the group of (ramified) Witt bivectors BWp,, (R). Elements
of BWp,, (R) have a Teichmiiller expansion that is infinite on the left and on the right. One has

BWOE(OF) = {El BW@E(OF/CL)

aCOp
non zero ideal

= {Zvﬁ%} | 2 € Op, liminf v(a,) > 0}

nez
= {Z[yn]wn | yn € Op, liminf ¢"v(z,) > O} c BT,
n——oo
nez
The point is that in BWe,(OF)

Z[xn]ﬂn + Z[yn]ﬂn = Z [ Hm Pi(Zp—ky -y Ty Yn—ky - - - 5 yn)} "

k—+oo
nez nez neZ
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where the generalized polynomials

i—k
P, eF, [ng 7qu ]1§i,j§k

ji—k
give the addition law of the Witt vectors as in formula and the limits in the preceding formulas
exist thanks to [I5], prop.1.1 chap. II, and the convergence condition appearing in the definition
of the bivectors.

In fact, periods of m-divisible Og-modules (that is to say p-divisible groups when E = Q,) lie
in BWe,, (OF), and BWo,, (OF) contains all periods whose Dieudonné-Manin slopes lie in [0, 1].
In equal characteristic, when E = F,((n)), there is no restriction on Dieudonné-Manin slopes of
formal Og-modules (what we call here a formal Og-module is a Drinfeld module in dimension
1). This gives a meta-explanation to the fact that in equal characteristic all elements of B have a
unique power series expansion and the fact that this may not be the case in unequal characteristic.

1.2.2. Newton polygons. Since the elements of B may not be written uniquely as a power series
S nezlzn]m™, we need a trick to define the Newton polygon of such elements. The following
proposition is an easy consequence of the following Dini type theorem: if a sequence of concave
functions on ]0, +00[ converges point-wise then the convergence is uniform on all compact subsets
of 10, +oo[ (but not on all |0, +o00[ in general).

Proposition 1.9. If (z,)n>0 s a sequence of B® that converges to x € B\ {0} then for all I C]0,1]
compact,
AN, n> N and ¢ " € I = v.(zy) = v.().

One deduces immediately:
Corollary 1.10. For x € B the function r — v,.(z) is a concave polygon with integral slopes.
This leads us to the following definition.

Definition 1.11. For xz € B, define Newt(x) as the inverse Legendre transform of the function
r = v (x).

Thus, Newt(x) is a polygon with integral z-coordinate breakpoints. Moreover, if ()\;);cz are its
slopes, where \; is the slope on the segment [i,7 + 1] (we set A\; = +oo if Newt(x) is +oo on this
segment), then

lim \; =0and lim A; = 4o0.

1—+o00 1——00

In particular lim Newt(x) = +o0o0. Those properties of Newt(x) are the only restrictions on such

— 00

polygons.

Remark 1.12. Ifz, — x in B with x, € B and x # 0 then one checks using proposition

n—-+oo

[I29 that in fact for any compact subset K of R, there exists an integer N such that for n > N,
Newt(x, )k = Newt(x) k. The advantage of definition is that it makes it clear that Newt(x)

does not depend on the choice of a sequence of BY going to .

Example 1.13.

(1) If (xn)nez is a sequence of F satisfying the two conditions of formula then the polygon
Newt (Y, ezlxn]m™) is the decreasing convez hull of {(n,v(xy))}nen.

(2) If (an)n>0 is a sequence of F* going to zero then the infinite product [],>q (1 — [GT])
converges in B and its Newton polygon is zero on [0,+oo[ and has slopes the (v(an))n>0

on | —00,0].

Of course the Newton polygon of z does not give more informations than the polygon r — v,.(x).
But it is much easier to visualize and its interest lies in the fact that we can appeal to our geometric
intuition from the usual case of holomorphic functions recalled in section to guess and prove
results. Here is a typical application: the proof of the following proposition is not very difficult
once you have convinced yourself it has to be true by analogy with the usual case of holomorphic
functions.
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Proposition 1.14. We have the following characterizations:
(1) BT = {z € B | Newt(x) > 0}
(2) B® = {z € B | Newt(x) is bounded below and IA, Newt(x)|_o0,a] = +00}.
(3) The algebra {x € B | 3A, Newt(x)_co,a] = +00} is a subalgebra of Wo, (F)[%] equal to

n : : U(In) >

This has powerful applications that would be difficult to obtain without Newton polygons. For
example one obtains the following.

Corollary 1.15.
(1) BX = (B®)™ = {x € B® | Newt(x) has 0 as its only non infinite slope}.
(2) One has Be="" =0 ford <0, B~ = E and for d >0,

B = (B+)FT

Typically, the second point is obtained in the following way. If = € B satisfies ¢(z) = 7%z then
Newt(p(x)) = Newt(79x) that is to say Newt(x) satisfies the functional equation gNewt(x)(t) =
Newt(x)(t — d). By solving this functional equation and applying proposition one finds the
results.

2. THE SPACE |Y|

2.1. Primitive elements. We would like to see the Frechet algebra B defined in the preceding
section as an algebra of holomorphic functions on a “rigid analytic space” Y. This is of course
the case if E =T, ((m)) since we can take Y = D* a punctured disk as in section This is not
the case anymore when E|Q,, at least as a Tate rigid space. But nevertheless we can still define a
topological space |Y| that embeds in the Berkovich space M(B) of rank 1 continuous valuations
on B. It should be thought of as the set of classical points of this “space” Y that would remain
to construct.

To simplify the exposition, in the following we always assume E|Q,, that is to say we concentrate
on the most difficult case. When E = F,((7)), all stated results are easy to obtain by elementary
manipulation and are more or less already contained in the backgrounds of section [I.1]

Definition 2.1.

(1) Anelementx =", solzn]m" € Wo,(Or) is primitive if o # 0 and there exists an integer
n such that x, € Of. For such a primitive element x we define deg(xz) as the smallest
such integer n.

(2) A primitive element of strictly positive degree is irreducible if it can not be written as a
product of two primitive elements of strictly lower degree.

If kp is the residue field of Op there is a projection
WOE (OF) - WOE (kF)

Then, z is primitive if and only if ¢ 7We,(OF) and its projection & € We, (kr) is non-zero.
For such an z, deg(z) = v, (Z). We deduce from this that the product of a degree d by a degree d’
primitive element is a degree d + d’ primitive element. Degree 0 primitive elements are the units
of Wo,,(Op). Any primitive degree 1 element is irreducible.

In terms of Newton polygons, © € Wp, (OF) is primitive if and only if Newt(x)(0) # 400 and
Newt(x)(t) =0 for ¢t > 0.

Definition 2.2. Define |Y| to be the set of primitive irreducible elements modulo multiplication
by an element of Wo,(Op)*.

There is a degree function
deg: Y] — Nxq
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given by the degree of any representative of a class in |Y|. If z is primitive note z € O for its
reduction modulo . We have |Z| = |g| if y € Wp, (Op)*.z. There is thus a function

A=Y —10,1]
WOE(OF)X.ZE — |f|1/deg(x).

A primitive element x € Wo,(OF) of strictly positive degree is irreducible if and only if the
ideal generated by x is prime. In fact, if * = yz with y,2 € Wo,(OF) and 2 primitive then
projecting to Wo, (kr) and Op the preceding equality one obtains that y and z are primitive.
There is thus an embedding

¥ € Spec(Wo, (OF)).
The Frobenius ¢ induces a bijection

e Y] =Y
that leaves invariant the degree and satisfies

Il = llyll-
Remark 2.3. When E = Fy((7)), replacing Wo,(Or) by Op[z] in the preceding definitions
(we set z = m) there is an identification |Y| = |D*|. In fact, according to Weierstrass, any

irreducible primitive f € Op[z] has a unique irreducible unitary polynomial P € Opl[z] in its
Opr[z]*-orbit satisfying: P(0) # 0 and the roots of P have absolute value < 1. Then for y € |D*|,
deg(y) = [k(y) : F] and |ly|| is the distance from y to the origin of the disk D.

2.2. Background on the ring #. For an Og-algebra A set
B = {(7) 1 | 27 € 4, (@40 =2

If A is w-adic, I is a closed ideal of A such that A is I + (w)-adic, then the reduction map induces
a bijection
R(A) = R(A/I)

with inverse given by

k
. — —\ 94
(x( ))nzo = (kl}rfoo (x(n+k)) )nZO.

where z("t%) € A is any lift of ("**) € A/I, and the preceding limit is for the I + (7)-adic
topology. In particular, applying this for I = (w), we deduce that the set valued functor %
factorizes canonically as a functor

% : w-adic Og-algebras — perfect F,-algebras.
If Wo,, stands for the (ramified) Witt vectors there is then a couple of adjoint functors

¥
m-adic Og-algebras perfect [F -algebras
Wop,
where Wo,, is left adjoint to #Z and the adjunction morphisms are given by:

o = (7)),

0:Wo,(Z(A) — A

Z[xn]ﬂ" — Zx%o)wn.

n>0 n>0

and

If L|Q, is a complete valued extension for a valuation w : L — RU {400} extending a multiple
of the p-adic valuation, then %Z(L) equipped with the valuation

z — w(z(®)
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is a characteristic p perfect complete valued field with ring of integers Z(QOp) (one has to be
careful that the valuation on Z(L) may be trivial). It is not very difficult to prove that if L is
algebraically closed then Z(L) is too. A reciprocal to this statement will be stated in the following
sections.

2.3. The case when is F' algebraically closed.

Theorem 2.4. Suppose F is algebraically closed. Let p € Spec(Wo,(OF)) generated by a degree
one primitive element. Set

A=Wo,(Or)/p
and 0 : Wo,_(Op) — A the projection. The following properties are satisfied:
(1) There is an isomorphism

Or — %(A)
—

(1),

OF — A

xT

(2) The map

18 surjective.
(8) There is a unique valuation w on A such that for all x € O,

w(b([z])) = v(x).
Moreowver, A[%] equipped with the valuation w is a complete algebraically closed extension
of E with ming of integers A. There is an identification of valued fields F = %’(A[%])
(4) If € Z(A) is such that ©®) = 1 then
p=(z] = 7).
Remark 2.5. One can reinterpret points (2) and (4) of the preceding theorem in the following
way. Let x be primitive of degree 1. Then:

e we have a Weierstrass division in Wo,(Op): given y € Wo,(OF), there exists z €
Wop(Or) and a € Op such that

y = zx + [al,
e we have a Weierstrass factorization of x: there exists u € Wo,(Op)* and b € Op such
that
x = u.(m — [b]).
One has to be careful that, contrary to the classical situation, the remainder term a is not unique

in such a Weierstrass division. Similarly, b is not uniquely determined by x in the Weierstrass
factorization.

Indications on the proof of theorem (2.4} Statement (1) is an easy consequence of general facts
about the ring # recalled in section if p=(2)

A(A) = R(A/nA) = B(Op |7) = OF

since O is perfect.

According to point (1), point (2) is reduced to proving that any element of A has a g-th root.
If E° = W(F,)q, the norm map Ng/go induces a norm map Wo, (Or) — W(Op) sending a
primitive element of degree 1 to a primitive element of degree 1. Using this one can reduce the
problem to the case E = Q,. Suppose p # 2 to simplify. Then any element of 1 + p?W (OF) has
a p-th root. Using this fact plus some elementary manipulations one is reduced to solving some
explicit equations in the truncated Witt vectors of length 2, W5 (Op). One checks this is possible,
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using the fact that F' is algebraically closed (here this hypothesis is essential, the hypothesis F'
perfect is not sufficient).

In fact, the preceding proof gives that for any integer n, any element of A has an n-th root,
the case when n is prime to p being easier than the case n = p we just explained (since then any
element of 1+ pWe,, (OF) has an n-th root).

Point (4) is an easy consequence of the following classical characterization of ker §: an element
Y = > u>0lUn]m" € kerf such that y(()o) € mA* is a generator of kerf. In fact, if y is such an
element then ker 6 = (y) + m ker 6 and one concludes ker § = (y) by applying the m-adic Nakayama

lemma (ker 6 is m-adically closed).

In point (3), the difficulty is to prove that the complete valued field L = A[%] is algebraically
closed, other points following easily from point (2). Using the fields of norms theory one verifies
that L contains an algebraic closure of @,. More precisely, one can suppose thanks to point (4)

that p = (w —[x]). There is then an embedding F,((x)) C F that induces F' := F,((z)) C F. This
induces a morphism L' = Wo, (Op/)[2] /(7 — [z]) — L. But thanks to the fields of norms theory,
L' is the completion of an algebraic closure of E. In particular, L contains all roots of unity. Let
us notice that since Or /7Oy, = O /7OF, the residue field of L is the same as the one of F and is
thus algebraically closed. Now, we use the following proposition that is well known in the discrete
valuation case thanks to the theory of ramification groups (those ramification groups do not exist

in the non discrete valuation case, but one can define some ad hoc one to obtain the proposition).

Proposition 2.6. Let K be a complete valued field for a rank 1 valuation and K'|K a finite degree
Galois extension inducing a trivial extension on the residue fields. Then the group Gal(K'|K) is
solvable.

Since for any integer n any element of L has an n-th root, one concludes L is algebraically
closed using Kiimmer theory. O

Note now O¢c = Wp,,(OF)/p with fraction field C. One has to be careful that the valuation w
on C extends only a multiple of the 7-adic valuation of E: ¢~*(™) = ||p||. The quotient morphism
B»*t — C extends in fact by continuity to surjective morphisms

Bb+C BYC BC B,

N

C
where I CJ0,1[ is such that ||p|| € I. This is a consequence of the inequality

qiw(f) < |f‘p

for f € B® and p = ||p||. If p = (z) then all kernels of those surjections are the principal ideals
generated by x in those rings.

Convention: we will now see |Y|48=1 as a subset of Spm(B). For m € |Y|48=1 we note
Caw=B/m, 0y :B— Cy

and vy the valuation such that

Um (Om([2])) = v ().

Theorem 2.7. If F is algebraically closed then the primitive irreducible elements are of degree one.

Remark 2.8. On can reinterpret the preceding theorem as a factorization statement: if x €
Wo,(Or) is primitive of degree d then

z=u.(mr—[a1])... (7 —[aq]), v € Wo,(Op)", a1,...,aq € mg \ {0}.
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Indications on the proof of theorem . Let f € Wo,(Op) be primitive. The theorem is
equivalent to saying that f “has a zero in |Y|9°8=1" that is to say there exists m € |Y'|4¢8=! such
that 6 (f) = 0. The method to construct such a zero is a Newton type method by successive
approximations. To make it work we need to know it converges in a sense that has to be specified.
We begin by proving the following.

Proposition 2.9. For mi,my € |Y|deg=1 set
d(rﬂl7 m2) = q7v|111 (G.) Zf 0m1 (mg) — Ocml a.
Then:

(1) This defines an ultrametric distance on |Y|4°=1,

(2) For any p €]0,1], <|Y|deg:17”'”2”,d) is a complete metric space.

Remark 2.10. In equal characteristic, if E = Fq((m)), then |Y| = |D*| = mp \ {0} and this
distance is the usual one induced by the absolute value |- | of F.

The approximation algorithm then works like this. We define a sequence (my,),>1 of |Y[de=!
such that:
e (|my]])n>1 is constant,
e it is a Cauchy sequence,

* ngg—loovm" (f) = foo

Write f = 3j~o[zk]m*. The Newton polygon of f as defined in section is the same as the
Newton polygon of g(T) = 30 2k T* € Op[T]. Let z € mp be a root of g(T) with valuation the
smallest one among the valuations of the roots of g(T') (that is to say the smallest non zero slope
of Newt(f)). Start with m; = (7 — [2]) € |Y/[48=L. If m,, is defined, m,, = (&) with ¢ primitive of
degree 1, we can write

F=> lale*

k>0
in Wo,(OF) (this is a consequence of point (2) of theorem [2.4] and the fact that Wo, (OF) is &-
adic). We check the power series h(T) = 3~ axT* € Op[T] is primitive of degree d. Let z be a
root of h(T') of maximal valuation. Then & —[z] is primitive of degree 1 and we set m,, 11 = (£ —[z]).
We then prove the sequence (m,,),>1 satisfies the required properties. O

2.4. Parametrization of |Y| when F is algebraically closed. Suppose F is algebraically
closed. We see |Y| as a subset of Spm(B). As we saw, for any m € |Y| there exists a € mp\ {0} such
that m = (7 — [a]). The problem is that such an a is not unique. Moreover, given a,b € mg \ {0},
there is no simple rule to decide whether (7 — [a]) = (7 — [b]) or not.

Here is a solution to this problem. Let £T be a Lubin-Tate group law over Og. We note

Q = [rlcr € Op[T]
and G the associated formal group on Spf(Og). We have

G(Or) = (mF,jT).

The topology induced by the norms (| - |,),ej0,1f on Wo,(OF) is the “weak topology” on the
coefficients of the Teichmiiller expansion, that is to say the product topology via the bijection

~

OF = Wo,(OF)
@n)nz0 Y [zl

n>0

If a € mp \ {0}, this coincides with the ([a], 7)-adic topology. Moreover Wo, (OF) is complete,
that is to say closed in B. If

Wo, (0F)" = { Z[mn]ﬂn | xzo € mp} ={x € Wo,(OF) | x mod m € mp},
n>0
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then
G(Wo, (0r) = (Wor (0r), + ).
One verifies the following proposition.

Proposition 2.11. For x € mp, the limit

[]o := lim [wn]m([xq*"})

n—-+oo

exists in Wo, (OF), reduces to x modulo 7, and defines a “lift”
[q :G(0F) = G(Wo,(OF)).

The usual Teichmiiller lift [-] is well adapted to the multiplicative group law: [zy] = [z].[y]. The
advantage of the twisted Teichmiiller lift [-]g is that it is more adapted to the Lubin-Tate one:

Wl # Wlo =[x 4 vy

When E =Q, and LT = G, one has [zlo=[1+2z]—1.

€
Definition 2.12. For e € mp \ {0} define u, = [ [1/]5]2 € Wo,(Op).
€ Q
This is a primitive degree one element since it is equal to the power series AT evaluated at

[el/q]Q. For example, if E = Q, and LT = @m, setting ¢ = 1 + € one has !
U =1+ {elﬂ +--- 4+ {6’%1]
Proposition 2.13. There is a bijection
(GOp)\{0})/0r — Y]
Og.c —  (ue).
The inverse of this bijection is given by the following rule. For m € |Y|, define

X(6)(0c,,) = {(zn)n>0 | Tn € G(Oc,,), Tny1 = an}.

More generally, X (G) will stand for the projective limit “ lim G” where the transition mappings
—

n>0
are multiplication by 7 (one can give a precise geometric meaning to this but this is not our task
here, see [12] for more details). The reduction modulo = map induces a bijection

X(9)(0c,,) — X(9)(Oc,, /mOc,,)
with inverse given by

. ko~
(p)n — ( lim = $n+k>
k—4oc0 n

where &,,4, is any lift of z,,4%. But [r]z7 modulo 7 is the Frobenius Frob,. We thus have

X(6)(Oc,, [70¢,,) = G(#(O¢,, /70c,,)) = G(OF)

since

OF ﬁ) %(Ocm) L> %(Ocm /ﬂ-ocm )'

The Tate module
T7(G) = {(zn)n>0 € X(G)(Oc,,) | o =1} C X(G)(Oc,,)

embeds thus in G(Op). This is a rank 1 sub-Og-module. The inverse of the bijection of proposition
sends m to this Og-line in G(OF).
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2.5. The general case: Galois descent. Let now F' be general (but still perfect), that is to
say not necessarily algebraically closed. Let F be an algebraic closure of F with Galois group
Gr = Gal(F|F). Since the field F will vary we now put a subscript in the preceding notation to
indicate this variation. The set |Y%{ is equipped with an action of G .

Theorem 2.14. For p € |Yp| C Spec(Wo,, (OF)) set
L= (Wor(0r)/p) 5]

and
0:B%" — L.
Then:
(1) There is a unique valuation w on L such that for x € Op,
w(b([z])) = v(z).
(2) (L,w) is a complete valued extension of E.

(3) (L,w) is perfectoid in the sense that the Frobenius of Or/mOy is surjective.
(4) Via the embedding

Or — (L)

a — (6([e"]) _ 1

n>0
one has Z(L)|F and this extension is of finite degree
[Z(L) : F] = degp.

Remark 2.15. What we call here perfectoid is what we called “strictly p-perfect” in [13] and [14].
The authors decided to change their terminology because meanwhile the work [29] appeared.

Indications on the proof. The proof is based on theorems [2:4] and 2.7) via a Galois descent
argument from |Y§| to |Yr|. For this we need the following.

Theorem 2.16. One has mp.H! (Gp,(’)%) =0.

Using Tate’s method ([31]) this theorem is a consequence of the following “almost etalness”
statement whose proof is much easier than in characteristic 0.

Proposition 2.17. If L|F' is a finite degree extension then mp C trp,p(OL).

Sketch of proof. The trace try,r commutes with the Frobenius ¢ = Frob,. Choosing z € O,
such that try,p(z) # 0 one deduces that

lim |trL/F(30*”(x))| =1.

n—-+4oo

From theorem one deduces that H! (G 7, mg) = 0 which implies
(4) H'(Gp, 1+ Wo, (m=)) =0
where
L+ Wo, (m=) = ker (Wo, (02) — Wo, (k7))
Finally, let us notice that thanks to Ax’s theorem (that can be easily deduced from one has

G
Woy (O%) = W@E(OF).

Proposition 2.18. Let © € W, (0%) be a primitive element such that Vo € Gp, (o(z)) = (z) as
an ideal of Wo, (O%) Then, there exists y € Wo,(Or) such that (z) = (y).
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Proof. If Z € Wo, (k%) is the projection of = via W@E(O%) — Woy (ks), up to multiplying « by

a unit, one can suppose & = 79°8®. Looking at the cocycle o — %, the proposition is then a

consequence of the vanishing . O

Let now x € We,, (OF) be primitive irreducible of degree d. There exist y1, ...,y € Wo, ((9%)
primitive of degree 1 satisfying (y;) # (y;) for i # j, a1,...,a, € N>; and u € Wo,, ((’)%)X such

that
T
i=1

The finite subset

{(yi)}lgigr - |Y%|
is stable under Gr. Using proposition and the irreducibility of x one verifies that this action
is transitive and a3 = .-+ = a, = 1. In particular one has r = d. Note m; = (y;) and Cy,, the

associated algebraically closed residue field. Let K|F be the degree d extension of F' in F such
that

Gk = StabGF(ml).

One has
d

B%* = | I Ch.
= /(.13) 11 i
and thus

G
(BL"/(2) " =G
F
Now, one verifies using that x is primitive that if @ € mg \ {0} then
(Wou (0)/(@) [£] = (Wo,(0r)/(2)) [ ].
Theorem [2.16] implies that for such an a,
la. H' (G, Wo,, (0=)) =0.
One deduces from this that
b+ b+ Gr
L=By"/(2) = (BL /(@)
F
that is thus a complete valued field. Moreover

~Gxi

#(1) = #(CGr) = #(Cn)% =T = K
Other statements of theorem [2.14] are easily deduced in the same way. O
In the preceding theorem the quotient morphism 6 : Bgﬁ — L extends by continuity to a

surjection Bp — L with kernel the principal ideal Bpp. From now on, we will see |Yr| as a subset
of Spm(B). If m € |Yr| we note

Lo =Bp/m, O : B — L.

The preceding arguments give the following.

Theorem 2.19. Let |Y%|GF7ﬁn be the elements of |Y%\ whose Gg-orbit is finite. There is a
surjection

B |Y%|GF*H“ — |Yp|
whose fibers are the Gg-orbits:

V2|97 Gr < Y.

Moreover:
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o form € |Yp|, one has
#B7'(m) = [%#(Lw) : F] = degm,

|GF7ﬁn, if m = B(n), one has an extension Cy|Ly that identifies Cy, with the

e forne |Y%
completion of the algebraic closure Ly, of Ly and
Cal( FIR(L)) = Gal(Tum|Luw)-

Remark 2.20.

(1) One has to be careful that 6m(Wo,(OF)) C O, is only an order. It is equal to Oy, if
and only if degm = 1.

(2) Contrary to the case when F is algebraically closed, in general an m € |Yr| of degree 1 is
not generated by an element of the form m — [a], a € mp \ {0}.

2.6. Application to perfectoid fields. Reciprocally, given a complete valued field L|E for a
rank 1 valuation, it is perfectoid if and only if the morphism

0 : WOE(%(OL)) — OL
is surjective. In this case one can check that the kernel of 6 is generated by a primitive degree 1
element. The preceding considerations thus give the following.
Theorem 2.21.

(1) There is an equivalence of categories between perfectoid fields LIE and the category of
couples (F,m) where F|F, is perfectoid and m € |Yp| is of degree 1.

(2) In the preceding equivalence, if L corresponds to (F,m), the functor % induces an equiv-
alence between finite étale L-algebras and finite étale F-algebras. The inverse equivalence
sends the finite extension F'|F to Bp:/ /Bpm.

Example 2.22.
(1) The perfectoid field L = @@ corresponds to F' = F((T))Perf and m = (14 [TY/P +
U+ [T +1)). N
(2) Choose p € %(@p) such that B(O) = p. The perfectoid field L = M with M = Unonp(B(n))
corresponds to F = F,((T))Pet and m = ([T] — p).

Remark 2.23. In the preceding correspondence, F' is mazximally complete if and only if L is. In
particular, one finds back the formula given in [26] for p-adic mazimally complete fields: they are
of the form W(Op) [%]/([z] — p) where F is mazimally complete of characteristic p and x € F*

satisfies v(x) > 0.

Remark 2.24. Suppose F' =F,((T)). One can ask what are the algebraically closed residue fields
Cw up to isomorphism when m goes through |Yg|. Let us note C, the completion of an algebraic
closure of Qp. Thanks to the fields of norms theory it appears as a residue field Cy, for some
m € |Yp|. The question is: is it true that for all m € |Yr|, Cn ~ C,? The authors do not know
the answer to this question. They know that for each integer n > 1, O¢,, /p"Oc,, =~ Oc,/p"Oc,
but in a mon canonical way.

As a consequence of the preceding theorem we deduce almost étalness for characteristic 0
perfectoid fields.

Corollary 2.25. For L|E a perfectoid field and L'|L a finite extension we have
my C tT’L/lL(OL/).

Proof. Set F' = Z(L’) and F = Z(L). If L corresponds to m € |Yr|, a = {z € Op | |z| < ||[m||}
and o = {x € Op | |z| < ||m||} we have identifications
OL/ﬂ'OL = OF/CI
OL//TFOL/ = OF//CL/.
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According to point (2) of the preceding theorem, with respect to those identifications the map
trzs, modulo 7 is induced by the map trg/p. The result is thus a consequence of proposition

O
Remark 2.26.

(1) Let K be a complete valued extension of Q, with discrete valuation and perfect residue field
and M|K be an algebraic infinite degree arithmetically profinite extension. Then, by the
fields of norms theory ([32]), L = M is perfectoid and point (2) of the preceding theorem
is already contained in [32].

(2) In [29] Scholze has obtained a different proof of point (2) of theorem and of corollary
223

Using Sen’s method ([30]), corollary implies the following.
Theorem 2.27. Let L|E be a perfectoid field with algebraic closure L. Then the functor V

V ®r L induces an equivalence of categories between finite dimensional L-vector spaces and finite
dimensional L-vector spaces equipped with a continuous semi-linear action of Gal(L|L). An inverse
is given by the functor W —s W GalLIL)

Using this theorem one deduces by dévissage the following that we will use later.

Theorem 2.28. Let m € |Yp| and note

BX = BX

F.dR,m m,gA‘ F.dR,m’

7

B(m)=m

the Bﬁm-adlc completion of B% (see def. , Then the functor
M— M ®g+ BX

F.dR,m  F dRm

induces an equivalence of categories between finite type B; dR.m-Modules and finite type BX -
B F,dR,m

modules equipped with a continuous semi-linear action of Gal(F|F). An inverse is given by the
functor W — W GallFIF),

3. DIVISORS ON YV
3.1. Zeros of elements of B. We see |Y| as a subset of Spm(B). For m € |V, we set
L, =B/mand 6, : B— L.
We note v, the valuation on Ly, such that
vm(Om([a])) = v(a).

One has
—Vm ()/ degm

[m| = ¢
where ||.|| was defined after definition
Definition 3.1. For m € |Y| define Bj&m as the m-adic completion of B.

The ring BIR’m is a discrete valuation ring with residue field Ly, and the natural map B — Bj&m
is injective. We note again 0y, : BjR,m — L. We note
ordy, : B:er,m — NU {400}

its normalized valuation.

Example 3.2. If E = F((n)) then |Y| = |D*| and if m € |Y| corresponds to x € |D*| then
B:er,m = OD*JU'
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Theorem 3.3. For f € B, the non-zero finite slopes of Newt(f) are the —log, [|m|| with multiplicity
orde (f) deg(m) where m goes through the elements of |Y| such that 0, (f) = 0.

Indications on the proof. It suffices to prove that for any finite non-zero slope A of Newt(f)
there exists m € |Y'| such that

¢ * = |m| and 6u(f)=0.

As in proposition [2.9| there is a metric d on |Y| such that for all p €]0, 1], {|jm|| > p} is complete.
For my,my € |Y], if O, (m2) = Or,, « then

d(ml,mQ) — qfvml(x)/deng.

We begin with the case when
f=> laa]r" € Wo,(OF).
n>0

If d > 0 set
d

fa= Z[mn]ﬁn

n=0
For d > 0, X appears as a slope of Newt(fy) with the same multiplicity as in Newt(f). For each d,
fa = [ad].ga for some aq € O and g4 € Wo, (Op) primitive. Thanks to the preceding results, we
already know the result for each g4. Thus, setting

Xg={me [Y[||lm] = ¢ * and O (fs) = 0},
we know that for d > 0, X4 # . Moreover #X, is bounded when d varies. Now, if m € Xy,
looking at vy (Om(fa+1)), one verifies that there exists m’ € X411 such that
_ (d+Dr—wv(zg)
dmn) < g FRon

From this one deduces there exists a Cauchy sequence (mg)gso where mg € Xy fm= lim my

d——+o0o
then 0, (f) = 0. This proves the theorem when f € Wo,(Or) and thus when f € BP.
The general case is now obtained in the same way by approximating f € B by a converging
sequence of elements of B?. O

Example 3.4. As a corollary of the preceding theorem and propositz'on for f € B\ {0} one
has f € B* if and only if for allm € |Y], 0 (f) # 0.

3.2. A factorization of elements of B when F' is algebraically closed. Set

Boi = {f€B] 34, Newt(f)] oo a] = +00}

{ Z [xn]7" € Wo,, (F) [%] liminf v(@n) > O}

n—-+4oo n
n>>>—oo

(see prop for this equality). Suppose F' is algebraically closed. Given f € B, applying theorem

3.3] if A1,..., A, > 0 are some slopes of Newt(f) one can write
- [a]
=¢.TT(1-
f=g ];[1 (1-=5)

where v(a;) = ;. Using this one proves the following,.

Theorem 3.5. Suppose F is algebraically closed. For f € B there exists a sequence (a;)i>o of
elements of mp going to zero and g € Big 1| such that

=1 0-)

If moreover f € BT there exists such a factorization with g € Wo, (OFr).
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3.3. Divisors and closed ideals of B.
Definition 3.6. Define
DivH(Y) = { Z am[m] | VI C]0,1] compact {m | am # 0 and ||m| € I} is ﬁnite}.

me|Y|
For f € B\ {0} set
div(f) = > ordw(f)[m] € Div*(Y).
me|Y|

Definition 3.7. For D € Div'(Y) set a_p = {f € B | div(f) > D}, an ideal of B.

For each m € Y|, the function ordy, : B = NU {+oc0} is upper semi-continuous. From this one
deduces that the ideal a_p is closed in B.

Theorem 3.8. The map D+ a_p induces an isomorphism of monoids between Div' (Y) and the
monoid of closed non-zero ideals of B. Moreover, D < D’ if and only if a_p, C a_p.

If a is a closed ideal of B then
a — lim Bja.
+—
Ic]o,1]
The result is thus a consequence of the following.

Theorem 3.9. For a compact non empty interval I CJ0,1[:
o if I ={p} with p ¢ |F*| then By is a field
e if not then the ring By is a principal ideal domain with mazimal ideals {Bym | m €
Y1, [[m|| € I}.

Sketch of proof. The proof of this theorem goes as follows. First, given f € By, one can define

a bounded Newton polygon
Newty(f).

If f € B then Newt;(f) is obtained from Newt(f) by removing the slopes A such that ¢~ ¢ I
(if there is no such slope we define Newtr(f) as the empty polygon). Now, if f € B the method
used in definition to define the Newton polygon does not apply immediately. For example, if
I ={p} and f € BP then |f|, does not determine Newt;(f) (more generally, if I = [¢~*1, ¢~ *2] one
has the same problem with the definition of the pieces of Newt;(f) where the slopes are A; and
A2). But one verifies that if f, n:)w f in By with f,, € B® then for n > 0, Newt;(f,) is constant

and does not depend on the sequence of B going to f.

Then, if f € By we prove a theorem that is analogous to theorem the slopes of Newt(f)
are the —log, ||m|| with multiplicity ordy(f)degm where ||m|| € I and 0 (f) = 0. This gives a
factorization of any f € By as a product

f=91l%
=1

where the &; are irreducible primitive, ||&;|| € I, and ¢g € By satisfies Newt;(g) = 0.
Finally, we prove that if f € B satisfies Newt;(f) = 0 then f € By. For f € B® this is verified
by elementary manipulations. Then if f, —+> f in By with f,, € B, since Newt;(f) = 0 for
n—-+0o0o

n > 0 one has Newty(f,) = 0. But then for n > 0 and p € I,
|fn_+11 - f;1|p = |fn+l‘;:1'|fn|;1'|fn+l - fn|p njoo 0.

Thus the sequence (f;;),s0 of By converges towards an inverse of f. O

Example 3.10. For f,g € B\{0}, f is a multiple of g if and only if div(f) > div(g). In particular
there is an injection of monoids

div: B\ {0}/B* — Div"(Y).
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Corollary 3.11. The set |Y| is the set of closed mazimal ideals of B.

Remark 3.12. Even when F is spherically complete we do not know whether div : BX — Divt(Y)
is surjective or not (see .

4. DIVISORS ON Y/?

4.1. Motivation. Suppose we want to classify p-modules over B, that is to say free B-modules
equipped with a ¢-semi-linear automorphism. This should be the same as vector bundles on

Y/p"
where Y is this “rigid” space we did not really define but that should satisfy
e I'Y,0y)=B
e |Y| is the set of “classical points” of Y.

Whatever this space Y is, since ||o(m)| = ||m]|?, ¢ acts in a proper discontinuous way without
fixed point on it. Thus, Y/p” should have a sense as a “rigid” space. Let’s look in more details
at what this space Y/p? should be.

It is easy to classify rank 1 ¢-modules over B. They are parametrized by Z: to n € Z one
associates the p-module with basis e such that ¢(e) = 7™e. We thus should have

7 =5 Pic(Y/e?)

n o o— Lo
where .Z is a line bundle such that for all d € Z,

HO(Y/", 2%%) = B#="
If E=TF,((m)) and F is algebraically closed Hartl and Pink classified in [20] the ¢-modules over B,
that is to say ¢-equivariant vector bundles on D*. The first step in the proof of their classification
([20] theo.4.3) is that if (M, ¢) is such a p-module then for d > 0
MP="" £ 0.

The same type of result appears in the context of ¢-modules over the Robba ring in the work of
Kedlaya (see for example [22] prop.2.1.5). From this one deduces that the line bundle .# should
be ample. We are thus led to study the scheme

Proj ( ) B“":”d)
d>0

for which one hopes it is “uniformized by Y” and allows us to study ¢-modules over B. In fact if
(M, ) is such a p-module, we hope the quasi-coherent sheaf

(@)

d>0

is the vector bundle associated to the ¢-equivariant vector bundle on Y attached to (M, ¢).

4.2. Multiplicative structure of the graded algebra P.

P=Pn"

d>0

Definition 4.1. Define

as a graded E-algebra. We note Py = B¢="" the degree d homogeneous elements.
In fact we could replace B by B in the preceding definition since
d

BY=T" — (B+)<p:ﬂ—d
(coro. |1.15]). One has Py = E.
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Definition 4.2. Define
Divt(Y/p?) = {D € DivT(Y) | ¢*D = D}.
There is an injection
V]/o® — Divt(Y/¢")
mo— Y " (m)]

neL
that makes Div'™(Y/¢?) a free abelian monoid on |Y|/¢?. If x € Be="" \ {0} then div(z) €
DivT (Y/p?).
Theorem 4.3. If I is algebraically closed the morphism of monoids
div : ( U Pa) {0}) JEX — Divt(Y/%)
d>0

is an isomorphism.
Let us note the following important corollary.

Corollary 4.4. If F is algebraically closed the graded algebra P is graded factorial with irreducible
elements of degree 1.

In the preceding theorem, the injectivity is an easy application of theorem[3.8 In fact, if z € Py
and y € Py are non zero elements such that div(z) = div(y) then = uy with « € B*. But
ﬁ

BX = (B%)* (see the comment after proposition . Thus,
wE (Bb)tp:ﬂ_dﬂi’ _ 0 if d 7é d
Eifd=d.

The surjectivity uses Weierstrass products. For this, let x € Wp,(Op) be a primitive degree d
element and D = div(z) its divisor. We are looking for f € P;\ {0} satisfying

div(f) = ¢"(D).
nez
Up to multiplying « by a unit we can suppose

e+ Wo,(mp).
Then the infinite product

One has
div(ITH(2)) = > ¢™(D).
n>0

We then would like to define

(@) = [] ")

n<0

and then set

H(z) = O (2).11 ()
that would satisfy II(x) € P; and div(II(z)) = >, cz 9" (D). But the infinite product defining
IT~ (z) does not converge. Nevertheless let us remark it satisfies formally the functional equation

eIl (z)) = =1 ().
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Moreover, if « = z mod 7, a € mp, if we are trying to define II~(z) modulo 7, one should have
formally

H ©"(x) mod ™ = H a?" = g2on<od = g7T,

n<0 n<0
This means that up to an Fx-multiple one would like to define I~ (x) modulo 7 as a solution of
the Kiimmer equation X9~! — a = 0. Similarly, for an element y € 1+ 7*We, (OF) where k > 1,
via the identification

1+ 7" Wo, (0p)/1+ 7" Wo, (OF) = OF
if
y mod 1+ 7*We, (Or) — b

one would have formally

[1#" () mod 1+ 75 Wo,, (OF) — 3 bt
n<0 n<0

n

that is formally a solution of the Artin-Schreier equation X9 — X —b = 0 (the remark that one can
write solutions of Artin-Schreier equations in F' as such non-converging series is due to Abhyankar,
see [26]).

In fact, we have the following easy proposition whose proof is by successive approximations,
solving first a Kiimmer and then Artin-Schreier equations.

Proposition 4.5. Suppose F is algebraically closed and let z € Wo,(OF) be a primitive element.
Up to an E*-multiple there is a unique 11~ (z) € B¥+\ {0} such that (11~ (2)) = 211~ (2).

Define I~ (x) using the preceding proposition. It is well defined up to an E*-multiple. Moreover
eIl () = 2ll” () = (div(II™(2))) = div(Il™ (z)) + div(z)
——
D
= div(IT (z)) = Y _¢"(D).
n<0
Setting II(z) = I (z)II™ (z), this is a solution to our problem:
o II(x) € P;\ {0}
o div(Il(z)) = 3=,ez ¢"(D).
4.3. Weierstrass products and the logarithm of a Lubin-Tate group. We use the notations

from section For e € mp \ {0} and u, = [ [16/](3 one has
el

np 7" ler([€Q)
P = i (o)

and thus

Ot (u) = H(wniua)
n>0
- g Jm (o)

7r[611/‘1]Q log,r ([6] Q)

where log 7 is the logarithm of the Lubin-Tate group law £7. Moreover, one can take
I~ (ue) = e/ g
and thus
II(uc) = log 7 ([elq)-

Thus, the Weierstrass product II(u.) is given by the Weierstrass product expansion of log,.+ (see
the end of section [1.1.3)). In fact we have the following period isomorphism.
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Theorem 4.6. The logarithm induces an isomorphism of E-Banach spaces
(mp, Jr) =5 B¥7T
LT

€ — 10g£7- ([€]Q>
Remark 4.7. For r,r’ > 0 the restrictions of v, and v, to B#=" induce equivalent norms. This
equivalence class of norms defines the Banach space topology of the preceding theorem. This is the
same topology as the one induced by the embedding B#="" C B.
The Banach space topology on (mp, +) is the one defined by the lattice 1 + {x € mp | v(z) > r}

LT

for any r > 0.

One has the formula

—n

T n q
log.7 ([do) = Lim 7" log ey (le” 1)
If LT is the Lubin-Tate group law whose logarithm is

T(I’IL
log 7 = ey
n>0

we then have the formula

log -+ ([E]Q) = Z [eq_n]wn.

ne”Z

Remark 4.8. The preceding series Y ., cz [e‘f"}ﬂ” is a Witt bivector, an element of BWo, (OF)
(see the end of section m) The fact that such a series makes sense in the Witt bivectors is an
essential ingredient in the proof of theorem[[.6, For d > 1 we don’t have such a description of the
Banach space B¥=™ .

n

TP
Suppose now E = Q,, and let LT be the formal group law with logarithm Z ——. Let
n>0

n

E(T) = exp (Z %) € 7,[T]

n>0
be the Artin-Hasse exponential:
E: LT = @m.

There is then a commutative diagram of isomorphisms

(mp, Jr) — = 5> B¥=P

LT

(1 +mpg, ><)

where the horizontal map is € — 3,z [€? " |p”. We thus find back the usual formula: ¢ = log]e]
for € € 1 + mp. More precisely, for € € 1 + mp and the group law G,, one has

p—1
U =1+ [e7] +--+ [€7 ).
If m = (u._1) then e € Z(Cy) is a generator of Z,(1). Moreover if p = |e — 1|/'~!/P we have
Cn) =B}

cris,p

B+

cm’s(

where BY ;. (Cw) is the crystalline ring of periods attached to Cr ([I6]) and BY,, , is the ring

defined at the end of section Then t = log|e] is the usual period of e over Ch,.
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5. THE CURVE

5.1. The fundamental exact sequence. Using the results from the preceding section we give
a new proof of the fundamental exact sequence. In fact this fundamental exact sequence is a little
bit more general than the usual one. If t € P, \ {0} we will say ¢ is associated to m € |Y| if

div(t) = 3 ezl (m)].

Theorem 5.1. Suppose F' is algebraically closed. Let ty,...,t, € P; be associated to my, ..., m, €
|Y'| and such that for i # j, t; ¢ Et;. Let ay,...,a, € N>y and set d = ;a;. Then for r > 0
there is an exact sequence

n n
0— P [t — Parr == [ Birm, /Bigm,mit — 0.
i=1 i=1
Proof. For x € Pyy,, u(z) = 0 if and only if

n

div(z) > Z a;[m;].

i=1
But since div(z) is invariant under ¢ this is equivalent to

n

div(z) > zn: a; > [p"(my)] = div( I1 t;.“).

L= neE”Z i=1

According to theorem [3.8] this is equivalent to

n
T =1y. H ty
i=1

for some y € B (see example [3.10). But such an y satisfies automatically ¢(y) = 7"y.
By induction, the surjectivity of v reduces to the case n =1 and a; = 1. Let us note m = my.

We have to prove that the morphism B¥=" LLN Cy, is surjective. Note G the formal group
associated to the Lubin-Tate group law £7. We use the isomorphism

G(OF) = B¥=T
of theorem together with the isomorphism
X(9)(Oc,,) — G(OF)
of section One verifies the composite
X(9)(0¢,) — G(OF) — BF=" oy
is given by
(I(n))nzo — log7 ().
We conclude since Cy, is algebraically closed. O
We will use the following corollary.

Corollary 5.2. Suppose F is algebraically closed. Fort € Py \ {0} associated to m € |Y| there is
an isomorphism of graded E-algebras

P/tP — {fe€CulT]]| f(0) € E}
Zxd mod tP +—— Zem(xd)Td.

d>0 d>0
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5.2. The curve when F' is algebraically closed.

Theorem 5.3. Suppose F is algebraically closed. The scheme X = Proj(P) is an integral noether-
ian reqular scheme of dimension 1. Moreover:
(1) For t € Py \ {0}, DT (t) = Spec(P[+ l,) where P[%] = B[%]w:Id is a principal ideal
domain.
(2) Fort € P\ {0}, V*(t) = {oor} with ooy a closed point of X and if t is associated to
m € |Y| there is a canonical identification of D.V.R.’s

Ox .00 = Blgm-
(3) If | X| stands for the set of closed points of X, the application
(P\{0})/E* — |X]
E*t — ooy
18 a bijection.
(4) Let us note E(X) the field of rational functions on X, that is to say the stalk of Ox at
the generic point. Then, for all f € E(X)* one has
deg(div()) = 0
where for x € | X| we set deg(z) = 1.

Sketch of proof. As a consequence of corollary the ring B, := P[%]O is factorial with

irreducible elements the % where ¢ ¢ Et. To prove it is a P.I.D. it thus suffices to verify those

irreducible elements generate a maximal ideal. But for such a ¢’ ¢ Et, if ¢’ is associated to m’ € |Y|
since Oy (t) # 0, O induces a morphism B, — Cy,/. Using the fundamental exact sequence one
verifies it is surjective with kernel the principal ideal generated by ‘%

Now, if A = {f € Cw[T] | f(0) € E}, one verifies Proj(A) has only one element, the homoge-
neous prime ideal (0). Using corollary [5.2| one deduces that VT (t) ~ Proj(A) is one closed point
of X.

We have the following description

Ox 00, = {E € Frac(P) | « € Py, y € Py \ tP;_; for some d > 0}
()
with uniformizing element % for some ¢’ € Py \ Et. Now, if y € Py \tPy_1,y € (BdRm)>< since
according to the fundamental exact sequence 6y, (y) # 0. We thus have
OX700t - BIR,m'

Using the fundamental exact sequence one verifies this embedding of D.V.R.’s induces an isomor-
phism at the level of the residue fields. Moreover a uniformizing element of Ox o, is a uniformizing

element of BJR m- It thus induces OX o BdR m
Other assertions of the theorem are easily verified. O

The following proposition makes clear the difference between X and P! and will have important
consequences on the classification of vector bundles on X. It is deduced from corollary

Proposition 5.4. For a closed point co € | X| let B =T'(X \ {00}, Ox) C E(X), voo the valuation
on E(X) associated to co and

deg = —vggB, : Be — NU {—o0}.
Then the couple (Be,deg) is almost euclidean in the sense that
Va,y € Be, y #0, Ja,b € B, = =ay+b and deg(d) < deg(y).

Moreover (B, deg) is not euclidean.
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5.3. The curve in general. Note F an algebraic closure of F' and Gr = Gal(F|F). We put
subscripts to indicate the dependence on the field F' of the preceding constructions. The curve
X% of the preceding section is equipped with an action of Gp.

Theorem 5.5. The scheme Xp = Proj(Pr) is an integral noetherian regular scheme of dimension
1. It satisfies the following properties.

(1) The morphism of graded algebras Pp — P% induces a morphism
o X% — XF

satisfying:
o forx € |Xp|, a”l(x) is a finite set of closed points of |X}%|
o forx e \X%|
— if Gp.x is infinite then a(x) is the generic point of X,
— if Gp.x is finite then a(x) is a closed point of Xp.
e it induces a bijection

X2 [5G s X
where |X%|GF’ﬁn is the set of closed points with finite G g-orbit.
(2) For z € | Xp| set deg(z) = #a~1(z). Then for f € E(XFp)*
deg(div(f)) = 0.
(3) Form € |Yp| define
pn={ > @€ Pr|eacPr div(za) > Y [p"(m)]},
d>degm nez
a prime homogeneous ideal of P. Then
Yel/¢® = |XF|
@Z(m) > Pm
and there is an identification 6Xp,pm = B;dR’W

Sketch of proof. Let us give a few indications on the tools used in the proof.

Proposition 5.6. One has PSF = Pp.
F

Proof. The divisor of f € PS¥ being Gp-invariant, there exists a primitive degree d element
F

)

x € Wo, (Of) such that div(f) = >_,cz ¢"(div(z)) and for all o € GF, (o(z)) = (z). According
to proposition [2.18] one can choose # € Wo, (OF) and even x € 7@ + Wo,, (mp). The Weierstrass

product
o= I (5)

n>0

is convergent in Bp. Applying theorem (see example one finds there exists g € B%,[o,u
(see such that

f=1"(z).g
Of course, g is Gp-invariant and one concludes since

G
BﬁF[o 1] - BF’[O’l['
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Let now t € Pp1 \ {0} and look at

Bre = Br[{]”" =T(Xr\V*(1),0x,)
Id
B2 = Bz[[]7" =Tz \V*(1).0x.).

According to the preceding proposition

~ Gr
Bre = (B2 )%

We want to prove B, is a Dedekind ring such that the maps I — B% I and J — JNBpF, are
e
inverse bijections between non zero ideals of Br and non-zero G p-invariant ideals of B% . The
e
key tool is the following cohomological computation.
Theorem 5.7. For x : Gp — E™ a continuous character one has

Hl(GF,Bg e(X)) =0
HO(GF;B§76(X)) #0

where
1 . — 5 1 —dp
H'(Gr,Bz (0):= lim H'(Gp,t™P= (1))
d>0
and t~F P~ 4 1s naturally an E-Banach space.
Proof. We prove that for all d > 1, H' (G, PA ( )) =0. Let m € |Yp| be associated to ¢t. Note

w = BAm € |YA| the unique element such that B(m’) = m. For d > 1, using the fundamental

exact Sequence
6 !

Xt m
0— P% ., 1(X) BRALEN P%,d(X) —

Cn(x) — 0
of Gp-modules together with the vanishing
HY(Gr,Cw(x)) =0

(theorem [2.27)) one is reduced by induction to prove the case d = 1. Let LT be a Lubin-Tate
group law. We have an isomorphism

P~ ~ (m:, —|—).
F,1 F cT
For r € v(F™* )¢ set
m%T:{xem%|v(x)>r}.

)

It defines a decreasing filtration of the Banach space (m%, +) by sub Og-modules. Moreover
LT

(e, 20 1) = (mz e, 5):
It thus suffices to prove that for all r € Qy,
H (Gryme fms (1) =0
(discrete Galois cohomology). This is deduced from theorem which implies that all r €
v(EF*)s0 and i > 0,
Hi(GF,m% T(X)) =0.

To prove that HO(GF,B% (x)) # 0 it suffices to prove H°(GF, P§ 1(X)) # 0. One checks easily
that HY(Gr, F(x)) # 0 and thus for all r € v(F*)~g,

HO(GF,mA /m; 2T(X)) #0.
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Using the vanishing

H(@r,(m= )(0) =0

one deduces the morphism

H'(Gr, (m= . +)(0) — H'(Grymz Jme

(X))

is surjective and concludes. O

Let now f € Bp.. Since H' (GF,BQ ) = 0 one has

,€e

Bre/Bref = (B%’S/B%’ef)GF.

Let
™
f=uw]]r"

i=1

be the decomposition of f in prime factors where u € BX = E*. If f; is associated to m; € |Y%|
Fe
then
Bz /Bz [= HB+ /BX mé,

iy F.dRm; F.dRm;
Now, the finite subset A = {mz‘}lgigr C |Y%| is stable under G and defines a subset B= A/Gr C
|Y§|GF —fin — |YE| (see theorem . The multiplicity function m; — a; on A is invariant under

Gr and defines a function m — ay on B. Then, according to theorem 2.2

Gr + + a
(B%,E/B%,ef) = HA Br.arm/Brarmm"”
me

and the functors I + I¢F and J (BA / BA f)J induce inverse bijections between G p-invariant
ideals of BA /BA f and ideals of BFG/BFEf

A ring A is a Dedekmd ring if and only if for all f € A\ {0} the f-adic completion of A is
isomorphic to a finite product of complete D.V.R.’s. From the preceding one deduces that B,
is a Dedekind ring such that the applications I — I¢F and J + B~ J induce inverse bijections

between
e non zero ideals I of BA that are G p-invariant and satisfy IG7 # 0

e non zero ideals J of Bpe

But if I is a non zero ideal of B%@ that is Gp-invariant, I = (f), since B%,e = E* there exists
a continuous character
x:Grp — E*
such that for 0 € Gp, o(f) = x(o)f. According to theorem HO(GFaBﬁe(X)) # 0 and thus
IGF #£0. Theorem is easily deduced from those considerations. O

With the notations from the preceding proof, if J is a fractional ideal of B, there exists
f € Frac (B: ) well defined up to multiplication by BX = E* such that B~ J = B~ f. This
F.e F.e F.e F.e
ideal being stable under G, there exists a continuous character
J - GF — B*
such that for all 0 € Gp, o(f) = xs(0)f. The arguments used in the proof of theorem give
the following.

Theorem 5.8. The morphism J — xj induces an isomorphism
Cl(Bre) — Hom(Gp, E).



VECTOR BUNDLES ON CURVES AND p-ADIC HODGE THEORY 31

Let us remark the preceding theorem implies the following.

Theorem 5.9. If F'|F is a finite degree extension the morphism Pr — Pp/ induces a finite étale
cover Xpr — Xp of degree [F' : F|. If moreover F'|F is Galois then Xpr — Xp is Galois with
Galois group Gal(F'|F).

5.4. Change of the base field E. By definition, the graded algebra Pr depends on the choice
of the uniformizing element m of E. If the residue field of F' is algebraically closed, the choice of
another uniformizing element gives a graded algebra that is isomorphic to the preceding, but such
an isomorphism is not canonical. In any case, taking the Proj, the curve X does not depend
anymore on the choice of 7. We now put a second subscript in our notations to indicate the
dependence on F.

Proposition 5.10. If E'|E is a finite extension with residue field contained in F there is a canonical
isomorphism
XF,E’ AN XF,E RE £

When E' = Ej the degree h unramified extension of E with residue field Fjn = F ¢"=Id the
preceding isomorphism is described in the following way. One has Br g, = Bp g with o, = .
Thus, taking as a uniformizing element of Ej the uniformizing element 7 of E, one has

d

h _
Prm, =EPBIET
d>0
There is thus a morphism of graded algebras
Pr e — PrE, he
where the bullet “e” indicates the grading. It induces an isomorphism
Prge®5 En — Prpg, he
and thus
XF,E R By = PI‘Oj(PF,Eﬂ RE Eh) EASN Proj(PF,Eh,ho) = PI‘Oj(PF’Eh,.) = XFth,'

Suppose we have fixed algebraic closures F " and E. We thus have a tower of finite étale coverings
of Xr g with Galois group Gal(F|F) x Gal(E|E)

(XF/7E/)F’,E’ — XF‘,E

where F’ goes through the set of finite extensions of I in F and E’ the set of finite extensions of
E in E. We can prove the following.

Theorem 5.11. The tower of coverings (Xp: g')p g — Xp g 15 a universal covering and thus if
Z is a geometric point of Xp g then

1 (Xp g, %) ~ Ga(F|F) x Gal(E|E).
6. VECTOR BUNDLES
6.1. Generalities.
Definition 6.1. We note Bunx, the category of vector bundles on Xp.
Let oo be a closed point of | Xp], BjR = 6)(’00 and
Be = (X \ {oo}, Ox).
We note ¢ a uniformizing element of B}, and By = BJ;[1]. Let € be the category of couples

(M, W) where W is a free B},-module of finite type and M C W[1] is a sub B.-module of finite
type (that is automatically projective since torsion free) such that

M @B, Bar EARN W[%]
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If F is algebraically closed, the ring B, is a P.I.LD. and such an M is a free module. There is an
equivalence of categories
Buny, — %
E — (I‘(X \ {oo},cg’),éaoo).

In particular if F' is algebraically closed, isomorphism classes of rank n vector bundles are in
bijection with the set

GL, (B)\GLy (Bar) /GLa (Bfp).
If & corresponds to the pair (M, W) then Cech cohomology gives an isomorphism

0 +1
RU(X, &)~ [ MaW L W[ ]

where d(z,y) = x — y. In particular
HY(X,6) ~ MnW
HY(X,6) ~ WI[3]/W + M.
6.2. Line bundles.

6.2.1. Computation of the Picard group. One has the usual exact sequence
0— BX — B(X)* 2% Div(X) — Pic(X) — 0
D +— [Ox(D)]

where Ox (D) is the line bundle whose sections on the open subset U are
I'U,0x(D)) ={f € E(X) | div(f)jy + Djy > 0}.

Since the degree of a principal divisor is zero there is thus a degree function

deg : Pic(X) — Z.
Definition 6.2. For d € Z define

a line bundle on X.

One has
P;ifd>0
0ifd<0.

Ifd>0andte Py\{0}, VT(t) = D, a degree d Weil divisor on X, then
Xt : Ox(D) ;) Ox(d)

H(X,0x(d)) = {

In particular for all d € Z,
deg(Ox(d)) =d.
If F is algebraically closed, with the notations of section Bp. is a P.I.D. and since Bf,,e = E*
Pic(Xr) ~ EX\BJp/(Bip)* = BXa/(Bin)* —29= 7,
We thus obtain the following.
Proposition 6.3. If F is algebraically closed then
deg : Pic(Xp) = Z

with inverse d — [Ox (d)].
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Suppose now F' is general. There is thus an exact sequence of G p-modules
0— EX — B(X=)" % Div?(X2) — 0.
F F
But according to theorem
- 0 N0 . GFr
Div’(XF) = Div (Xf) .
Applying H*(Gp,—) to the preceding exact sequence one obtains a morphism
Div'(Xr) — HY(Gp, EX)=Hom(Gp, EX)
D +— XD-
Theorem [5.8] translates in the following way.

Theorem 6.4. The morphism D — xp induces an isomorphism
Pic®(Xp) = Hom(Gp, EX).

6.2.2. Cohomology of line bundles. Suppose F is algebraically closed. With the notations of section
the line bundle Oy (d[oc]) corresponds to the pair (Be,t ?B;). The fact that (Be,deg) is
almost euclidean is equivalent to saying that Byr = B;’R + B, that is to say H'(X,Ox) = 0.
From this one obtains the following proposition.

Proposition 6.5. If F is algebraically closed,

0ifd>0

HY (Xp,O0x,.(d) =
(Xr, Oxp(d)) {BjR/Fﬂ—dB;RJrEifdm.

Thus, like P!
H'(X,0x) =0.
But contrary to P*, H'(X,Ox(—1)) is non zero and even infinite dimensional isomorphic to C/E
where C' is the residue field at a closed point of X.
Example 6.6. Lett € Py = H°(X,0x(d)) be non zero. It defines an eract sequence
0— Ox =L Ox(d) — F — 0
where .F is a torsion coherent sheaf. If F is algebraically closed H*(X,Ox) = 0 and taking the
global sections of the preceding exact sequence gives back the fundamental exact sequence .
Remark 6.7. If F is not algebraically closed then H'(Xr,Ox,.) # 0 in general (see .

6.3. The classification theorem when F' is algebraically closed.

6.3.1. Definition of some vector bundles. Suppose Ff is algebraically closed and note for all A > 1,

Ej the unramified extension of E with residue field F,n = F ¢5=Id_ We thus have a pro-Galois
cover

(XF,Eh)h21 — XrE
with Galois group 7. We note X := Xr g, Xp = XFpEg, and 7, : X3, — X. If I is algebraically
closed the morphism 7, is totally decomposed at each point of X:
Vo € X, #n, ' (z) = h.
For & € Bunx one has
deg(m; &) = hdeg(&)
k(7 &) = rk(&).
For example, 7;Ox, (d) = Ox, (hd). If & € Buny, one has

deg(me) = deg(8)
tk(mp. &) = hrk(&).
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Definition 6.8. For A€ Q, \ = % with d € Z, h € N>1 and (d,h) =1 define
Ox(A) = . Ox, (d).
We have
m(Ox(A)) = A

d
where p = - is the Harder-Narasimhan slope. The following properties are satisfied

rk
Ox(A) ® Ox (u) P ox(r+w

R

finite
Ox(\)Y = Ox(=))
HY(X,0x(\)) = 0ifA<0
Hom(Ox (), Ox(p)) = @D H'(X,0x(u—X) =0if x> p.
finite

If F is algebraically closed then if A\ = % with (d,h) =1

HY(X,0x(\) = H' (X Ox,(d))
= 0ifA>0
and thus
Ext' (Ox(\),0x(n) = @B H'(X,0x(p—N)
_ vifa<n

6.3.2. Statement of the theorem. Here is the main theorem about vector bundles. It is an analogue
of Kedlaya ([21],[22]) or Hartl-Pink ([20]) classification theorems.

Theorem 6.9. Suppose F' is algebraically closed.

(1) The semi-stable vector bundles of slope A on X are the direct sums of Ox(\).
(2) The Harder-Narasimhan filtration of a vector bundle on X is split.
(8) There is a bijection

{)\122>\n|n6N, )\iEQ} AR BunX/N
— [@os]

In this theorem, point (3) is equivalent to points (1) and (2) together. Moreover, since for A >
one has Ext'(Ox(\), Ox () = 0, point (2) is a consequence of point (1).

Ay An)

Remark 6.10. In any category with Harder-Narasimhan filtrations ([1]), the category of semi-
stable objects of slope A is abelian with simple objects the stable objects of slope X\. The preceding
theorem tells more in our particular case: this category is semi-simple with one simple object
Ox(N). One computes easily that End(Ox(\)) = Dy the division algebra with invariant X over
E. From this one deduces that the functor & — Hom(Ox(\), &) induces an equivalence between
the abelian category of semi-simple vector bundles of slope A and the category of finite dimensional
DSPPvector spaces. An inverse is given by the functor V=V @p, Ox(N).

Example 6.11. The functors V = Vg Ox and & — H°(X, &) are inverse equivalences between
the category of finite dimensional E-vector spaces and the category of semi-stable vector bundles
of slope 0 on X.
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6.3.3. Proof of the classification theorem: a dévissage. We will now sketch a proof of theorem [6.9]
We mainly stick to the case of rank 2 vector bundles which is less technical but contains already
all the ideas of the classification theorem. Before beginning let us remark that F' algebraically
closed being fixed we won’t prove the classification theorem for the curve Xp with fixed E but
simultaneously for all curves Xg,, h > 1. As before we note X = Xg, X, = Xpg, and m, : X}, —
X. We will use the following dévissage.

Proposition 6.12. Let & be a vector bundle on X and h > 1 an integer.

(1) & is semi-stable of slope X if and only if w;:& is semi-stable of slope hA.
(2) &~ Ox(\)" for some integer r if and only if 7 & ~ Ox,, (RA)"" for some integer r'.

Proof. Since the morphism m, : X;, — X is Galois with Galois group Gal(E|E), 7} induces an
equivalence between Buny and Gal(Ej|E)-equivariant vector bundles on Xj. Moreover, if .7 is a
Gal(FE}y| E)-equivariant vector bundle on X}, then its Harder-Narasimhan filtration is Gal(Fy|E)-
invariant. This is a consequence of the uniqueness property of the Harder-Narasimhan filtration
and the fact that for G a non zero vector bundle on X} and 7 € Gal(Ep|E) one has u(7*G) = u(G).
From those considerations one deduces point (1). We skip point (2) that is, at the end, an easy
application of Hilbert 90. O

The following dévissage is an analogue of a dévissage contained in [20] (see prop. 9.1) and [22]
(see prop. 2.1.7) which is itself a generalization of Grothendieck’s method for classifying vector
bundles on P! ([18]).

Proposition 6.13. Theorem [6.9 is equivalent to the following statement: for any n > 1 and any
vector bundle & that is an extension

0— Ox(-1) — & — 0x(1) — 0
one has H°(X, &) # 0.

Proof. Let & be a vector bundle that is an extension as in the statement. If theorem[6.9]is true then
&~ @P,er Ox(N;) but since deg(&) = 0, for an index i € I, \; > 0. We thus have H(X, &) # 0
since for A > 0, H%(X,Ox(\)) # 0.
In the other direction, let & be a semi-stable vector bundle on X. Up to replacing X by X} and
& by m;& for h > 1, one can suppose (&) € Z (here we use proposition . Up to replacing
& by a twist & ® Ox(d) for some d € Z one can moreover suppose that
w(&) = 0.

Suppose now that rk & = 2 (the general case works the same but is more technical). Let & C &
be a sub line bundle of maximal degree (here sub line bundle means locally direct factor). Since
& is semi-stable of slope 0, deg.Z < 0. Writing .£ ~ Ox(—d) with d > 0, we see that & is an
extension

(5) 0— Ox(—d) — & — Ox(d) — 0.

If d = 0, since Ext!(Ox,0x) = H(X,0x) =0, & ~ 0% and we are finished. Suppose thus that
d > 1. Since —d 4 2 < d there exists a non-zero morphism

w: Ox(—d +2) 2% 0x(d).
Pulling back the exact sequence (5]) via u one obtains an exact sequence
0— Ox(—d) — & — Ox(—d+2) — 0

with a morphism &’ — & that is generically an isomorphism. Twisting this exact sequence by
Ox(d — 1) one obtains

0 — Ox(=1) — &'(d—1) — Ox(1) — 0.

By hypothesis,
H(X,&'(d—1)) #0
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and thus there exists a non-zero morphism Ox (1 — d) — &’. Composed with & — & this gives a
non-zero morphism Ox (1 —d) — &. This contradicts the maximality of deg.# (the schematical
closure of the image of Ox (1 — d) — & has degree > 1 — d). O

6.3.4. Modifications of vector bundles associated to p-divisible groups: Hodge-de-Rham periods.
We still suppose F' is algebraically closed. Let L|E be the completion of the maximal unramified

extension of F with residue field Fq = EF. We thus have
L=Wo,(F,)[3]
equipped with a Frobenius o that lifts x +— z%. Let
(p—MOdL

be the associated category of isocrystals, that is to say couples (D, ¢) where D is a finite dimen-
sional L-vector space and ¢ a o-linear automorphism of D. There is a functor

p-Mody, — DBunx
(D,¢) — &D,p):=M(D,p)
where M (D, ¢) is the P-graded module

M(D,¢) =@ (D@L By~
d>0

In fact one checks that
&(D, ) ~ P Oox(-1™
A€Q
where m is the multiplicity of the slope A in the Dieudonné-Manin decomposition of (D, ¢). One
has the following concrete description: if U C X is a non-empty open subset, U = D% (¢) with
t € Py for some d > 0, then
=Id

L(U,&(D, ) = (D@L B[3])" "
Remark 6.14. With respect to the motivation given in section for the introduction of the
curve, one sees that the vector bundle & (D, @) should be understood as being the vector bundle

on “X = Y/o?” associated to the @-equivariant vector bundle on “Y 7 whose global sections are
D ®r B.

Let oo € |X| be a closed point and C|E the associated residue field. Note B, = (/9\)(7DO with
uniformizing element ¢. One checks there is a canonical identification

E(D,¢)oe = D@LBp.
To any lattice A C D @, BJ,, there is associated an effective modification & (D, ¢, A) of &(D, ),
0— &D,p,A) — E(D, ) — oo (D ® Bl /A) — 0.
Such lattices A that satisfy t.D ® BIR CACD® BIR are in bijection with sub-C-vector spaces
FilDe C Do := D ®p, C.
Thus, to any sub vector space Fil Do C D¢ there is associated a “minuscule” modification
0 — &(D,p,FilD¢) — &(D,¢) — s (D /Fil De) — 0.

One has
HO(X, E(D,¢,FilD¢)) = Fil(D R B[%])@zld.

By definition, a 7-divisible Og-module over an Og-scheme (or formal scheme) S is a p-divisible
group H over S equipped with an action of Op such that the induced action on Lie H is the
canonical one deduced from the structural morphism S — Spec(Og).
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If H is a mw-divisible Og-module over E] one can define its covariant O-Dieudonné module

Do (H). This is a free O, = Wo,, (F,)-module of rank
ht(H)
[E: Q)

equipped with a o-linear morphism F and a o~ '-linear one V; satisfying FV, = 7 and V. F =
w. If D(H) is the covariant Dieudonné module of the underlying p-divisible group one has a
decomposition given by the action of the maximal unramified extension of Q, in F

DH)= € DH).

T:Fq%ﬁq

hto(H) =

If 79 is the canonical embedding then by definition
Do(H) =D(H) -

Moreover if F' : D(H) — D(H) is the usual Frobenius and ¢ = p” then F : Dp(H) — Do (H) is
given by (F")p(m),,- From now we note ¢ for F' acting on Do (Hp).

For H a m-divisible Og-module over O¢ there is associated a universal Og-vector extension
(see appendix B of [9])
0 — Vo(H) — Eo(H) — H — 0.

One has Vo (H) = wyv where H is the strict dual of H as defined by Faltings ([7]), the usual
Cartier dual when £ = Q,,. The Lie algebra of the preceding gives an exact sequence

0 — wyv — Lie Ep(H) — Lie H — 0.
Suppose now given a m-divisible Op-module Hy over F, and a quasi-isogeny
p: Ho®z Oc/pOc — H @0 Oc/pOc.

Thanks to the crystalline nature of the universal Og-vector extension p induces an isomorphism

D@(Ho) ®(’)L C *N—> LleE()(H) [%} .
Via this isomorphism we thus get a Hodge Filtration

wHv [%] ~ FﬂDo(Ho)C C Do(H)C.
There is then a period morphism

Va(H) — Do(Ho) ®o, B

inducing an isomorphism

Vp(H) == Fil (Do (Hp) ®p, B)¥~".
Here V. (H) = V,,(H) but we prefer to use the notation V(H) since most of what we say can be
adapted in equal characteristic when E = F,((m)), for example in the context of Drinfeld modules.
This period morphism is such that the induced morphism

Va(H)®p B — Do (Hy) ®0, B
is injective with cokernel killed by ¢t where here ¢ € B¥=™ is a non zero period of a Lubin-Tate
group attached to FE over O¢. It induces a morphism
Vo(H) @p Ox — &(Do(Ho)[5],7 ¢, FilDo(Ho)c).

Since ey

Ve(H)®pB. = (D ®p B[2])*
where B, = H°(X \ {oc}, Ox), the preceding morphism is an isomorphism outside co. Since both
vector bundles are of degree 0 this is an isomorphism. We thus obtain the following theorem.

Theorem 6.15. If H is a w-divisible Og-module over Oc, Hy a w-divisible Og-module over ?q
and p: Hy® Oc/pOc — H® Oc/pO¢ a quasi-isogeny then

& (Do(Ho) (2], 7 p,wnv [2]) ~ Va(H) @5 Ox.
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Let Hy be fixed over Fq and let M be its deformation space by quasi-isogenies as defined
by Rapoport and Zink ([27]), a Spf(Op)-formal scheme. We note M for its generic fiber as a
Berkovich analytic space over L. In fact, we won’t use the analytic space structure on M, but
only the C-points M(C) = M\(OC). Let 9% be the Grassmanian of subspaces of Do (H)[L] of
codimension dim Hy, seen as an L-analytic space. There is then a period morphism

it . M — FiR
associating to a deformation its associated Hodge filtration. This morphism is étale and its image
FaR.a the admissible locus, is thus open. To each point z € .Z4F(() is associated a filtration

Fil.Do(Ho)c and a vector bundle &(z) on X that is a modification of & (Do (Ho)[1], 7~ 1¢). Now
the preceding theorem says the following.

Theorem 6.16. If z € Fia(C) then &(z) is a trivial vector bundle.

Remark 6.17. In fact a theorem of Faltings (I8]), translated in the language of vector bundle on
our curve, says that a point z € FIE(C) is in the admissible locus if and only if dimg H°(X, &(z)) =
k(& (2)). Using the classification theorem[6.9 this amounts to saying that &(z) is trivial or equiv-
alently semi-stable of slope 0. Thus, once theorem is proved, we have a characterization of
FiRa in terms of semi-stability as this is the case for the weakly admissible locus Fiwae ([27)
chap.1, [5]) (in the preceding, if we allow ourselves to vary the curve X, we can make a variation
of the complete algebraically closed field C|E ).

We will use the following theorem that gives us the image of the period morphism for Lubin-Tate
spaces.

Theorem 6.18 (Laffaille [24], Gross-Hopkins [I7]). Let Hy be a one dimensional formal w-divisible
Op-module of Og-height n and FR = P"~1 the associated Grassmanian. Then one has

FdR _ pdRa

Remark 6.19. The preceding theorem says that for Lubin- Tate spaces, the weakly admissible locus
coincides with the admissible one (one has always Fi%e C FiRwa )  We will need this theorem

for all points of the period domain P"~', not only classical ones associated to finite extensions of
L.

Translated in terms of vector bundles on the curve the preceding theorem gives the following.
Theorem 6.20. Let
0—&—0x(2) —F —0

be a degree one modification of Ox (%), that is to say .F is a torsion coherent sheaf on X of length
1 (i.e. of the form iy k(z) for some x € | X|). Then & is a trivial vector bundle, & ~ O%.

Remark 6.21. We will use theorem[6.20 to prove the classification theorem[6.9 Reciprocally, it
is not difficult to see that the classification theorem[6.9 implies theorem[6.20, In fact, suppose
& =~ DierOx (i)
is a degree one modification of (’)X(%). Write A\; = % with (d;, hi) = 1. Since rk (&) = n one has
h; <n. But
Hom(Ox (), Ox (1)) #0

implies \; < % Thus, fori € I, either \; <0 or \; = % Using deg & = 0 one concludes that for
all i, A; = 0.

6.3.5. Modifications of vector bundles associated to p-divisible groups: Hodge-Tate periods. Let

V be a finite dimensional E-vector space and W a finite dimensional C' = k(co)-vector space.
Consider extensions of coherent sheaves on X

0 —VREOx — JH — icoxW — 0.

Those extensions are rigid since Hom(ioo. W,V @ Ox) = 0. Counsider the category of triples
(V,W,€) where V and W are vector spaces and £ is an extension as before. Morphisms in this
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category are linear morphisms of vector spaces inducing morphisms of extensions. Fix a Lubin-
Tate group over O and let E{1} be its rational Tate module over O¢, a one dimensional E-vector
space. One has
E{1} Cc B*=™ = H°(X, Ox(1)).
There is a canonical extension
0— Ox{1} — Ox(1) — i0sC — 0.
where Ox {1} = Ox ®g E{1}. If V and W are as before and
u: W — V{-1}®g C = Vo{-1}
is C-linear there is an induced extension

0——=VRrOx ——=(V,W,u) Toox W 0

o

0—=VRp0Ox —=V{-1} ®p Ox(1) — i0o:Ve{-1} ——=0

where the upper extension is obtained by pullback from the lower one via i,..u and we used the
formula V{—1} ®F 100xC = i0ox Vo {—1}. Tt is easily seen that this induces a category equivalence
between triplets (V, W, u) and the preceding category of extensions:

Home (W, Ve{—=1}) == Ext! (ice. W,V @5 Ox)

canonically in W and V. The coherent sheaf 52 (V, W, u) is a vector bundle if and only if u is
injective. In this case, V ®g Ox is a “minuscule” modification of the vector bundle S (V, W, u).

There is another period morphism associated to p-divisible groups: Hodge Tate periods. Let
H be a w-divisible Og-module over O¢. There is then a Hodge-Tate morphism, an FE-linear

morphism

(67280 Vﬂ-(H) — WHV [l]

It is defined in the following way. An element of T,(H) can be interpreted as a morphism of
m-divisible Og-modules
Using the duality of [7] it gives a morphism

Y HY — LTo.-

where L7 is a fixed Lubin-Tate group over Og. Then, having fixed a generator o of w7, one has

an(f) = (")
Consider
B = "(agv®1): LieH[X] — Vi(H)c{-1}
where
apgv ®@1:Ve(H)*{1} ®p C — wy 1]
using the formula
VW(H)*{l} = VW(HV)
and By is the transpose of agv ® 1. All of this fits into an Hodge-Tate exact sequence of C-vector
spaces ([II] chap.5 for E = Q,)

0 — Lie H[1]{1} 22 v (1) 0 € 225 wppv [1] —s 0.

s
Suppose now (Hy, p) is as in the preceding section.
Theorem 6.22. One has a canonical isomorphism

A (Ve(H), LieH L], Bn) ~ &(Do(Ho) [£], 77 ).

1
™
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Sketch of proof. To prove the preceding theorem is suffices to construct a morphism f giving a
commutative diagram

OHVW(H) Rr Ox Hg(DO(HO)[ ],ﬂ'_lg{)) 4>ioo*LieH[ ] ——0

1 1
™ ™

: [ oo

0——=V,(H)®p Ox —>V,(H){-1} ®p Ox (1) — > icos Vo (H)c{—1} —0.
By duality and shifting, to give f is the same as to give its transpose twisted by Ox (1)
FY) Ve (HY) ©5 Ox — (Do (Ho)[1],779) (1) = & (Do (Hy ), 7).
One checks that taking fV(1) equal to the period morphism for H"
Vi(HY) — Do(Hy) ®0, B

makes the preceding diagram commutative. O

Let’s come back to Rapoport-Zink spaces. Let M be as in the preceding section. Let n = htp Hy
and for K C GL,(Og) an open subgroup let Mg — M be the étale finite covering given by level
K-structure on the universal deformation. Set

Mo = lim Mg “
—
K

There are different ways to give a meaning to this as a generalized rigid anaytic space (see [9] for
the case of Lubin-Tate and Drinfeld spaces) but we don’t need it for our purpose. The only thing
we need is the points

Moo (C) = {(H, p,n}/ ~
where (H, p) € M(C) = M\(OC) is as before and
n:Of — Tr(H).

Let FHT be the Grassmanian of subspaces of E” of dimension dim Hj as an analytic space over
L. The Hodge-Tate map induces a morphism, at least at the level of the C-points,
T My — FHT
(H,p,n) > (LieH[L]{1} <= CO™)
where
Bu{1}
SRy

1
u: Lie H[L] Ve(H)o 2205 om,

To each point z € FHT(C) there is associated a vector bundle #(z) on X. The preceding thus
gives the following.

Theorem 6.23. If z € FHT s in the image of the Hodge-Tate map 78T : M, (C) — FHT(C)
then A (z) ~ &(Do(Ho)[£], 7 1y).
Consider now the case when dim Hy = 1, the dual Lubin-Tate case. Then, FZT = P"~1 as an
analytic space over L. It is stratified in the following way. For ¢ € {0,--- ,n — 1} let
(P YD = {x e P*7! | dimp E" N Filk(z)" =i}.

This is a locally closed subset of the Berkovich space P"~1 (but it has no analytic structure for
i > 0). The open stratum

(Pnfl)(o) —qr1

is Drinfeld space. For each i > 0, (P"~1)( is fibered over the Grassmanian Gr’ of i-dimensional
subspaces of E™ (seen as a naive analytic space)

EH" — Grf
x +— E"NFilk(z)".
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with fibers Drinfeld spaces Q"~1~%. The r-divisible O-modules H, over E] of O-height n and
dimension n — 1 are classified by the height of their étale part

hto (HS') € {0, ,n — 1}.
Let Héi) over Fq be such that hto (HS') = i. Let M@ be the corresponding Rapoport-Zink space

of deformations by quasi-isogenies of H(()i) and M((,Zo) the space “with infinite level”. When i = 0,
this is essentially the Rapoport-Zink space associated to Lubin-Tate space (the only difference is
that the Hecke action is twisted by the automorphism g — tg~! of GL,(E)) and for i > 0 this
can be easily linked to a lower dimensional Lubin-Tate space of deformations of the dual of the
connected component of Hél). One then has

oHT . Mffo) — (P"‘l)(i).
Theorem 6.24. For alli € {0,--- ,n — 1}, the Hodge-Tate period map

T MY — prhH®
s surjective, that is to say

aHT . H MY — prt
1=0,--- ,n—1

s surjective.

The statement of this theorem is at the level of the points of the associated Berkovich topological
spaces. It says that the associated maps are surjective at the level of the points with values in
complete algebraically closed extensions of E. The proof of the preceding is easily reduced to the
case when Hj is formal, that is to say the Lubin-Tate case. One thus has to prove that

T MO — Q

is surjective: up to varying the complete algebraically closed field C|E, any point in the Drinfeld
space Q(C) is the Hodge-Tate period of the dual of a Lubin-Tate group over O¢. The proof relies on
elementary manipulations between Lubin-Tate and Drinfeld spaces and the following computation
of the admissible locus for Drinfeld moduli spaces (see chapter II of [J] for more details).

Theorem 6.25 (Drinfeld [6]). Let D be a division algebra central over E with invariant 1/n.
Let M be the analytic Rapoport-Zink space of deformations by quasi-isogenies of special formal
Op-modules of Op-height n?. Then, the image of

it M — Pl
is Drinfeld’s space Q.
Remark 6.26. Of course, Drinfeld’s theorem is more precise giving an explicit description of the
formal scheme M and proving that if MU is the open/closed subset where the Og-height of the
universal quasi-isogeny is ni then for any i € Z

i M 25 Q.
In fact, to apply Drinfeld’s result one need to compare its period morphism defined in terms of

Cartier theory and the morphism w@ defined in crystalline terms. This is done in [27] 5.19.
Finally, one will notice that in [24] Laffaille gives another proof of theorem ,

As a consequence of theorems and we obtain the following result that is the one we
will use to prove theorem

Theorem 6.27. Let & be a vector bundle on X having a degree one modification that is a trivial
vector bundle of rank n,

0— 0% — & — igk(z) — 0
for some x € |X|. Then, there exists an integer i € {0,--- ,n — 1} such that

&~ 0% & 0x (7).

n—u

Remark 6.28. As in remark [6.21], one checks that the classification theorem implies theorem

[6-27
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6.3.6. End of the proof of the classification theorem. We will now use theorems and to
prove the classification theorem For this we use the dévissage given by proposition We
treat the case of rank 2 vector bundles, the general case being analogous but longer and more
technical. According to proposition we have to prove that if & is a rank 2 vector bundle that
is an extension

(6) 0—0x(-1) — & — Ox(1) —0
then H(X, &) # 0. Let us choose t € HY(X,0x(2)) \ {0}. It furnishes a degree 2 modification

0— Ox(-1) =5 0x(1) — .F — 0
where .7 is a torsion coherent sheaf of length 2. We can push forward the exact sequence @
0
(

0—=0x(-1)——= & ——0x(1) —=0

Since Ext!(Ox(1),0x (1)) = 0 one has &' ~ Ox (1) ® Ox(1). We thus obtain a degree 2 modifi-
cation
0—&—0x(1H)e0Ox(1) — F — 0.

Consider a dévissage of %

0 — iysk(y) — F — iguk(z) — 0
for some closed points z,y € | X|. Consider the composite surjection

Ox(1)®O0x(1) — F — izk(x),
write it
(a,b) = u(a) + v(b)

for two morphisms u,v € Hom(Ox (1), i..k(x)) and let & C Ox (1) & Ox (1) be the kernel of this
morphism. One has (u,v) # (0,0). Moreover, if w =0 or v = 0 then

&~ Ox & Ox(l).
Suppose now that u # 0 and v # 0. Then, u)s is surjective giving rise to an exact sequence

0 — keru @ kerv — & —< izsk(x) — 0.
—_——
~Ox®O0x

Applying theorem we deduce that either &' ~ Ox & Ox(1) or & ~ Ox (%) There is now a
degree 1 modification
0— & — & —iyk(y) — 0.

If & ~ Ox @ Ox (1) the surjection & — iy.k(y) is given by
(a,b) — u(a) + v(b)
for some u € Hom(Ox, iy k(y)) and v € Hom(Ox (1), iy«k(y)). One has
0@kervC&
but if v # 0, kerv ~ Ox, and if v = 0 then kerv = Ox(1). In both cases
HO(X,0 @ kerv) # 0= H°(X,&) #0.



VECTOR BUNDLES ON CURVES AND p-ADIC HODGE THEORY 43

Suppose now &’ ~ Ox (%) We can then apply theorem to conclude that & ~ Ox & Ox and
thus H°(X, &) # 0. O

6.4. Galois descent of vector bundles. Now F is not necessarily algebraically closed. Let F
be an algebraic closure of F'. There is an action of Gg on X%. Define

GFr
BunXC
F

to be the category of GG p-equivariant vector bundles on X% together with a continuity condition

on the action of Gp (we don’t enter into the details).
Theorem 6.29. If «: X% — X, the functor
a* : Bunyx, — Bunxg
is an equivalence.
For rank 1 vector bundles this theorem is nothing else than theorem [6.4]

Example 6.30. Let Repr(Gr) be the category of continuous representations of Gg in finite
dimensional E-vector spaces. The functor

Repp(Gr) — Bungi

F
V +— V®g0Ox.
F

induces an equivalence between Repr(Gr) and the subcategory of Bungg formed by equivariant
vector bundles whose underlying vector bundle is trivial. An inverse is gii)en by the global section
functor H*(X=, —). Thus, via theorem the category Repr(Gr) embeds in Bunx,. According
to theorem (0.9 this coincides with G g-equivariant vector bundles semi-stable of slope 0.

Remark 6.31. With the notations of the preceding example if & € Bunx, corresponds to V @g
Ox. that is to say o ~V ®p (9% then
F
1 1
H (Xp,8) =~ ExtFib)G(/i (O%, V ®g Of)
F
~ H'Y(Gp,V)

since HI(X%, O%) = 0. In particular, H*(Xr,Ox,) ~ Hom(G g, E) which is non zero in general
when F is not algebraically closed.

Skectch of proof of theorem[6.29 To prove the preceding theorem we use the following funda-
mental property of Harder-Narasimhan filtrations that is a consequence of their canonicity (see

the proof of prop. for example).

Proposition 6.32. Let I' C Aut(X) be a subgroup and & be a I'-equivariant vector bundle on X.
Then the Harder-Narasimhan filtration of & is I'-invariant, that is to say is a filtration in the
category of I'-equivariant vector bundles.

Let us fix t € BL " \ {0} and note {o0} = V*T(t), 00 € | Xp|

Br.e = Bp[2]#~14 = T(Xp \ {00}, Ox,), Bian = Oxroo.
. — Baflle=Id _ . + -0
Bf@ Bf[t] F(XF \{OO},OX%), BF iR OX%,OO'

)

The category Bung';/i is equivalent to the following category of B-pairs ([3]) (M, W, u) where:
e M € Repg ; (Gr) is a semi-linear continuous representation of G in a free Bl%ye—modulc,
e M € Rep];;e (Gr) is a semi-linear continuous representation of Gp in a free B% e
module, o 7



44 LAURENT FARGUES AND JEAN-MARC FONTAINE

M ®g. B2 = 1.
° U ®Bf,e % 4R W[t]
According to theorem , to prove theorem it suffices to prove that if Modg;i is the
category of projective B .-modules of finite type then
7(8)]31,,e : ModgFOZ AN RepB: (GF)

F e

Here in the definition of a B% -representation M we impose that the Gp-action on M ® B§ iR
7e 9

stabilizes a BX  -lattice (the continuity condition does not imply this) that is to say M comes from
F.dR
an equivariant vector bundle. Full faithfullness of the preceding functor is an easy consequence of

the equality
Br. = (B2 ).

We now treat the essential surjectivity. An easy Galois descent argument tells us we can replace
the field F that was fixed by a finite extension of it (for this we may have to replace F by a finite
extension of it so that the residue field of the finite extension of E is contained in F' but this is
harmless by Hilbert 90). Let M be a B% -representation of Gp. Choose an equivariant vector

e
bundle & on X% such that

M =T(X2\ {0}, ).
Applying the classification theorem and proposition we see & is a successive extension of
equivariant vector bundles whose underlying bundle is isomorphic to Ox..(A)"™ for some A € Q

F
and n € N. Up to making a finite extension of F one can suppose moreover that all such slopes A
are integers, A € Z. Now, if A\ € Z, an equivariant vector bundle whose underlying vector bundle
is of the form Ox..(\)™ is isomorphic to
F

V ®E OXQ(/\)

for a continuous representation V of G in a finite dimensional E-vector space (Ox.(n) =
F

a*Ox,(N) has a canonical Gp-equivariant structure). Let us remark that Ox, (\) become trivial
on Xp \ {oo}. From this one deduces that M has a filtration whose graded pieces are of the form
B~

V®g S

;€

for some finite dimensional E-representation of Gr. We now use the following result that gener-
alizes theorem Its proof is identical to the proof of theorem

Theorem 6.33. For V a continuous finite dimensional E-representation of Gg one has
1 _
H (GF, V ®g Bf,e) =0
0
H (GF, V ®g Bf,e) #0

The vanishing assertion in the preceding theorem tells us that in fact M is a direct sum of
representations of the form V ®pg B% . We can thus suppose M =V ®g B~ . We now proceed

by induction on the rank of M. Choose = € MEF \ {0} and let N C M be the saturation of the

submodule BI% .x that is to say
e

N/B;I;,e'x = (M/B%’e.f)tm«.

According to theorem2.28|the By .-module (N/Bg .x)F is of finite length and generates N/Bg Z.
€ ,e

Using the vanishing H'(GF, B% ) = 0 one deduces that N7 is a torsion free finite type By .-
e

module satisfying
NGF XBr, B~ =N.
" Fle
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Now, by induction we know that (M/N)%F is a finite rank projective By -module such that
(M/N)®" ®g,., B= = M/N.

Since Hl(GF,B% ) = 0 one has H'(Gp, N) = 0. From this one deduces that MYF is a finite
e
rank projective module satisfying
MY @p,. B~ =M.
T Fle
O
Here is an interesting corollary of theorem [6.29
Corollary 6.34. Any G p-equivariant vector bundle on X% is a successive extension of Gp-
equivariant line bundles.
Example 6.35. Let V' be a finite dimensional E-representation of Gg. Then, even if V is
irreducible, V @ g Ox.. is a successive extension of line bundles of the form x @ g Ox~(d) where
F F
xX:Gp— EX and d € Z.

7. VECTOR BUNDLES AND (-MODULES

7.1. The Robba ring and the bounded Robba ring. We define a new ring
#p = lim By )
p—0
where Byg ) is the completion of BY with respect to (|.|,")o<,<p. Since
¢ : Bjo,p) — Bjo,pa]
the ring Zr is equipped with a bijective Frobenius ¢. In equal characteristic, when E = Fy((7)),

Zr = Op- o the germs of holomorphic functions at 0 on D*.

Theorem 7.1 (Kedlaya [21] theo.2.9.6). For all p €]0,1], the ring Byo ) is Bezout. Any closed
ideal of Byg,p) is principal.
Proof. As in the proof of theorem using theorem the set of closed ideals of By, is in
bijection with Div*(Y}g ;) where |Yjo | = {m € [Y] | 0 < ||m|| < p}. If F is algebraically closed,
one can then write any D € Div (Yo ) as
D= [m]
>0

with m; = (7 — [a]) € |Yjo,)| and lim [Jm;|| = 0. The Weierstrass product
i—>+00

I1(1- )
_ T
>0
is convergent in Bjg , and thus the divisor D is principal. For a general F' this result remains

true since one can prove that H' (GF7Bé ) = 0 (this uses prop|7.10). This proves that any
F,]0,p]
closed ideal of Bjg ;) is principal. It now remains to prove that for f,g € Bjg ,) non zero satisfying

supp(div(f)) Nsupp(div(g)) = 0 the ideal generated by f and g is Byy ;). This is a consequence of
the following more general fact:

B}Op]/(f) ; H B:}_R,m/Fﬂordm(f)B;R,m'

me|Y|
lmil<p

In fact, for 0 < p’ < p one has

B[p/,p]/(f) — H B;R,m/Fﬂordm(f)BjR,m'
me|Y|
P <llm||<p
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The preceding isomorphism inserts into a projective system of exact sequences

Xf :10rdm
0 — Biy ) —2 By ] — H B o /Fil° d (f)Bij — 0.

me|Y|
p'<lIm<p

when p’ varies. Then, using remark 0.13.2.4 of [I9] we have a Mittag Leffler type property and we
can take the projective limit to obtain the result. O
Corollary 7.2. The ring Zr is Bezout.

Define now for p €0, 1]

B]bo)p] ={f€B, | IN€Z, sup |7"f|, <+oo}.
0<p’<p

One can define the Newton polygon of an element of Bjg ;. This is defined only on an interval
of R and has slopes in bewteen —log, p and +oc. The part with slopes in | —log, p, +-0oc] is the
Legendre transform of the function 7 — v,.(x) as in definition As in the proof of theorem
the definition of the —log, p slope part is a little bit more tricky. Anyway, using those Newton
polygons, we have the following proposition that is of the same type as proposition [1.14

Proposition 7.3. Any element of B]b0 ol is “meromorphic at 07, that is to say

Bly={ X " € Wo ()] | lim_lealo" =0},
n>>—oo

Define now
: b
gf]‘: = hi>n Blo -
p—0
One has é"; C & = Wo,(F) [%] (see the beginning of section [1.2.1). The valuation v, on &F

induces a valuation v, on éﬂl In equal characteristic we have v, = ordy. One then verifies easily
the following.

Proposition 7.4. The ring é”} is a Henselian valued field with completion the value field & .

7.2. Link with the “classical Robba rings”. Choose € € mp \ {0} and consider 7. := [¢]g €
Wo,(OF) as in section Fix a perfect subfield k¥ C Op containing F,. Define the closed
subfield

F.=k((e)) C F.

The ring
Osr, = Wog(k)[u][}]
= {Zanu" | an € Wo,(k), ngrzlooan = O}
neZ

is a Cohen ring for F, that is to say a m-adic valuation ring with
Og’Fe /77'05Fe = FE.

Its fraction field is &7, = Og,, [%] This complete valued field has a henselian approximation, the
henselian valued field é‘}:ﬂ with ring of integers

Oy = {Z ant" | an € Woy (k), 3p €0,1] lim_|a,|o" = o}.

nez

Consider now the Robba ring
Ar, = lim O(Dy1)
<
where O (I, 1() is the ring of rigid analytic functions of the variable u on the annulus {p < |u| < 1}.
One then has
Er, =Pk,
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the sub ring of analytic functions on some Dy, ;[ that are bounded. Via this rigid analytic descrip-
tion of éa),:g, the valuation v, on it is such that for f € & } seen as an element of Zp,

—vr(f)

q :;L}ml|f|p:|f‘1

where |.|, is the Gauss supremum norm on the annulus {|u| = p}. We equip those rings with the
Frobenius ¢ given by

p(u) = Q(u).

Proposition 7.5. The correspondence u — 7. induces embeddings compatible with the Frobenius
and the valuations

Er. C &F
U U
s, c 4
N N
Rr C Rr.

€

Proof. The injection Og, C Og, is the natural injection between Cohen rings induced by the
extension F|F.. Since 7, = <,0(H_(u€))7 the Newton polygon of 7. is +00 on | — 00, 0[, takes the
value v(e) at 0 and has slopes (q%)n>0 with multiplicities 1 on [0, +oo[ where

q—1
A= v(e).
. (e)

In particular, for p > 0 satisfying p < \e|# one has
[melp = lel-
Thus, if a € Wo,, (k)g and n € Z then for p = ¢~" € 0, |e|q—%] one has
|ame], = |af"|¢[".
Thus, if f(u) =Y, ez anu™ € Zp, then for p=q~" € |0, |e|q%1]
jan?|p < (lan]-(le/7)")"

where one has to be careful that on the left hand side of this expression |.|, stands for the Gauss
norm on B? with respect to the “formal variable 7 and the right hand side the Gauss norm |.|‘5‘1/r
is taken with respect to the formal variable u. From this one deduces that if f is holomorphic

on the annulus {|u| = |¢|'/"} then the series f(m) := 3,z anm! converges in B,. Since the
condition p — 0 is equivalent to |¢|'/” — 1 one deduces a morphism
'@Fg — «@F
fo— f(m)

—r

sufficiently small,
Py < 11

A look at Newton polygons of elements of Zp. tells us that that if f € oﬁ’;ﬁ then for r > 0
sufficiently small, there exists «, 8 € R such that

or(f) = ar + 5.

such that for all p = ¢

This implies that for » > 0
|f|‘7'6|1/7, < AB"

for some constants A,B € R,. From this one deduces easily that f(7¢) € 5}1; O

7.3. Harder-Narasimhan filtration of p-modules over &7.
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7.3.1. An analytic Dieudonné-Manin theorem. Let ¢-Modz+ be the category of finite dimensional
F

é"}—vector spaces equipped with a semi-linear automorphism. For (D, ¢) € ¢-Mod 4+ set
F

deg(D, @) = —vx(det p)

which is well defined independently of the choice of a base of D since v, is y-invariant. Since the

category p-Mod .+ is abelian, there are Harder-Narasimhan filtrations in ¢-Mod .+ for the slope
F F

function p = %. Let us remark that we also have such filtrations for the opposite slope function

—p that is to say up to replacing ¢ by ¢~ 1.

In the next theorem, if we replace é"}; by &r = (50;, = Wo,(F)[£] we obtain the Dieudonné-
Manin classification theorem. This theorem tells us that this classification extends to the Henselian
case of éiﬂ that is to say the scalar extension induces an equivalence

@—Modéa; % p-Modg,..

If F is algebraically closed, for each A € Q we note & }()\) the standard isoclinic isocrystal with
Dieudonné-Manin slope A. One has u(éa}(/\)) = -\

Theorem 7.6.

(1) A p-module (D, p) € SD'MOdé”} is semi-stable of slope —\ = % if and only if there is a

O i -lattice A C M such that o™ (A) = 7A.
F

(2) If F is algebraically closed then semi-stable objects of slope A in ap-Modg; are the ones
isomorphic to a finite direct sum of 5}(—)\).

(8) The category of semi-stable p-modules of slope 0 is equivalent to the category of E-local
systems on Spec(F)g. In concrete terms, after the choice of an algebraic closure F of F

@—Mod;jt’o —  Repp(GF)
=Id
(D,¢) — (Deg )7

(4) The Harder-Narasimhan filtrations of (D, ) (associated to the slope function p) and
(D, 1) (associated to the slope function —u) are opposite filtrations that define a canon-
ical splitting of the Harder-Narasimhan filtration. There is a decomposition

1L
S8,
w—Modéa; = @Sﬁ_MOdé“}
AEQ
that is orthogonal in the sense that if A, resp. B, is semi-stable of slope \, resp. pu,
with X # p then Hom(A,B) = 0. If F is algebraically closed the category ¢-Modi is
°F

semi-simple.

The main point we wanted to stress in this section is point (4) of the preceding theorem. In
fact, if one replaces é”} by Zr we will see in the following section that ¢-modules of Zr have
Harder-Narasimhan filtrations for the slope function u. But, although ¢ is bijective on Zf, there
are no Harder-Narasimhan filtrations for the opposite slope function —u that is to say for ¢~ !-
modules (we have to use prop. . In as sens, this is why there is no canonical splitting of the

Harder-Narasimhan filtration for ¢-modules over Zp.

Sketch of proof of theorem [7.6, The non-algebraically closed case is deduced from the alge-
braically closed one thanks to the following Galois descent result (see [4] I11.3.1 that applies for
any F' thanks to the vanishing result [2.16)).

Proposition 7.7 (Cherbonnier-Colmez). The scalar extension functor is an equivalence between

finite dimensional 5}—1}601507’ spaces and finite dimensional éi vector spaces equipped with a con-
F

tinuous semi-linear action of Gal(F|F).
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We now suppose F is algebraically closed. We note 1) = ¢~ ! that is more suited than ¢ for what
we want to do. One then checks the proof of the theorem is reduced to the following statements:

(1) If a € Z and b € N1, for any (D, ) € @—Modg; admitting an Og,;—lattice A such that
YP(A) = @A one has DV'=r" = (D® éap)¢b:”a.
(2) Ifa € Z and b € Nxy, Id — 7%t : &5 — &) is surjective.
In fact, the first point implies that any (D, ) has a decreasing filtration (Fil*D)yeq satisfying

Gr'D ~ é"}(—)\). The second point shows that for p1 < X one has Extl(é"}()\),é”}(u)) =0 and
thus the preceding filtration is split.

For point (1), up to replacing ¢ by a power, that is to say E by a finite unramified extension,
and twisting we can suppose a = 0 and b = 1. For p €]0,1] let

Ap = {I S B]bo,p] ‘ Vpl E]O,p}, |x‘p/ < 1}
= { Y lmaln" € B N O | V0, aal” <1},
n>0

Then A, is stable under %,
11 _ pb
Ap [?] - B]o,p]
and
hgl Ap:{:ceog,; |  mod m € Op}.
p—0
Now, A/mA is an F-vector space equipped with a Frobgl—linear endomorphism 1 the reduction

of ¥. One can find a basis of this vector space in which the matrix of ¢ has coefficients in
Op. Lifting such a basis we obtain a basis of A in which the matrix of v has coefficients in
lir%Ap. Let C € Mp(A,), p sufficiently small, be the matrix of ¢ in such a basis. For £ > 0 and
p—
r =3 solzi]m € O, set

|2|k,p = sup |z;]p".

0<i<k

One has for z,y € Og,

|xy|k,p < |x|k,p|y|k,p'
Now for x = (z1,...,2,) € (’)’é’aF set

[#]lk,p = sup |a;lk,p-
1<j<h

Ifze OZaF satisfies
Cip(x) = x
by iterating, we obtain for all n
Cp(C) - " HO)p" (2) = .

But since C has coefficients in A, for all i > 0, ¥*(C) has coefficients in 4, and one deduces that
for all k,n >0

2llk,0 < 19" (@) Ikp-
But for y € Og,.,

lim [¢"(y)k, < 1.

n—+oo
From this one deduces that for all &, |||z, < 1 and thus z € (B]bO p/])h as soon as p' < p. This
proves point (1).

v

For point (2), B]b0 g is complete with respect to (|.|)o<, <, where |.|o = ¢~"~. Moreover one

checks that the operator w24’ is topologically nilpotent with respect to those norms and thus
Id — " is bijective on B]b0 o O
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7.3.2. The non-perfect case: Kedlaya’s flat descent. Let € € mp non zero and F, = k((€)) as in
section The Frobenius ¢ of é”} is not bijective like in the preceding sub-section. Let ¢-Mod 4+
€ “Fe

be the category of couples (D, ) where D is a finite dimensional g}‘—vector space and ¢ a semi-

linear automorphism, that is to say the linearization of ¢ is an isomorphism ® : D(¥) = D. We
define in the same way ¢-Modg,, . As before, setting deg(D,¢) = —v.(det ), there is a degree
function on those abelian categories of p-modules.

Theorem 7.8 (Kedlaya [22]). A @-module (D, ) over é"}e, resp. &r., is semi-stable of slope —\ =
% if and only if there exists an O i -lattice, resp. Og, -lattice, A C D satisfying P (A) = miA.
Fe €

Outline of the proof. Let us recall how this theorem is deduced from Dieudonné-Manin by
Kedlaya using a faithfully flat descent technique. We treat the case of p-Mod &l the other case

being identical. We can suppose F' is algebraically closed. We consider the scalar extension functor
_ ®g’}€ Er @—Modg;e — p-Modg,.
Via this scalar extension, the Harder-Narasimhan slope functions correspond:
WD &g Erp@p) =D, ).

The first step is to prove that (D, ) € - Modgf is semi-stable of slope A if and only its scalar
extension to &F is semi-stable of slope A. One dlrectlon is clear: if (D ®ﬁ E&r, p®) is semi-stable

of slope A then (D, ¢) is semi-stable of slope A. In the other direction, let us consider the diagram
of rings equipped with Frobenius
i1
8, —=6r L6 ® 6p
i2

Fe

where the Frobenius on & ® &F is ¢ @, i1(z) = 2®1 and i2(x) = 1®2z. This induces a diagram
&t

Fe
of categories of p-modules
i1*
p- MOdgT — - ModgF ¥ Modg, ¢ &5 -

124 sl
€

Now, faithfully flat descent tells us that for A € p-Mod &l the sub-objects of A are in bijection
with the sub-objects B of A ®g¢ &r satisfying i1,B = zg*B Suppose now A € - Mod(gq is
semi-stable and A’ := A ®gpt EF is not. Let

Fe

0C A G CA =A

be the Harder-Narasimhan filtration of A’. The Dieudonné-Manin theorem gives us the complete
structure of the graded pieces of this filtration in p-Modg,. Let us prove by descending induction
on j > 1 that

’Ll*All C 'LQ*A;
In fact, if 7 > 1 and 41, A} C ig*A’- then one can look at the composite morphism

Zl*A <—>7,2*A —)ZQ*A /A] 1-

Dieudonné-Manin tells us that this morphism is given by a finite collection of elements in
h_
(& ®£;E gF)SO "

where h € N>y, d € Z and ¢ is the Dieudonné-Manin slope of A{ minus the one of A% /AL which

is thus strictly negative (recall the Harder-Narasimhan slope is the opposite of the Dieudonné-

Manin one). We thus have d < 0 and lemma tells us this is 0. We conclude i1, A} C 7:2*14;-71
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and obtain by induction that i1. A} C i2.A}. By symmetry we thus have
i1. A = ig. Al
and A} descends to a sub-object of A which contradicts the semi-stability of A. We thus have
proved that A € p-Mod: is semi-stable if and only if A ® .+ &F is semi-stable.
Fe Fe

Theorem is easily reduced to the slope 0 case. Thus, let (D, ) be semi-stable of slope 0.

Let A C D be a lattice. Then,
I _ k
A= Zo%ap (A)c D
k>0
is a lattice since after scalar extension to &, (D ®,i &F, ¢ ® ¢) is isoclinic with slope 0. This
Fe

lattice is stable under ¢, but since (D, ) has slope 0, automatically

Oéﬁ (p(A/) = A/.

Lemma 7.9. The ring Og,. ® Og, is m-adically separated.

o of.
7.4. The Harder-Narasimhan filtration of y-modules over #Zp. Since the ring Zr is Be-
zout, for an Zp-module M the following are equivalent:

e M is free of finite rank,
e M is torsion free of finite type,
e M is projective of finite type.

Moreover, if Frac(%r) is the fraction field of Zr and Vectpyac(z,) is the associated category
of finite dimensional vector spaces, the functor — ®g, Frac(%Zr) is a generic fiber functor in the
sense that for a free Zp-module of finite type M it induces a bijection

{direct factor sub modules of M} — {sub-Frac(Zp)-vector spaces of M ®g, Frac(Zr).

with inverse the map W — W N M, “the schematical closure of W in M”. Let ¢-Modg,. be the
category of finite rank free Zp-modules M equipped with a @-linear isomorphism ¢ : M — M.
There are two additive functions on the exact category ¢-Modg,.

deg,rk : ¢-Modg, — Z

where the rk is the rank and the degree is defined using the following proposition that is deduced
from Newton polygons considerations.

Proposition 7.10. One has the equality (B]O’p])X = (B}b()#p})X and thus
Ai = (61)".
Of course the valuation v, on & } is invariant under . This allows us to define

deg(M, ¢) = —vr(det ).

As in [I0], to have Harder-Narasimhan filtrations in the exact category ¢-Modg, we now need to
prove that any isomorphism that is “an isomorphism in generic fiber”, that is to say after tensoring
with Frac(%Zr),
fo(M, o) — (M/a¢/)
induces the inequality
deg(M, ) < deg(M',¢")
with equality if and only if f is an isomorphism. This is achived by the following proposition.

Proposition 7.11. Let x € Zp non zero such that p(x)/x € g} Then

vr(p(z)/z) <0
with equality if and only if x € X ).
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Proof. For x € cg’;ﬂ one has
vp(z) = lim v (@)
r—+oco T

But, for r > 0,
vr(p(@)/2) = qur /(@) — vp ().
But if € Byg ), for ¢7" €]0, p[, the number 2:(2) ig the intersection with the z-axis of the line

with slope r that is tangent to Newt(x). From this graphic interpretation, one deduces that as

soon as rq is such that the intersection of the tangent line to Newt(x) of slope rg with Newt(z)

is in the upper half plane then for r > rg, r — ”T("E) is a decreasing function and it is bounded if

and only if Newt(x)(t) = +oo for t < 0. O

We thus have a good notion of Harder-Narasimhan filtrations in the exact category ¢-Modz,. .
We note p = deg /rk the associated slope function.

7.5. Classification of ¢-modules over Zr: Kedlaya’s theorem. Suppose F' is algebraically
closed. For each slope A € Q there is associated an object

Zr(\) € p-Modeg,.
satisfying
W(#e (V) = -

This is the image of the simple isocrystal with Dieudonné-Manin slope A via the scalar extension
functor
(p—MOdg,f — (p—MOdQF .
F

Next theorem tells us that this functor is essentially surjective (but not full).

Theorem 7.12 (Kedlaya [21]). Suppose F' is algebraically closed.

(1) The semi-stable objects of slope \ in p-Modg,. are the direct sums of Bp(—N).
(2) The Harder-Narasimhan filtration of a p-module over X is split.
(8) There is a bijection

{M>->2M\|neN, \ eQ} o p-Modg,. | ~
Ay ) — [@%F(—)\i)]
i=1

In particular for each slope A € QQ scalar extension induces an equivalence

SS,A S8,A
go—Modg; — ¢-Modg,’

and (M, ¢) € p-Modg,. is semi-stable of slope A = % if and only if there is a free of the same rank
as M O g¢-sub-module A C M generating M and satisfying oM(A) = m9A.
F

7.6. Application: classification of y-modules over B. As a consequence of theorem [3.9] one
obtains the following.

Theorem T7.13. The algebra B is a Frechet-Stein algebra in the sense of Schneider-Teitelbaum
(128]).

Recall ([28]) there is a notion of coherent sheaf on the Frechet-Stein algebra B. A coherent
sheaf on B is a collection of modules (M;); where I goes through the set of compact intervals in
10,1 and M7 is a By-module together with isomorphisms

My XB; B —:—> My

for J C I, satisfying the evident compatibility relations for three intervals K C J C I. This is an
abelian category. There is a global section functor

I: (M[)[ — lim M[
P
I
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from coherent sheaves to B-modules. It is fully faithful exact and identifies the category of coherent
sheaves with an abelian subcategory of the category of B-modules. This functor has a left adjoint

M — (M Xp B[)[.

On the essential image of I" this induces an equivalence with coherent sheaves. By definition, a
coherent sheaf (M;); on B is a vector bundle if for all I, Mj is a free B;-module of finite rank.

Proposition 7.14. The global sections functor I' induces an equivalence of categories between vector
bundles on B and finite type projective B-modules.

The proof is similar to the one of proposition 2.1.15 of [23]. More precisely, the main difficulty
is to prove that the global sections M of a coherent sheaf (My); such that for some integer r all
M are generated by r elements is a finite type B-module. For this one writes 0, 1[= Fy U F; where
Fy and F5 are locally finite infinite disjoint unions of compact intervals. Then, one constructs for
i = 1,2 by approximations techniques global sections f;1,--- , fi,» € M that generate each M for
I a connected component of F;. The sum of those sections furnishes a morphism B?" — M that
induces a surjection B2" — M for all I a connected component of Fj, i = 1,2. Thanks to lemma
this induces surjections B3" — M for any compact interval of 0, 1[.

The following lemma is an easy consequence of theorem [3.9]
Lemma 7.15. For a finite collection of compact intervals Iy,--- I, C|0,1[ with union I the
morphism [j_; ... , Spec(Br,) — Spec(By) is an fpgc covering.

Let us come back to p-modules. Let ¢-Modg be the category of finite type projective B-modules
M equipped with a semi-linear isomorphism ¢ : M =+ M. For p €]0, 1| the ring Byo, ) is equipped
—! satisfying ¢! (B]O7p]) = By, p1/47 and thus

B= ()¢ "(Bjog)-

n>0

with the endomorphism ¢

Note <p_1-mod13]07p] the category of finite rank free Bjg ,-modules M equipped with a semi-linear
isomorphism ¢ : M — M (by a semi-linear isomorphism we mean a semi-linear morphism whose
linearisation is an isomorphism). Of course,

lim ¢~"-modg,, , = ¢~ -modg, = p-Modg,.
p—0

If (M,p~1) € ga_l—modB]O)p] then the collection of modules (gp_”M)n>0 defines a vector bundle
on B whose global sections is B

()¢ " (M).
n>0
Using proposition [7.14] one obtains the following.

Proposition 7.16. The scalar extension functor induces an equivalence
p-Modg — p-Modz,.
Applying Kedlaya’s theorem [21] one thus obtains:
Theorem 7.17. If F is algebraically closed there is a bijection
M>->\ | neN, N eQ = p-Modg/ ~

Moo dn) — [éLBB(—/\i)].

For (M, ) € o-Modp define

&(M, p) = @ M=,
d>0
a quasi-coherent sheaf on the curve X. Using theorem [7.17] together with the classification of
vector bundles theorem [6.9] one obtains the following theorem.
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Theorem 7.18. If F is algebraically closed there is an equivalence of exact categories

p-Modg =5 Buny
(M, ) — &M, o).

Via this equivalence one has
HY(X,8(M,p)) = M#=Td
H'(X,&(M,¢)) = coker(M L% M.

Remark 7.19. In equal characteristic, when E = Fy((7)), Y = D% and the classification of
p-vector bundles on Y is due to Hartl and Pink ([20]). Via theorem this is the same as
the classification of p-modules over B. We explained the proof of the classification theorem [6-9
only when E|Q,. However, the same proof works when E = F,((7)) using periods of m-divisible
Og-modules. In this case, theorem|7.18 is thus still valid.

Sadly, there is no direct short proof of theorem that would allow us to recover Kedlaya or
Hartl Pink classification theorem from the classification of vector bundles on the curve.

However, one of the first steps in their proof is that if (M, ¢) € p-Modg, then Me=" % 0 for
d > 0. As a consequence, any p-module over Zr (and thus B) is an iterated extension of rank
1 modules. Those are easy to classify and thus any ¢-module over B is a successive extension of
B()\) with A € Z. Taking this granted plus the fact that for A € Z, H'(B(\ + d)) (the cokernel
of Id — ) is zero for d > 0, one deduces that for any (M, ) € p-Modp, &(M,¢) is a vector
bundle. Then, if one knows explicitly that for all d € Z and i = 0,1, H(B(d)) — H*(X,Ox(d))
(this is easy for ¢ = 0, and is deduced from the fundamental exact sequence plus computations
found in the work of Kedlaya and Hartl Pink for ¢ = 1) one can deduce a proof that the functor
(M, ) — (M, ) is fully faithful and thus the classification of vector bundles on the curve gives
back Kedlaya and Hartl Pink theorem.

7.7. Classification of ¢-modules over BT. Recall from section that for p €]0,1[, B} =

B[J; 1 and that

Bt =B} =] ¢"(B})

p>0 n>0

for any po. Moreover, for any x € By, ;| there is defined a Newton polygon Newt(x) and
B; = {IL‘ S B[pJ[ | Newt(x) > 0}
Bt = {z€B|Newt(x) >0}

In fact, by concavity of the Gauss valuation r — v,.(z), for any x € B, 1| the limit

s i= lim]a],

exists in [0, +00] and equals ¢=*°®) for z € B® and
B) = {z € By, | |z[: <1}.
Let us note |z|; := ¢~ "®)_ One has

vo(z) = Egé Newt(x)

and on Bj, vo is a valuation extending the valuation previously defined on B®.

One has to be careful that, contrary to B, the Frechet algebra BT is not Frechet-Stein since the
rings B;J*‘ are not noetherian and it is not clear whether ¢ : B;’ — B;‘ (that is to say the inclusion

Bj. C B}}) is flat or not.
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Note p-Modg+ and (p—ModB; for the associated categories of finite rank free modules equipped
with a semi-linear isomorphism. The category gp—ModBi does not depend on p. There is a scalar
extension functor

p-Modg+ — ¢-Modg
and, using proposition [7.14] a functor

<,0—ModB;r —  »-Modp
(M) = () ¢"(M gt Bp)-
n>0
Proposition 7.20. The functors p-Modg+ — w-Modg and cp-ModB;r — @-Modg are fully faithfull.
Proof. Let’s treat the case of p-Modg+, the case of <p—1\/_[0dB;r being identical. Using internal
Hom’s this is reduced to proving that for (M ) € cp-ModB+ one has
M#=1E 2 (M @pr B)Y
Let us fix a basis of M and for x = (21,...,2,) € B" ~ M @ B and r > 0 set
W (x) = 1%111;1 vp(24).

An element a € BT satisfies v,.(a) > 0 for r > 0. Let us fix 79 > 0 such that all the coefficients

(@i;)i,; of the matrix of ¢ in the fixed basis of M satisfy v,,(a; ;) > 0. Then if z € M ® B satisfies
¢(z) = x one has

qWro () = Wi, (p(2)) = Wiy (2)
and thus for £k > 1

1
W (@) 2 Wy (2).

\o

™

Q

Taking the limit when n — +00 one obtains Wy(x) > 0 that is to say « € (B*)™ ~ M. O
The preceding proposition together with theorem then gives the following.
Theorem 7.21. Suppose F' is algebraically closed. For A € {B*,Bj} there is a bijection
{M>> N |neEN, \,€QF = ¢-Mods/ ~
—

(@]

A,y An)

One deduces there are equivalences of categories
¢-Modg+ — p-Modg+ — ¢-Modg — ¢-Modg,.
P

where an inverse of the first equivalence is given by M — Nyp>0p™ (M).

7.8. Another proof of the classification of p-modules over B and Bj. We explain how
to give a direct proof of theorem without using Kedlaya’s theorem This proof is much
simpler and in fact applies even if the field F is not algebraically closed:

Theorem 7.22. Theorem|7.21] remains true for any F with algebraically closed residue field.

This relies on the introduction of a new ring called B. Set

P = {xEBb+|v0 ) >0}
{ Z Tp)m" Xy € Op, 3C > 0, Vn,v(z,) > C’}
n>>—oo

and
B =B""/p.
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If k stands for the residue field of Op, there is a reduction morphism

Bt — Wo, (k)g.
Then, B is a local ring with residue field Wo, (k)g. Let’s begin by classifying ¢-modules over B.
Theorem T7.23. Any @-module over B is isomorphic to a direct sum of B(A\), A € Q.

Sketch of proof. One first proves that for A, u € Q, Ext*(B()\), B(u)) = 0. For two w-modules M
and M’ one has Ext*(M, M') = H*(M" ® M') where for a p-module M"”, H*(M") = coker(Id —
@umr). Up to replacing ¢ by a power of itself, that is to say replacing E by an unramified extension,
we are thus reduced to proving that for any d € Z,

Id—7%:B—B
is surjective. For d > 0, this is a consequence of the fact that
Id— 7% : Wo,(0Op) — Wo, (OF)

is surjective since 7 is topologically nilpotent on We, (Or) for the m-adic topology. For d < 0
this is deduced in the same way using Id — 7~%p~!. For d = 0, this is a consequence of the
fact that Id — ¢ is bijective on We, (mp) since ¢ is topologically nilpotent on We,, (mpg) for the
([a], w)-adic topology for any a € mp \ {0} (the topology induced by the Gauss norms (|.|,),ej0,17)
and since the residue field k of F' is algebraically closed.

Let (M,p) € ¢-Modg and My = M ® Wo,(k)g be the associated isocrystal. Let A be the
smallest slope of (My, ¢). It suffices now to prove that M has a sub p-module isomorphic to B(\)
whose underlying B-module is a direct factor. Up to raising ¢ to a power and twisting one is
reduced to the case A = 0. Then M}, has a sub-lattice A stable under ¢. Let us remark that any
element of B®+ whose image in Wo,, (k)g lies in Wo,, (k) is congruent modulo p to an element of
Wo, (OF). Lifting the basis of A to a basis of M (recall B is a local ring), one then checks there
is a free p-module N over Wo, (OF) together with a morphism N — M inducing an isomorphism

N OWo , (Or) B = M and such that N ® We, (k) = A. For such an N, there is an isomorphism
Nap:Id ; Aap:Id

such that N9~ @ We,(OF) is a direct factor in N. In fact, after fixing a basis of N, N ~
Wo,(Op)" is complete with respect to the family of norms (||.,),ej0,1f Where [|(z1,...,2,)[, =
SUP;<;<y, |Zi|p- Moreover the Frobenius of N is topologically nilpotent on W, (mp)™ for this set
of norms. The result is deduced (for the direct factor assertion, one has to use that Wo, (mp) is
contained in the Jacobson radical of Wo, (OF) together with Nakayama lemma). O

To make the link between B¥, B} and B we need the following.
Lemma 7.24. For any a € mp \ {0}, BT = [a]BT + B"* and B} = [a]B} + B>*.

In fact, for any z = 3,5 [za]7" let us note 2t = 3, So[za|n™ and 27 = 3, olza]7".
Then any 2 € BT, resp. B}, can be written as 3,50 ®, with z,, € B> going to zero when

P
n — +oo. But one checks that if z, 0 then for n > 0, x,, € [a|B®*. This proves the

%
n——+oo
lemma.

As a consequence of this lemma, if r = v(a), {x € BT | vo(z) > r} = [a|BT and the same for
B}. Moreover, we deduce that the inclusion B** — B* induces an isomorphism

B 5 BY {ug > 0}

and the same for Bf. From this we deduce surjections B¥ — B and B — B. Now, theorem

is a consequence of theorem and the following.

Proposition 7.25. The reduction functor -Modg+ — @-Modg is fully faithful. The same holds
for B;L.
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Sketch of proof. We treat the case of B, the case of B; being identical. This is reduced to
proving that for (M, ) € p-Modg+, if M is the associated module over B, then M#=1¢ = HSD:M.
If A = pM this is reduced to proving that

Id—p: A =5 A,

Fix a basis of M ~ (B*)" and note A = (a;); ; € GL,,(BT) the matrix of ¢ in this base. For each
r>0and m=(z1, - ,x,) € M set |m||, = inf1<;<, vr(2;). Let 79 > 0 be fixed. Then A = p”
is complete with respect to the set of additive norms (||.||)r>0. Note ||A||, = inf; ; v.(a; ;).

Fix an r > 0. One first checks that for any m € M and k > 1

k—1
&+ > A
=0

Now, according to inequality of section (the inequality is stated for B+ but extends by
continuity to BT), for any 7’ < r one has

" (M)l > ¢*lm

Z.
qt

/
r
Al = — Al
T
and thus
k—1
Y dIAl5 > ak+ 5
i=0
for some constants «, 8 € R. But now, if m € A, lim0||er/ = |jm|lp > 0 and thus
r—
li b = +o0.
L [l (m) ][ = +o0
We deduce that ¢ is topologically nilpotent on A and thus Id — ¢ is bijective on it. O

Remark 7.26. The preceding proof does not use the fact that F is algebraically closed and thus
theorem [7.21 remains true when F is any perfectoid field with algebraically closed residue field.
On this point, there is a big difference between @-modules over BT and the ones over B. In fact,
one can prove that p-modules over B satisfy Galois descent like vector bundles (th for any
perfectoid field F' and thus for a general F theorem[7.17 is false.

Remark 7.27. As a consequence of the classification theorem and the first part of the proof of theo-
rem for any M, M' € p-Modg+, Ext' (M, M') = 0. This is not the case for p-modules over B.
The equivalence is an equivalence of exact categories and for example Ext;_ModB (B,B(1)) #0.

In fact, although the scalar extension functor o-Modg+ — @-Modg is exact, its inverse is not.

Let us conclude with a geometric interpretation of the preceding result. Set ¥ = Spec(Z,) and
for an IFp-scheme S note F-Isocg/s; for the category of F-isocrystals. If S < S’ is a thickening
then F-Isocg/s; ~ F-Isocg//s;. Let now a € mp \ {0}, p = |a| and S, = Spec(Or/Ora). The
category F-Isocg /s does not depend on the choice of p €]0,1[. The crystalline site Cris(S,/)
has an initial object A5, such that Acm»s,p[%] = Beris,p (see sec. |1.2.1). We thus have an
equivalence

F-Isocs, s > p-Modpg+

cris,p

But since ij c B c B

cris,p pr—1 We have an equivalence
;

©-Modp+ =~ @—ModBﬁ.

Moreover, one can think of p-Modp+ as being the category of ”convergent F-isocrystals on S,”.
We thus have proved the following.

Theorem 7.28. Suppose F is a perfectoid field with algebraically closed residue field. Then any
F-isocrystal, resp. convergent F'-isocrystal, on S, is isotrivial that is to say comes from the residue

field of k after the choice of a splitting Op —
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