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The fiber Hy = H*(Y,w} ) underlies in fact a much richer structure. In
order to explain this, fix a parameter ¢ on S, a universal cover S* —» S*,
and a determination of logt¢ on $*. Denote by X5 the pull-back of X* by
5 5 (X7 plays the role of a “generic geometric fiber”). Then, by
Steenbrink [St76a], there is a canonical 1somorphism

(4.1.5) e+ Hy =5 H* (X5, C)

(deriving in fact from a finer isomorphism %, : wy — R15(C), where
Ry7(C) is the complex of vanishing cycles, as in (SGA7 XIV)). This
1isomorphism depends on the choices made : if (u,logu) is another choice),
then one has

(4.1.6) the = by exp(2mi N log((u/£)(0))).

Moreover, there is defined on H, a mixed Hodge structure (depending on
the choices), with Hodge filtration given by Fil'H, = H*(Y,wf,‘l), which
can be considered as the “limit” of the (pure) Hodge structures of the fibers
of f nearby. In particular, the Hodge numbers h4? := dim HI(Y,wP) verify
he! = dim H(X,,QP) (t # 0) (more precisely, the Hodge to de Rham

spectral sequence
Efq = qu*pr/S — R*f*wX/S

cegenerates at Ej, and the E; terms are vector bundles on S, whose
formation commutes with base change). Furthermore, the nilpotent endo-
morphism N of Hy is of type (—=1,-1), which gives strong bounds on its
exponent of nilpotence : on H"(Y,wy ) we have

(4.1.7) Nt H™(Y,wy) =0,

where a is the length of the largest interval without zeroes in the sequence
of Hodge numbers (h™0 pn—11 ) of X,

For all this, see [St76a], [St76b], and [SZ85] for a correct treatment of
the weight filtration over Q.

4.2. Inputs from the ¢-adic theory ,

In this section, we do not assume the complete field I to be
of characteristic zero. We put A = O and denote by I the inertia
subgroup, given by the exact sequence

l—T— G— Gal(k/k) — 1

bl

where % is the residue field of .
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Let f : X — S = SpecA be proper and flat, with semi-stable
reduction, which means that X is regular, f generically smooth, and the
special fiber ¥ C X is a reduced divisor with normal crossings (in other
words, X is étale locally isomorphic to Spec Alty,...,t,]/(t1 -t — 7),
where 7 is a uniformizing parameter). Consider the {-adic cohomology of
the generic geometric fiber

H:= H* (X3, Q)

as a representation of the Galois group G = Gal(I{/I). A close analysis
of the spectral sequence of vanishing cycles ((SGA 7 I), completed by
[RZ82]) shows that the elements g € I act unipotently (geometric local
monodromy theorem). Therefore, the action of I factors through the
{-tame quotient ¢, : I — Z,(1) (whose kernel is a profinite group of order
prime to £). More precisely, there exists a unique nilpotent map

(4.2.1) N:H(1)— H

such that gz = exp(Nti(g))z for g € I, ¢ € H (cf. [De80, 1.7]). Since
N is unique, it commutes with the action of Galois. In particular, if £ is
the finite field F,, and F' € Aut H is the action of an element in G whose
image in Gal(k/k) is the geometric Frobenius z — 79, we have

(4.2.2) NF = qFN.

In this case, the structure on H given by the action of G and the nilpotent
endomorphism N is best described as a representation of the Weil-
Deligne group "W (K /K) [De73, 8.4.1], see 5.1 below. The situation,
unfortunately, is far from being as well understood as in the complex case.
Let us just mention one basic open question.

4.2.3. Since N is nilpotent, there exists a unique finite, increasing
filtration M on H satisfying NM;H C M;_,H(—1) and such that N?
induces an isomorphism grMH = grM H(—{); this filtration is called
the monodromy filtration. In the complex case considered in 4.1, the
analogous filtration M on H, coincides with the weight filtration of the
mixed Hodge structure, (see [St76a, 5.9]°; in particular, gr,‘-wH(;‘ underlies
a pure Hodge structure of weight n+i. Suppose now that & = F;. Isit true
that gr)M H™ is pure of weight n 41, i.e. the eigenvalues of an elemenf Fas
above acting on gr}! H™ have absolute values ¢("+9/2 for any embedding
of @ into C 7 L. By a fundamental result of Deligne [De80, 1.8.4], the answer
is yes if X'/A comes by base change from a proper and flat model over a

® the proof here has a gap; a correct proof was given by M. Saito [Sa86, 4.2.5).



22 J.-M. FONTAINE and L. ILLUSIE

smooth curve over F,. In mixed characteristic, the answer is still yes if
dimY < 2 [RZ82 2.13], but is unknown in the general case. It is also
unknown whether the characteristic polynomial det(1 — Ft,grM H™) has
integral coefficients, independant of ¢.

4.3. Crystalline cohomology with log poles

From now on, we assume that K is of characteristic zero.

In [MTT86], modular forms under T'y(p) of weight k > 3 are constructed
for which the corresponding 2-dimensional p-adic representation is irre-
ducible while the analogous ¢-adic representation, £ # p, has a nontrivial
N. This excludes the possibility that, for S = Spec A and X' /S as in 4.2,
there could exist on H*(X%,Q,) a p-adic analogue of the operator N
of (4.2.1). Following a suggestion of Jannsen (private communication), it
seemed reasonable to conjecture that such an operator IV should exist,
instead, on the de Rham cohomology H}r(Xk/K), and that one should
also have a Ky-structure and a Frobenius automorphism as in 3.4 (b), (¢),
satisfying a compatibility of type (4.2.2). This has recently been proven by
Hyodo and Kato [Hy88b], [HK89]. Here is an outline of their construction.

Let X be regular, flat (but not necessarily proper) over S, with semi-
stable reduction. Let X = XY @ K and Y = X ® k. Denote by i : ¥ — X,
J: X =>Xv:Z=U®k—Y the inclusions, where U is the smooth
locus of X' over S. Let n > 1. Consider the de Rham-Witt complex of step
nof Z, W,Q, [1179b]. Observe that

*j.0%|Z = i*0% - K*|Z ~ (i*0%|2Z) x L,

since any z in the left hand side can be uniquely written ur™, n € Z
u € 1" O, where 7 is a prime in A. Denote by

(4.3.1) Wowy

b}

the sub-W, Oy-algebra of v, W,Q;, generated by dW,Oy and the image
of the map

(4.3.2) dlog : :"7.0% — v.W,Q},
corresponding, by adjunction, to the map
dlog :1*5,0%|Z — W,Q)
such that dlogz is the “usual” dlogT for z € *O% (T = image of z in
07) and dlogz = 0 for z € K*. It is not difficult to show that Wawy

is stable under the differential d of v,1V,Q, and that the operators F
V' on TV.Q; extend to operators F, V on W.wi, satisfying the same basic
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relations FV = VF = p, FdV = d. The Frobenius endomorphism F of
W.wi (induced by the absolute Frobenius of Y') is then given by p'F on
W.wi,. The whole theory of [I179b], [IR83] can be carried over — mutatis
mutandis — to this context. In particular, if

(4.3.3) H*(Y, Wwy) :=lim H*(Y, Whwy),

the (o-linear) Frobenius endomorphism F of H*(Y, Wwy ) is an isogeny,
i.e. F ® Q is bijective (this is due to the existence of V'), and, when X'/S
is proper, H*(Y, Wwy) is of finite type over W and satisfies a Poincaré
duality formalism. It should be noted that, despite the notation, W.wy
depends on X, not only on Y (more precisely, one can show that W.wy
depends only on the “logarithmic structure” on Y induced by X, in the
sense of Kato [Ka88al).
Consider now the graded differential algebra

Wally = WaQ, @ W07 - 6,
with 8 of degree 1 satisfying 82 = 0, d6 = 0. Denote by
(4.3.4) T

the sub-W,Oy-algebra of U,TIV,,KNTZ generated by dW, Oy and the image
of the map

(4.3.5) dlog : i*j,0% — v, W,Q%
corresponding, by adjunction, to the map
dlog : 5. 0%|Z — W'nQIZ o W,0z -6

sending = to dlogZ as above for ¢ € 1*O% and to v(z)f for z € K*
(where v, is the valuation normalized by v.(7) = 1). It is easily checked
that W, is stable under d and that the operators F', V' on W'.Q'Z (wiht
F6 = 6, V6 = pb) extend naturally to W,w, and satisfy the usual
relations. Moreover, the section 6 of TrVnﬁ'Z extends to a global section
8 of W,&, and the following sequence is exact :

B8 0 — Wowy ! — Wody — Wawy — 0

Tz -0 60— 0

for variable n, these sequences form an inverse system. From (4.3.6) we
get a map (in the derived category)

(4.3.7) N Wawy — Wawy,
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which satisfies
(4.3.8) NF =pFN

(where F is, as above, the Frobenius endomorphism of Wyrwy ). There-
fore, the same relation holds between the corresponding operators on
H*(Y,Wwy ) (4.3.3). Observe the analogy with (4.2.2). For Y proper, since
F ®Q is bijective and H*(Y, Wwy,) of finite type, (4.3.8) forces N @ Q on
H*(Y,Wwy) ® Q to be nilpotent. It can be shown again that W.&;, and

the exact sequence (4.3.6) depend only on the logarithmic structure on Y
induced by X.

The definitions of the modified de Rham-Witt complexes above are
due to Kato [HKS89]. There is an alternate construction due to Hyodo
[Hy88b]. The cohomology H*(Y,W,w; ) can also be interpreted as the
cohomology of a suitable crystalline site (Y/Wi)iog (taking into account
the log structure) with coefficients in the structural site, see [HIK89]; this
generalizes the canonical isomorphism H*(Y,W,Qy) — H*(Y/W,) for
Y smooth [I179b].

The fundamental property of this new cohomology theory is the follow-
ing generalization of the Berthelot-Ogus isomorphism (3.2.2) :

4.3.9. THEOREM [HK89]. — Fiz a prime = € A. Let X /A be proper and
flat, with semi-stable reduction, and special (resp. general) fiber Y (resp.
X ). Then there 1s a canonical isomorphism

pr HY (Y, Wwy) @w K =5 Hhp(X/K),

functorial in X [A, which coincides with (3.1.2.2) for X /A smooth. For
u € A*, one has

(4.3.9.1) pr = pru - exp(log(u)N)

(where log is the usual logarithm).
Note the analogy between (4.3.9.1) and (4.1.6).
4.3.10. Under the assumption of 4.3.9, we thus obtain on H},(X/K)
a structure of filtered (¢, N)-module (2.4.1), namely :
(a) the Hodge filtration Fil' H} r(X/K) (as in 3.4 (a));
(b) the Ko-structure H3,(XX) := H*(Y, Wwi )®w Ko (given by py);
(c) the o-linear automorphism ¢ = F @ Q of H%(X);
(d) the nilpotent endomorphism N of H},(X) satisfying Ny =

poeN. If X/A is smooth, then N = 0 and (a), (b), (c) is just the structure
considered in 3.4.
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For dimX < 1, Raynaud [Ra89] has given another construction of a
structure of type (a)-(d) above on H}p(X/K), using the Néron model
of Pic’(X) and rigid analytic techniques. His construction applies more
generally to 1-motives over I having semi-stable reduction on A. Its
compatibility with that of Hyodo-Kato has not yet been checked.

4.4. The conjecture Cy;.
The following conjecture [Fo89b] was inspired by Jannsen (private
communication, see also [Ja88]).

4.4.1 CoNJECTURE (Cy¢). — Let m and X /A be as 1n 4.3.9. Then there
is a functorial Bg-linear 1somorphism

(4.4.1.1) Bt QK H;t(}() i B, ®QP H*(X-I?, Qp)

(with HY,(X) as in 4.3.10 (b) and By as in 1.4, with the embedding
Ly : By — Bppg associated to the same prime w, see 1.5.3), having the
following properties :

(i) it is compatible with the action of G, where g € G acts on the
left (vesp. right) hand side by g @1 (resp.g ® g)

(ii) it is compatible with Frobenius, acting by ¢ @ ¢ (resp.¢ ®1) on
the left (resp. Tight) hand side

(111) it is compatible with N@1+1Q N on the left hand side and
N ®1 on the right hand side

(v) the isomorphism
Bpr ®k Hpr(X/K) — Bpr®e, (X, Q)
deduced from (4.4.1.1) by eztension of scalars (thanks to 4.3.10 (b)) 1s

compatible with the filtrations Fil' on both sides, as in 3.2.2 (i11).
(v) (4.4.1.1) is compatible with cup-products and Poincaré duabity.

4.4.2. Remark : With the terminology of 2.4.3, properties (i) to
(iv) mean that H*(X4,Q,) is a semi-stable representation, that the
(p, N)filtered module H},(X) is admissible and that we have a canonical
isomorphism H}(X) = Dy (H* (X%, Q,)) (or equivalently H*(X+,Q,) =
Vo H2,(X))).

Let’s recall that it means that we have canonical isomorphisms, com-
patible with the natural structures)

H(X) = (Ba @ B (X5, Q)¢ Hpp(X/K) = (Bpr® H*(X7,Q,))%,

H*(‘X’f’ Qp) =
{t€Bu@H;(X)|[Nz=0, pz =z, 19z € FilO(BDR Q@ Hpp(X/I)}.
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Note that these formulas imply that the IKj-structure H;(X) on
HpEp(X) together with the action of ¢ and N on it should not depend
on the semi-stable model X of X. It would be interesting to have a direct
proof of this, as Gillet-Messing did in the good reduction case (cf. 3.2.1).

4.4.3. THEOREM [Ka88b]. — The conjecture (Cst) 18 true of
dim X < (p—1)/2.

4.4.4. For slope reasons, one has N™+! = ( on H7}(X). There is a
better bound, which is the analog in this context of the bound 4.1.7 for
the complex analytic case : one has

N*FHHR(X) =0,

if @ is the biggest integer > 0 such that it exists a rational number a such
that the part of slope a — 7 in HH(X)is#0fori=0,1,...,a. This is an
immediate consequence of the relation Nop =ppN.

4.4.5. Assume that £ = Fg, with ¢ = p". Consider the monodromy
filiration M; on HZ(X) relative to the nilpotent endomorphism N (note
that, because of (4.3.8), N sends M; to M;_3(—1), where (=)(m) means
as usual tensoring with the Tate F-isocrystal (Ko,p~™0)). Is it true that

(x)  det(l -, gri HJ\ (X)) = det(1 — Ft, grM H™( X, Qp)),

where the right hand side is as in 4.2.3? When X has good reduction and
Is projective, then N = 0, the monodromy filtration is trivial, and (*)
has been proven by Katz-Messing [KM74] as a consequence of Deligne’s
results in Weil IT [De80] : the left (resp. right) hand side is H™(Y/W) Q@ Q
(resp. H™(Y%, Qo).

§5. The general case : Cpgr and Cysi

5.1 Bppg-periods
The main result is the following theorem of Faltings, proving the (Cpg)
conjecture [Fo82a] :

5.1.1 THEOREM [Fa88b]. — Let X be a proper and smooth K -scheme.
There ezists a functorial Bpg-linear 1somorphism

(5.1.1.1) Bpr ®@x Hpp(X/K) — Bpr ®q, H* (X1, Q,)

compatible with :

(1) the action of G on both sides, where g € G acts by g1
(resp.g @ g) on the left (resp.right) hand side,
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(11) the filtrations Fil' on both sides (as in (3.2.2) (w1));
(111) cup-products, Poincaré duality and cycle class maps.

In particular, H*(X+,Q,) is a de Rham representation and Hip(X/K)
(with its Hodge filtration) can be recovered from H*(X3,Q,) as
Dpr(H* (X7, Qp)), Le. (Bpr ®q, H*(Xx,@,))°.

5.1.2. In the case of good reduction (resp. semi-stable reduction and
dimX < (p —1)/2), 5.1.1 is a consequence of 3.2.2 (resp. 4.4.2). Note
also that, as a corollary of 5.1.1, one gets another proof of the Hodge-
Tate decomposition, conjectured by Tate in [Se67], i.e. the fact that

H*(X%,Q,) is Hodge-Tate and that there is a functorial Byr-linear
isomorphism (cf. 1.2.5)

Byt ®k Hij4o(X/K) — Bur ®g, H* (X%, Q)

(where Hy, (X/K) = QH* (X, QS(/I()), compatible with the gradua-
tions and actions of G on both sides.

5.1.3. It is not possible, of course, to recover, through (5.1.1.1), the
p-adic representation H*(X4,Q,) from the filtered module Hp)z(X/IK).
More structure on HJ)p(X/K) is needed. We will discuss this now.

5.2. The p-adic monodromy conjecture

5.2.1. CONJECTURE (p-adic monodromy). — For any proper and smooth
variety X over K, and for any m € N, H;’nt(XF’ Q) s potentially semi-
stable.

Granted Falting’s result, this amounts to saying that the injective map
D,, zr(H (X7, Qp)) — Dpr(HE (X%, Qp)) = HHr(X)

(see 2.5.1 for the definition of D, +) is an isomorphism.

5.2.2. Remarks : i) Actually, we would like to have a more
precise result. It would be nice to be able to compute directly the
DPS‘(H(Z}C(XT’ Q,))’s as a suitable cohomology (a suitable generalisation
of crystalline cohomology). One may expect that this cohomology should
depend only on the special fiber of a suitably good model of X over the
integers, equipped with a “multiplicative” or “logarithmic” structure.

i1) Let’s say that X has potentially good reduction (resp. is po-
tentially semi-stable) if there is a finite extension L of I such that
X = X @ L has good reduction (resp. is semi-stable). Granted the re-
sults of sections 3.2 and 4.4, the conjecture is a theorem in the potentially



28 J.-M. FONTAINE and L. ILLUSIE

good reduction case and follows from the conjecture Cy; in the potentially
semi-stable case (hence is also a theorem for m < (p — 1)/2).

In this situation, we get also the direct construction of
Dpat(HgE(/f, Q,)) we asked for : if L C K is a finite Galois extension
such that there exists a semi-stable model X of X1 over Op, and if L is
the maximal unramified extension of K, contained in L, then

Dpur(Hg (X5, Qp)) = K§" @1, HY(X).

A posteriori, the comparison conjecture (or theorem, in cases where
it’s known) implies that, as a sub- K@ -vector space of K @ HEr(X),
g7 @L, HJj(X) is independent of the choices of L and X and is stable
under G.

iii) It is natural to ask whether or not any proper and smooth X
over I{ is potentially semi-stable. If it was true, this conjecture (and also
the stronger form asked for in remark (i)) would follow from Cl;.

iv) If the conjecture is true, then there is a monodromy operator
N acting on HE,(X). It would be interesting to give a direct definition
of this operator (using rigid analytic methods 2

5.2.3. Generalizations

It seems likely that all p-adic representations “coming from algebraic
geometry in a reasonable way” are potentially semi-stable : étale p-adic
cohomology (with proper support) of open and/or (not too) singular
algebraic varieties, cohomology with non constant (but not too bad)
coefficients.

The langage of motives (pure or mixed, & la Grothendieck or & la
Deligne) is convenient to express more or less obvious comparison’s
conjectures between the different realizations. Partial results have already
been obtained by Faltings [Fa88c] and Raynaud [Ra89)].

In the case of motives of proper and smooth varieties, it’s a matter
of being able to check some compatibility between the way the different
cohomologies are cut into pieces. For the motive associated to an elliptic
modular newform of level prime to p, it has been done independently by
Faltings (private communication) and Scholl ([Sc89]).
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§6. The arithmetic case
6.1 Representations of the Galois group of a local field

6.1.1. Assume now that I{ is a finite extension of Q,. The Weil-
Deligne group’ is quite useful to discuss relations between ¢-adic represen-
tations of G for various prime numbers .

Let ¢ = p” be the cardinal of k, f = 07" € Gal(k/k) the geometric
Frobenius. We identify Gal(k/k) to Z by sending the generator f to 1, call
@i & = Gal(I\ /K) — Gal(k/k) — 7 the canonical projection and Iy
the inertia subgroup, i.e. the kernel of v. We denote by Wy = W(I{/K)
the Weil group of K, i.e. the sub-group of G consisting of those ¢ € G
such that v(g) € Z. Recall that, if E is any field of characteristic 0, a
(finite-dimensional linear) representation of the Weil-Deligne group 'Wx
of K over E is a finite-dimensional E-vector space D equipped with

1) a homomorphism p' : Wxg — Autg(D), whose kernel contains
an open sub-group of the inertia subgroup I ;

11) a nilpotent endomorphism N of V such that
N-p'(w)=¢"™p'(w)-N forany we Wg.

6.1.2. Let £ be a prime number # p. We choose F' € Wy lifting f
and a non-zero homomorphism

ty: I — Q

(recall that there is a canonical homomorphism ¢, : Ijc — Z,(1) which is
onto; hence the choice of t, amounts to choose a non-zero homomorphism
from Z,(1) to Q).

Let’s consider an £-adic representation of G, that is a finite-dimensional
Qe-vector space V; plus a continuous homomorphism

pe: G — Autg, (V).

The £-adic monodromy theorem of Grothendieck ([SGAT7I], Exp.1) tells
us that p¢ is “potentially semi-stable”, i.e. there is an open sub-
group of I which acts unipotently on V4. Equivalently, there is a unique
representation (p', N) of 'Wy. on Vg such that, for any g € I} and any
nelt,

pe(F"g) = p'(F"g) - exp(ty(g) - N).

" cf. [De73], §8, from which all the discussion below (n® 6.1.1 and 6.1.2) originates,
except for some slight changes of notations; one has v(w) = —v'(w), with Deligne’s

convention, because it is the geometrical Frobenius that we chose to identify to 1 € Z.
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Moreover the isomorphism class of p, is determined by the isomorphism

class of (p', N) and this last one is independent of the choices we made
(i.e. F' and t}).

6.1.3. For £ = p, the reasonable analogue of a “general” ¢-adic repre-
sentation seems to be, in this context, a ”general“ potentially semi-stable
representation. Actually if V' is any potentially semi-stable representation
of G, we know (2.5) how to associate to it

a) a discrete (¢,N,G)-module D, (V), finite-dimensional as a
K"-vector space;

b) a filtered K-vector space Dpgr(V), finite-dimensional.

Via the functor V¢, the knowledge of V is equivalent to the knowledge
of both D, (V) and Dpg(V) and of a comparison map, i.e. an
isomorphism

(K @K, Dpst(V))® = Dpr(V).

It is remarkable that Dpg(V) gives us the same kind of information
as we would get by looking at archimedian places (Hodge numbers). On
the other hand, D, (V') gives us exactly the information that we would
obtain from an £-adic representation (with £ # p). More precisely :

6.1.4. ProposiTiON [FM89]. — 1) Let D be a discrete (p,N,G)-
module, finite-dimensional (as a I§{"-vector space). For w € Wy, define
p'(w): D — D by

p'(w)(d) = ™) (w(d)) for d € D;

then (p',N) is a representation of 'Wi?®;
1) If Dy and Dj are finite-dimensional discrete (o, N, G)-modules,
there 13 a canonical 1somorphism
K§" ®g, Hom(, N,G)=mod (D1, D2) =~ Homvw, (D, D,);
moreover Dy and Dy are 1somorphic as (o, N, G)-modules if and only if
they are 1somorphic as representations of 'Wi.
6.2. Applications to motives

6.2.1. Let M a motive over I{ (we don’t want to be precise, there
arc three typical examples we have in mind : (a) M “is” H™(X), with X
proper and smooth over I{ and m € N, (b) M “is” the motive associated

i (= Dpsi(V), where V is a potentially semi-stable p-adic representation, the

monodromy operator changes if we change the valuation which was used to define it;

the isomorphism class of the representation of "1y just constructed doesn’t.
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to an elliptic modular newform, (c¢) M is a 1-motive in the sense of Deligne
[De74b], n® 10.1).

For each prime number ¢, we have an f-adic representation Vp of
G, the f-adic realization of M (if M = H™(X), this is H™(X3,Qc))-
Assume that M satisfies the p-adic monodromy conjecture, i.e. that V,
is potentially semi-stable. Then for each prime number ¢, we have a
representation D; of "Wy :

— for £ # p, Dy = Vi a Qe-vector space, on which 'Wy acts as
explained in 6.1.2;

— for £ = p, D, = Dps(V},) a Iy -vector space on which "W
acts as explained in 6.1.4.
There are three natural questions (or conjectures, it’s a matter of taste) :
Q1 : are the D;’s all compatible?
Q2 : are the D;’s all F-semi-simple?
Q3 : are the F-semi-simplifications of the D,’s all compatible,
(see [De73], §8 for a precise definition of the F-semi-simplification of a
representation of "Wy and of the notion of compatible representations).
Question 3 seems more accessible and there is no doubt that the answer
should be yes (observe also that a positive answer to this question would
imply a positive answer to question 4.4.5). This is known in the case of
M = H™(X) with X proper and smooth over K with good reduction

([De74a] for £ # p and [KM74] for £ = p) and in the case of a 1-motive
[Ra89].

6.2.2. Remark : We don’t know any example of a de Rham repre-
sentation which is not potentially semi-stable. It seems likely that, in the
situation we are considering in this paragraph (X/Q, finite), any de Rham
representation is potentially semi-stable, a result which would be the p-
adic analog of Grothendieck ¢-adic monodromy theorem. If it was true,
Falting’s theorem (n° 5.1) would imply the p-adic monodromy conjecture
for proper and smooth varieties.

6.2.3. Let us finish with a few words about global Galois representa-
tions. Let £ be a prime number and V an irreducible {-adic representation
of Gal(Q/Q). For each prime p, choose an embedding of Q into QP. Let’s
say that V is geometric if it is unramified outside finitely many p’s and
if it is potentially semi-stable at p = £. It seems reasonable to conjecture
that such a representation “comes from algebraic geometry”. At least, for
cach place p of @ (finite or not) there is a well defined isomorphism class
of a representation of the Weil-Deligne group of Q,, associated to it (for
p = co, one use the action of the complex conjugation and the filtration
on Dppr(V) to define it). Modulo the conjecture that the characteristic
polynomials of the Frobenii should have coefficients in @, we can therefore
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associate to V an L-function, an e-factor, a conductor. These questions
are discussed with more details in [FM89]
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