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RESUME : Soient I un corps de caractéristique 0, complet pour une
valuation discréte, & corps résiduel parfait de caractéristique p > 0 et
I une cloture algébrique de K. On passe en revue

a) les principaux types de représentations p-adiques de Gal(K/K):
représentations de Hodge-Tate, de de Rham, cristallines, semi-stables,
potentiellement semi-stables;

b) les principaux théorémes et/ou conjectures reliant les différentes
cohomologies p-adiques des variétés propres et lisses sur v’ (en particulier
la cohomologie de de Rham d’une telle variété X et la cohomologie étale
p-adique de X @ K).

Chemin faisant, on esquisse la construction de Hyodo-Kato de la
cohomologie cristalline & péles logarithmiques des variétés propres et lisses
sur /{ admettant un modele sur I’anneau des entiers de I ayant réduction
semi-stable.

ABSTRACT : Let I be a field of characteristic 0, complete with respect to
g_discrete valuation, with perfect residue field of characteristic p>0; let
I\’ be an algebraic closure of K. In this survey, we discuss

a) the main kinds of p-adic representations of Gal(IX/K) : Hodge-
Tate, de Rham, crystalline, semi-stable, potentially semi-stable;

b) the main theorems and/or conjectures linking the different kinds
of p-adic cohomologies of proper and smooth varieties over .
Meanwhile, we sketch Hyodo-Kato’s construction of crystalline coho-
mology with log poles for those varieties which admit a model over the
integers with semi-stable reduction.

Mots-clés : Périodes p-adiques, représentations p-adiques, cohomologic
cristalline, cohomologie étale, cohomologie de de Rham, théorémes de
comparaison, réduction semi-stable, monodromie.
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In these notes, K is afield, complete with respect to a discrete valuation,
whose residue field k is perfect of characteristic p > 0; unless otherwise
stated, K is assumed to be of characteristic 0. We choose an algebraic
closure I¥ of K and put G = Gal(K /). The action of G and the valuation
extend to the completion C' of K with respect to the usual topology. For
any subfield L of C, we denote by Op the ring of the integers of L. We
denote by Ky the fraction field of W = W(k) and by o the Frobenius

automorphism of k£ (¢z = zP, if = € k), which acts also on W and Kj.

0. Introduction

Let X be a proper and smooth K-scheme. Very roughly speaking, the
theory of p-adic periods is concerned with the problem of comparing the p-
adic étale cohomology of X7z = X ® I{, endowed with its natural action of
G, with the de Rham or Hodge cohomology of X/K, endowed with certain
additional structures. The story goes back to Tate, who conjectured [Se67]
the existence of a canonical, G-equivariant decomposition ( “Hodge-Tate
decomposition”)

Bo<icmC(~1) Ox H™ (X, Q) = C ®q, H™ (X1, Qp)-

Tate [Ta67] proved his conjecture when X has good reduction and
m = 1. Then several special cases where proved (see [Bo80] for the proof
of Raynaud for m = 1 in the bad reduction case, and [Fo82b], [BK86],
[FM87], [Hy88a]); now it has been proved in general by Faltings [Fa88a).

When X has good reduction, the p-adic and de Rham cohomologies of X
in degree 1 are related in a somewhat indirect way by the p-divisible group
I" of the Néron model of the Albanese variety of X. Indeed, by a theorem
of Tate [Ta67], I" up to isogeny is determined by the p-adic representation
HI(XF, Q,), which is the dual of T,(T') ® Q; on the other hand, by a
theorem of Grothendieck ([Gr70], see also [Gr74], [Me72], [MM74]), T up
to isogeny is determined by H}, r(X/K), endowed with

i) its Hodge filtration H(X, QY ),

ii) its I{g-structure, together with its o-linear Frobenius automor-
phism, given by the Dieudonné module of ' @ k.

Grothendieck (loc. cit.) raised the question of giving an algebraic
construction ( “mysterious functor”) by which one could recover one object
from the other, without using the “crutch” of the p-divisible groupe I’
and asked for a gencralization in higher degree. Such a construction was
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given in [Fo77], and a generalization valid for X of good reduction and all
degrees m, was proposed in [Fo79] and [Fo82a] as the (C.ris) conjecture.
After some special cases ([FM87], [Ka86]), this conjecture was proved by
Faltings [Fa88b] and is discussed in §3. It involves a certain ring Beyis,
whose definition is recalled in §1, and the Ky-structure on HZ,(X/K)
(together with its o-semi-linear Frobenius automorphism) given by the
crystalline cohomology of the special fiber of a smooth model of X over
Ok.

When X is no longer assumed to have good reduction, it is still possible
to compare H™ (X%, Q,) (as a representation of G) and H%5(X/K) (with
its Hodge filtration) by means of a bigger ring Bpg : this is the (Cpr)
conjecture [Fo82a], which has also been proved by Faltings [Fa88b], see
§5.1. In this case, the latter group can be recovered from the former one,
but not conversely.

Between the case of good reduction and the general case lies the semi-
stable reduction case, namely the case where X admits a proper and
flat model X over Oy with semi-stable reduction. In this case, a new
cohomology theory, due to Hyodo and Kato ([Hy88b], [HK89]), gives on
HPp(X/K) a Ko-structure endowed with a o-linear automorphism (as
in the good reduction case) and a nilpotent endomorphism NV, playing
the role of the logarithm of the monodromy. Following a suggestion of
Jannsen (see also [Ja88]), a variant of the conjecture (C.ps), the conjecture
(Cst) was made ([Fo87], [Fo89b]) and proved in a special case by Kato
[Ka88b]. It involves a certain ring B, intermediate between B.,;; and
Bpr, and enables one to build H™ (X4, Q,) (as a representation of G)
from Hpp(X/K) (with its additonal structure), and vice-versa. This is
discussed in §4 after some glances at the (better known) complex and
¢-adic situations (see also [I189)]).

It may be too optimistic to believe that any proper and smooth K-
scheme X has “potentially semi-stable reduction”, i.e. that if we replace I
by a suitable finite extension, then we get a scheme which has semi-stable
reduction. Nevertheless, it seems reasonable to expect that the cohomology
behaves as if it was true. This leads to the p-adic monodromy conjecture
discussed in §5, section 2, to the effect that there should always exist
on HJp(X) enough additonal structure to recover H™ (X4, @,) from it.
In particular, one should be able to define the monodromy operator, a
nilpotent endomorphism of the K-vector space H@,(X/K), without any
restriction on Y.

The definitions and basic properties of the rings Bppr, Beris and By,
are recalled in § 1. They give rise to several functors from the category of
p-adic representations of G to certain categories of filtered modules (with
additional operators) and lead to a classification of these representations
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into main types : crystalline, semi-stable, de Rham; this is discussed in
§2.

Finally, in §6, we consider the case where k is finite and ask some
questions on the comparison of the various £-adic representations (with
possibly € = p) of the Weil-Deligne group of K arising from the ¢-adic
étale cohomology, for ¢ # p, and from the structure alluded to above for
{ =,

Between January and May 1988, a seminar on p-adic periods was held
at the THES in Bures-sur-Yvette. Hopefully a written version of this
seminar [Bures], including some recent results, should be available soon.
The present notes, which intend to be no more than an introduction to
both this seminar and Faltings’s work on this subject, contain no proofs,
not even sketches of proofs.
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§1. The rings of periods
1.1. The ring R

1.1.1. Let R be the commutative ring which is the projective limit of
Ox/p <& Ox/p << - Ox/p <& Ox/p < -

where ca = a?.

Let £ = (zm)men € R; for each m € N, choose a lifting Z,, of z,, in
Oc. If n € N, the sequence {(§n+m)Pm|m € N} converges in O¢ to an
element z(™) independent of the choice of the Lifting ; the map

z+— () nen

is a bijection between R and the set of sequences (:c("))nEN of elements
of O¢ satisfying (z2(®*V)? = z(") for n € N. In what follows, we use this
bijection to identify these two sets; we then have

(zy)™ = g™y(™  and (z+y)™ = m}i_n}oo(x(mrm) s y(n+m))p"‘.

1.1.2. The ring R is a valuation ring whose residue field can be

identified to the residue field k of K :

— If v denotes a valuation of I¥ and also its unique extension to
C, the map z > vg(z) = v(a:(o)) is a valuation of R;

— the identification of k to a subfield of R is given by the map

a— ([@"Dnen

(where [b] € O is the Teichmiiller representative of b € k).

1.1.3. The group G acts in an obvious way on R and on its fraction
field FrR, which is algebraically closed. More precisely, let’s choose a
generator of “the multiplicative Tate module of G,,”, that is an element
¢ =(e™)en € R satisfying () = 1 and € # 1. The field of formal
power series £ = k((e — 1)) is a subfield of F'rR, its separable closure F' in
FrR is separably closed and FrR may be identified to its completion for
the (¢ —1)-adic topology ; moreover, if H = Gal(K /K (up~)), E and F are
stable under G, E is fixed under H and the natural map H — Gal(F/E)
is an isomorphism ([FW79], [Wi83]).

1.2. The field Bpr and the ring Bur

1.2.1. The ring W(R) of Witt vectors with coeficients in R is a V-
algebra that is an integral domain. The map

6:1V(R) — Og,
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which sends (ag,ay,...,0n,...) t0 ) cny pn.aE:) is a surjective homomor-
phism of W-algebras, and the kernel is a principal ideal.

1.2.2. If Wr(R) = K @w W(R), 6 extends in an unique way to a
surjective homomorphism of I{-algebras, that we still denote by

6: Wg(R)— C.

The kernel of this map is again principal ([Fo82a), if 7 is a uniformising
parameter of I and if ¢ € R is such that z(® =7, 1®[z] -7 ®1isa
generator' ). We denote by B}, the completion of Wi (R) with respect to
the (IXer #)-adic topology and by Bpr its fraction field. Therefore Bpr
is a discrete valuation field whose residue field is C'; its ring of integers is
B}, and contains Wi (R) as a dense subring.

As the map 6 is G-equivariant, the natural action of G on Wg(R)
extends to Bpg.

1.2.3. The series

log([e)) = ) (=1)"7" - ([e] = 1)"/n

n>1

(where ¢ is as in 1.1.3) converges in B}, to a non-zero element ¢. This
enables us to identify Z,(1) to the sub-Z,-module of B}, generated by t.

It is not hard to prove [Fo82a] that ¢ is a generator of the maximal ideal
of Bg R-

1.2.4. There is a natural filtration on Bppg, indexed by Z, given by
the (positive and negative) powers of the maximal ideal of Bf; : we have

Fil'Bpg = t'- B}, for any i€ Z.

1.2.5. We denote by By (HT stands for Hodge-Tate) the associated
graded algebra. For each i € Z, gr' Byt = FiliBDR/Fill+lBDR 1s a one-
dimensional C-vector space, spanned by the image of ¢*, hence

Byt = ®iczC(2),

where C(¢) = C ® Z,(2) is the usual Tate’s twist.

1.2.6. As an abstract field Bpp is isomorphic to the field C((1)).
because the projection of BER onto C' as a section; it 1s important to

' For any y € !, we denote by [y] = (y,0,0,...,0,...) € W(R) its Teichmuller
representative.
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note that there is no canonical section, even no section which is Galois
equivariant. Nevertheless, the restriction of any section to I is unique
and this enables us to view BER and Bppr as F—algebras.

1.3. The ring B,

1.3.1. We call A..i, the ring (often called W'DP(R), cf. [Fo83al,
[Fo83b]) which is the p-adic completion of the divided power envelope
of W(R) with respect to the kernel of §. In down-to-earth terms, if we
identify W(R) to a subring of W, (R) = K, @w W(R) = W(R)[1/p]
and if a is a generator of ker 6, A..;, is the p-adic completion of the sub-
W (R)-algebra (or, equivalently, the sub-W(R)-module) Afn-s of Wk, (R)
generated by the yn,(a) := a™/m!, for m € N. This is a W-algebra which
is an integral domain and we put

B+ = I{O w Acris = Acris[l/p]'

cris

1.3.2. The map

v : W(R) — W(R),

which sends (ag,a1,...,an,...) to (a},dl,...a,...) is an automorphism
of the ring W(R), which is o-semi-linear and can uniquely be extended to
an automorphism of W, (R). Because A{ri
by continuity to 4., and also to B:'n.s.
In the same way (the ring A, is stable under the natural action of G
on Wi,(R)), the action of G extends to A, and to BT

cris”

. 1s stable under ¢, ¢ extends

1.3.3. The composite map

Af

cris

— Wio(R) — Wi(R) — B}y

extends by continuity® to a map from A, to BBR which is injective and
compatible with the action of G. We use it to identify A.,;s and B;_is to
subrings of Bfp.
One has t € Acpis and P71 € pA,ris (where ¢ is as in 1.2.3). We put
Buris = Bl [1/t) = dersl1/1).
This is a subring of Bpg stable under G and, because ¢t = pt, the action
of v on B}, extends to Beris (we have p(t7!) = p~1t~1).

cris

° One as to be a little bit careful about topologies : on IR, we take the topology
defined by the valuation, on W (R) (which is RN as a set) the product topology, on
Wik () = K @w W(R) the tensor product topology, on W (R)/(Ker6)' the induced
topology and on BER =lim - proj - Wi (R)/(Ker8)* the projective limit topology.
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1.4. The ring By,

1.4.1. For each commutative group T, let Vipy(T') = Hom(Z[1/p], T).
With multiplicative notations, one can identify V(,)(T) to the set of the

(m("))nel, with z(™ T satisfying (m("+l))1’ = 2("). We have a canonical
short exact sequence

0 =TI — Vi) —T

bl

where T,(T") is the Z,-module Hom(Q,/Z,,I"). If T is p-divisible, the map
Vip(I') — T is onto; if moreover I' is p-torsion free, this map is an
isomorphism.

1.4.2. For any ring A, let AX the group of its units. If R*+ (resp.
0% *) denotes the subgroup of R* (resp. O%) consisting of units congru-
ent to one mod the maximal ideal, we have obvious identifications

05 =% x OF*, V,)(0%) = R* =T~ x RS+, V,,(C*) = (FrR)*.

If v is a choosen valuation of K and if vg is the corresponding valuation
of FTR (cf. n° 1.1.2), we get a commutative diagram

O—)Zp(l)—> RX* —»05—»0

0 — Z,(1) — (Fr R)* — C* —1 g

YR v

O
Il
O

whose rows and columns are exact.
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1.43. Let z = 14y € RF. For n > 0,[y]"/n € A{”-a, and the
sequence [y]®/n tends p-adically to 0. Therefore the series

DG Vi 1

+

converges to an element A(z) € BJ,;,. The map

A: Rt — BT
is an injective homomorphism, that we extend to R* by setting A(z) = 0,
fzek .

1.4.4. We can define BY, (resp. B,:) as the solution to a universal
problem : this is the initial object of the category of pairs (S, As), where
Sisa Bj;is-algebra (resp. a Beris-algebra) and As : (FrR)* — S is an
homomorphism which extends A (i.e. such that Ag(z) is the image of A(z)
if z € R*). Concretely

B:t = Sym((FrR)x) @ Sym(RX) Beris

and

By = Sym((FrR)™) ® sym(rx) Beris-
Even more concretely, if A = A B and if b is any element of (FrR)*
which does not belong to R*, B}, - B} [A(b)] (isomorphic to the ring of

polynomials in one variable with coefficients in Bjn-s) and By = B;[l/t] =
Beris[A(D)].

1.4.5. The natural action of G on B;tis and B.r;s extends, by
functoriality to BY, and B,;. In B..s, we have ¢o(A(z)) = p - M=).
Therefore, there is a unique endomorphism ¢ of By which extends the
Frobenius on B.ris and is such that ¢(A(z)) = p-A(z),forany z € (FrR)~.

We have o(BY,) c B#.

1.4.6. We have canonical isomorphisms (FrR)*/R* ~ C*/Of ~
Fx/(’).;i7 (~ Q) and the map

K Bsz ®Q (FX/O%) S Qi’at/B

cris

which sends b @ T to b - d(\(z)) (where T is the image of @ € (FTR)™) is
an isomorphism. Let’s choose an isomorphism

U:KX/O%——»Q,
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(this amounts to choosing a valuation on X and we denote this valuation
by the same letter). This gives us, by extending the scalars, an isomor-

phism v : Bg ® i 0OX) — By, hence a derivation
Q = ,
N:=%o0k'od: By — By,

(which depends on the choice of v), whose kernel is Beis and that we call
a monodromy operator. On B,;, we have

Noyp=ppoN.

A natural choice for v is vy (normalised by vo(p) = p) and we call
“canonical” the corresponding monodromy operator.
1.5. The p-adic logarithms and the embedding of B,; into Bpgr

1.5.1. The embedding of B.,is into Bpgr extends to an embedding of
Bs; into Bpg, but this embedding depends on the choice of an extended
usual p-adic logarithm, that is of a G-equivariant homomorphism,

log K —TE,

whose restriction to O% is the usual map (i.e. 0 on % and the usual series

,+
on (’).}(\, Js

1.5.2. Before we construct this embedding, let’s recall that
V(],)(Fx) C (FrR)* and observe that we have a natural homomorphism

LOG: V(p)(-f_\;:x) — Fil' Bpp,

which is given by

LOG(z) = S (~1)"* - (% - )"/n

n>0

(we have [z] € W(R) C Bf, and z(® ¢ K* C (Bhr)™, hence
z]/z(®) € B}, and 6 % — 1) = 0, therefore the serie converges).
. DR z(0) g
Now, using the extended usual log, we can define an other homomor-

phism
—X

Aot Vip(F) — B

by Apr(z) = LOG(z) + log(z(9)).
It is casy to check t}?at, if z € V(,,)(O%’)(C R™), then App(x) = A(2).
Then, there exists a unique homomorphism of B,,;,-algebras

L1B3¢—>BDR
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such that Apg(z) = «(A(2)), for any z € V(p)(IT'X). Moreover, the map
1s injective [Fo89a].

The sub-K-algebra of Bpg spanned by the image of ¢ is independent
of the choice of the extended usual log.

1.5.3. To choose an extended usual p-adic logarithm amounts to
choose log(p) which can be any element of K. A natural choice is
“Iwasawa’s logarithm” defined by log(p) = 0, and we call “canonical”
the corresponding embedding ¢ : B;; — Bpp.

An other natural way to make a choice for an extended usual p-adic
logarithm consists in choosing a uniformising parameter 7 of I :
indeed, there is one and only one extended usual p-adic logarithm such
that log(w) = 0; we denote it by log, and call ¢y : By —s Bppr the
corresponding embedding.

1.5.4. Remarks : i) From the point of view of periods of integrals,
this is the map LOG which plays a role in the p-adic world analogous to the
role of the complex logarithm. If a € IV *, and if we choose = € V(p)(Fx)
such that z(®) = g, we “define” LOG(a) as being LOG(z) € Bpg; this is
well defined mod Z,(1) which is the p-adic analog of Z(1).

1i) Let L be a finite extension of K contained in . There is an
obvious map from the Bpp relative to 1" to the one relative to L and this
map is an isomorphism. Similarly, one can identify the By (resp. Acris,

BY. = Bets, BY, By) relative to K to the one relative to &}

§ 2. p-adic representations

We choose once and for all a valuation v on X (resp. an extended
usual p-adic logarithm log) and we call V the corresponding monodromy
operator on By, (resp. we use the corresponding embedding ¢ : B,; —
Bpr to identify By, to a sub-ring of Bppg).

2.1. Basic properties of the B’s
2.1.1. Let’s start by summarizing some important properties of the
rings just constructed from the point of view of p-adic representations :

1) Galois continuous cohomology of the C(2)’s ([Ta67]) : one
has C% = HY(G,C) = K and HY(G,C) is a one dimensional I\ -vector
space; for any integer i # 0, H(G, C(:)) = HYG,C(H)) = 0.

ii) Properties of linear disjunction ([Fo82a] and [Fo89a]) : The
natural maps

N Ok, Beris — Bpr and N Qy, By, — Bpy,
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are injective; so are the maps
K ®gyr Beris — Bpr and K ®kyr Bst — Bpr

(where '™ denote the maximal unramified extension of I{o contained in
).

iii) Relation between B.,;; and By (obvious) : the sequence
0— Bcris — Bst —_— Bst —0

1s exact.
iv) The fundamental exact sequence ([Fo82a], [FM8T7]) : For

each 2 € Z, let Fil'Beris = Fil' Bpr N Beris; the sequence

=1
0 ~= Qp == FilOBcris ‘P—’ Berig — Y

is exact.

2.1.2. Remark : One can check that the image Bst,? off@}(gr By
in Bpg is independent of the choice of the log map which was used to
define the embedding ; the same thing is true for the K-linear monodromy
operator on B, 1 deduced from the initial one by scalar extension (which,

on the contrary, depends on the choice of the valuation).

2.2. The different kinds of p-adic representations

We denote by Repg, (G) the category of p-adic representations of
G, that is the category whose objects are finite-dimensional Q,-vector
spaces equipped with a linear and continuous action of G, and morphisms
are @,-linear G-equivariant maps.

2.2.1. It is easy to deduce from 2.1 that (BHT)G = (BDR)G = i

and that (Bcris)G = (BS,)G = K. For any p-adic representation V of G,
and for X € {HT, DR, st,cris}, define

Dx(V)=(Bx ®q, V).

If Ky = (Bx)® (either ¥ or K, depending on X), it is easy (using 2.1
again) to prove that the obvious map

ax :Bx @Ky D‘\'(V) — By ®QP \%

is always injective and that dimy, Dy (V) < dime \%
if and only if ax 1s bijective.

with the equality

b



12 J.-M. FONTAINE and L. ILLUSIE

2.2.2. The natural graduation on Byt induces a structure of graded
K -vector space on Dy7(V); the natural filtration on Bpgr induces a
structure of filtered K -vector space on Dpr(V) and there is an obvious
homomorphism of graded K-vector spaces

gr'Dpr(V) — Dg7(V)

which is always injective.

The Ky-vector space D¢ris(V) and Dy (V') are endowed with a natural
action of ¢, which is bijective and o-semi-linear. On Dy (V'), there is also
a nilpotent Ky-linear action of the monodromy N, satisfying Ny = ppN
and D¢ris(V) is nothing else than the kernel of V on Dy (V). The obvious
maps

K ®Ko Deris(V) — Dpr(V) and K ®k, Dst(V) — Dpr(V)

are injective.

2.2.3. We say that the p-adic representation V is Hodge-Tate
(resp. de Rham, semi-stable, crystalline) if the corresponding ax
1s an isomorphism, or, equivalently, if dimg, Dx(V) = dimg, V. We
denote by Repx(G) the full subcategory of Repg,(G) consisting of
such representations. It is a sub-Tannakian category ([Sa72], [DMS82]),
1.e. 1t is stable under sub-objects, quotients, direct sums, tensor products,
contragredients (and, in an obvious way, the restriction of Dx to this
category is a tensor functor).

- If V is de Rham, then V is Hodge-Tate and Dyr(V) =
g Dpr(V);

- if V is semi-stable, then V is de Rham and Dpgr(V) =
K Qp, Dst(V);

— if V is crystalline, then V is semi-stable and Dg;(V') = D¢ris(V)
(with V = 0).

2.2.4. It is an easy consequence of the remark (ii) of 1.5.4 that if V
1s Hodge-Tate, de Rham, semi-stable or crystalline as a representation of
G = Gal(K/K), then for any finite extension L of K contained in I\,
V remains so as a representation of G = Gal(F/L). As By and Bppg
are I -algebras, if there is a finite extension L C IV of I such that V
1s Hodge-Tate or de Rham as a representation of G, then V is already
Hodge-Tate or de Rham.

We say that a p-adic representation is potentially semi-stable (resp.
potentially crystalline) if there exists a finite extension L contained in
I such that V is semi-stable (resp. crystalline) as a representation of G .
Of course,
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pot. crystalline = pot. semi-stable => de Rham.

Moreover, a representation is crystalline if and only if it is simultane-
ously semi-stable and potentially crystalline.

2.3. Examples :

2.3.1. Let x : G — Z be the character giving the action of G on
Z,(1) and let V be a one dimensional representation of G acting through
a character 7. Then ([Se89], III A7) V is Hodge-Tate if and only if there
exists ¢ € Z (necessarily unique) such that the restriction of nx™* to the
inertia subgroup Ix of G is finite; if so, V is potentially crystalline and

V crystalline <= nx |1, = 1 [Fo79).

2.3.2. Let : € Z and
O—)Qp(i)-—>V—>Qp—>O

a non trivial extension. Then ([BK89] when the field is finite, see also
Pe8y)) :
a) if 7 > 2| the representation is crystalline;

b) if : = 1, the representation is semi-stable; Iummer’s

theory identifies Ext'(Q,,Q,(1)) = H(G,Q,(1)) to

Qp ®z, (lim K> /(K*)P");

the representation is crystalline if and only if the class of V lies inside the
image of Q, ® (9?(;
c) if ¢ =0, V Hodge-Tate <= V crystalline <= V unramified;
d) if 1 <0, V is Hodge-Tate and is not de Rham.

2.3.3. Let f be an elliptic modular form which is a newform of level
-V let V' be the representation of Gal(Q,/Q,) associated by Deligne to
[,V is de Rham ([Fa88b], [Fa88c]). It is crystalline if p doesn’t divide
the level (op.cit.). When p divides the level, it is expected to be always
potentially semi-stable, that is to become semi-stable after restriction to

a suitable open subgroup of Gal(Q,/Q,).
2.4. Constructing semi-stable p-adic representations [Fo89b]

2.4.1. Let’s define a filtered (¢, N)-module over I as being a I\y-
vector space D equipped with

1) a o-semi-linear injective map o : D — D
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ii) a K-linear map N : D — D satisfying Ny = ppN;
(iii) a decreasing filtration (Fil' Dy );ez on Dg := K ®p, D by sub-
K-vector spaces satisfying UFil!Dg = Dy and NFil' Dy = 0.
The filtered (¢, N)-modules over K form, in an obvious way, an additive

(Qp-linear) category MF i (¢, N).

2.4.2. There is a natural tensor product on MF (¢, N) °, hence it
makes sense also to speak about A™D if D is an object of this category
and r € N.

For any object D of MF g(¢, N) whose underlying Kp-vector space
is of dimension 1, we define ty(D) as the biggest integer ¢ such that
Fil'Dg # 0; if d is a non-zero element of D and if wd = A\d, we define
tn(D) as the p-adic valuation of A (this is independent of the choice of
d). For any object D of MF g(¢, N) whose underlying Ky-vector space is
finite-dimensional, we define

tH(D) = tH(AmaID) and tN(D) — tN(AmaID)_

A sub-object D' of an object D of MF g (p,N) is a sub Iy-vector
space stable under ¢ and N; we endow it with the filtration of D}, =
I @k, D' C D induced by the filtration of Dg.

We say that an object D of MF (¢, N), which is finite-dimensional as
a Ky-vector space, is weakly admissible if it satisfies :

i) tu(D) = tn(D);
ii) for any sub-object D' of D, ty(D') < tn(D").

We denote by MF{<(<,9, N) the full sub-category of MF g (¢, N) whose
objects are those which are weakly admissible. It is an abelian category (a
sub-object in MF{((cp, N) of an object D of this category is a sub-object
D' of D in MF g(p, N) such that tg(D") = tn(D")). It is likely that this
category is stable under tensor product®, hence is a Tannakian category.

2.4.3. If V is a semi-stable p-adic representation of G, Dy (V) has a
natural structure of filtered (¢, N)-module over I{ (the action of ¢ and
N are induced by the corresponding operators on B,; and the filtration
is induced by the filtration of Bpg and the fact that K ®, D, (V) =

Dpr(V)). One can prove that Dy:(V') is actually an object of MF{‘»(% N).

> On D' @D" := D' @, D", we define (d’ @ d"') = @d' ® @d", N(d' ® d"") =

Nd' @ d” + d' ® Nd"”, and the usual tensor product filtration on (D’ @ D")) =
Dll\, OK Dl/{

! It has been prove by Laffaille [La80] in the case K = Iy and extended by TFaltings
(private communication) to an arbitrary K that the sub-category of MF (¢, V) on
which N is 0 is stable under tensor product. It seems more than likely that Faltings’s

proof extends to the general case.
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Moreover, the functor
Dy : Repgi(G) — MF{(p,N)

if fully faithful and induces a temsor equivalence between Rep,,(G) and its
essential image, the category MF4%(¢, N) of admissible filtered (¢, N)-
modules over I, which is afull sub-category® of MF';\,(QQ,N), stable
under sub-object, quotient, @&, ®,*.

A quasi-inverse functor Vy; of Dy, is given by

Vo(D)={z € B,y ® DINz =0, pz =z and 1@z € Fil°(Bpr ® Dk)}.

2.4.4. When there is no monodromy, we speak about filtered ¢-
modules instead of filtered (i, N)-modules. We denote by MF g (resp.
MF/., MF%) the full sub-category of MFg (i, N) (resp. MF% (¢, N),
MF$%(¢,N)) on which N = 0. Of course, Dcris induces a tensor-
equivalence between the categories Rep,,;,(G) and MF$¢, a quasi-inverse
~f D.,;s being given by

Veris(D) = {2 € Beris @ Djpz =z and 1®z € FilO(BDR ® Dk)}.

2.5. Potentially semi-stable representations

2.5.1. For any p-adic representation V| let
Dpsi(V) = lim .ind.(By: ®q, V)°*,

for L running through the finite extensions of K contained in K. This
is a finite-dimensional K¥"-vector space which has a natural structure of
discrete (¢, N,G)-module, ice. there is a Frobenius endomorphism ¢,
semi-linear with respect to the usual Frobenius on K", a monodromy
~merator N, I{{"-linear and satisfying N = ppN, and a discrete action
f G (i.e. the fixator of each paint is open in G), semi-linear with respect
to the natural action of G on A'§", commuting with ¢ and N.
Moreover (K Qrar Dpst(V)’)G can be identified with

D, (V)= (B, ®q, V)°

and is a sub-I\-vector space of Dpr(V') whose dimension is equal to the
dimension of D, (V') over N§'7. Let’s remark that one can view D, (V)

° It is likely, but not certain, that MF(;'\(}((,J, N) = MF{\,(L,J,N); there are partial
results in this direction [FL32].
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as a filtered K-vector space equipped with a monodromy operator N that
is a nilpotent K-linear endomorphism.

2.5.2. For any p-adic representation V, dimKa‘r D, (V) <
dimg, (V). We have

V pot semi-stable < dimpgar Dper(V) = dimg, (V) & dimg Dst,F(V) =
dimg, V < V is de Rham and D, 7(V)— Dpgr(V) is an isomorphism.

The functor D, induces a tensor equivalence between the category
of potentially semi-stable p-adic representations and a suitable full sub-
category MPF§¢ (¢, N,G) of the category MPF (g, N, G) of filtered
(¢, N,G)-modules over K, i.e. of discrete (¢, N, G)-modules D equipped
with a filtration of (F QKo D)G. One can describe a quasi-inverse Vpst of
D, st in the same spirit as was described the quasi-inverse Vy; of Dy;.

§3. The case of good reduction : C,,;,
3.1. Crystalline cohomology

"3.1.1. To any k-scheme Y are associated in a functorial way W-
modules denoted H{ ., (Y/W) (or H'(Y/W)), the crystalline cohomology
groups of Y. For Y proper and smooth, these are of finite type, and
Y — H*(Y/W) is a good Weil cohomology, i.e. satisfies a formalism
of Poincaré duality, Kinneth formulas, cycle class maps; for Y projective
and smooth, one has rkwH'(Y/W) = dim H{(Y ® k,Q¢) (£ # p) by a
result of Katz-Messing ([KM74)).

Crystalline cohomology was invented by Grothendieck [G166]. An out-
line is given in [Gr68]. The main program was carried out by Berthelot
[Be74]. As an introduction to the theory, the reader may consult the notes
of Berthelot-Ogus [BO78] or the summaries [[175] and (1176]. Cohomology
classes of smooth cycles are constructed in [Be74], the case of singular
cycles is discussed in [GM87] and [Gr85].

3.1.2. Recall that I{j is the fraction field of W, so that K/K; is »
finite totally ramified extension. Let e = [K : ). Let Y/k be proper and
smooth, and suppose we have X' /O,. proper and smooth, lifting V. One
basic property of crystalline cohomology is that, according to Berthelot
([Be74]), if e < p—1, one has a canonical isomorphism

(3.1.2.1) O @w H*(Y/W) = Hpp(X/Oy).

This result doesn’t extend to an arbitrary e, but, by a theorem of
Berthelot and Ogus [BO78], one has a canonical isomorphism
(3.1.2.2

K @w H*(Y/W) = K @o, Hhp(X[0y) (= Hpp(X) if X = ¥ @0, k),
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which, for e < p—1, is deduced from the previous one by scalar extension.

3.1.3. Let Y/k as above. By functoriality, the (absolute) endomor-
phism of Y induces a o-linear endomorphism ¢ of H*(Y/W) (where o 1s
the Frobenius automorphism of ). Moreover the unique extension of ¢ to
a o-linear endomorphism of Ky @w H* (Y/PV) is bijective. By definition,
this makes H*(Y/W) into an F-crystal in the sense of Grothendieck.
In particular, one can speak of the slopes of ¢ on H* '(Y/W), (roughly
speaking the p-adic valuations of its eigenvalues) which are rational num-
bers between 0 and 7. The study of this structure has been the focus of
considerable activity during the past twenty years. One central result is
the proof of the Katz conjecture on the relative positions of the New-
ton and Hodge polygons of Y ([Ma72], [Ma73], [BO78], [Ny81]). A deep
insight into this structure is furnished by the theory of the de Rham-Witt
complex ([1179b], [IR83], see [I179a] and [I183] for a survey).

3.2. A theorem of Faltings

3.2.1. Let X be a proper and smooth K-scheme. Assume that X has
good reduction, i.e. that there exists a proper and smooth Op-scheme X
whose generic fibre X = X ® K is isomorphic to X.

Then, if we choose such an X, the de Rham cohomology of X,
H}r(X/K), comes equipped with the structure of a filtered (-module
(cf. n® 2.4.1), that is, we have :

(a) the Hodge filtration Fil' Hpp(X/K), which is the abutment
of the (degenerating at E;) Hodge to de Rham spectral sequence

EY = H(X,Q, k) = Hpr(X/K);

(b) a Kp-structure H;( X) =Ko ®@w H*(Y/W), where Y is the
special fiber X @ k (thanks to the isomorphism 3.1.2.2);
(¢) the o-linear automorphism ¢ of H;,(X).

It has been shown by Gillet-Messing [GM8T], as a consequence of their
theory of cycle maps and the compatibility of (3.1.2.2) with duality, that
this structure of filtered (-module depends only on X, not on the choice
of the model X.

The hypothesis of good reduction implies that, for £ # p, the action
of the Galois group G = Gal(I{/K) on the (-adic étale cohomology
H*(X37,Q¢) is unramified (i.c. the inertia acts trivially). However, the
action of G on the p-adic étale cohomology H*(X7-,Q,) may be very
complicated. Faltings proved the following theorem |Fa88D] :

3.2.2. THEOREM. — There ezists a functorial Beris-linear isomorphism

(3.2.2.1) Beriy ®icy Hivig(X) = Beris ®g, H* (X7, Q,)



18 J.-M. FONTAINE and L. ILLUSIE

(with HY ., ,(X) as above and B, as in 1.3), having the following

properties :

(1) 1t is compatible with the action of G, where g € G acts on the
left (vesp. right) hand side by g @ 1 (resp. ¢ ® g),

(1) it 1s compatible with Frobenius, acting by ¢ @ ¢ (tesp. p Q1) on
the left (resp. right) hand side,

(i21) the isomorphism
Bpr ®x Hpr(X/K) = Bpr ®q, H* (X7, @),

deduced from (3.2.2.1) by eztension of scalars (thanks to (b)) is compatible
with the natural filtration on both sides, where Fil" on the left (tesp. right)
hand side is Fil' ® Fil' (resp. Fil @ H*(X%,Q,)),

phisms, Poincaré duality and cycle class maps.

3.2.3. Remark : With the terminology of 2.4.4, properties (i) to (iii)
mean that H*(X4,Q,) is a crystalline representation, that the p-filtered
module H7 (X) is admissible and that we have a canonical isomor-
phism HZ . (X) = Deris(H*(X%,Q,)) (or equivalently H*(X%,Q,) ~
Veris(H24(X))). Let’s recall that it means that we have canonical iso-
morphisms, compatible with the natural structures,

wris(X) 2 (Beris ® H*(X7,Q,))C,
Hpr(X/K) ~ (Bpr ® H*(X+,Q,))°,

H*(XT’?’QP) ~
{3) € Beris ® H:ris(X)l‘Px =z, 1Qz€ FilO(BDR ® HBR(.X/I()}

Notice that this implies again the result of Gillet-Messing mentioned above
(to the effect that the structure of filtered -module depends only on X).

§ 4. The semi-stable case : C,,

4.1. Inputs from the analytic theory

Let S be an open disc in C,0 € S, $* =S -{0}, f: X - Sa
projective map of analytic spaces, with X' smooth over C, f|s+ smooth
and the special fiber Y = f~1(0) a reduced divisor with normal crossings
in X (so that f is locally given by f(z1,22,...,2,) = 21222, where
Z1,...,%n are local coordinates). The complex cohomology of a general
fiber H*(X,C), t € S*, is endowed with the monodromy automorphism
T;, given by the action of the positive generator of m;(S*). It is a basic
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result that, in the situation we are considering, T} 1s unipotent (had we
allowed multiplicities in Y, then T; would have been only quasi-unipotent).

This monodromy operator can be interpreted a la de Rham in the
following way. Let wy = Qx(logY) (resp. wg := Q5(log0)) be the
absolute de Rham complex of X (resp. S) with log poles on Y (resp.
O). Let wy,g be the relative de Rham complex of X/S with log poles
on Y, defined as A“J}Y/S where w}‘(/s = wl/f*ws, with the differential

induced by that of wy. We have a short exact sequence of complexes on
X

(4.1.1) O——»wé@w;/ls——»w’x ——>w;¥/5———>0.

The coboundary of the long exact sequence deduced from (4.1.1) by
applying R*f. gives a connection on H := R*f*w'x/s with log poles
at 0,

(4.1.2) V:H —ws®H.

The restriction of V to S* is the standard Gauss-Manin connection on
R flys g (X% = X = Y), whose sheaf of horizontal sections is the
local system t — H*(X,,C). The following results are due to Steenbrink
[St764] :

(a) H is a vector bundle on S, whose formation commutes with any
base change; in particular, the fiber Hy of H at 0 1s H*(Y,wy ), where
wy = w'X/S Q Oy.

(b) Let N : Hp — Hjy be the residue of V at 0, deduced from
(4.1.2) by tensoring with Cyoy and applying the residue isomorphism
wi/QL = C; equivalently, if

(4.1.3) 0 —wy —wy®0y —wy —0

is the exact sequence deduced from (4.1.1) by applying C(0}Qo0s — (and
using the residue isomorphism), N is the coboundary of the long exact
sequence obtained by applying H*(Y, —) (to (4.1.3). Then N is nilpotent.

It follows from (a) and (b) that (4.1.2) is the canonical extension (in
the sense of Deligne-Manin [De70, II 5.2]) of the Gauss-Manin connection
on H|S*. Therefore, by (loc. cit., I 1.17), the monodromy operators T}
above are the fibers of an automorphism 7' of H, whose fiber T at 0 1s
given by

(4.1.4) To = exp(—2miNN).



