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1

£-adic representations of local fields: an
overview

1.1 ¢-adic Galois representations

1.1.1 Linear representations of topological groups.

Let G be a topological group and F be a field.

Definition 1.1. A linear representation of G with coefficients in E' is a finite
dimensional E-vector space V' equipped with a linear action of G; equivalently,
a linear representation is a homomorphism

p: G — Autg(V) ~ GLi(E)

where h = dimg(V).

If V' is equipped with a topological structure, and if the action of G is
continuous, the representation is called continuous. In particular, if E is a
topological vector field, V is given the induced topology, then such a continuous
representation is called a continuous FE-linear representations of G.

If moreover, G = Gal(K*®/K) for K a field and K* a separable closure of
K, such a representation is called a Galois representation.

We consider a few examples:

Ezample 1.2. Let K be a field, L be a Galois extension of K, G = Gal(L/K)
be the Galois group of this extension. Put the discrete topology on V and
consider continuous representations. The continuity of a representation means
that it factors through a suitable finite Galois extension F of K contained in
L:

G— GLg(V)

|

Gal(F/K)
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Ezxample 1.8. Assume that E is a completion of a number field. Then either
E =Ror C, or F is a finite extension of Q; for a suitable prime number /.

If E=RorC, and p: G — Autg(V) is a representation, then p is
continuous if and only if Ker (p) is an open normal subgroup of G.

If E is a finite extension of Q, and p: G — Autg(V) is a representation,
[E:Q = d, h = dimg(V), then dimg,(V) = hd, Autg(V) C Autg,(V),
and we can view the representation as a representation over Q,. To give a
continuous FE-linear representation of GG is the same as to give a continuous
Q¢-linear representation of G' together with an embedding £ — Autg, (V).

1.1.2 ¢-adic representations.

From now on, let K be a field, L be a Galois extension of K, G = Gal(L/K)
be the Galois group of this extension.

Definition 1.4. An /(-adic representation of G is a finite dimensional Q-
vector space equipped with a continuous and linear action of G.

If G = Gal(K*/K) for K* a separable closure of K, such a representation
is called an f-adic Galois representation.

Ezample 1.5. The trivial representation is V = Qp with g(v) = v forall g € G
and v € Q.

Definition 1.6. Let V' be an f-adic representation of G of dimension d. A
lattice in V is a sub Zg-module of finite type generating V as a Qg-vector
space, equivalently, a free sub Zg-module of V' of rank d.

Definition 1.7. A Z,-representation of G is a free Zy-module of finite type,
equipped with a linear and continuous action of G.

Let Ty be a lattice of V, then for every g € G, g(Tp) = {g9(v) | v € Tp} is
also a lattice. Moreover, the stabilizer H = {g € G | g(Tp) = To} of Ty is an
open subgroup of G and hence G/H is finite, the sum

=2 g(To)
geG

is a finite sum. 7" is again a lattice of V, and is stable under G-action, hence
is a Zg-representation of G. If {e, -+ ,eq} is a basis of T over Zy, it is also a
basis of V over Q, thus

G - GL4(Q)

GLa(Ze)
and V =0Q,®z, T
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On the other hand, given a free Zs-representation T of rank d of G, we get
a d-dimensional ¢-adic representation

V=Q®z, T, gA®t)=A®9(t), N€QunteT.

For all n € N, G acts continuously on T/¢™T with the discrete topology.
Therefore we have

p: G Autz;é (T) (2 GLd(Zg))
Aut(T/0"T) (= GLq4(Z/0"7))
since T/0"T ~ (Z/("Z)" and T = lim T'/¢"T. The group H,, = Ker (p,) is a
neN
normal open subgroup of G and Ker (p) = (| H, is a closed subgroup.

neN
Assume G = Gal(K*/K). Then (K*)" = K, is a finite Galois extension
of K with the following diagram:

Pn

G Aut(T/1"T)
Gal(K,/K)

We also set Koo = |J Ky, and Koo = (K*) with H = Ker (p). So we get a
sequence of field extensions:

1.1.3 Representations arising from linear algebra.

Through linear algebra, we can build new representations starting from old
representations:

e Suppose Vi and V5, are two f-adic representations of G, then the tensor
product Vi @ Vo = Vi ®q, Vo with g(v; ® v2) = gvi ® gve is an f-adic
representation.

e The r-th symmetric power of an f-adic representation V: Sym@z V, with
the natural actions of G, is an f-adic representation.

e The r-th exterior power of an f-adic representation V: /\(55 V', with the
natural actions of G, is an f-adic representation.

e For V an f-adic representation, V* = %, (V, Q) with a G-action g-p € V*
for p € V* g € G defined by (g ¢)(v) = ¢(g~! - v), is again an f-adic
representation, which is called the dual representation of V.
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1.1.4 Examples of f-adic Galois representations.

We assume that K is a field, K* is a fixed separable closure of K, G =
Gal(K*®/K) in this subsection.

(1). The Tate module of the multiplicative group G,,.

Consider the exact sequence

o
1— ppn (K*) — (K == (K*)* — 1

9

where for a field F, ’

wn(F)={a€F|d" =1}. (1.1)
Then pyn (K®) ~ Z /"7 if char K # ¢ and ~ {1} if char K = {. If char K # ¢,
the homomorphisms

Pont1 (K°) — pon (K°), a— a'

form an inverse system, thus define the Tate module of the multiplicative group
Gm
To(Gr) = lim prgn (K°). (1.2)
neN
Ty(Gyy) is a free Zg-module of rank 1. Fix an element t = (g, )nen € To(G)
such that
50217 81#17 Eﬁ+1 =E&np.-

Then Ty(G) = Zyt, equipped with the following Z,-action

A-t=(epr) An € Z, X\ = X\, mod £"Z,.

neN’

The Galois group G acts on Ty(G,,) and also on Vo(G,,) = Qr ®z, Te(Gy).
Usually we write

Ty(Gp) = Ze(1), Vo(Gr) = Qe(1) = Qr ®z, Ze(1). (1.3)
If V is any 1-dimensional f-adic representation of GG, then
V =Qe, g(e) =n(g)-e, foralged

where 1 : G — Q' is a continuous homomorphism. In the case of Ty(G,,), n
is called the cyclotomic character and usually denoted as x, the image Im(x)
is a closed subgroup of Z;'.

Remark 1.8. If K = Qq or Q, the cyclotomic character x : G — Z; is surjec-
tive.
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From Z(1) and Qg(1), we define for r € N*

Qe(r) = Symg, (Qe(1)), Qe(—r) = ZL(Q¢(r), Qr) = the dual of Q,(r).
(1.4)
Then for r € Z,

Qe(r) = Qg - t", with the action g(t") = x"(g) - t" for g € G.

Correspondingly, we have Z,(r) for r € Z. These representations are called
the Tate twists of Zy. Moreover, for any f-adic representation V, V(r) =
V ®q, Q¢(r) is the Tate twist of V.

(2). The Tate module of an elliptic curve.

Assume char K # 2,3. Let P € K[X], deg(P) = 3 such that P is separable,
then
Plz)=MX —a1)(X — a2)(X — a3)

with the roots a;, ag, as € K? all distinct. Let E be the corresponding elliptic
curve. Then

E(K?®) = {(x,y) € (K9?|y* = P(x)} U {oo}, where O = {co}.

The set E(K?) is an abelian group on which G acts. One has the exact se-
quence

0 — B (K®) — B(K*) 25 B(K®) — 0,
where for a field F over K, Epm(F) ={A € E(F) | {"A = O}. If £ # char K,
then Epn (K®) ~ (Z/("Z)?. If £ = char K, then either E(K®)pm ~ Z/0"7Z in
the ordinary case, or E(K?®)sm ~ {0} in the supersingular case.
With the transition maps

E£n+1 (Ks) — Egn (KS)
A — lA

the Tate module of E is defined as
The Tate module T;(E) is a free Zs-module of rank 2 if char K # ¢; and

1 or 0 if char K = £. Set Vy(E) = Q; ®z, T¢(E). Then V,(E) is an f-adic
representation of G of dimension 2,1, 0 respectively.
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(3). The Tate module of an abelian variety.

An abelian variety is a projective smooth variety A equipped with a group
law

Ax A— A.
Set dim A = g. We have

e A(K?) is an abelian group;
o A(K®)pm ~ (ZJIZ)* if { # charK. If { = char K, then A(K®)m ~
(Z)e"Z)", with 0 < r < g.

We get the f-adic representations:
729 if char K # /;
Ty(A) = lim A(K®)m ~ 87 ’
o(A) = lim A(K*), {z;;, “# char K — 0. (1.6)

Vi(A) = Qe ®z, Te(A).

(4). £-adic étale cohomology.

Let Y be a proper and smooth variety over K*® (here K* can be replaced by
a separably closed field). One can define for m € N the cohomology group

H™(Yet, Z/0" 7).
This is a finite abelian group killed by ¢". From the maps
H™ (Y, ZJ 0" Z) — H™(Yay, 20" Z)

we can get the inverse limit lim H™ (Yy, Z/¢"Z), which is a Z,-module of finite
type. Define
Hg (Y,Qr) = Q¢ ®z, lim H™ (Yo, Z/0"Z),

then HZ (Y, Q) is a finite dimensional Q,-vector space.

Let X be a proper and smooth variety over K, and Y = Xgs = XQ K*® =
X Xgpec k Spec(K*®). Then HZ (X ks, Qg) gives rise to an (-adic representation
of G.

For example, if X is an abelian variety of dimension g, then

HE ( Xk, Qo) = /\Q[(W(X))*~
If X = P4, then

0, if m is odd or m > 2d;
Qy (—%) , ifmiseven, 0 <m < 2d.

Hm(]P)(Ii(SaQZ) = {

Remark 1.9. This construction extends to more generality and conjecturally
to motives. To any motive M over K, one expects to associate an f-adic
realization of M to it.
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1.2 f¢-adic representations of finite fields

In this section, let K be a finite field of characteristic p with ¢ elements. Let
K* be a fixed algebraic closure of K and G = G = Gal(K*®/K) ~ Z be the
Galois group over K. Let K,, be the unique extension of K of degree n inside
K5 forn > 1. Let 7 = @}1 € G be the geometric Frobenius of G.

1.2.1 ¢-adic Galois representations of finite fields.

Recall the geometric Frobenius 7k (z) = 29" for any © € K? is a topological
generator of G. An f-adic representation of G is given by

p: G — Autg, (V)
TK — U

For n € Z, it is clear that p(t)t) = u™. For n € Z,

nY = lim ™.
p(Ti) = lim u
m—n

That is, p is uniquely determined by w.
Given any u € Autg,(V), there exists a continuous p : G — Autg, (V)
such that p(7x) = wu if and only if the above limit makes sense.

Proposition 1.10. This is the case if and only if the eigenvalues of u in a
chosen algebraic closure of Qg are £-adic units, i.e. P,(t) = det(u—t-Idy)(€
Qe[t]) is an element of Zy[t] and the constant term is a unit.

Proof. The proof is easy and left to the readers. O

Definition 1.11. The characteristic polynomial of 7, Py (t) = det(Idy —
tTx) is called the characteristic polynomial of the representation V.

We have Py (t) = (—t)"Py (1/t).

Remark 1.12. V is semi-simple if and only if u = p(7x) is semi-simple. Hence,
isomorphism classes of semi-simple ¢-adic representations V of G are deter-
mined by Py (t).

1.2.2 f-adic geometric representations of finite fields.

Let X be a projective, smooth, and geometrically connected variety over K.
Let C,, = Cp,(X) = #X(K,) € N be the number of K,-rational points of X.
The zeta function of X is defined by:

Zx(t) = exp (i C;"t”) e Z[[t]). (1.7)

n=1
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Let | X| be the underlying topological space of X. If z is a closed point of | X]|,
let K (z) be the residue field of z and deg(z) = [K(x) : K]. Then Zx (¢t) has

an Euler product
1

z€|X|
z closed
Theorem 1.13 (Weil’s conjecture, proved by Deligne). Let X be a pro-
jective, smooth, and geometrically connected variety over a finite field K. Then
(1). There exist Py, Py, - , Pog € Z[t], Pp(0) =1, such that

_ AR Pu)
Zx(t) = po(t)PQ(t)~-~PZd(t) .

(1.9)

where ¢ = #(K), d = dim X. If we make an embedding 7. — C, and decom-

pose
5771

Pm<t) = H(l — Oém)jt), Q5 € C.

j=1

Then |am, ;| = q% .
(2). There exists a functional equation

1
Zx (th> = 4¢Pt Zx (t) (1.10)

1 2
2.

U

(_1)mﬂm and ﬁm = deg Py,
0

where 3 =

The proof of Weil’s conjecture is why Grothendieck, M. Artin and others
([AGV73]) developed the étale theory, although the p-adic proof of the ratio-
nality of the zeta functions is due to Dwork [Dwo60]. One of the key ingredients
of Deligne’s proof ([Del74a, Del80]) is: for ¢ a prime number not equal to p,
the characteristic polynomial of the ¢-adic representation HZ (Xgs, Q) is

Prm(Xes,00)(t) = Pra(t).

Remark 1.14. Consider £,¢', two different prime numbers not equal to p. De-
note G = Gal(K*/K) ~ Z. We have the representations

p: GK — AthzHé?(XKS7Q€)>
Pl G — Autg Hi (Xk=, Qp).

If Im(p) is not finite, then

Im(p) ~Z; x ( finite cyclic group),
Im(p’) ~ Zy x ( finite cyclic group ).

LR
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Definition 1.15. Let Q be an algebraic closure of Q, and w € Z. A Weil
number of weight w ( relatively to K ) is an element a € Q satisfying

(1) there exists an i € N such that ¢'a € Z;

(2) for any embedding o : Q — C, |o(a)| = ¢*/2.
« is said to be effective if o € Z.

Remark 1.16. (1) This is an intrinsic notion.
(2) If i € Z and if « is a Weil number of weight w, then ¢'a is a Weil
number of weight w + 2 ( so it is effective if i > 0 ).

Definition 1.17. An {(-adic representation V of Gk is said to be pure of
weight w if all the roots of the characteristic polynomial of the geometric
Frobenius i acting on 'V are Weil numbers of weight w. Consider the char-
acteristic polynomial

Py (t) = det(1 — 7xt) ZHI—O(] EQ@H O@‘E@D@.

One says that V is effective of weight w if moreover a; € Z for 1 < j < m.

Remark 1.18. (1) Let V' be an ¢-adic representation. If V' is pure of weight w,
then V' (4) is pure of weight w — 2i. This is because G i acts on Q(1) through
x with x(arithmetic Frobenius)= g, so x(7x) = q~ . Therefore 75 acts on
Q¢ (i) by multiplication by ¢~%. If V is pure of weight w and if i € N, i > 0,
then V(—i) is effective.

(2) The Weil Conjecture implies that V = HZ (Xks, Q) is pure and ef-
fective of weight m, and Py (t) € Q[t].

Definition 1.19. An ¢-adic representation V of Gk is said to be geometric
if the following conditions holds:
(1) it is semi-simple;
(2) it can be written as a direct sum V = @ Vi, with almost all Vo, =0,
weZ
and V,, pure of weight w.

Let Repg, (G k) be the category of all f-adic representations of G, and
Repg,, geo(Gx) be the full sub-category of geometric representations. This is
a sub-Tannakian category of Repg,(Gk), i.e. it is stable under subobjects,
quotients, @, ®, dual, and Q, is the unit representation as a geometric repre-
sentation.

Denote by Repg, gro(Gk) the smallest sub-Tannakian category of Repg, (G )
containing all the objects isomorphic to HZ (X, Qg) for X projective smooth
varieties over K and m € N. This is also the smallest full sub-category of
Repg, (Gk) containing all the objects isomorphic to HZ(Xx-,Qe)(i) for all
X,m € Ni € Z, stable under sub-objects and quotients.

Conjecture 1.20. Repg,, 40o(Gx) = Repg, ¢ro(GK)-
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Theorem 1.21. We have Repg, 4.,(Gx) € Repg, gro(Gk)-

The only thing left in Conjecture 1.20 is to prove that HJ'(Xk=,Qy) is
geometric. We do know that it is pure of weight w, but it is not known in
general if it is semi-simple.

1.3 ¢-adic representations of local fields

1.3.1 ¢-adic representations of local fields.

Let K be a local field. Let k be the residue field of K, which is perfect of
characteristic p > 0. Let Og be the ring of integers of K. Let K*® be a
separable closure of K. Let Gx = Gal(K®/K), Ik be the inertia subgroup of
Gk, and Py be the wild inertia subgroup of G .

We have the following exact sequences

1—>IK—>GK—> Gk —>1,

Let ¢ be a fixed prime number, £ # p. Then there is the following isomorphism

I /P ~ 7' (1) = [[ 2(1) = 2o(1) x ] Ze(1)

L#p U#£ep

We define Pk ¢ to be the inverse image of Hl,;éprp(l) in Ix, and define
Gk ¢ the quotient group to make the short exact sequences

1—) PK,Z—) GK—> GK,Z_>17
1—>Z5(1)—>GKJ—> Gk—> 1.

Let V be an f-adic representation of Gk, and T be the corresponding Z,-
lattice stable under G . Hence we have

Gk _ AutZ, o~ GLh(Zg)
Autg, (V ~ GL(Qp)

where h = dimg, (V). The image p(G ) is a closed subgroup of Autz, (T').
Consider the following diagram

1— N1 E— GLh(Zg) — GLh(Fg) — 1,

where Ny is the kernel of the reduction map. Let NV, be the set of matrices
congruent to 1mod¢™ for n > 1. As N;/N, is a finite group of order equal
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to a power of ¢ for each n, N; ~ liLan/Nn is a pro-¢ group. Since Pk g is
the inverse limit of finite groups of orders prime to ¢, p(Px ) N N1 = {1}.
Consider the exact sequence

1— PK I PK7g — H Z@/(l) — 1,
L#p, L

as p(Pg, ¢) injects into GLp (Fy), p(Pk, ¢) is a finite group.

Definition 1.22. Let V' be an (-adic representation of Gx with p : Gg —
Athg (V)

(1) We say that V is unramified or has good reduction if I acts trivially.

(2) We say that V has potentially good reduction if p(Ix) is finite, in
other words, if there exists a finite extension K' of K contained in K* such
that V', as an (-adic representation of G+ = Gal(K*/K'"), has good reduction.

(8) We say that V is semi-stable if I acts unipotently, in other words, if
the semi-simplification of V' has good reduction.

(4) We say that V is potentially semi-stable if there exists a finite exten-
sion K' of K contained in K* such that V is semi-stable as a representation
Of GK/ .

Remark 1.23. Notice that (4) is equivalent to the condition that there exists
an open subgroup of Ix which acts unipotently, or that the semi-simplification
has potentially good reduction.

Theorem 1.24. Assume that the group pryee (K(pe)) = {€ € K(pe) | I n such
that € = 1} is finite. Then any l-adic representation of G is potentially
semi-stable. As oo (k) 2 pyos (K), this is the case if k is finite.

Proof. By replacing K by a suitable finite extension we may assume that Pk ,
acts trivially, then p factors through G ¢:

p

Gk Autg, (V)

N A

Gk, e
Consider the sequence
1— Z@(l) — Gg, o — G — 1.

Let t be a topological generator of Zy(1). So p(t) € Autg, (V). Choose a finite
extension F of Qg such that the characteristic polynomial of 5(t) is a product
of polynomials of degree 1. Let V' = E®q, V. The group Gk, ¢ acts on E®qg, V'
by

gA®v) =A® g(v).
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Let 5 : Gk, ¢ — Autg (V') be the representation over E, let a be an eigenvalue
of p(t). Then there exists v € V', v # 0 such that 5(¢)(v) = a - v.
If g € G, ¢, then gtg~1 = txe(@) | where Yy : Gk,¢ — Zj is a character.
Then
platg™)(w) = p (P49 (v) = 2,

Therefore

p(t)(g~" (v) = t(g™v) = (tg™")(v) = g~} (@ Wv) = aX*Pg 1o,

This implies, if a is an eigenvalue of p(t), then for all n € Z such that there
exists g € Gk, ¢ with x¢(g) = n, a™ is also an eigenvalue of p(t). The condition
Moo (K (p¢)) is finite <= Im(x) is open in Z;. Thus there are infinitely many
such n’s. This implies a is a root of 1. Therefore there exists an N > 1 such
that ¢V acts unipotently. The closure of the subgroup generated by ¢V acts
unipotently and is an open subgroup of Z,(1). Since I — Z,(1) is surjective,
the theorem now follows. O

Corollary 1.25 (Grothendieck’s ¢-adic monodromy Theorem). Let K
be a local field. Then any £-adic representation of Gk coming from algebraic
geometry (eg. Vi(A), H (XK=, Q) (3),--- ) is potentially semi-stable.

Proof. Let X be a projective and smooth variety over K. Then we can get
a field Ky which is of finite type over the prime field of K ( joined by the
coefficients of the defining equations of X). Let K; be the closure of Ky in
K. Then K, is a complete discrete valuation field whose residue field k; is of
finite type over IF,,. Let k2 be the radical closure of k1, and K> be a complete
separable field contained in K and containing K, whose residue field is ks.
Then pryo (k2) = pyo (k1), which is finite. Then

X:X()XKOK, XQZX()XKOKQ, X:XQXK2K,

where X is defined over K. The action of Gg on V comes from the action
of Gk,, hence the corollary follows from the theorem. O

Theorem 1.26. Assume k is algebraically closed. Then any potentially semi-
stable £-adic representation of Gk comes from algebraic geometry.

Proof. We proceed the proof in two steps. First note that k is algebraically
closed implies I = Gk.

Step 1. At first, we assume that the Galois representation is semi-stable. Then
the action of Pk , must be trivial from above discussions, hence the repre-
sentation factors through G . Identify Gg, ¢ with Zy(1), and let ¢ be a
topological generator of this group. Let V' be such a representation:

Gx L Autg, (V)

N A
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so p(t) € Autg, (V).

For each integer n > 1, there exists a unique (up to isomorphism) repre-
sentation V,, of dim n which is semi-stable and in-decomposable. Write it as
Vi = Qp, and

o q
1

As V, ~ Sym&l_l(Vg), it is enough to prove that V5 comes from algebraic
geometry. Write
0—Q —Vo—Qr—0,

where V5 is a non-trivial extension. It is enough to produce a non-trivial
extension of two f-adic representations of dimension 1 coming from algebraic
geometry. We apply the case for some ¢ € mg, ¢ # 0. Then from Tate’s
theorem, let E be an elliptic curve over K such that E(K*®) ~ (K*)*/q%, with

E(K®)m = {a € (K*)* | 3m € Z such that o = qm} /qen

and
Vi(E) = Q¢ @z, Te(E), Ty(E) =lm E(K*)em.

An element o € Ty(E) is given by

a = (ap)nen, n € E(K%)n, O‘fL+1 = Q.
From the exact sequence

0 — pgn(K) — E(K*)pn — 2/"2 — 0

we have
0 — Q1) — Vi(E) — Q — 0.

The action of Gk on the left Q,(1) of the above exact sequence is trivial, since
it comes from the action of unramified extensions. And the extension Vy(FE)
is non-trivial.

Step 2. Assume the representation is potentially semi-stable. Let V' be a po-
tentially semi-stable /-adic representation of G . Then there exists a finite
extension K’ of K contained in K*® such that I = G+ acts unipotently on
V.

Let ¢ be a uniformizing parameter of K'. Let E be the Tate elliptic curve
associated to ¢q defined over K, and let Vy(E) be the semi-stable Galois rep-
resentation of G . From the “Weil scalar restriction of E”, we get an abelian
variety A over K and

Vi(A) = Indg, Vi(E).
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an (-adic representation of G of dimension 2 - [K’ : K]. All the ¢-adic repre-
sentations of Gx, which are semi-stable f-adic representations of Gk, come
from V;(A). O

1.3.2 An alternative description of potentially semi-stable ¢-adic
representations.

Let the notations be as in the previous subsection. To any ¢ € mg, ¢ # 0, let
FE be the corresponding Tate elliptic curve. Thus

Vi(B) = Ve ((K*)" /") = Qe @ lim ((K*)* /47) ..
Let ¢t be a generator of Q;(1). Then we have the short exact sequence
0 — Q¢ — Ve ((K*)"/¢%) (=1) — Qe¢(~1) — 0.

Write Q¢(—1) = Q- t7, and let u € V; ((K*)*/¢%) (—1) be a lifting of ¢t~1.
Put
Be = @f[uL

then b @ t~! € By(—1) = By ®g, Qe(—1). We define the following map

N : By — By(-1)
b — b @t 1= f% ®t L

Let V be an ¢-adic representation of G g, and H be the set of open normal
subgroups of I . Define

D(V) = lim (B, @q, V). (1.11)
HeH

Proposition 1.27. dimg, D,(V) < dimg, V.

The map N extends to N : Dy(V) — Dy(V)(—1). And we define a
category ¥ = the category of pairs (D, N), in which

e D is an f-adic representation of G with potentially good reduction; N :
D — D(-1) is a Q-linear map commuting with the action of G, and
is nilpotent. Here nilpotent means the following: write N(§) = N;(§) @t~ 1,
where N; : D — D, then that N; ( or N ) is nilpotent means that the
composition of the maps

D D(-1) NEY, D(=2) — - Nertl), D(—r)

is zero for r large enough.
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e Home ((D,N),(D’,N")) is the set of the maps n : D — D’ where 7 is
Qg-linear, commutes with the action of Gk, and the diagram

D—"—=pr
I
D(-1) ~— D'(-1)

comimutes.

We may view Dy as a functor from the category of {-adic representations
of Gk to the category %. There is a functor in the other direction

V,:% — Repg,(Gk)-
Suppose the Galois group Gk acts diagonally on By ®g, D. Since
(Br ®q, D)(=1) = (B ®g, D) ®q, Qe(—1) = Bi(—1) ®q, D = By g, D(-1),
define the map N : B, ®q, D — (B ®q, D)(—1) by
Nb®J§)=Nb®d+b® NJ.
Now set
V((D,N)=Ker (N : B;®q, D — (B; ®q, D)(—1)).
Proposition 1.28. (1) V,(D,N) is stable by Gk and dimg,V,(D,N) =
dimg, (D) and V¢(D, N) is potentially semi-stable.
(2). If V is any ¢-adic representation of Gk, then
Vi(De(V)) =V
1s injective and is an isomorphism if and only if V is potentially semi-stable.

The above result implies that D, induces an equivalence of categories
between the category of potentially semi-stable ¢-adic representations of Gx
and the category ¢, and Vy is the quasi-inverse functor of Dy.

Exercise 1.29. Let (D, N) be an object of . The map

V@(D) C By Rq, D— D
Yo Pi(u) ®6; — >, Pi(0) ®6;

induces an isomorphism of Qg-vector spaces between V;(D) and D ( but it
does not commute with the action of Gk ). Describe the new action of Gk
on D using the old action and N.
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1.3.3 The case of a finite residue field.

Assume k is a finite field with ¢ elements. We have the short exact sequence
1—Igx — Gg — G — 1,

and let 7, € G denote the geometric Frobenius. By definition, the Weil group
of k is
Wk ={g € Gk | Im € Z such that g|; = ¢;'}.

Hence there is a map
P WK — 7

with p(g) = m if g|; = ¢}, and it induces the exact sequence

1l— Iy — Wxg — 7 — 1.

If F is any field of characteristic 0, we may consider E-linear continuous
representations of W with the discrete topology on E. Such a representation
is a finite dimensional E-vector space V plus a homomorphism of groups

p: Wi — Autg(V)

such that Ker (p) N Ik is open in Ik.

Any f-adic representation V' of G which has potentially good reduction
defines a continuous Qy-linear representation of Wx. As Wi is dense in G,
the action of Wg determines the action of G.

We will now consider the following

— WDk = the Weil-Deligne group of K.
— Let F be any field of characteristic 0, there is the category of FE-linear
representations of W D, denoted by Repy(W Dk).

For an FE-vector space D with an action of Wk, we can define D(—1) =
D®g E(—1), where E(—1) is a one-dimensional E-vector space on which Wi
acts, such that Ix acts trivially and the action of 7, is multiplication by ¢~ '.

An object of Rep g (W Dk ) is a pair (D, N) where D is an E-linear contin-
uous representation of Wi and N : D — D(—1) is a morphism of E-linear
representation of Wy ( This implies N is nilpotent ).

Let Repg, ,st(G ) be the category of potentially semi-stable f-adic rep-
resentation of G'i. We consider the functor

Rep@bpst(GK) — RepE(WDK)
Vi— (D¢(V), N),

which is fully faithful.
Now consider E and F', which are two fields of characteristic 0 (for instance,
E=Qy,and F = Q). Let

— D = an E-linear representation of W D.
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— D’ = an F-linear representation of WD

D and D’ are said to be compatible if for any field {2 and embeddings
E— and F— 0,
N ®p D~ 2 ®p D' are isomorphic as 2-linear representations of WD

Theorem 1.30. Assume that A is an abelian variety over K. If £ and ¢’ are
different prime numbers not equal to p, then Vp(A) and Vi (A) are compatible.

Conjecture 1.31. Let X be a projective and smooth variety over K. For any
m € N, if £, ¢ are primes not equal to p, then

HE (X s, Q) and Hgf (X ks, Qu)
are compatible.

Remark 1.32. If X has good reduction, it is known that the two representa-
tions are unramified with the same characteristic polynomials of Frobenius by
Weil’s conjecture. It is expected that 7 acts semi-simply, which would imply
the conjecture in this case.

1.3.4 Geometric ¢-adic representations of G.

We will describe geometric E-linear representation of W Dg for any field £
of characteristic 0. A geometric {-adic representation of G for £ # p will be
an /-adic representation such that the associated Q-linear representation of
W D is geometric.

Let V be an E-linear continuous representation of Wy . Choose ¢ € Wi
a lifting of 7:

1l—Igxg —Wg —7Z—1
p — 1

Choose w € Z.

Definition 1.33. The representation V is pure of weight w if all the roots of
the characteristic polynomial of ¢ acting on'V (in a chosen algebraic closure
E of E ) are Weil numbers of weight w relative to k, i.e. for any root \, A € Q
and for any embedding o : Q — E, we have

|o(A) [=¢""2.

The definition is independent of the choices.
Let V be any FE-linear continuous representation of Wy, and let r € N.
Set
D=VoV(-1)eV(-2)® - --aV(-r)

and N : D — D(—1) given by
N(U07’U—17U—2a U 7U—7') = (U—la’U—Qa e 7U—7'70)'

This is a representation of W Dg.
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Definition 1.34. An FE-linear representation of W Dk is elementary and
pure of weight w + r if it is isomorphic to such a D with V satisfying

(1) V is pure of weight w;

(2) V is semi-simple.

Definition 1.35. Let m € Z. A geometric representation of W Dg pure of
weight m is a representation which is isomorphic to a direct sum of elementary
and pure representation of weight m.

As a full sub-category of Repg(W D), these representations make an
abelian category Rep yo,(W D). For £ # p, let

Rep&, geo (GK)

be the category of pure geometric ¢-adic representation of G of weight m,
which is the category of those V' such that (D,(V'), N) is in Repg,, geo(W D).

Congecture 1.36. For £ # p, H" (X k=, Qpg)(¢) should be an object of Rep@féeo(WDK)
and these objects should generate the category.

In the category Repy (W Dk), let
Repr(WDg) = the category of weighted E-linear representation of WDk

An object of this category is an FE-linear representation D of W Dk plus an
increasing filtration

S C WD C WyaDC -+
where W,,, D is stable under W Dg, and

WnD=D if m>0,
WD =0 it m<O0.

Morphisms are morphisms of the representations of W D g which respect the
filtration. This is an additive category, but not an abelian category. Define

Repg, geo(WDk),

the category of geometric weighted E-linear representations of WDk, to be
the full sub-category of Rep (W D) of those D’s such that for all m € Z,

g?ﬂmD = WmD/Wmle
is a pure geometric representation of weight m.
Theorem 1.37. Repy ,.,(WDk) is an abelian category.

It is expected that if M is a mized motive over K, for any £ prime number
# p, Hy(M) should be an object of Repg, yeo(Gk)-
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p-adic Representations of fields of
characteristic p

2.1 B-representations and regular G-rings

2.1.1 B-representations.

Let G be a topological group and B be a topological commutative ring
equipped with a continuous action of G compatible with the structure of
ring, that is, for all g € G, b1,bo € B

g(b1 +b2) = g(b1) + g(b2), g(b1b2) = g(b1)g(b2).

Ezample 2.1. B = L is a Galois extension of a field K, G = Gal(L/K), both
equipped with the discrete topology.

Definition 2.2. A B-representation X of G is a B-module of finite type
equipped with a semi-linear and continuous action of G, where semi-linear
means that for all g € G, A € B, and z,z1,12 € X,

g(wy +x2) = g(x1) + g(z2),  g(Ax) =g(N)g(x).

If G acts trivially on B, we just have a linear representation. If B = F,
with the discrete topology, we say mod p representation instead of F,-
representation. If B = Q,,, with the p-adic topology, we say p-adic repre-
sentation instead of Q,-representation.

Definition 2.3. A free B-representation of G is a B-representation such that
the underlying B-module is free.

Ezxample 2.4. Let F be a closed subfield of B¢ and V be a F-representation
of G, let X = B®p V be equipped with G-action by g(A ® z) = g(\) ® g(x),
where g € G,\ € B,x € X, then X is a free B-representation.

Definition 2.5. We say that a free B-representation X of G is trivial if one
of the following two conditions holds:

(1) There exists a basis of X consisting of elements of X ;

(2) X ~ B¢ with the natural action of G.
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We now give the classification of free B-representations of G of rank d for
deNandd>1

Assume that X is a free B-representation of G with {ey,--- ,eq} as a basis.
For every g € G, let

d
g(ej) = Z Qi (9)ei,

then we get a map o : G — GL4(B),

a(g) = (aij(9))i<ij<a- (2.1)
It is easy to check that « is a l-cocycle in Z} (G, GL4(B)). Moreover, if
{€1,--- , €} is another basis and if P is the base change matrix, write
d
glef) = di(9)el,  o'(g) = (a};(9)r<ij<ds
i=1
then we have
o/ (9) = P~ a(g)g(P). (22)

Therefore o and o are cohomologous to each other. Hence the class of o in
HL . (G,GL4(B)) is independent of the choice of the basis of X and we denote
it by [X].

Conversely, given a l-cocycle a € ZL  (G,GL4(B)), there is a unique
semi-linear action of G on X = B such that, for every g € G,

d
g(ej) = Zaij(g)eia (2.3)

and [X] is the class of a. Hence, we have the following proposition:

Proposition 2.6. Let d € N. The correspondence X — [X]| defines a bijec-
tion between the set of equivalence classes of free B-representations of G of
rank d and HY . (G,GLg(B)). Moreover X is trivial if and only if [X] is the

cont

distinguished point in HX (G, GL4(B)).
We see also what Hilbert’s Theorem 90 means:

Proposition 2.7. If L is a Galois extension of K and if L is equipped with
the discrete topology, then any L-representation of Gal(L/K) is trivial.

2.1.2 Regular (F, G)-rings.

In this subsection, we let B be a topological ring, G be a topological group
which acts continuously on B. Set E = B%, and assume it is a field. Let F be
a closed subfield of E.

If B is a domain, then the action of G extends to C' = Frac B by

b1> g(b1)
— | = , forall ged, b,by € B. 2.4
g <b2 g(b2) g 1,02 ( )



2.1 B-representations and regular G-rings 21

Definition 2.8. We say that B is (F,G)-regular if the following conditions
hold:

(1) B is a domain.

(2) B¢ = CC.

(3) For every b € B,b # 0 such that for any g € G, if there exists A € F
with g(b) = b, then b is invertible in B.

Remark 2.9. This is always the case when B is a field.

Let Repyr(G) denote the category of continuous F-representations of G.
This is an abelian category with additional structures:

e Tensor product: if V7 and V5 are F-representations of G, we set V] ® Vo =
Vi ®F Va2, with the G-action given by g(v; ® v2) = g(v1) ® g(v2);

e Dual representation: if V is a F-representation of G, we set V* =
Z(V,F) = {linear maps V — F}, with the G-action given by (gf)(v) =
fla7 ()

e Unit representation: this is F' with the trivial action.

We have obvious natural isomorphisms
Vio(heVs)~(Vieolh) eV, WheVi~Viel, VeF~FV~V.

With these additional structures, Repy(G) is a neutral Tannakian cate-
gory over F (ref. e.g. Deligne [Del] in the Grothendieck Festschrift, but we
are not going to use the precise definition of Tannakian categories).

Definition 2.10. A category €' is a strictly full sub-category of a category
€ if it is a full sub-category such that if X is an object of € isomorphic to an
object of €', then X € €.

Definition 2.11. A sub-Tannakian category of Repp(G) is a strictly full
sub-category €, such that

(1) The unit representation F is an object of € ;

(2) If V€ € and V' is a sub-representation of V, then V' and V/V' are
all in €;

(3) If V is an object of €, so is V*;

(4) If V1,Va € €, so is V1 @ Va;

(5) val,VQ S cg, sois Vi ® Vs.

Definition 2.12. Let V be a F-representation of G. We say V is B-admissible
if BpV is a trivial B-representation of G.

Let V be any F-representation of GG, then B ®p V, equipped with the
G-action by g(A® z) = g(\) ® g(x), is a free B-representation of G. Let

Dp(V) = (Bor V)Y, (2.5)

we get a map
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ay: BegDp(V) — BepV

AR — AT (2.6)

for A € B, z € Dp(V). ay is B-linear and commutes with the action of G,
where G acts on BRg Dg(V) via gA® z) = g(\) ® «.

Theorem 2.13. Assume that B is (F,G)-regular. Then
(1) For any F-representation V of G, the map «y is injective and
dimp Dg(V) < dimp V. We have

dimg Dg(V) =dimp V < ay is an isomorphism

. - (2.7)
<V is B-admissible.

(2) Let Rep2(G) be the full subcategory of Repp(G) consisting of these
representations V which are B-admissible. Then Rep?(G) 15 a sub-Tannakian
category of Repp(G) and the restriction of Dp (regarded as a functor from
the category Rep(G) to the category of E-vector spaces) to Rep2(G) is an
exact and faithful tensor functor, i.e., it satisfies the following three properties:

(i) Given Vi and V2 admissible, there is a natural isomorphism

D (Vi) @ Dp(V2) ~ Dp(Vi @ Va). (2.8)
(ii) Given V' admissible, there is a natural isomorphism
Dy(V*) = (Dp(V))". (2.9)
(iii) Dp(F) ~ E.

Proof. (1) Let C' = Frac B. Since B is (F,G)-regular, C = B¢ = E. We
have the following commutative diagram:

B®g DB(V) — BpV
B®gDc(V)

CRpDc(V)——=C®prV.

To prove the injectivity of ay, we are reduced to show the case when B = C
is a field. The injectivity of ay means that given h > 1, z1,...,z;, € Dg(V)
linearly independent over E, then they are linearly independent over B. We
prove it by induction on h.

The case h = 1 is trivial. We may assume h > 2. Assume that xq1, -, xp
are linearly independent over E, but not over B. Then there exist A, -+, Ap €

h
B, not all zero, such that > A\;z; = 0. By induction, the \s are all different
i=1
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from 0. Multiplying them by —1/\;,, we may assume A, = —1, then we get

h—1
xp = Y, Mz;. For any g € G,
i=1

h—1

ry = g(wp) = ZQ(M)%

then

By induction, g(X\;) = \;, for 1 <i < h—1,ie., \; € BY = E, which is a
contradiction. This finishes the proof that ay is injective.
If oy is an isomorphism, then

dimpg DB(V) =dimp V =rankg B®Qg V.

We have to prove that if dimg Dp(V) = dimp V, then ay is an isomorphism.

Suppose {v1,- -+ ,vq} is a basis of V over F, set v} = 1®wv;, then vy, --- , v}
is a basis of B ®p V over B. Let {e1, - ,eq} be a basis of Dp(V) over E.

d
Then e; = 3 b;;v;, for (b;j) € Mg(B). Let b = det(b;;), the injectivity of ay
implies b £ 0.

We need to prove b is invertible in B. Denote det V = /\jf7 V = Fuv, where
v =wv; A+ Avg. We have g(v) = n(g)v with n : G — F*. Similarly let
e=eN---Neg € /\CI{JDB(V)7 g(e) = e for g € G. We have e = bv, and
e = g(e) = g(b)n(g)v, so g(b) = n(g)~1b for all g € G, hence b is invertible in
B since B is (F, G)-regular.

The second equivalence is easy. The condition that V' is B-admissible, is
nothing but that there exists a B-basis {1, , 24} of B®&p V such that each
x; € Dp(V). Since ay (1 ® ;) = ;, and ay is always injective, the condition
is equivalent to that ay is an isomorphism.

(2) Let V be a B-admissible F-representation of G, V' be a sub-F-vector
space stable under G, set V" = V/V’, then we have exact sequences

0=V -V V"0

and
0—-BRrV - BrV - BrV” —0.

Then we have a sequence
0— Dg(V')—=Dp(V) = Dg(V") --»0 (2.10)

which is exact at Dg(V’) and at Dg(V). Let d = dimp V, d' = dimp V',
d" = dimp V", by (1), we have
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dimgDp(V)=d, dimgDpg(V')<d, dimgDg(V")<d",

but d = d'4+d”, so we have equality everywhere, and (2.10) is exact at D (V")
too. Then the functor Dp restricted to Rep%(Q) is exact, and is also faithful
because D (V) £ 0 if V #£ 0.

Now we prove the second part of the assertion (2). (iii) is trivial. For (i),
we have a commutative diagram

X

(Berp V1) ®p (BQF V2) B®r (V1 ®F Va)

|

Dg(Vi) @ Dp(V2) - " >Dp(Vi @F V2)

where the map o is induced by Y. From the diagram o is clearly injective.
On the other hand, since V; and V5 are admissible, then

dimg Dp(V1) g Dp(V2) = dimp(B @ (V1 @F V2)) > dimg Dp(Vi ®F V2),

hence o is in fact an isomorphism.

At last for (ii), assume V is B-admissible, we need to prove that V* is
B-admissible and Dg(V*) ~ Dg(V)*.

The case dimp V = 1 is easy, since in this case V = Fv, Dg(V) = E-b®w,
and V* = Fv*, Dg(V*) = E-b~! @ v*.

If dimp V = d > 2, we use the isomorphism

(/\dF_1V) ® (det V)* ~ V*.

dF_l V' is admissible since it is just a quotient of ®iﬂ_1 V, and (det V)* is
also admissible since dimdet V =1, so V* is admissible.
To show the isomorphism Dg(V*) ~ Dg(V)*, we have a commutative
diagram
BepV*—= (BapV)*

!

Dy(V*) "= Da(V)’

where the top isomorphism follows by the admissibility of V*. Suppose f €
Dp(V*) and t € B®p V, then for g € G, go f(t) = g(f(g71(t))) = f(t). If
moreover t € Dg(V), then g(f(t)) = f(t) and hence f(t) € E. Therefore we
get the induced homomorphism 7. From the diagram 7 is clearly injective, and
since both Dp(V') and Dp(V*) have the same dimension as E-vector spaces,
7 must be an isomorphism. a
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2.2 Mod p Galois representations of fields of
characteristic p > 0

In this section, we assume that E is a field of characteristic p > 0. We choose
a separable closure E° of E and set G = Gg = Gal(E?®/E). Set ¢ = (A — AP)
to be the absolute Frobenius of E.

2.2.1 Etale p-modules over E.

Definition 2.14. A p-module over E is an E-vector space M together with a
map ¢ : M — M which is semi-linear with respect to the absolute Frobenius,
i.e.,

ez +y) =¢@)+e(y), foralzyecM; (2.11)

e(Az) = o(N)p(x) = Np(z), forall A€ E, € M. (2.12)

If M is an E-vector space, let M, = F',®z M, where E is viewed as an
E-module by the Frobenius ¢ : E — E, which means for A,y € F and x € M,

AMp@z) =\, A® pxr = pPA® .

M, is an E-vector space, and if {e1,--- ,eq} is a basis of M over E, then
{1®eq,---,1®eq} is a basis of M, over E. Hence we have

dimp M, = dimg M.
Our main observation is

Remark 2.15. If M is any E-vector space, giving a semi-linear map ¢ : M —
M is equivalent to giving a linear map

: M, — M

A®x— Ap(x). (2.13)

Definition 2.16. A ¢-module M over E is étale if & : M, — M is an
isomorphism and if dimg M is finite.

Let {e1, - ,eq} be a basis of M over F, and assume

d
pej = E @ij€i,
i=1

then $(1®e;) = Zle a;;je;. Hence

M is étale <= @ is an isomorphism <= @ is injective
<= @ is surjective <= M = FE - (M) (2.14)
<= A = (a;;) is invertible in E.

Let ///ﬁ%E) be the category of étale p-modules over E with the morphisms
being the E-linear maps which commute with .
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Proposition 2.17. The category ///ﬁt(E) s an abelian category.

Proof. Let E[p] be the non-commutative (if E # F),) ring generated by E and
an element ¢ with the relation pA = APy, for every A € E. The category of
w-modules over E is nothing but the category of left F[p]-modules. This is
an abelian category. To prove the proposition, it is enough to check that, if
1 : My — My is a morphism of étale p-modules over E, the kernel M’ and
the cokernel M” of 1 in the category of p-modules over E are étale.

In fact, the horizontal lines of the commutative diagram

0 M<:o (M1>w (M2)<p - (M”)<p —0
N
0 M’ M, Mo M 0

are exact. By definition, #; and @, are isomorphisms, so ¢’ is injective and &
is surjective. By comparing the dimensions, both & and ¢ are isomorphisms,
hence Kern and Cokern are étale. a

The category //{f)t(E) possesses the following Tannakian structure:

e Let My, M; be two étale p-modules over E. Let My @ My = My @ M.
It is viewed as a w-module by

p(T1 @ 12) = (1) ® P(22).

One can easily check that My @ My € A5 (E).
e F is an étale p-module and for every M étale,

ME=E®M =M.

e If M is an étale p-module, assume that @ : M, = M corresponds to .
Set M* = %g(M, E), We have

b M* 5 (M) ~ (M*),,

where the second isomorphism is the canonical isomorphism since F is a
flat E-module. Then
t¢—1 . (M*)go l} M*

gives a p-module structure on M*. Moreover, if {e1, - ,e4} is a basis of
M, and {e],--- ,e}} is the dual basis of M*, then

o(e;) = Zaij% p(ef) = Z bijei

with A and B satisfying B = ‘A~!.
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2.2.2 The functor M.

Recall that

Definition 2.18. A mod p representation of G is a finite dimensional F,-
vector space V' together with a linear and continuous action of G.
Denote by Repr (G) the category of all mod p representations of G.

We know that G acts continuously on E° equipped with the discrete topol-
ogy, F, C (E*)¢ = E, and E* is (F,, G)-regular. Let V be any mod p repre-
sentation of G. By Hilbert’s Theorem 90, the E*-representation E° @, V is
trivial, thus V is always E®-admissible. Set

M(V) = Dp:(V) = (E° ®g, V)<, (2.15)
then dimp M(V) = dimg, V, and
ay: E*@pM(V) — E*®p, V

is an isomorphism.
On E*, we have the absolute Frobenius ¢(z) = 2P, which commutes with
the action of G-

o(g(x)) = g(p(x)), forallge G, x € E®
We define the Frobenius on E® ®p, V' as follows:
PARV) =N @v=0p) .
For all x € E* @, V, we have

o(g(x)) = g(p(x)), forallged,

which implies that if = is in M(V), so is ¢(z). We still denote by ¢ the
restriction of ¢ on M(V'), then we get

w: M(V) — M(V).

Proposition 2.19. If V is a mod p representation of G of dimension d, then
the map
ay: E*@pM(V) - E*®p, V

is an isomorphism, M(V) is an étale o-module over E and dimg M(V) = d.
Proof. We already know that
ay  E°®g M(V) — B* ®Fp \%4

is an isomorphism and this implies dimg M(V) = d.
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Suppose {v1,--- ,vq} is a basis of V over F,, and by abuse of notations,
write v; = 1 ® v;. Suppose {e1,-- ,eq} is a basis of M(V') over E. Then

d
€ = Zbij% for B = (bij) € GLa(E").
=1

Hence
d d
<p(ej) = Z bfjl]i = Zaijei.

i=1 i=1

Then A = (a;;) = B~'¢(B), and
det A = (det B) ™! det(p(B)) = (det B)P~! #£ 0.
This proves that M(V) is étale and hence the proposition. a
From Proposition 2.19, we thus get an additive functor

M : Repy, (G) — 45 (E). (2.16)

2.2.3 The inverse functor V.
We now define a functor
V: M (E) — Repg, (G). (2.17)
Let M be any étale p-module over E. We view E* @ M as a p-module via
pA®x) =N @ p(z)
and define a G-action on it by
gA®x)=gA) @z, forged.

One can check that this action commutes with ¢. Set

VM) ={y e E° @ M | ¢(y) =y} = (E° @ M),_,, (2.18)
which is a sub F,-vector space stable under G.
Lemma 2.20. The natural map

ay : E? QF, V(M) — E°®g M

Ny o (2.19)

is injective and therefore dimg, V(M) < dimg M.
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Proof. We want to prove that if vy, -+ ,v, € V(M) are linearly independent
over [, then they are also linearly independent over £°. We use induction
on h.

The case h =1 is trivial.

Assume that A > 2, and that there exist A1, --- , A\, € E*, not all zero, such
that Z?:l Aiv; = 0. We may assume A, = —1, then we have v, = Z?;ll Aiv;.

Since ¢(v;) = v;, we have
h—1
_E : p
vp = A; Vi,
i=1

which implies AY = \; by induction, therefore \; € F,,. O
Theorem 2.21. The functor

M : Repy, (G) — A" (E)
s an equivalence of Tannakian categories and

V: M5 (E) — Repy, (G)
s a quasi-inverse functor.
Proof. Let V be any mod p representation of G, then

ay : E° @ M(V) BANY ®F, V

is an isomorphism of E*-vector spaces, compatible with Frobenius and with
the action of G. We use this to identify these two terms. Then

VIM(V)) ={y € E° @5, V | o(y) =y}
Let {v1, -+ ,vq} be a basis of V. If

d d
y:Z/\i®vi:Z)\wi€E5®V,
i=1

i=1
we get p(y) = > M v;, therefore
oy =y<= A\ elF <= yecV.

We have proved that V(M(V)) = V. Since V(M) # 0 if M # 0, a formal
consequence is that M is an exact and fully faithful functor inducing an equiv-
alence between Repy () and its essential image (i.e., the full subcategory of
///ﬁt(E) consisting of those M which are isomorphic to an M(V)).
We now need to show that if M is an étale p-module over F, then there
exists V such that
M ~ M(V).
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We take V = V(M), and prove that M ~ M(V(M)).
Note that

V(M) ={ve E°@rg M | p(v) =uv}
={v e Lg(M*, E°) | pv = vp}.

Let {ef, -+ ,ej} be a basis of M*, and suppose p(e;) = > bjje;, then giving
v is equivalent to giving x; = v(ef) € E®, for 1 < i < d. From

p(v(e})) = v(p(e))),
we have that

d d
p_ o) — o
T = U(i bmei) = E bijx;.
i=1 i=1

Thus
d
VM) = {1, wa) € (B |2 = 3 bijas, ¥ = 1, .
=1
Let R = E[zq,--- ,md]/(x’; - Z?:l bijxi)1<j<d, we have
V(M) = HomEfalgebra(Ry Es) (220)

Lemma 2.22. Let p be a prime number, E be a field of characteristic p, E*°
be a separable closure of E. Let B = (b;;) € GLq(E) and by,--- ,bg € E. Let

d
R=E[X1, -, Xal/(X] =D bi Xi = bjhr<j<a
=1

Then the set Homp_algebra (R, E®) has exactly p? elements.

Let’s first finish the proof of the theorem. By the lemma, V(M) has p? ele-
ments, which implies that dimg, V(M) = d. As the natural map

ay  E? ®]Fp V(M) — B QM
is injective, this is an isomorphism, and one can check that
M(V(M)) ~ M.

Moreover this is a Tannakian isomorphism: we have proven the following
isomorphisms

- M((V1® V) =M(Vi) @ M(Va),
— M(V*) = M(V)*,
M(F,) = E,
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and one can easily check that these isomorphisms are compatible with Frobe-
nius. Also we have the isomorphisms

- V(M ® M) = V(M) ® V(My);
- V(M*) = V(M)
- V(E) =T,

and these isomorphisms are compatible with the action of G. a

Proof of Lemma 2.22. XX Write z; the image of X; in R foreveryi=1,--- ,d.
We proceed the proof in three steps.

(1) First we show that dimg R = p?. It is enough to check that {xl zp a2l
with 0 < i < p—1 form a basis of R over E. For m =0,1,...,d, set

Rm:E[Xh a Zble 1<J<m

Then, for m > 0, R,, is the quotient of R,,_; by the ideal generated by the
image of XP — Zf-l:l bim X; — by, By induction on m, we see easily that R,, is
a free E[Xpmi1, Xmio, ..., Xg-module with the images of { X1 X2 . Xim}
with 0 < iy <p—1 as a basis.
(2) Then we prove that R is an étale F-algebra. This is equivalent to
!21 hiE = = 0. But QR/E is generated by dxq,--- ,dzy. From x? = Zd:lbijxi + by,
i=

we have
0=pa? lda; = Zb”dx],

hence dx; = 0, since (b;;) is invertible in GLd( ).
(3) As R is étale over E, it has the form F; x -+ x E,. (see, e.g. XX or
Ilusie’s course note) where the E;’s are finite separable extensions of E. Set

n; = [E; : E], then p¢ = dimg R = Y n;. On the other hand, we have
i=1
HomE—algebra(Ra Es) = H HomE—algebra(Eia E5)7
i
and for any i, there are exactly n; F-embeddings of F; into E°. Therefore the
set Hompg_aigebra(F, E°) has p? elements. m|

Remark 2.23. Suppose d > 1, A € GL4(FE), we associate A with an E-vector
space M4 = E?, and equip it with a semi-linear map ¢ : M4 — M, defined

by
p(Aej) = NP Z a;je;

where {e1,--- ,eq} is the canonical basis of M4. Then for any A € GL4(FE),
we obtain a mod p representation V(M 4) of G of dimension d.
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On the other hand, if V' is any mod p representation of G of dimension d,
then there exists A € GL4(F) such that V ~ V(My4). This is because M(V)
is an étale p-module, then there is an A € GL4(E) associated with M(V),
and M(V) ~ M4. Thus V ~ V(M,).

Moreover, if A, B € GL4(FE), then

V(Ma) ~ V(Mg) < there exists P € GLq(FE), such that B = P~'Ap(P).
Hence, if we define an equivalence relation on GL4(E) by
A ~ B ¢ there exists P € GLy4(E), such that B = P~ Ap(P),

then we get a bijection between the set of equivalences classes on GL4(E) and
the set of isomorphism classes of mod p representations of G of dimension d.

2.3 p-adic Galois representations of fields of
characteristic p > 0

2.3.1 Etale p-modules over &.

Let E be a field of characteristic p > 0, and E*® be a separable closure of F
with the Galois group G = Gal(E°/E). Let Repg, (G) denote the category
of p-adic representations of G.

From §A.2.4, we let Og be the Cohen ring C(E) of E and £ be the field of
fractions of Og¢. Then

Og = lim O¢ /p"O¢
neN

and Og/pOg = E, £ = Og[-]. The field £ is of characteristic 0, with a

1

complete discrete valuation, wlfose residue field is F and whose maximal ideal
is generated by p. Moreover, if £’ is another field with the same property,
there is a continuous homomorphism ¢ : £ — £’ of valuation fields inducing
the identity on F and ¢ is always an isomorphism. If F is perfect, ¢ is unique
and Og may be identified to the ring W(E) of Witt vectors with coefficients
in F.

We can always provide £ with a Frobenius ¢ which is a continuous endo-
morphism sending Og into itself and inducing the absolute Frobenius x +— zP
on E. Again ¢ is unique whenever E is perfect.

For the rest of this section, we fix a choice of £ and .

Definition 2.24. (1) A p-module over Og is an Og-module M equipped with
a semi-linear map ¢ : M — M, that is:

(T +y) = o)+ ¢(y)

p(Ar) = o(N)e(z)
forx,ye M, X € O¢.
(2) A p-module over & is an E-vector space D equipped with a semi-linear
map p: D — D.
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Remark 2.25. A p-module over Og¢ killed by p is just a ¢p-module over E.

Set
Mtp = Og Lp®o‘€ M.
As before, giving a semi-linear map ¢ : M — M is equivalent to giving a Og¢-

linear map @ : M, — M. Similarly if we set D, = £ ,®, D, then a semi-linear
map ¢ : D — D is equivalent to a linear map ¢ : D, — D.

Definition 2.26. (1) A p-module over Og is étale if M is an Og-module of
finite type and @ : M, — M 1is an isomorphism.

(2) A p-module D over £ is étale if dimg D < oo and if there exists an
Og¢-lattice M of D which is stable under ¢, such that M is an étale p-module
over Og.

It is easy to check that

Proposition 2.27. If M is an Og-module of finite type with an action of ¢,
then M is étale if and only if M /pM is étale as an E-module.

Recall that an Og-lattice M is a sub Og-module of finite type containing
a basis. If {e1, -+ ,eq} is a basis of M over Og, then it is also a basis of D
over &£, and

d
pe; = Zaijei, (aij) S GLd(Og).
i=1

One sees immediately that

Proposition 2.28. The category 45 (O¢) (resp. M (E)) of étale p-modules
over Og (resp. £) is abelian.

Let Repg, (G) (resp. Repy (G)) be the category of p-adic representations
(resp. of Z,-representations) of G. We want to construct equivalences of cat-
egories:

M: Repr(G) — //lﬁt(é')

and )
M : Repy (G) — MG (O).

2.3.2 The field £ur

Let F be a finite extension of £, Of be the ring of the integers of F. We say
F /& is unramified if

(1) p is a generator of the maximal ideal of Ox;
(2) F = Og/p is a separable extension of E.

For any homomorphism f : E — F of fields of characteristic p, by Theo-
rem A.45, the functoriality of Cohen rings tells us that there is a unique local
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homomorphism C(FE) — C(F') which induces f on the residue fields. Then for
any finite separable extension F' of F, there is a unique unramified extension
F = FracC(F') of £ whose residue field is F' (where unique means that if F,
F' are two such extensions, then there exists a unique isomorphism F — F’
which induces the identity on F'), and moreover there exists a unique endo-
morphism ¢’ : F — F such that ¢’|¢ = ¢ and induces the absolute Frobenius
map A — AP on F. We write F = Ep and still denote ¢’ as ¢.
Again by Theorem A.45, this construction is functorial:

o:F — F olg=1d induces 0 : Er — Epr, 0l =1d

and o commutes with the Frobenius map. In particular, if F//F is Galois, then
Er/E is also Galois with Galois group

Gal(Er/€) = Gal(F/E)

and the action of Gal(F/E) commutes with ¢.
Let E° be a separable closure of F, then

E’ = U F
FesS

where S denotes the set of finite extensions of E contained in E*. If F, F' € S
and F' C F/, then Ep C Epr, we set

&= ér. (2.21)
Fes

Then £ /€ is a Galois extension with Gal(E™/€) = G. Let £ be the com-

pletion of &%, and Og; be its ring of integers. Then Og; is a local ring,
and

Ogw = lim Ogur /p" Ogusr. (2.22)

We have the endomorphism ¢ on " such that ¢(Ogur) C Ogur. The

action of ¢ extends by continuity to an action on Og; and &ur, Similarly we

have the action of G on ", Og; and £, Moreover the action of  commutes

with the action of G. We have the following important facts:

Proposition 2.29. (1) (é/"}r)G =€, ((’)ﬁ)G = 0.

(2) (éar)gozl = Qp; (Ogﬁ)go:l = Zp.

2.3.3 Og: and Z, representations.

Proposition 2.30. For any Ogz-representation X of G, the natural map
Og; Ko, XG — X

is an isomorphism.
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Proof. We prove the isomorphism in two steps.

(1) Assume there exists n > 1 such that X is killed by p™. We prove the
proposition in this case by induction on n.

For n = 1, X is an E®-representation of G and this has been proved in
Proposition 2.7.

Assume n > 2. Let X’ be the kernel of the multiplication by p on X and
X" = X/X'. We get a short exact sequence

0-X - X—-X">0

where X’ is killed by p and X" is killed by p”~!. Also we have a long exact
sequence

0— X'¢ 5 XC 5 X"¢ g

cont

(G, X").

Since X’ is killed by p, it is just an E*-representation of G, hence it is trivial
(cf. Proposition 2.7), i.e. X’ ~ (E*)? with the natural action of G. So

H. (G X')=H"G,X") ~ (H (G, E*)*=0.
Then we have the following commutative diagram:

OHO@; o, X'G—>OE/‘,\r R0, XG —>O§,\, R0, h @S p—

| | |

0 X/ X X” 0.

By induction, the middle map is an isomorphism.
(2) Since X = lim X /p", the general case follows by passing to the limits.

neN
O

Let T be a Zj,-representation of G, then Og ®z, T is a p-module over
Og¢, with ¢ and G acting on it through

pA@t) =pN)®t, gAat)=g(\)®g(t)

forany g € G, A € Oz and t € T'. Let

gur
M(T) = (Ogz ®z, T)°, (2.23)
then by Proposition 2.30,
o - Og‘u\r Ko M(T) — Og; ®z, T (2.24)

is an isomorphism, which implies that M(T) is an Og-module of finite type,
and moreover M(T) is étale. Indeed, from the exact sequence 0 — T —
T — T/pT — 0, one gets the isomorphism M(T)/pM(T) = M(T/pT) as
HY(G, Oz ®z, T) = 0 by Proposition 2.30. Thus M(T) is étale if and only if
M(T/pT) is étale as a p-module over F, which is shown in Proposition 2.19.
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Let M be an étale p-module over Og, and let ¢ and G act on Ogg: ®o, M
through g(A ® z) = g(A) ® v and p(A ® ) = ¢(\) ® ¢(z) for any g € G,

AGOg;andeM.Let

V(M) ={y € Oz ®o: M | ¢(y) =y} = (Ogw ®o. M) __,.  (2.25)
Proposition 2.31. For any étale p-module M over Og, the natural map
Ogs @z, V(M) — Ogz ®o: M
is an isomorphism.

Proof. (1) We first prove the case when M is killed by p", for a fixed n > 1
by induction on n. For n = 1, this is the result for étale p-modules over E.
Assume n > 2. Consider the exact sequence:

0— M —M-— M'"—0,

where M’ is the kernel of the multiplication by p in M. Then we have an
exact sequence

0—>05;®(95M/—>Og;®ogM—>Og$®o£M”—>0,

Let X' = Og; Roe M, X = OEE ®o, M, X" = Og; Roe M', then Xg’p:l =
V(M'), Xp=1 =V(M), X7_; = V(M"). If the sequence
0— X;:l — Xp=1 — ngl —0

is exact, then we can apply the same proof as the proof for the previous
proposition. So consider the exact sequence:

0— X,y — Xpo1 — X1 5 X' /(9 - DX,

where if © € X,—1, y is the image of = in XS’D/:l, then 0(y) is the image of

(p — 1)(). It is enough to check that X'/(p — 1) X’ = 0. As M’ is killed by
p, X' = E* @ M' = (E*)?, as an E*-vector space with a Frobenius. Then

~

X'/(p—1)X" = (E%/(p — 1)E%)4. For any b € E*, there exist a € E*, such
that a is a root of the polynomial X? — X —b, sob=a? —a = (p — 1)a €
(p— 1)E*.

(2) The general case follows by passing to the limits. O

The following result is a straightforward consequence of the two previous
results and extend the analogous result in Theorem 2.21 for mod-p represen-
tations.

Theorem 2.32. The functor

M : Repy, (G) — 45 (Os), T — M(T)
is an equivalence of categories and

V: t//l;;t((’)g) — Repy (G), M~ V(M)

is a quasi-inverse functor of M.
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Proof. Identify Oz @0, M(T') with Oz ®z, T through (2.24), then

V(M(T))

(Ogw ®0 M(T))p=1 = (Ogw @z, T)p=1
=(Ogm)p=1®2, T =T,
and
M(V(M)) =(Ogz ©z, V(M) = (Ogz @0, M)
0%, ®o. M = M.

The theorem is proved.

2.3.4 p-adic representations.

If V is a p-adic representation of G, D is an étale p-module over &, let
M(V) = (£ @g,V)
V(D) = (£% ®eD)ym1,

Theorem 2.33. (1) For any p-adic representation V of G, M(V) is an étale
w-module over £, and the natural map:

E @eM(V) — £ @,V

is an isomorphism.
(2) For any étale p-module D over £, V(D) is a p-adic representation of
G and the natural map

Eur ®q, V(D) — £ ®eD

s an isomorphism.
(3) The functor ,
M : Repg, (G) — MG(E)

s an equivalence of categories, and
Vi MHE) — Repg, (G)
18 a quasi-inverse functor.

Proof. The proof is a formal consequence of what we did in §2.3.3 and of the
following two facts:

(i) For any p-adic representation V' of G, there exists a Z,-lattice T' stable
under G, V = Q, ®z, T'. Thus

gur ®q,V = (Ogz @z, T)[1/pl,  M(V) = M(T)[1/p] = € ®o, M(T).
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(ii) For any étale ¢-module D over &, there exists an Og-lattice M stable
under ¢, which is an étale p-module over Og, D = £ ®p, M. Thus

£ @eD = (Og ®o. M)[1/p], V(D) =V(M)[1/p] = Q, ©z, V(M).
O

Remark 2.34. The category ///:;t (€) has a natural structure of a Tannakian
category, i.e. one may define a tensor product, a duality and the unit object
and they have suitable properties. For instance, if Dy, D5 are étale ¢p-modules
over &, their tensor product D1 ® Dy is D1 ®¢ Do with action of : p(x1®x2) =
©(x1) ® p(x2). Then the functor M is a tensor functor, i.e. we have natural
isomorphisms

M(V1) @ M(Va) — M(Vi @ Va) and M(V*) — M(V)*.

Similarly, we have a notion of tensor product in the category ///f(@g), two
notion of duality (one for free Og-modules, the other for p-torsion modules)
and similar natural isomorphisms.

2.3.5 Down to earth meaning of the equivalence of categories.

For any d > 1, A € GL4(O¢), let M4 = O¢ as an Og-module, let {e1, -+ ,eq}
d

be the canonical basis of M4. Set p(e;) = > a;je;. Then My is an étale -
i=1

module over Og and T4 = V(M) is a Zy,-representation of G. Furthermore,
Va = Q, ®z, Ta = V(D4,) is a p-adic representation of G with Dy = & as
an £-vector space with the same .

On the other hand, for any p-adic representation V' of G of dimension
d, there exists A € GL4(Og), such that V ~ V4. Given A, B € GL4(O¢),
T4 is isomorphic to Tp if and only if there exists P € GL4(Og), such that
B = P71 Ap(P). V4 is isomorphic to Vg if and only if there exists P € GL4(€)
such that B = P~tAp(P).

Hence, if we define the equivalence relation on GL4(Og) by

A ~ B & there exists P € GLg(£), such that B = P! Ap(P),

we get a bijection between the set of equivalence classes and the set of iso-
morphism classes of p-adic representations of G of dimension d.

Remark 2.35.1f A is in GL4(Og) and P € GLg(Og), then P~tAp(P) €
GL4(Og). But if P € GL4(E), then P~'Ap(P) may or may not be in
GLa(Os).
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C-representations and Methods of Sen

3.1 Krasner’s Lemma and Ax-Sen’s Lemma

3.1.1 Krasner’s Lemma.

Proposition 3.1 (Krasner’s Lemma). Let F' be a complete nonarchimedean
field, and E be a closed subfield of F', let o, B € F with a separable over E.
Assume that | — a| < |&' — a| for all conjugates o’ of a over E, o/ # «.
Then o € E(f).

Proof. Let E' = E(8), v = 8 — a. Then E'(y) = E'(a), and E'(y)/E’ is
separable. We want to prove that E’(y) = E’. It suffices to prove that there
is no conjugate 7' of v over E’ distinct from ~. Let 4/ = 8 — o’ be such a
conjugate, then |v'| = |y|. It follows that |[7' —~| < |y| = |8 — «|. On the other
hand, |7 — | = |&’ — a] > |8 — a| which leads to a contradiction.

O

Corollary 3.2. Let K be a complete nonarchimedean field, K*® be a separable

closure of K, K be an algebraic closure of K containing K. Then Ks=K
and it is an algebraically closed field.

Proof. Let C = K , we shall prove:

(i) If char K = p, then for any a € C, there exists & € C, such that a? = a.
(ii) C is separably closed.

Proof of (i): Choose m € mg, m # 0. Choose v = vy, i.e., v(w) = 1. Then
Okgs = {(l e K* | ’U(a) > 0}, O¢c = @OKS/W"OKS

and C' = O¢[l/7]. Thus #™Pa € O¢ for m > 0, we may assume a € Oc¢.
Choose a sequence (ay,)nen of elements of Ok, such that a = a,, mod 7™. Let

Py(X)=X?—7"X —a, € K*[X],
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then P/ (X) = —n™ # 0 and P, is separable. Let «,, be a root of P, in K?,
ay, € Ogs. Then

n+1

D _ n
Ay —ab =7" a1 — Ty F A1 — g,

one has v(ad | —af) > n. Since (1 —an)? = b | — b, V(g1 — ) >
n/p, which implies (ay,)nen converges in Og. Call « the limit of (ay,), then

aP = 1irJIrl aP = g since v(af, — a) = v(7"ay, + a, —a) > n.
n—-—1+0oo

Proof of (ii): Let
P(X) :a0+a1X+a2X2_|_...+ad71Xd—l+Xd

be an arbitrary separable polynomial in C[X]. We need to prove P(X) has a
root in C. We may assume a; € O¢. Let C’ be the decomposition field of P
over C, let r = maxv(o; — o), where o; and «; are distinct roots of P in C".
Let

Pr=by+01X +boX?+ -+ by X+ X € K¥[X]

with b; € K*, and v(b; — a;) > rd. We know, because of part (i), that C
contains K, hence there exists 3 € C, such that P;(3) = 0. Choose a € C’, a
root of P, such that |3 — /| > |8 — af for any o/ € C’ and P(a’) = 0. Since
P(B) = P(B) — Pi(B), and v(B) > 0, we have v(P(3)) > rd. On the other
hand,

thus .,
u(P(B)) =Y (B — a;) > rd.
i=1

It follows that v(S—a) > r. Applying Krasner’s Lemma, we get « € C(8) = C.
O

3.1.2 Ax-Sen’s Lemma.

Let K be a nonarchimedean field, let E be an algebraic extension of K. For
any o containing in any separable extension of E, set

Ag(a) = min{v(a’ — a)}, (3.1)
where o' are conjugates of o over E. Then
Ap(a) = 400 if and only if a € E.

Ax-Sen’s Lemma means that if all the conjugates o’ are close to a, then
« is close to an element of F.
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Proposition 3.3 (Ax-Sen’s Lemma, Characteristic 0 case). Let K, E, «
be as above, Assume char K = 0, then there exists a € E such that
p
(p—1)

Remark 3.4. If choose v = v, then v,(av — a) > Ag(a) — ﬁ, but Ag(a)

vla—a) > Ag(a) —

S0(0) (3.2)

is dependent of v,,.
We shall follow the proof of Ax ([Ax70]).

Lemma 3.5. Let R € E[X] be a monic polynomial of degree d > 2, such that
v(A\) > 7 for any root X\ of R in E, the algebraic closure of E. Let m € N,
with 0 < m < d, then there exists u € F, such that u is a root of R (X),
the m-th derivative of R(X), and

U(H)Zr—d ! v((d>)

—m ‘\m
Proof. Let
d .
R=(X-A)(X = X)- (X = Xg) =) b X,
i=0
then b; € Z[A1, -+ , Ag] are homogeneous of degree d—i. If follows that v(b;) >

(d —i)r. Write
—R™(X) = zd: <i>biXim = <:L) (X =) (X = p2) - (X — pa—m),

then b,, = (i)(—l)d*mulug -+ ltd—m. Hence

d—m

v(pi) = v(by) — v((i)) > (d—m)r — v(<i>)~

i=1

There exists 4, such that

o) 2= o((4))

d—m
The proof is finished. O

Proof (Proof of Proposition 3.3). For any d > 1, let I(d) be the biggest integer
i(d)
l _ 1 _ . .
I such that p' < d. Let e(d) = izg ) g Then I(d) = 0 if and only if d < p,

or if and only if e(d) = 0. We want to prove that if [F(«) : E] = d, then there
exists a € F, such that
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via —a) > Agp(a) — e(d)v(p).

This implies the proposition, since e(d) < e(d 4+ 1) and dlirf e(d) = ﬁ.

We proceed by induction on d. It is easy to check for d = 1. Now we assume
d > 2. Let P be the monic minimal polynomial of o over E. Let

R(X)=P(X +a), R™(X)=P™ (X +a).

If d is not a power of P, then d = p*n, with n prime to p, and n > 2. Otherwise
write d = p°p, s € N. Let m = p°.

Choose i as in Lemma 3.5. The roots of R are of the form o/ — « for o' a
conjugate of . Set r = Ag(«), and 8 = p + «. Then

w(B—a)>r— — v(<d>).

d—m m

As P(™)(3) =0, and P (X) € E[X] with degree d —m, f3 is algebraic over
FE of degree not higher than d — m. Either § € F, then we choose a = 3, or
B ¢ E, then we choose a € E such that v(5—a) > Ag(8)—e(d—m)v(p), whose
existence is guaranteed by induction. We want to check that v(a—a) > r—e(d).

Case 1: d = p°n (n > 2), and m = p®. It is easy to verify v((i)) =
v((pp”)) =0,s0 v(p) =v(B —a)>r. If B is a conjugate of 3, ' = o/ + 1/,
then

v(B = B)=vle —atu —p) =

which implies Ag(3) > r. Hence v(8 —a) > r — e(d — p®)v(p), and
v(a —a) > min{v(a — §),v(8 —a)} > r —e(d)v(p).

Case 2: d = p°p, and m = p°. Then v((;i)) = v((p::)) = v(p), and
v(p) >r— ﬁv(p). Let 3 be any conjugate of 3, 8’ = p’ + o/, then

(B =B =v( —pt+ad —a)>7r— ps%_psv(p)v

which implies Ag(8) > r — —i——v(p). Then

p p

1

v(B—a) 21— svle) - e(p*t! -

p*)u(p) =r —e(pu(p).

Hence v(a —a) =v(a— B+ 5 —a) > r —e(d)v(p). O

Proposition 3.6 (Ax-Sen’s Lemma, Characteristic> 0 case). Assume
K, E,a as before. Assume K is perfect of characteristic p > 0, then for any
e > 0, there exists a € E, such that v(a — a) > Ag(a) —e.
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Proof. Let L = E(a), then L/E is separable. Therefore there exists ¢ € L
such that Trz,p(c) = 1. For r > 0, v(c? ") > —¢c. Let ¢ = ¢? ', then
(Trr/p(c)P" = Trp p(c) = 1. Replacing ¢ by ¢/, we may assume v(c) > —¢.
Let

S ={o|o: L~ E be an E-embedding},

S o =Trp,p(ca) = z;ga(coz) = z;ga(c)a(oz) €E.
As 30 o(a=Trp(e) = 1, B B

v(a—a) = ”(ZS"(C)(‘“ —o(@))) =2 min{v(o(c)(a — o(a)))} = Ap(a) —c.
This completesatehe proof. 0

We give an application of Ax-Sen’s Lemma. Let K be a complete nonar-
chimedean field, K° be a separable closure of K. Let Gx = Gal(K*®/K),
C = K. The action of G k extends by continuity to C. Let H be any closed
subgroup of G, L = (K*)#, and H = Gal(K*/L). A question arises:

Question 8.7. What is CH?
If char K = p, we have K C C. Let

L4 = {z € C | there exists n, such that e L}.

Then H acts trivially on L'®d. Indeed, for any x € L', there exists n € N,
such that #?" = a € L, then for any g € H, (g(z))?" = xP", which implies

g(z) = z. Hence Lrad c CH.

Proposition 3.8. For any close subgroup H of Gk, we have

oH _ I;,\ zf char K =0, (3.3)
Lrad 4f char K = p
where L = (K*)". In particular,
G _ IﬁiK’ if char K =0, (3.4)
Krad, if char K = p.

Proof. If char K = p, we have a diagram:

K c(km =R (Kmy—gmc  C

Gk Gk Gk

K c  Krad c Forad
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with Krad perfect. This allows us to replace K by K24, thus we may assume

that K is perfect, in which case Lrad = E, the proposition is reduced to the
claim that CH = L.

If char K = p, we choose any ¢ > 0. If char K = 0, we choose ¢ =
ﬁv(p). For any o« € CH, we want to prove that & € L. We choose a

sequence of elements «,, € K such that v(a — a;,) > n, it follows that
v(g(an) - an) 2 min{v(g(an - a))vv(an - a)} 2 n,

for any g € H. Thus Ap(«,) > n, which implies that there exists a,, € L,

such that v(a, —ap) >n—¢,and lim a, =« € L. O
n—-+4oo

3.2 Classification of C-representations

Let K be a p-adic field. Let G = G = Gal(K/K). Let v = v, be the valuation

of K and its extensions such that v(p) = 1. Let C = K.

We fix Koo, a ramified Z,-extension of K contained in K. Let H = Gk_ =
Gal(K/Ky). Let I' = Iy = Gal(Kw/K) = Z,. Let [, = I'*" and K,,, =
KIm be the subfield of K, fixed by I},. Let v be a topological generator of
I" and let 7, =~?", which is a topological generator of I5;,.

For any subfield F' of C, let F' be its closure in C. We assume the fields
considered in this section are equipped with the natural p-adic topology.

3.2.1 The study of H?

co

nt (G5 GLn (C)).

We first study the cohomology group H} (G, GL,(C)).

Almost étale descent.

Lemma 3.9. Let Hy be an open subgroup of H and U be a cocycle Hy —
GL,(C) such that v(U, — 1) > a, a > 0 for all 0 € Hy. Then there exists a
matric M € GL,(C), v(M — 1) > a/2, such that

(M 'U,0(M) 1) >a+1, forallo € H,y.

Proof. The proof is imitating the proof of Hilbert’s Theorem 90 (Theo-
rem A.108).

Fix H; C Hj open and normal such that v(U,—1) > a+14a/2 for o € Hy,
which is possible by continuity. By Corollary A.89, we can find a € CH1 such

that
v(a) = —a/2, Z 7(a) = 1.

T€Hy/H,
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Let S C H be a set of representatives of Hy/Hy, denote Mg = > o(a)U,, we

o€S
have Mg —1= 3 o(a)(U, —1), this implies v(Mg — 1) > a/2 and moreover
oes
+o00o
Mgt =Y "(1-Ms)",
n=0

so we have v(Mg') > 0 and Mg € GL,(C).

If 7 € Hy, then Uy, — U, = U, (c(U;) — 1). Let S’ C Hp be another set of
representatives of Hy/H, so for any o’ € S’, there exists 7 € Hy and 0 € S
such that ¢’ = o7, so we get

Ms = Mg =Y 0(a)(Us = Uyr) = Y _ a(a)Uy(1 = o(Uy)),
g€eSs oeS

thus
v(Msg —Mg/) Z2a+1+a/2—a/2=a+1.

For any 7 € Hy,

U.r(Ms) =Y 70(a)U,m(Uy) = M.

Then
MG'U.7(Ms) =1+ Mg'(M,s — Ms),

with v(Mg'(Mys — Mg)) > a + 1. Take M = Mg for any S, we get the
result. O

Corollary 3.10. Under the same hypotheses as the above lemma, there exists
M € GL,(C) such that

v(M —1)>a/2, M~ 'U,0(M)=1,Y 0 € H,.
Proof. Repeat the lemma (a — a+1+ a+2+ ---), and take the limits. O

Proposition 3.11. H!

cont

(H,GL,(C)) = 1.

Proof. We need to show that any given cocycle U on H with values in GL,,(C)
is trivial. Pick a > 0, by continuity, we can choose an open normal subgroup
Hy of H such that v(U, — 1) > a for any o € Hy. By Corollary 3.10, the
restriction of U on Hj is trivial. By the inflation-restriction sequence

1— Hiont(H/Hm GLTL(CHO)) - Hclont

(H,GL,(C)) — H}

cont

(H07 GLn(C))7

since H/H, is finite, by Hilbert Theorem 90, H} .(H/Hy, GL,,(CH0)) is triv-

ial, as a consequence U is also trivial. a
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Proposition 3.12. The inflation map gives a bijection

j i Hlone (I GLu (Koo)) = H (G, GL,(C)). (3.5)

cont

Proof. This follows from the exact inflation-restriction sequence

1— H!

cont

(I,GL,(C™)) — H.

cont

(G,GL,(C)) — H}

cont

(H,GLn(C)),
since the third term is trivial by the previous Proposition, IA(OO = CH, and
the inflation map is injective. O
Undo the completion.

Recall by Corollary A.92 and Proposition A.97, for Tate’s normalized trace
map R.(x), we have constants ¢, d independent of r, such that

~

V(R (x)) >v(z)—¢, x€ Ky (3.6)
and
o((y — 1) '2) > () —d, z€X,={zr€ Ko |R(x)=0} (3.7

Lemma 3.13. Given § > 0, b > 2c¢ + 2d + 6. Given r > 0. Suppose U =
1+ U; + Uy with

U, € Mn(KT),U(Ul) >b—c—d
Us; € Mn(C),’U(UQ) > b >b.

Then, there exists M € GL,(C),v(M — 1) > b — ¢ — d such that
M7 U (M) =1+ Vi + V3,
with

Vi € Mp(K,), v(V1) > b—c—d,
Vo € M,,(C), v(Va) > b +6.

Proof. One has Us = R, (Usz) + (1 — v,)V such that
v(R-(U2)) > v(Us2) —¢, v(V)>v(Us)—c—d.
Thus,

A+ U+ V) =1 -V + V2 - )1+ U + Up)(1 +74,.(V))
=14U; + (v — 1)V + Uy + (terms of degree > 2).

Let Vi = Uy + R (Uz) € M,,(K,.) and W be the terms of degree > 2. Thus
v(W)>b+b —2c—2d > +9. So we can take M =1+ V, Vo =W. |
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Corollary 3.14. Keep the same hypotheses as in Lemma 3.15. Then there
exists M € GL,(Kx), v(M—1) > b—c—d such that M~*U~,.(M) € GL,(K,).

Proof. Repeat the lemma (b+ b+ — b+ 2§ +— ---), and take the limit. O

Lemma 3.15. Suppose B € GL,(C). If there exist V1,V € GL,(K;) such
that for some r > i,

v(Vi—1)>d, v(Vo—1)>d, ~,.(B)=V1BV;,
then B € GL,,(Kj;).

Proof. Take C = B — R;(B). We have to show that C' = 0. Note that C has
coefficients in X; = (1 — R;) K, and R; is Kj;-linear and commutes with -,
thus,

W (C)=C=VNCV,—C= (Vi -1)CVo+V1C(Vo—1)— (Vi —1)C(V — 1)

Hence, v(v,(C)=C) > v(C)+d. By Proposition A.97, this implies v(C) = +o0,
ie. C=0. a

Proposition 3.16. The inclusion GLy(Kx) — GLn(I/(\'Oo) induces a bijec-
tion
i H,

cont

(I, GL,(Kw)) = H}

cont

~

).
Moreover, for any o — U, a continuous cocycle of HL (I GL,(Kx)), if
v(Us —1) > 2¢+2d for o € Iy, then there exists M € GL,(Kx), v(M —1) >
c+ d such that

(T, GL, (K o)
(

or— U = M 'U,o(M)
satisfies U € GL, (K,).
Proof. We first prove injectivity. Let U, U’ be cocycles of I' in GL,,(K ) and

suppose they become cohomologous in GLn(I?OO), that is, there is an M €
GLn(IA(OO) such that M ~1U,o(M) = U., for all o € I'. In particular, ,.(M) =
Us, M U; Pick r large enough such that U,  and U:/,- satisfy the conditions
in Lemma 3.15, then M € GL,(K,). Thus U and U’ are cohomologous in
GL,(K), and injectivity is proved.

We now prove surjectivity. Given U, a cocycle of I" in GLn(IA(OO), by con-
tinuity there exists an r such that for all o € I'., we have v(U, —1) > 2¢+ 2d.
By Corollary 3.14, there exists M € GL,.(C), v(M — 1) > 2(c + d) such that
U, = M~'U,~ (M) € GL,(K,). Moreover, we have M € GL,(Ku) by
using Lemma 3.15 again.

Put U, = M~'U,o(M) for all o € I'. For any such o we have

Upo(U3,) = Us,, = U, , = U} 7 (Ug),

which implies ~,.(U},) = U,~'Ulo(U! ). Apply Lemma 3.15 with V; =
Ué:l,Vz = U(U;T), then U. € GL, (K, ).
The last part follows from the proof of surjectivity. O
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Theorem 3.17. the map

1
Hcont

(I'GL,(Ks)) — H}

cont

(G,GLy(C))
induced by G — I' and GL,, (K« ) — GL,(C) is a bijection.

3.2.2 Study of C-representations.

by Proposition 2.6, if L/K is a Galois extension, we know that there is a one-
one correspondence between the elements of H, Cont(Gal(L/K), GL,(L)) and
the isomorphism classes of L-representations of dimension n of Gal(L/K).
Thus we can reformulate the results in the previous subsection in the language
of C-representations.

Let W be a C-representation of G of dimension n. Let

ﬁV\Oo:WHz{w|w6VV, o(w) =w for all o € H}.

Itisa K -vector space since CH = K . One has:

Theorem 3.18. The natural map
/Woo Or.. c— W
is an isomorphism.
Proof. This is a reformulation of Proposition 3.11. O

Theorem 3.19. There existsr € N and a K,.-representation W, of dimension
n, such that R -
Wr ®KT, Koo — Woo

Proof This is a reformulation of Proposition 3.16. Let {el, -+, en} be a basis
of W, the associated cocycle o — U, in H Lot (I, GL,, (K &)) is cohomologous
to a cocycle with values in GL,,(K,) for r sufficiently large. Thus there exists
a basis {e},--- e/} of /VI?OO, such that W, = K,e| & --- @ K¢/, is invariant
by I. a

From now on, we identify W, ®k, IA{OO with Woo and W, with W, ® 1 in
Weo-

Definition 3.20. We call a vector w € Woo K-finite if its translate by I’
generates a K -vector space of finite dimension. Let Woo be the set of all K-
finite vectors.

By definition, one sees easily that W, is a K,-subspace of /Woo on which
I acts. Moreover, W,. is a subset of W,

Corollary 3.21. One has W, ®k, Koo = W, and hence Wy Qk_, IA(OO =
Weo.
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Proof. Certainly W, ®k, Ko C Wy is a sub Ko.-vector space of W.
On the other hand the dimension of W, ®k, K is n, and dimg, We <
dim R We =n. O

Remark 3.22. The set W, depends on the choice of basis and is not canonical,
but W, is canonical.

3.2.3 Sen’s operator ¢.

Given a C-representation W of G, let W,., W, be given as above. By Propo-
sition 3.16, there is a basis {e1, - ,e,} of W, (over K,.) which is also a basis
of We (over Ko ) and of W (over C). We fix this basis. Under this basis,
p(y) =U,, € GL,(K,) satisfies v(U,, — 1) > c+d.

We denote by log oy the composite map G — I' = Z,, and its restriction
on I'. This notation seems strange here, but one sees that the composite map
G — Zy =B Z,, is nothing but y, which will be consistent to the axiomatic
setup in § 3.4.

Definition 3.23. The operator ¢ of Sen associated to the C-representation is

an endomorphism of W, whose matriz under the basis {e1,--- ,en} is given
by
log U.
=8 (3.8)
log x(7r)

One extends ¢ by linearity to an endomorphism of W, and of W.

Theorem 3.24. Sen’s operator ¢ is the unique K -linear endomorphism of
W such that, for every w € W, there is an open subgroup I, of I' satisfying

o(w) = [exp(¢log x(0))|w, forallo € I,,. (3.9)

Proof. For w = Ae; + - A\pe, € Wy such that \; € K, then )\; is fixed by
some I, forr; e N. Let I, = I, NI, N---NI, . Then for any o € I, C I,
o =1, a € Zp, hence

U, = (Uy,)* and log x(o) = alog x(7),
then

log U
L(%) log X(%)) =explogU, = U,.

exp(®Plog x (o —exp<a
(@log x(0)) e

Thus
o(w) = [exp(¢log x(0))]w, forall o € I,,.

To prove uniqueness, if (3.9) holds, let ¢ € I, NI, N--- NI, , write
o =2 For w € W, on one hand, o acts on w is given by U, under the basis

{e1, - ,en}; on the other hand, it is given by [exp(¢log x(0))](w), so



50 3 C-representations and Methods of Sen
Uy, = Uy = exp(®log x(0)),

hence
__alogU,,  logU,,

 logx(o)  logx(v)”
We have finished the proof. m|

We have the following remarks of ¢:
Remark 3.25. (1) By the proof of the theorem, one sees that

_ logU,
log x(o)’

for any o € I, (3.10)

thus Sen’s operator ¢ does not depend on the choice of 7.
(2) By (3.9), one has

1 tw) —
_ lim (w)
log x(7) t—0

d(w) w, for w € W (3.11)
Thus I' commutes with ¢ on W4, and G commutes with ¢ on W.

(3) For w € W, ¢(w) = 0 if and only if the I'-orbit of w is finite (also
equivalent to the stabilizer of w is an open subgroup of I'), as is easily seen
from (2).

(4) Let W’ be another C-representation and ¢’ be the corresponding Sen
operator. Then the Sen operator for W & W' is ¢ @ ¢’ and for W @c W' is
pR1+1®¢". If W is a subrepresentation of W then the Sen operator ¢’ is
the restriction of ¢ to W’. These could be seen from definition or by (2).

(5) The Sen operator of the representation Home (W, W) is given by f —
fop—¢ of for f € Home(W,W’). To see this, use the Taylor expansion at
t=20

Yy w) = flw) = (1+tlog) f((1 —tlogm)w) + O(t?) f(w) — f(w)
= t(logv)f(w) — tf((logy)w) + O(t?) f(w),

now use (2) to conclude.

Ezxample 3.26. Suppose W is of dimension 1 and there is e # 0 in W such that
o(e) = x(o) for all 0 € G (W is called of Hodge-Tate type of dimension 1 and
weight i in § 5.1). Then e € W, and v'(e) = x(7)"e, from which we have
(vt(e) — e)/t — log x(7)ie. Therefore the operator ¢ is just multiplication by
i. This example also shows that K-finite element can has infinite y-orbit.

Now we study more properties about ¢.

Proposition 3.27. There exists a basis of Wy, with respect to which the ma-
triz of @ has coefficients in K.
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Proof. For any o € I', we know 0¢ = ¢o in W, thus U,o(P) = PU, and
hence @ and o(®P) are similar to each other. Thus all invariant factors of @
are inside K. By linear algebra, & is similar to a matrix with coefficients in
K and we have the proposition. a

Theorem 3.28. The kernel of ¢ is the C-subspace of W generated by the
elements invariant under G, i.e. W& @5 C = Ker ¢.

Proof. Obviously every elements invariant under G is killed by ¢. Now Let X
be the kernel of ¢. It remains to show that X is generated by elements fixed
by G. Since ¢ and G commute, X is stable under GG, so we can talk about X .
Since Xoo @k, C = X and ¢ is extended to X by linearity, it is enough to
find a Ko-basis {e1,--- ,e,} of X such that e;'s are fixed by I'. f w € X,
then I'-orbit of w is finite (by Remark 3.25 (2)). The action of I" on X is
therefore continuous for the discrete topology of X.. So by Hilbert’s theorem
90, there exists a basis of {e1, - ,e,} of X fixed by I O

Theorem 3.29. Let W' and W? be two C-representations, and ¢* and ¢? be
the corresponding operators. For W' and W? to be isomorphic it is necessary
and sufficient that ¢* and ¢? should be similar.

Proof. Let W = Hom¢c (W1, W?) with the usual action of G' and ¢ be its Sen
operator. W' and W? are isomorphic means that there is an C-vector space
isomorphism F : W' — W? such that

coF=Foo

forallo € G,so F € W&, ¢! and ¢? are similar means there is an isomorphism
f such that
¢*of=fod!,

that is f € Ker¢. By Theorem 3.28, W& @x C = Ker ¢, we see that the
necessity is obvious. For sufficiency, it amounts to that given an isomorphism
feWC ®g C, we have to find an isomorphism F € W&,

Choose a K-basis {f1, -, fm} of WY. The existence of the isomorphism
f shows that there are scalars ¢y, -+ , ¢, € C such that:

det(cifi + -+ cmfm) # 0.

Here f; is the matrix of f; with respect to some fixed basis of W' and W?2.
In particular the polynomial det(t;f; + --- + t,,fmm) in the indeterminates
t1,--- ,t, cannot be identically zero. Since the field K is infinite, there exist
elements \; € K with

The homomorphism F = A\ f; + - -+ + A\, frm then has the required property.
O
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3.3 Sen’s operator ¢ and the Lie algebra of p(G).

3.3.1 Main Theorem.

Given a Qp-representation V, let p : Gx — Autg, V be the corresponding
homomorphism. Let W = V ®q, C. Then some connection of the Lie group
p(G) and the operator ¢ of W is expected. When the residue field k of K is
algebraically closed, the connection is given by the following theorem of Sen:

Theorem 3.30. The Lie algebra g of p(G) is the smallest of the Qp-subspaces
S of Endg, V' such that ¢ € S ®q, C.

Proof. Suppose dimg, V' = d. Choose a Q,-basis {eq, -+ ,eq} of V and let
U, be the matrix of p(c) with respect to the e;’s. Let {€},--- , e} be a basis
of Woo (where W =V ®q, C) such that the K-subspace generated by the
e}’s is stable under an open subgroup I3, of I' (by Proposition 3.27, such
a basis exists). If U’ is the cocycle corresponding to the e}’s, it follows that
U! € GLy4(K) for o € I,,. Let M be the matrix transforming the e;’s into the
€i’s, one then has M~*U,0(M) = U/ for all o € G.

Let @ be the matrix of ¢ with respect to the ei’s. Put A = M~1®M,
so that A is the matrix of ¢ with respect to the e;’s. For o close to 1 in I”
one knows that U, = exp(®log x(c)), and our assumptions imply that ¢ has
coefficients in K.

By duality the Theorem is nothing but the assertion that a Qp-linear
form f vanishes on g <= the C-extension of f vanishes on ¢. By the local
homeomorphism between a Lie group and its Lie algebra, g is the Q,-subspace
of Endg, V' generated by the logarithms of the elements in any small enough
neighborhood of 1 in G, for example the one given by U, = 1(modp™) for
m 2 2. Thus it suffices to prove, for any m = 2:

Claim: f(A) =0<«= f(logU,) =0 for all U, = 1(mod p™).

Let
G,={0€G|U, =TI and & log x(c) =0(modp™)}, n>2. (3.12)
Let -
Goo=[)Gn={0€G|U,=1and x(o) =1}. (3.13)
n=2
Let Cv¥ = (G1/Gs and ém = G /G for m = 2. Then é is a p-adic Lie group

v _

and {G,,} is a Lie filtration of it. Let L be the fixed field of G in K, by
Proposition 3.8, the fixed field of G, in C' is L, the completion of L. It is clear
that for 0 € G we have M 1o (M) = I, it follows that M has coefficients in

E, hence A also. From now on we work within L, and ¢ will be a (variable)

y,
element of G.
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Assume ng is an integer large enough such that n > ng implies the formula

v
Ul =exp(®logx(c))  forall o € G,. (3.14)

The statement of our theorem is unchanged if we multiply M by a power of p.
We may therefore suppose that M has integral coefficients. After multiplying
f by a power of p we may assume that f is “integral”’, i.e., takes integral
values on integral matrices.

For n > ng, U, = I'mod p™, the equation

MU, = Ul.o(M) (3.15)

v
shows then that (M) = M (modp") for o € G,,. By Ax-Sen’s lemma (Propo-
sition 3.3) it follows that for each n there is a matrix M, such that

v
M, = M(mod p" 1), and o(M,,) = M, for o € G,,. (3.16)

Now suppose o € (v}'m with n = 2. We then have
Uy =1+1logU,, and U, =1 +1logU. =T +logx(c)-® (modp?").
Substituting these congruences in (3.15) we get
M + MlogU, = o(M) +log x(c) - &o(M)(mod p*™).
Since log U, and log x (o) are divisible by p™ we have by (3.16):
M + M, logU, = o(M) + log x(c) - ®M,,( mod p*" ). (3.17)

Let r; and ro be integers such that p"*~'M~! and p™P have integral coef-
ficients. Let n > r := 2r; + ro — 1. Then M,, is invertible and p™*~1M ! is
integral. Multiplying (3.17) on the left by p"* 1M, ! and dividing by p™~!
we get

Cp +1logU, = o(C,,) +log x(c) - M, *®M,, (modp*"~") (3.18)

where C,, = MM = I(modp"~"). Write A, = M, 1®M,, it is fixed by
v

G, and

M — M, _ _
A, —A= W@Mn—i—M Y'®(M,, — M) =0modp™".

n

We get

2nfr)'

log x(0)A,, = log x(c)A(modp

Then we have
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(0' — 1)On = log Uo’ — log X(O') . An(modp2n7r1).

Applying f to the above equation, note that f is an extension of some linear
form on My(Q,), we get

(c —=1)f(Cp) = f(logU,) — log x(o) - f(An)(mOdan—rl)

and hence

(0 = 1)f(Cn) = flogUy) —log x(0) - f(A)(modp>" 7). (3.19)

We need the following important lemma, whose proof will be given in next
section.

Lemma 3.31. Let G = Gal(L/K) be a p-adic Lie group, {G(n)} be a p-
adic Lie filtration on it. Suppose for some n there is a continuous function
A:G(n) — Qp and an element x in the completion of L such that

Ao) = (o — Dxz(mod p™), for all o € G(n)
and some m € Z. Then
M) = 0(modp™ =1, for all ¢ € G(n).

Suppose f(A) = 0. By (3.19) and Lemma 3.31, we conclude that f(logU,) =
0(mod p?"~"=¢~1) for any o € én, where ¢ is the constant of the lemma
(which depends only on é) Since o?" " € én and logU_,n-> = p"2log U,

v

v
for any o € G. We conclude that f(logU,) = 0(mod p"~"~¢*1) for all o € G,
hence f(logU,) = 0 as desired, since n was arbitrary.

v

Suppose f(logU,) =0 for all 0 € G : We wish to show f(A) = 0. Suppose
not, then f(A,) # 0 and has constant ordinal for large n, dividing (3.19) by
f(A) and using Lemma 3.31, we obtain

log (o) = 0(mod p*"~"¢717%)

\
for large n and all ¢ € G, where s is a constant with p®f(A)~! integral.

v
Analogous argument as above shows that log x(c) = 0 for all o € G. This is
a contradiction since, as is well known, y is a non-trivial representation with
infinite image. This concludes the proof of the main theorem. a

Corollary 3.32. ¢ = 0 if and only if p(G) is finite.

Proof. By the theorem ¢ = 0 < g = 0. So we only need to show g = 0 < p(G)
is finite.

The sufficiency is obvious. For the necessity, we have g = 0 implies that
p(G) has a trivial open subgroup which in turn implies that p(G) is finite. O

Remark 3.83. In general if k is not algebraically closed, one just needs to
replace G by the inertia subgroup and K by the completion of K", then the
above theorem and corollary still hold.
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3.3.2 Application of Sen’s filtration Theorem.
We assume £k is algebraically closed.

Lemma 3.34. Let L/K be finite cyclic of p-power degree with Galois group
A= Gal(L/K). Suppose vy > ea(r+1/(p—1)) for some integer r > 0. Then
p" divides the different Dy, .

Proof. Let p" = [L : K], and for 0 < i < n, let A(;) be the subgroup of order
p’in A, so A = A(n) D A(n—l) 2D A(l) D A(o) = 1. Let v; = VAJA @y
From Corollary A.80, we get by induction on j:

1
vj—vA—jeA>(r—j+1)eA, for 0 <j <
p—

By Herbrand’s theorem, we have

AUZA(j), for v; <V < V-1, 1<5<.

Then
1 > v|—1
Up(Dr/r) =— [ (1[G )dv
€A J_1
ZL(/WQ —|G|7Hdv + i(l — i)eA)
€a NS = !
1 1 "1
>—(1—p™ —eq-y —
_eA(( p )pileA-f‘TeA €A ;pﬂ)
>r
Hence p" divides the different D k. a

Proposition 3.35. Suppose G = Gal(L/K) is a p-adic Lie group and that
{G(n)} is the Lie filtration of G. Let K,, be the fized field of G(n). Then there
is a constant c independent of n such that for every finite cyclic extension
E/K, such that E C L, the different D g, is divisible by p~°[K : K,].

Proof. Put w, = ug/Gm),Vn = VG/G(n), and e, = eg(,) = (G : G(n))e. From
Proposition A.84, we know that there exists a constant a such that

v, = a+ne for n large.

By the filtration theorem (Theorem A.85), we can find an integer b large
enough such that
Gt 5 G(n +b)

for n large.
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Let E/K,, be cyclic of degree p* and n large. Let Gal(E/K,,) = G(n)/H =
A. We have G(n + s — 1) = G(n)?" ¢ H because AP £ 1. Thus, if
G(n)Y D G(n+s—1), then us >y, because AY = G(n)VH/H # 1.

By Proposition A.83, we have, for ¢t > 0, with the above choice of a and b:

G(n)untton = GUntte = G*HIMDE S Gn + L+ b).
Ifs>b+1,putt=s—>b—1, then we get v4 > y as above, with
y=up,+(s—b—1)e, >(s—=b—=3+1/(p—1))e,.

Soif s > b+3, then p°~=3 = p~ (I [E : K] divides Dg/K, by Lemma 3.34.
The same is trivially true if s < b+ 3. Thus one could take ¢ = b+ 3 for large
n, say n > ny, and ¢ = ny + b+ 3 would then work for all n. a

Corollary 3.36. Trg/k, (Op) C p™°[K : K,|Ok,, .

Proof. Let [K : K,] = p°. The proposition states that Dp,r, C p° °Op,
hence O C pS*CQ}E} .- On taking the trace the corollary follows. O

We now come to the proof of Lemma 3.31:

Proof (Proof of Lemma 8.31). Multiplying A and « by p~™ we may assume
m = 0. Let A : G(n) — Q,/Z, be the function A(c) = A(c) + Z,,. Following
A by the inclusion Qp/Z, — L/Oy, we see that X is a 1-coboundary, hence a
1-cocycle, and thus a homomorphism, because G(n) acts trivially on Q,/Z,.

Let H = Ker A\ and F be the fixed field of H. For ¢ € H we have (o —

Dz € @L, by Ax-Sen’s Lemma, there exists an element y € E such that
y = 2z(mod p~!). Then

Mo)=(c—1)z=(c—1)y (modp '), for o € G(n).

Select o9 € G, such that oo H generates G(n)/H. Let

Moo) = (o0 — Dy +p 'z

Then z € Op. Taking the trace from E to K,, we find, using the Corol-
lary 3.36, that
[E: K, ]\(oo) € p~“HE : K,|Ok,,

i.e. A(0p) = 0(mod p~©~1) and hence \(¢) = 0(mod p~¢~1) for all o € G(n),
as was to be shown. O

3.4 Sen’s method.

The method of Sen to classify C-representations in § 3.2 actually can be
generalized to an axiomatic set-up, as proposed by Colmez.
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3.4.1 Tate-Sen’s conditions (TS1), (TS2) and (TS3).

Let Go be a profinite group and x : Go — Zj;, be a continuous group homo-

morphism with open image. Set v(g) = vp(log x(¢)) and Hy = Ker x.
Suppose A is a Z,-algebra and

v: A — RU{+o0}

satisfies the following conditions:

(i) v(xz) = o0 if and only if z = 0;

(i) v(zy) = v(@) + v(y);

(i) v(z + y) > inf(u(z), v(y));

(iv) v(p) > 0, v(px) = v(p) + v(z). 3
Assume A is complete for v, and G acts continuously on A such that v(g(z)) =
v(z) for all g € Go and z € A.

Definition 3.37. The Tate-Sen’s conditions for the quadruple (Go,x,A,v)
are the following three conditions TS1-TS3.

(TS1). For all Cy >0, for all Hy C Hy C Hy open subgroups, there exists an
a € A with
v(a)>—Cyand > 7T(a)=1. (3.20)

TEH/H,

(In Faltings’ terminology, A/ A™0 is called almost étale.)

(TS2). Tate’s normalized trace maps: there exists Cy > 0 such that for all open
subgroups H C Hy, there exist n(H) € N and (Agn)n>n(m), an increasing

sequence of sub Zy-algebras of A and maps

Ry : AT Afrn
satisfying the following conditions:

Ca) if Hy C Ha, then we can find Ap, n = (An, n)72, and Ry, n = Ruyn
on AHz2;
(b) for all g € Go, we can find Aggy-14, and Ryp-1,4,, such that

g(AH,n):AgHg_l,n gORH,n:RgHg—l,nog;

(¢) Run is A p-linear and is equal to Id on Ay p;
(d) v(Rpn(x)) > v(z) = Co if n > n(H) and x € A™;
(e) liI_P Ry n(x) = .

(TS3). There exists Cs, such that for all open subgroups G C Gy, H = GNH),
there exists n(G) > n(H) such that if n > n(G), v € G/H and v(y) =
vp(log x (7)) < n, then v — 1 is invertible on Xy, = (Ry,, — 1)A and
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o((y = 1)"tz) > v(x) — Cs (3.21)
forx e Xg .
Remark 3.38. Ryn 0 Run = Rup, 50 AH = A ® Xpn.

Ezample 3.39. In § 3.2, we are in the case A = C, Gy = Gk, v = vp, X being
the character Gog — I’ =B, /e
In this case we have Hy = Gal(K /K,). For any open subgroup H of Hy,

let Lo, = ?H, then L., = LK, for L disjoint from K, over K, for n > 0.
Let Ay, = L, = LK,, and Ry, be Tate’s normalized trace map. Then all
the axioms (TS1), (TS2) and (TS3) are satisfied from results in § A.4.2.

3.4.2 Almost étale descent

Lemma 3.40. If A satisfies (TS1), a >0, and o — U, is a 1-cocycle on H,
an open subgroup of Hy, and

v({U, — 1) > a for any o € H,
then there exists M € GLg(A) such that

v(M —1) > v(M~'Uyo0(M) —1) > a+1.

NS

Proof. The proof is parallel to Lemma 3.9, approximating Hilbert’s Theorem
90.

Fix H;y C H open and normal such that v(U, — 1) > a + 1 + a/2 for
o € Hj, which is possible by continuity. Because A satisfies (TS1), we can
find o € A1 such that

v(a) > —a/2, Y 7(a)=1

TEH/H,

Let S C H be a set of representatives of H/Hy, denote Mg = > o(a)U,, we

o€S
have Mg —1= Y o(a)(U, —1), this implies v(Mg — 1) > a/2 and moreover
o€S
+oo
MSTI — Z(l _ MS)n,
n=0

so we have v(Mg') > 0 and Mg € GLg(A).

If 7 € Hy, then U,, — U, = U,(c(U;) — 1). Let S’ C H be another set of
representatives of H/Hy, so for any ¢’ € S, there exists 7 € Hy and o0 € S
such that ¢’ = o7, so we get
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Mg — Mg = Z o(a)(Uy —Uyr) = Z o(a)Uys(1 = o(U,)),
oces ocesS

thus
v(Mg—Mg)>a+1+a/2—a/2=a+1.

For any 7 € H,

U.r(Ms) =Y 70(a)U,m(Uy) = M.

oceS

Then
MU, 7(Ms) =1+ Mg (M,s — Ms),

with v(Mg'(Mys — Mg)) > a + 1. Take M = Mg for any S, we get the
result. O

Corollary 3.41. Under the same hypotheses as the above lemma, there exists
M € GL4(A) such that

v(M —1)>a/2, M 'U,o(M)=1,Yo € H.

Proof. Repeat the lemma (a — a+1+ a+2+ ---), and take the limits. O

3.4.3 Undo the completion

Lemma 3.42. Assume given § > 0, b > 2C +2C3+ 0, and H C Hy is open.
Suppose n > n(H), v € G/H with n(y) <n, U =1+ U + Uy with

Ui € Ma(Ag ), v(U1) >b—Cy—Cs
Us € My(A™),0(Uy) > b > b.
Then, there exists M € GLg(AH), v(M — 1) > b— Cy — Cs such that
M7UN(M) =1+ Vi + Vs,
with
Vi € My(Amn), v(Vi) >b—Cy —Cs),
Va € Mg(A™), v(V3) > b+
Proof. Using (TS2) and (TS3), one gets Us = Ry (Uz) + (1 — )V, with
V(R n(Uz2)) > v(Us) — Co, (V) >v(Uz) — Cy — Cs.
Thus,

(I4+ V) U4 V) = (A= V4V =) (14 Ui+ Ua) (14 5(V))
=14U; + (y — 1)V + Us + (terms of degree > 2)

Let Vi = U1+ Ry n(U2) € My(Ap ) and W be the terms of degree > 2. Thus
v(W)>b+b —2C, —203 > b +0. Sowe can take M =1+V, Vo =W. O
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Corollary 3.43. Keep the same hypotheses as in Lemma 3.42. Then there
exists M € GLy4(A?),v(M — 1) > b — Cy — C3 such that M~ 1U~y(M) €
GLa(Am ).

Proof. Repeat the lemma (b+— b+ — b+2§ +— ---), and take the limit. O

Lemma 3.44. Suppose H C Hy is an open subgroup, i > n(H), v € G/H,
n(y) > i and B € GL4(A®). If there exist V1,Va € GLa(Ap ;) such that

U(‘/l_l) >C37 U(VYQ—l)>C3, 7<B>:‘/1B‘/2;
then B € GLd(AH,Z)

Proof. Take C = B — Ry ;(B). We have to prove C' = 0. Note that C' has
coefficients in Xg,; = (1 — RH,Z')AH, and Rp; is Apg;-linear and commutes
with . Thus,

VC)=C=VCVo—C=(V1—-1)CVa+V1C(Va— 1) = (Vi = 1)C(V2 — 1)

Hence, v(v(C) — C) > v(C) + Cs. By (TS3), this implies v(C) = +o0, i.e.
C=0. o

3.4.4 Applications to p-adic representations

Proposition 3.45. Assume A satisfying (TS1), (TS2) and (TS3). Let o —
U, be a continuous cocycle from Gy to GLd(/I). If G C Gy is an open normal
subgroup of Go such that v(Uy, — 1) > 2Cy + 2C5 for any 0 € G. Set H =
G N Hy, then there exists M € GLg(A) with v(M — 1) > Cy + Cs such that

o+— Vo =M"'U,o(M)

satisfies Vo € GLa(Agn(e)) and Vo =1 if o € H.
Proof. Let o — U, be a continuous 1-cocycle on Gy with values in GLd(/T).
Choose an open normal subgroup G of G such that

;ggv(Ug —1) > 2(Cs + C5).
By Lemma 3.40, there exists M; € GLg(A), v(M; — 1) > 2(Cy + C3) such
that o +— U. = M; 'U,o(M,) is trivial in H = G' N Hy (In particular, it has
values in GLg(AH)).
Now we pick v € G/H with n(y) = n(G). In particular, we want n(G) big
enough so that v is in the center of Go/H. Indeed, the center is open, since
in the exact sequence:

1— Hy/H — Go/H — G/H — 1,
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G/H ~ Z, x (finite), and Hy/H is finite. So we are able to choose such an
n(G).

Then we have v(U’) > 2(Cq + C3), and by Corollary 3.43, there exists
M, € GLg(AH) satisfying

v(My = 1) > Cy + C3 and My 'Uly(Ms) € GLa(Ap n(c))-
Take M = M; - M5, then the cocycle
o—V,= M_lUUO'(M)
a cocycle trivial on H with values in GLg(A#), and we have
v(Vy —1) > Cy + C3 and V, € GLg(Ag n(a))-

This implies V, comes by inflation from a cocycle on Gy/H.
The last thing we want to prove is V; € GL4(Ag n(q)) for any 7 € Go/H.
Note that y7 = 7 as 7 is in the center, so

VTT(V'Y) = VTV = V’yT = V’Y(Vr)

which implies v(V;) = V,flVTT(VV). Apply Lemma 3.44 with V; = V,Y’l, Vo=
7(V,), then we obtain what we want. O

Proposition 3.46. Let T' be a free Zy-representation of Go, k € N, v(pF) >
2C5 4 2Cs, and suppose G C Gg is an open normal subgroup acting trivially
on T/p*T, and H = GN Hy. Let n € N,n > n(G). Then there exists a unique
Dy ,(T) C A® T, a free Ag,n-module of rank d, such that:

(1) Dy o (T) is fized by H, and stable by G;

(2) A®ay., Dan(T) — AQT;

(8) there exists a basis {e1,...,eq} of Dy over Ay, such that if v €
G/H, then v(V, — 1) > Cs, V,, being the matriz of ~.

Proof. Translation of Proposition 3.45, by the correspondence
A-representations of Gy «—— H' (G, GLg4(A)).
For the uniqueness, one uses Lemma 3.44. a

Remark 8.47. Hy acts through Ho/H (which is finite) on Dy ,,(T). If Ag, is
étale over Ay, ,, (the case in applications), and then Dy, ,(T) = Dy, (T)Ho/H),

is locally free over Ap, , (in most cases it is free), and

Apin ®A Diyn(T) =5 D (T). (3.22)

Hg,n
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3.5 C-admissible representations

3.5.1 Notations for the rest of the book.

From now on to the rest of the book, if without further notice, we fix the
following notations.

Let K be a p-adic field. Let Ok be its ring of integers, and mg be the
maximal ideal of Ok and k be its residue field, which is perfect of characteristic
p > 0. W = W(k) is the ring of Witt vectors and Ky = FracW = W{[1/p] is
its quotient field. We know that

ranky O = [K : Ko|] = ex = vk (p)

and if 7 is a generator of mg, then 1,7,--- ,7°< ! is a basis of Ox over W as
well as K over K. Let o be the Frobenius map F' as in § A.2.1 on Ky, then

o(a) =a? (mod pW) ifaeW.

Let K be an algebraic closure over K.

For any subfield L of K containing Ky, set G, = Gal(K/L). Let C = K.
By continuity, the Galois group Gk, , hence also Gk, acts on C' and

CCrx = K.

From now on, v will be always the valuation of C' or any subfield such that

v(p) =1, i.e. v =v,. Then v(r) = L.

For any subfield L of C, we denote

O = {zx € Ljv(z) > 0};
my = {x € Ljv(z) > 0};
kL = OL/mL.

Denote by L the closure of L in C, that is O; = @OL/‘D"OL. We have
n>1

L= OZ[%] and k7 = kr. We know that ki = ke = k, where % is an algebraic
closure of k. Let Gy, = Gal(k/k), I be the inertia subgroup of G, then

1—-Igx -G — G —1

is exact.

3.5.2 K-admissible p-adic representations

Note that K is a topological field on which G'x acts continuously.

Definition 3.48. A K-representation X of G is a K-vector space of finite
dimension together with a continuous and semi-linear action of G .
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For X a K-representation, the map
ax: K Qg X% - X
is always injective. X is called trivial if ax is an isomorphism.
Proposition 3.49. X is trivial if and only if the action of Gk is discrete.

Proof. The sufficiency is because of Hilbert Theorem 90. Conversely if X is
trivial, there is a basis {e1, - ,eq} of X over K, consisting of elements of
d

X% TFor any z = > \ie; € X, we want to prove G, = {g € G| g(z) = x} is
=1

1=

d
an open subgroup of G. Because of the choice of e;’s, g(z) = > g(\;)e;, so
i=1

?

d d
Go= (Mg €Glgn) =N} =[G,

i=1 i=1
each )\; € K is algebraic over K, so (i, is open, then the result follows. [

Definition 3.50. If V' is a p-adic representation of Gk, V is called K-
admissible if K ®q, V' is trivial as a K-representation.

Let {v1,--- ,vq4} be a basis of V over Q,, and write v; = 1 ® v; also when
they are viewed as a basis of K ®q, V over K. Then by Proposition 3.49, V
is K-admissible is equivalent to that G,, = {g € G|g(v;) = v;} is an open
subgroup of G for all 1 <14 < d, and it is also equivalent to that the kernel of

p: Gg — Autg, (V),

d
which equals to [ G,,, is an open subgroup.
i=1
We thus get
Proposition 3.51. A p-adic representation of G is K -admissible if and only
if the action of G is discrete.

We can do a little further. Let K™ be the maximal unramified extension
of K contained in K, P = KU the completion in C, and P the algebraic
closure of P in C. Clearly P is stable under G, and Gal(P/P) = Ik.

Set Py = K, then P = KPy and [P : Py] = ex.

Question 3.52. (1) What does it mean for a P-representation of G to be
trivial? -
(2) What are the p-adic representations of Gk which are P-admissible?

Proposition 3.53. (1) The answer to Q1, i.e., a P-representation of Gk is
trivial if and only if the action of Ik is discrete.

(2) A p-adic representation of Gx is P-admissible if and only if the action
of Ik is discrete.
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Remark 3.54. By the above two propositions, then if V is a p-adic represen-
tation of G, and p : Gx — Autg, (V'), then

V is K-admissible <= Ker p is open in G,
V is P-admissible <= Ker p N I ¢ is open in Ig.

Proof. Obviously (2) is a consequence of (1), so we only prove (1).
The condition is necessary since if X is a P-representation of G, then X

—d
is trivial if and only if X = P with the natural action of Gg.
We have to prove it is sufficient. Suppose X is a P-representation of G

of dimension d with discrete action of Ix. We know that ?IK = P, and
Pop Xk — X

is an isomorphism by Hilbert Theorem 90. Set Y = X'x because G /Ix =
Gy, Y is a P-representation of G. If Py Y@ — Y is an isomorphism, since
XGx = YGr then P®x X% — X is also an isomorphism. Thus it is enough
to prove that any P-representation Y of Gy is trivial, that is, to prove that
P®yg Y — Y is an isomorphism.

But we know that any Py-representation of Gy is trivial by Proposi-
tion 2.30: we let

E=Fk Os=W, £ =Ky, £ = K",

then £ur = Py and any @r—representation of G is trivial. Note that P = K P,
and [P : Py] = ek, any P-representation Y of dimension d of Gy, can be viewed
as a Py-representation of dimension ey d, and

PRr Y% =Py ok, Y 5,

so we get the result. a

3.5.3 C-admissible representations.

We can now use Sen’s results to study C-admissible representations.

Proposition 3.55. A p-adic representation V of Gk is C-admissible if and
only if the action of Ix on V is discrete.

Proof. Clearly, the condition is sufficient because as P C C, any representa-
tion which is P-admissible is C-admissible.

For V a p-adic representation of Gk, suppose {v1,--- ,v4} is a basis of V
over Qp, V is C-admissible if and only if there exist a C-basis e1, -+ ,eq €
d

W =C®q,V,ej =) cij @, satisfying that g(e;) = e; for all g € Gg.
i=1

Thus W is trivial and Sen’s operator ¢y of W is 0, by Sen (Corollary 3.32),
then p(Ik) is finite. O
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As a special case of this proposition, we consider any continuous homo-
morphism 7 : G — Zy, and let Q,(n) be the Q,-representation obtained by
giving Q, the action of G, via 7. Set C(n) = C ®q, Q,(n), Tate proved that

Corollary 3.56.

(3.23)

Ge J=0 if n(Ix) is not finite,
¢) {N K ifn(Ik) is finite.

Proof. One notes that the C-representation C(n) is admissible if and only if
C(n)9x, as a K-vector space of dimension < 1, must be 1-dimensional and
hence is isomorphic to K. a






4

The ring R and (¢, I')-module

4.1 The ring R

4.1.1 The ring R(A).

Let A be a (commutative) ring, and let p be a prime number. We know that A
is of characteristic p if the kernel of Z — A is generated by p; such a ring can
be viewed as an F,-algebra. If A is of characteristic p, the absolute Frobenius
map is the homomorphism

p:A— A, a+— a?f

which sometimes is also denoted as o. If ¢ is an isomorphism, the ring A is
perfect. If ¢ is injective, then A is reduced, that is, there exists no nontrivial
nilpotent element, and vice versa.

Definition 4.1. Assume A is of characteristic p, we define

R(A) = lim A, (4.1)
neN

where A, = A and the transition map is @. Then an element x € R(A) is a
sequence x = (Tp)nen satisfying x, € A, ab | = x,.

Proposition 4.2. This ring R(A) is perfect.

Proof. For any x = (Tn)nen, © = (Zny1)h oy, and 2P = 0 implies 28, = x, 41 =
0 for any n > 1, then z = 0. O

For any n, consider the projection map

6,: R(A) — A

(xn)nGN = Tp.

If A is perfect, each 6,, is an isomorphism; A is reduced, then 6, (hence 6,,) is
injective and the image
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If A is a topological ring, then we can give to R(A) the topology of the
inverse limit. In what follows, we are going to apply this to the case that the
topology of A is the discrete topology.

Now let A be a ring, separated and complete for the p-adic topology, that
is, A — lim A/p™A is an isomorphism. We consider the ring R(A/pA).

neN

Proposition 4.3. There exists a bijection between R(A/pA) and the set
S = {(z™)pen | 2™ € A, (2" = (MY,
Proof. Take x € R(A/pA), that is,
& = (Tn)nen, Tn € A/pAand 2¥ | = x,.

For any n, choose a lifting of z,, in A, say Z,, we have

& = I, modpA.
Note that for m € N, m > 1, a« = fmod p™A, then

af = P modp™ A,

thus for n, m € N, we have

m—+1 m
5D — 4P m+1
Tima1 = Ty modp™ T AL

Hence for every n, lim i:f:;m exists in A, and the limit is independent of the
n—oo

choice of the liftings. We denote

m

(n) _ . Ap7
z\" = lim Tytm-
n—oo

Then z(™ is a lifting of z,,, (z(®*Y)? = 2" and z +— (2(™), ey defines a map
R(A/pA) — S.

On the other hand the reduction modulo p from A — A/pA naturally induces
the map S — R(A/pA), (™) en — (2™ mod pA),ecn. One can easily check
that the two map are inverse to each other. a

Remark 4.4. In the sequel, we shall use the above bijection to identify R(A/pA)
to the set S. Then any element z € R(A/pA) can be written in two ways

2= (2n)nen = (@™ )pen, T, € A/pA, 2 € A, (4.2)
If £ = (), y = (y") € R(A/pA), then
(o)™ = @y™), (@ +y)® = Jim @ 4y IR (43)
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4.1.2 Basic properties of the ring R.

We have introduced the ring R(A). The most important case for us is that
A = Op with L being a subfield of K containing K. Identify Oy /pOr =
O} /pO; , then the ring

R(O1/pOyr) = R(07 /p0z) = {a = (™) ,en | 2™ € O7, (2" TP = (M)},
In particular, we set
Definition 4.5. R := R(O5/pO%) = R(Oc/pOc).

Recall v = v, is the valuation on C normalized by v(p) = 1. We define
vr(z) = v(z) = v(x®) on R.

Proposition 4.6. The ring R is a complete valuation ring with the valuation
given by v. It is perfect of characteristic p. Its mazimal ideal mp = {x € R |
v(x) > 0} and residue field is k.

The fraction field Fr R of R is a complete nonarchimedean perfect field of
characteristic p.

Proof. We have v(R) = Qx¢ U {400} as the map R — O¢, = — z(© is onto.
We also obviously have

v() =40 ez =0sz=0,

and
v(ay) = v(x)v(y).
We just need to verify v(z + y) > min{v(x),v(y)} for all z,y € R.
We may assume z, y # 0, then z(9,4©) £ 0. Since v(z) = v(z(®) =
p"o(x(™), there exists n such that v(z(™) < 1, v(y™) < 1. By definition,
(z + )™ =2 4 4™ (mod p), so

o((@ +1)™) > min{o(z™),v(y™), 1}
> min{v(z™), v(y™)},

it follows that v(z + y) > min{v(z),v(y)}.
Since
v(z) > p" e v@E™)>1 ez, =0,

we have
{reR|v(x) >p"} =Ker (0, : R— Oc/pOc).

So the topology defined by the valuation is the same as the topology of inverse
limit, and therefore is complete. Because there is a valuation over R, R is a
domain and thus we may consider Fr R, the fraction field of R. Then

FrR={z=(2""),en | 2™ € C, (") = g™},
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The valuation v extends to the fraction field Fr R by the same formula v(z) =
v(z). Fr R is a complete nonarchimedean perfect field of characteristic p > 0
with the ring of integers

R={zeFR|v(z)>0}

whose maximal ideal is mp = {z € Fr R | v(z) > 0}.
For the residue field R/mpg, one can check that the map

R O [pOg — k
is onto and its kernel is mp, so the residue field of R is k. a

~ Because k is perfect and R is complete, there exists a unique section s :
k — R of the map R — k, which is a homomorphism of rings.

Proposition 4.7. The section s is given by

- —n

ack— ([&" |nen

where [a? "] = (a? ",0,0,---) € Oxye is the Teichmiiller representative of
o
Proof. One can check easily ([a? """])P = [aP "] for every n € N, thus

([a? "])nen is an element @ in R, and 6y(@) = [a] whose reduction mod p is
just a. We just need to check a — a is a homomorphism, which is obvious. O

Proposition 4.8. Fr R is algebraically closed.

Proof. As Fr R is perfect, it suffices to prove that it is separably closed, which
means that if a monic polynomial P(X) = X% +aq 1 X9 1+ -+ a1 X +ap €
R[X] is separable, then P(X) has a root in R.

Since P is separable, there exist Uy, Vj € Fr R[X] such that

UpP + VoP' = 1.

Choose 7 € R, such that v(r) = 1(for example, take 7 = (p(™),en, p{®) = p),
then we can find m > 0, such that

U=7"Uy € RIX|], V=1"V,€ R[X],
and UP + VP = g™,

Claim: For any n € N, there exists x € R, such that v(P(z)) > p™.
For fixed n, consider 6,, : R — Oz/p, recall

Kerf, ={ye€ R|v(y) >p"},

we just need to find x € R such that 6,,(P(z)) = 0. Let
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QX)=X"+- -+ X +a € Of[X],

where «; is a lifting of 6,,(a;). Since K is algebraic closed, let u € Oz be a
root of Q(X), and @ be its image in O /pO%, then any x € R such that
0, (x) = u satisfies 6, (P(x)) = 0. This proves the claim.
Take ng = 2m + 1, we want to construct a sequence (z,)n>n, of R such
that
v(Tpi1 —xp) >n—m, and P(z,) € "R,
then lim x, exists, and it will be a root of P(X).

n—oo
We construct (x,,) inductively. We use the claim to construct z,,. Assume
T, is constructed. Put

plil — %p(j)(X) — Z <Z> a; X,
J

Ve

(2]
then o
P(X+Y)=PX)+YP(X)+> Y/PU(X).
j=2
Write z,+1 = x,, + vy, then
P(zn41) = P(x,) + yP'(zn) + Zyjp[j] (n). (4.4)
j=2

If v(y) > n —m, then v(y? PU)(z,)) > 2(n —m) > n+1 for j > 2, so we only
need to find a y such that

v(y) >n—m, and v(P(z,)+yP (z,)) >n+1.
By construction, v(U(z,)P(z,)) > n > m, so
v(V(zn) P (z)) = v(7™ — U(zn)P(2,)) = m,

which implies that v(P'(z,)) < m. Take y = —}1;,(&2)), then v(y) > n —m,

and we get x,11 as required. a

4.1.3 The multiplicative group Fr R*.

Lemma 4.9. There is a canonical isomorphism of Z-modules
Fr R* = Hom(Z[1/p], C™).

Proof. Given a homomorphism f : Z[1/p] — C*, write (™) = f(p~"), then
(zFYP = 2" 50 = (2"),en € R, thus we get a canonical homomor-
phism

Hom(Z[1/p],C*) — Fr R".

One can easily check that this is an isomorphism. O
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From now on, let us identify Fr R* and Hom(Z[1/p], C*) by the canonical
isomorphism.

Denote by Ug C Fr R* the group of the units of R. Since for z € R,
z € Ur & 20 € O, we get

Ur = Hom(Z[1/p], O¢).

Let le}) be the ring of Witt vectors of k. Since W (k) C O¢, we get an
inclusion £* <— O*. Let Ua“ =1+ m¢, then OF = k* x Ua’, and therefore

Un = Hom(Z[1/p], 0%)
= Hom(Z[1/p], k*) x Hom(Z[1/p], UZ).

In k, any element has exactly one p-th root, so Hom(Z[1/p], k*) = k*. Similarly
we have
Uf; = {v € R| 2" € Ut} = Hom(Z[1/p], UZ),

therefore we get the factorization
Ur = ];3* X U}—g

Set Uy = {z € R|v(z—1) > 1}, then (UL)?" = {z € U} | v(z—1) > p"},
and
Up = lim Ug/(Ug)"
neN
is an isomorphism and a homeomorphism of topological groups. So we may
consider U, as a Z,-module which is torsion free.

For z € U, v(z — 1) > 0, then v(zP" — 1) = p"v(z — 1) > 1 for n large
enough. Conversely, any element z € Uy has a unique p"-th root in UE. We
get

Qp ®Zp Ull:i — UE
pPrRuU s uP
is an isomorphism.

To summarize, we have

Proposition 4.10. The sequence
0—-Ur—FrR"5Q—0 (4.5)

is exact and
(1) Fr R* = Hom(Z[1/p], C*);
(2) Up = Hom(Z[1/p), O)
(3) UE = Hom(Z[l/p},Ug) =Q, ®z, Ug; ’
(4) Up={z € R|v(z—1) > 1} — lim U /(Ug)"".
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4.2 The action of Galois group on R

4.2.1 The action of Galois group.

As in previous chapters, we let W = W (k), Ko = FracW. The group Gk, =
Gal(K/Ky) acts on R and Fr R in the natural way.

Proposition 4.11. Let L be an extension of Ko contained in K and let H =
Gal(K/L). Then

R = R(OL/pOL), (FrR)" = Frac(R(OL/pOL)).
The residue field of R® is ky, = k™, the residue field of L.
Proof. Assume x € R (resp. Fr Rf), then
= (2" )hen, 2™ € Oc(resp. C).
For h € H, h(x) = (h(z™)),en. Hence
z € R (resp. Fr R) <= 2z ¢ (0¢)H (vesp. CH), Vn e N,
then the first assertion follows from the fact
CH=1L, (0c)" =0cn =0; =lm0O,/p"Oy.
The map k — R — k induces the map k; — R — k1, and the composition
map is nothing but the identity map, so the residue field of R¥ is k;. a
Proposition 4.12. If v(L*) is discrete, then
R(OL/pOL) = R¥ = ky.
This is the case if L is a finite extension of K.

Proof. From the proof of last proposition, k;, ¢ R¥ = R(Or/pO}), it remains
to show that

= (x"),eny € RY, v(z) > 0=z =0.
We have v(z™) = p~"u(z®), but v(L*) = v(L*) is discrete, so v(x) =
v(2(®)) = 400, which means that x = 0. O

4.2.2 R(Ky"/pOgeye), € and 7.

Let K3'° be the subfield of K obtained by adjoining to Ky the p"-th roots of
1 for all n. Take (™), such that

@ =1 £1 and (e"V)P =M for n > 1.

Then
K = | Ko(e™).
neN
The question is: what is R(Ogeve /[pOeve)?
First its residue field is k.



74 4 The ring R and (¢, I')-module
Lemma 4.13. The element ¢ = () ,cn is a unit of R(Ogeve [pOkeve).

Proof. Write &, the image of ™ in (’)Kgyc/p(’)Kgyc. Put m = ¢ — 1, then
70 = mlirfrloo(g(m) —1)P" since ¢® —1 =0, and v(™ —1) = W for
m > 1, we have v(r) = v(7(®) = 527 > 1. Thus the element ¢ = () pen is

a unit of R(OKSYC /pOKSYC). O
Note 4.14. From now on, we set € and m = ¢ — 1 as in the above Lemma.

Set H = Gal(K /K"), then R = R(Ojcve /pOceve) by Proposition 4.11.
Since 7 € R and v(7) = v, (7)) = p’%l > 1,k c R¥, and R¥ is complete,
then

k[[7]] ¢ RE and k((n)) c (FrR)H.

Since for every z = (z(™),eny € R, x = y? with y = (z(**tV),cn, R and
(Fr R)H are both perfect and complete, we get

k) © RE,  k((x))™d C (Fr R)H.

Theorem 4.15. We have

— —

R[] = R, k()™ = (Fr R,
Moreover, for the projection map
am R— Of/pOfa em((xn)HEN) = Tm, (m € N)

then
O (R™) = Ocerve [pOjecve.

Proof. Set By = k((n)), F = E®d, L = K = |J Ko(¢™). It is enough to
n>1

check that O is dense in RH | and even that Op is dense in R . Since R is
the inverse limit of O, /pOr, both assertions follow from

0.,(Or) = O /pOr,  for all m € N.
So it is enough to show that Or/pOy, C 0,,(OF), for all m.
Set 7, = (™ — 1, then
OKO [E(n)] = W[ﬂ'n], OL = U W[ﬂ'n]
n=0

Write T, = &, — 1, the image of 7, in O /pOyr, then Or/pOy, is generated
as a k-algebra by 7,’s. Since k C OF,, we are reduced to prove

Tn € 00 (OF) = 0, (K[[7]]2Y),  for all m,n € N.
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For all s € Z, 7~ € k[[x]]**, and

s

P =P 1= (e))en — 1

= (5n+s - 1)7L€N7

where (™ =1 if n < 0. Since Ents — 1 =Tpqs forn+s>0,let s =n—m,
we get

m—n

T = O (77" ") € O (K[[]]™).
This completes the proof. a

4.2.3 A fundamental theorem.

Theorem 4.16. Let E§ be the separable closure of Ey = k((m)) in FrR,
then E§ is dense in FrR, and is stable under Gg,. Moreover, for any
g € Gal(K/K5™),

gle; € Gal(Eg/Ep),

and the map Gal(K/Ky'°) — Gal(Es/Ey) is an isomorphism.

Proof. As Ef is separably closed, E’\g is algebraically closed. Let Ey be the
algebraic closure of Fy in Fr R. It is enough to check that Ey is dense in Fr R
for the first part. In other words, we want to prove that Og_ is dense in R.
As R is the inverse limit of O/pO%, it is enough to show that

0m(0%,) = Ox/pOf, forallmeN.
As E is algebraically closed, it is enough to show that
00(0g,) = Ox/pO%.

Since O = lim Op, it is enough to check that for any finite Galois

[L:K]<4o00
L/K, Galois

extension L of K,
OL/pOL C Qm(OFO)

Let Ko, = Ko(¢™) and L,, = Ko, L, then L/K,,, is Galois with Galois
group J, = Gal(L, /Ky,) and for n large, we have J, = J,41 := J. Since
kE c Oz, replacing Ko by a finite unramified extension, we may assume
L, /Ky, is totally ramified for any n.

Let v, be a generator of the maximal ideal of Op,,, then O, = Ok, , V]
since L,/ Ko,n is totally ramified. Since 0o(O05,) C Ok, , /pOk, ., it is enough
to check that there exists n such that 7,, € 90((9@0), where 7, is the image of
v, in Or, /pOf, .

Let P, (X) € Ko,,[X] be the minimal polynomial of v,,, which is an Eisen-

stein polynomial. Write P,(X) = [ (X — g(vn)). We need the following
geJ
lemma:
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Lemma 4.17. For any g € J, g # 1, we have v(g(vy) —vn) — 0 as n — +o0.

Proof (Proof of the Lemma). This follows immediately from (A.23) and the
proof of Proposition A.88. O

We will see that the lemma implies the first assertion. Choose n such that
v(g(vn) — vp) < 1/d for all g # 1. Let P,(X) € Ok, [X]/pOk,., [X] be the
polynomial P,(X) (mod p), We choose Q(X) € Og,[X], monic of degree d,
a lifting of P,. Choose 3 the image in O%/pO3 by 6 of a root of Q in Oz,
in such a way that

v(B—0p) >v(B—g(Dy)), forallge.
We also have v(P,(3)) > 1 since Q is a lifting of P,, thus

U(ﬂ - ﬂn) >

Choose b € O a lifting of 5 such that v(b) > 0 and b is of degree d as well,
then v(b — 1,) > % and hence

v(b—vy) > v(v, —g(vy)), forallgeJ.

By Krasner’s Lemma, v,, € K (b), moreover, o, = 8 € 6y(O5 ,)- This proves
the first assertion.

For any a € E§, let P(z) = Z XiX' € Ep[X] be a separable poly-
nomial such that P(a) = 0. Then for any g € Gg,, g(a) is a root of
(P) = Z g(\) X To prove g(a) € E§, it is enough to show g(Ey) = Eo,
which follows from the fact
gm) = (14 m)X@ 1.

Moreover, for any g € Gal(K/K¥°), then g(a) is a root of P. Thus for g €
Gal(K/KSyC) H, g|g; € Gal(E§/Ep), in other words, we get a map

Gal(K/Ky') — Gal(E§/Ey).
We want to prove this is an isomorphism.

Injectivity: g is in the kernel means that g(a) = a, for all a € E§, then g(a) = a
for all a € Fr R because Ef is dense in Fr R and the action of g is continuous.

Let a € Fr R, then a = (a(™),ey with a(™ € C, and (a+tD)P = o),
g(a) = a implies that g(a(®) = a(®, but the map 6y : Fr R — C'is surjective,
so g acts trivially on C, hence also on K, we get g = 1.

Surjectivity: We identify H = Gal(K /Ky'°) — Gal(Ej/Ey) a closed subgroup
by injectivity. If the above map is not onto, we have
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Ey C F=(E)" c (FrR)H = B9,

that is, F' is a separable proper extension of Fy contained in Egad. To finish
the proof, we just need to prove the following lemma. O

Lemma 4.18. Let E be a complete field of characteristic p > 0. There is no
nontrivial separable extension F of E contained in Er4d,

Proof. Otherwise, we could find a finite separable nontrivial extension E’ of

E contained in Er2d. There are d = [E’ : E] distinct embeddings o1, -+ ,04 :
E' — E*. We can extend each o; to E'**1 in the natural way, that is, by
setting o;(a) = o;(a?")P”". This map is continuous, hence can be extended

to E'rad = Erad But ¢, is the identity map on E™9, so it is the identity map
on Erad, This is a contradiction. O

4.3 An overview of Galois extensions.

4.3.1 A summary of Galois extensions of K and E.

We first give a summary of the Galois extensions we studied so far.

(1) The field K is a p-adic field with perfect residue field k. The field Ky
is the fraction field of the Witt ring W (k). The extension K D Kj is totally

ramified. Let K¢ = KK = |J K(¢™), we have the following diagram
n>1

Hj = Gal(K/K%°) C Gk = Gal(K/K)
N N
Hje, = Gal(K/KS°) C G, = Gal(K/Ky).

Moreover, Hj = Hy N GE, if we set Il = Gr/Hy = Gal(K¥¢/K), then
I'y € I'y, = Gk, /Hj,, which is isomorphic to an open subgroup of Zj, via the
cyclotomic character y. Since Zy is of rank 1 over Z,, with torsion subgroup

(Z ) =~ A 5 (B 2/ =1)2)  Ep#2,
p)tor = 7/27 if p =2,

the group I'j; is also rank 1 over Z,, and we have
1— Ax — Ty — I'x — 1,

where I're >~ Z;,, and A is the torsion subgroup of Iy,
Let Hix = Gal(K/K®), then we have exact sequences
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Fig. 4.1. Galois extensions of K and Ko

1— Hy — Hg — Ag — 1.
In conclusion, we have Fig. 5.1.

(2) The field Ey = k((7)), moreover, Ey C Ej C Fr R, and Hj C Hy =
Gal(Eg/Ey). Set Ef. = E' = (E$)k then Ej/E' is a Galois extension with
Galois group Gal(E§/E’) = Hj, and E'/Ej is a finite separable extension.
Set

E = B = (B3)" = (B')x, (4.6)

then E’/FE is a Galois extension with Galois group Gal(E’/E) = Ax. We see
that Ej is also a separable closure of E. Set E* = Ej.
In conclusion, we have Fig. 5.2.

Remark 4.19. E is stable under G, which acts through I'k.

4.3.2 The field B and its subfields.

Denote by W (Fr R) the ring of Witt vectors with coefficients in Fr R, which
is a complete discrete ring with the maximal ideal generated by p and residue
field W(Fr R)/p = Fr R. Let

1

B = Frac W(Fr R) = W(Fr R)[p

]. (4.7)
The Galois group G, (and therefore Gc) acts naturally on W (Fr R) and B.
Denote by ¢ the Frobenius map on W (FrR) and on B. Then ¢ commutes
with the action of Gk,: ¢(ga) = gp(a) for any g € Gk, and a € B.
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FrR = Es

E§ = E°

’
HKO

Hig
Hg
E' = E)
% \
Fx

E= Eo = B, = k(7))

Ak,

FEx,

Fig. 4.2. Galois extensions of E' and Ejy

We know that Ey = k((7)) C Fr R and k[[x]] C R. Let [¢] = (¢,0,0,---) €
W (R) be the Teichmiiller representative of . Set 7. = [¢] — 1 € W(R), then
e = (g, %,%,--+). Set W =W(k) C W(R).
Since
W (R) = lim W, (R) = limg W (R) /p"

where Wy, (R) = {(ao, - ,an—1) | a; € R} is a topological ring, the series

> Tl A€W, neN,

n=0
converges in W(R), we get a continuous embedding
W(lme]] = W(R),
and we identify W{[n.]] with a closed subring of W (R).
The element . is invertible in W (Fr R), hence
1
W((me)) = Wr]l[—] ¢ W(Fr R)
g
whose elements are of the form
+o00
Z ATl 0 A € W, A, =0 for n < 0.

Since W (Fr R) is complete, this inclusion extends by continuity to

+oo
Og, := { Z ATl Ap € W, A, — 0 when n — —oo}, (4.8)

n=—oo
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the p-adic completion of W{[r.]][=].

Note that Og, is a complete diswcgrete ring, whose maximal ideal is generated
by p and whose residue field is Ey. Let & = Og, [%] be its fraction field, then
& C E

Note that Og, and & are both stable under ¢ and Gk,. Moreover

o([e]) = (eP,0,---) = [¢]?, and (7)) = (1 4+ 7 )P — 1. (4.9)
The group Gk, acts through F1/<05 for g € Gk,,
g([e]) = (Ex(g),o7 ) = [5]X(9),

therefore
g(me) = (1+ WE)X(Q) -1 (4.10)

Proposition 4.20. For any finite extension F' of Ey contained in E° = L,
there is a unique finite extension Ep of & contained in B which is unramified
and whose residue field is F'.

Proof. By general theory on unramified extensions, we can assume F' = Ey(a)
is a simple separable extension, and P(X) € Ey[X] is the minimal polynomial
of a over Ey. Choose Q(X) € Og,[X] to be a monic polynomial lifting of P.
By Hensel’s lemma, there exists a unique « € B such that Q(«) = 0 and the
image of o in Fr R is a, then &r = &y(a) is what we required. O

By the above proposition,

& =Jér c B, (4.11)
F

where F' runs through all finite separable extension of Ey contained in E*®.
Let &3 be the p-adic completion of £§" in B, then £§" is a discrete valuation
field whose residue field is E°.
We have
Gal(&) /&) = Gal(E§/Ey) = H}(O.

Set
(Eg)HE = £ =€, (4.12)

then £ is again a complete discrete valuation field whose residue field is F,
and £} /€ is a Galois extension with the Galois group Gal(£)"/€) = Hk. Set

ur __ cur cur _ our
gV =gy, fur = £,

It is easy to check that £ is stable under ¢, and also stable under G g, which
acts through I'x = Z,. We have Fig.5.3.
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gll!’ — (C/‘(‘)JI'
H/, /

Hy K ko

g/ - gE’
% \

E=Ep=Ep, £ = Ep = Ko((2))
\ AKg
5EK0

Fig. 4.3. Galois extensions of £ and &.

4.4 (¢, I')-modules and p-adic Galois representations
4.4.1 (p, I')-modules.

Let V be a Z, representation of Hg, where Hx = Gal(E®/E) = Gal(E"™/E),
then

M(V) = (Ogz @z, V)< (4.13)
is an étale p-module over Og¢. By Theorem 2.32, M defines an equivalence
of categories from Repy, (Hg), the category of Z, representations of Hp

to ///j;t(Og), the category of étale p-modules over Og, with a quasi-inverse
functor given by

V:D+— (Ozz @0 D)p=1- (4.14)

If instead, suppose V is a p-adic Galois representation of Hy. Then by
Theorem 2.33, .

M:V — (¥ @g,V)Hx (4.15)

defines an equivalence of categories from Repr (Hg), the category of p-adic

representations of Hg to ///ﬁt(é'), the category of étale p-modules over &,
with a quasi-inverse functor given by

V:Dr— (E% D). (4.16)
Now assume V' is a Zj, or p-adic Galois representation of G g, write
D(V) := (Ogz @z, V)75 or D(V) := (£ @g, V) 7x. (4.17)

Definition 4.21. A (¢, I')-module D over O¢ (resp. £) is an étale p-module
over Og (resp. £) together with an action of I'x which is semi-linear, and
commutes with w. D 1is called étale if it is an étale p-module and the action
of I' is continuous.
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If V is a Z,, or p-adic representation of Gk, D(V') is an étale (¢, I")-module.
Moreover, by Theorems 2.32 and 2.33, we have

Theorem 4.22. D induces an equivalence of categories between Repy, (G )
(resp. Repg, (Gk)), the category of Z,, (resp. p-adic) representations of G
and ///ij(Og) (resp. ///;'fp(é')), the category of étale (p, I")-modules over Og
(resp. £), with a quasi-inverse

V(D) = ((’)E;]\r R0, D)<p=1 (resp. (5/"Tr ®e D)¢:1) (4.18)
and G acting on Ogz ®o, D and gur ®e D by
gA®@d) =g(A) @ g(d)

for g the image of g € Gk in I'x. Actually, this is an equivalence of Tannakian
categories.

Remark 4.23. There is a variant of the above theorem. For V' any p-adic rep-
resentation of Gk, then

D'(V) = (& ©g, V)" (4.19)
is an étale (i, I")-module over & = (£")7k | and
D(V) = (D'(V))?¥, Ak = Gal(£'/€).
By Hilbert’s Theorem 90, the map
&' e D(V) = D'(V)

is an isomorphism. Thus the category t///f;fp, (£’) is an equivalence of categories

with Repg (Grk) and ///5%(5). For Z,-representations, the correspondent
result is also true.

Ezample 4.24. 1t K = Ko = W(k)[1], W = W (k), then £ = & = K((m)). If
V =Zp, then D'(V) = Og, = WT(E)) with the (¢, I'")-action given by
p(me) = (L+pic)P =1, g(me) = (1+m )X —1. (4.20)

We give some remarks about a (¢, I')-module D of dimension d over .
Let (e1,- -+ ,eq) be a basis of D, then

d
Lp(ej) = Z aijei.
=1

To give ¢ is equivalent to giving a matrix A = (a;;) € GLg(E). As I is
isomorphic to Z,, let vy be a topological generator of I,
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d
Yo(e;) =D bijer.
i=1

To give the action of 7y is equivalent to giving a matrix B = (b;;) € GL4(E).
Moreover, we may choose the basis such that A, B € GL4(Og).

Exercise 4.25. (1). Find the necessary and sufficient conditions on D such
that the action of vy can be extended to an action of k.

(2). Find formulas relying A and B equivalent to the requirement that ¢
and I' commute.

(3). Given (Ai, B1), (A2, Ba) two pairs of matrices in GL4(E) satisfying
the required conditions. Find a necessary and sufficient condition such that
the associated representations are isomorphic.

4.4.2 The operator .

Lemma 4.26. (1) {1,e,--- ,eP~1} is a basis of Ey over o(Ey);
(2) {l,e,--- ,eP71} is a basis of Ex over ¢(Ek);
(3) {1,e,--+ ,eP~1} is a basis of E° over p(E®);

(4) {1, [e], -+, [e]P~'} is a basis of Oz over o(Ogx).

Proof. (1) Since Ey = k((7)) with 7 =& — 1, we have ¢(Eq,) = k((7?));
(2) Use the following diagram of fields, note that all vertical extensions
are purely inseparable and horizontal ones are separable:

Ex —— Ej «—— FE

| l !

o(Bx) —— ¢(Ey) «——— »(Eo)

We note the statement is still true if replacing F' by any finite extension F
over K or K.

(3) Because E® = UEp.

(4) To show that

p—1
(o, 21,--- ,@p_1) € Ogu\r — Z[E]th(l‘i) € Oz
i=0
is a bijection, it suffices to check it modp and use (3). O

Definition 4.27. The operator ¢ : Ogs; — Oy is defined by
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Proposition 4.28. (1) ¢y =1d;
(2) ¥ commutes with Gk .

Proof. (1) The first statement is obvious.
(2) Note that

p—1 p—1
9O el e(@i) = > [l XD o(g(xs)).
=0 =0

If for 1 <i <p—1, write ix(g9) = ig + pjg with 1 < iy <p—1, then

(O [ D(g(x:))) = P(e(g(xa)) + > _[el“p(elog(x:))) = glao).
=0 =1

a

Corollary 4.29. (1) If V is a Z,-representation of G, there exists a unique
operator 1) : D(V) — D(V) with

Plp(a)r) = ap(z),  Ylap(r)) = Pla)z

if a € Og,.,x € D(V) and moreover 1 commute with I'k.
(2) If D is an étale (@, I")-module over Og, or Ex, there exists a unique
operator 1) : D — D with as in (1). Moreover, for any x € D,

where x; = " ([g] "'x).

Proof. (1) The uniqueness follows from Og ®,(0,) @(D) = D. For the exis-
tence, use 1 on Oc¢ @V D D(V). D(V) is stable under ¢ because ¢ commutes
with Hp, ¥ commutes with ' since ¥ commutes with G.

(2) D = D(V(D)), thus we have existence and uniqueness of 1. The rest
is by induction on n. O

Ezample 4.30. For Og, D OF = Ko[[r.]], [e] = 1+ 7z, let = F(n.) € OF,
then ¢(z) = F((1 4 7 )? — 1). Write

p—1
Fre) = (1+m) F((1+m)" 1),
i=0
then ¢(F(nz)) = W(k)(me). It is easy to see if F'(m.) belongs to W (k)[[mc]],
Fy(m2) belongs to W (k)|[r.]] for all i. Hence ¢(OF ) C Of = W (k)[[r]]. Con-
sequently, 1) is continuous on & for the natural topology (the weak topology).
Moreover, we have:



4.4 (¢, I")-modules and p-adic Galois representations 85

p—l
S(W(F)) = Fol(1+ m2)? }) SO S (1t m)E(((0 4 7)) — 1)
zP=1 z=0
- Z 2(14m) —1).

zpl

Proposition 4.31. If D is an étale p-module over Og,, then 1 is continuous
for the weak topology. Thus 1 is continuous for any an étale p-module D over
Og¢ in the weak topology.

Proof. For the first part, choose e, ea, -+ ,eq in D, such that
D = PO, /™ )ei, ni € NU{oc}.

Since D is étale, we have D = &(Og,/p™ )p(e;). Then we have the following
diagram:

D D

] |

®(O¢, /p")p(ei) —= ®(Og, /p")e;

Yo zip(e) ————= > Y(wi)e;

Now z — (z) is continuous in Og,, hence 1 is continuous in D.
The second part follows from the fact that Og,, is a free module of Og,
K

of finite rank, and the remark after Theorem 4.22. a
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de Rham representations

5.1 Hodge-Tate representations

Recall the Tate module Z,(1) = T,(G,,) of multiplicative groups, choose a
generator t, then G acts on Z,(1) through the cyclotomic character x:

g(t) =x(9)t, x:Gx — Ly

For i € Z, the Tate twist Z,(i) = Z,t' is the free Z,-module with G acts on
it also through x*.

Let M be a Zy,-module and i € Z, Recall the i-th Tate twist of M is
M (i) = M ®z, Zy(i). Then

M — M@G@), z—zot

is an isomorphism of Z,-modules. Moreover, if Gx acts on M, it acts on M (¢)
through ‘
9(x ®u) = gz @ gu = x"(9)gz @ u.

One sees immediately the above isomorphism in general does not commute
with the action Qf Gk.

Recall C = K.
Definition 5.1. The Hodge-Tate ring Byt is defined to be

Bur =@ C(i) = CJt, 1/1]

1€L

where the element c @ t' € C(i) = C ® Z, (i) is denoted by ct', equipped with
a multiplicative structure by

ct’ -t = ed .
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‘We have

+oo
Bpt C B/H\T = C((t)) = { Z citi,ci =0,if i < 0}
1=—00

Proposition 5.2. The ring Bur is (Qp, Gk)-regular, which means

(1) Bur is a domain;

(2) (Frac Bur)®* = (BX) = K;

(8) For every b € Byr,b # 0 such that g(b) € Qpb, for all g € Gk, then b
is invertible. and Bg{f =K.

Proof. (1) is trivial.
(2) Note that Byt C Frac Bgr C Byr, it suffices to show that (Bgr)®x =
K

Let b= Y ¢;t', ¢; € C, then for g € Gk,
€L

g(d) =Y glea)x (9)t".
For all g € Gk, g(b) = b, it is necessary and sufficient that each c;t* is fixed by
Gk, ie., cit' € O(i)“x. By Corollary 3.56, we have C“% = K and C(i)“% = 0
if ¢ # 0. This completes the proof of (2).
(3) Assume 0 # b = >_ ¢;t" € By such that
9(b) =n(g)b, n(g) € Qp, for all g € Gk.

Then g(c;)x*(9) = n(g)c; for all i € Z and g € Gk . Hence

g9(ci) = (mx ") (9)ei

For all ¢ such that ¢; # 0, then Qyc¢; is a one-dimensional sub Q,-vector space
of C stable under G'i. Thus the one-dimensional representation associated to
the character ny~* is C-admissible. This means that, by Sen’s theorem, for all
i such that ¢; # 0 the action of I through ny~* is finite, which can be true
for at most one 7. Thus there exists iy € Z such that b = ¢;,t* with ¢;, # 0,
hence b is invertible in Byr. O

Definition 5.3. We say that a p-adic representation V' of Gk is Hodge-Tate
if it is Buyr-admissible.

Let V be any p-adic representation, define
Dur(V) = (Bur ®q, V)°*.
It is always true that dimg Dyr(V) < dimg, V' and
Proposition 5.4. V' is Hodge-Tate if and only if the equality
dimg Dyr(V) = dimg, V
holds.
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Proposition 5.5. For V to be Hodge-Tate, it is necessary and sufficient that
the Sen operator ¢ of W =V ®q, C be semi-simple and that its eigenvalues
belong to Z.

Proof. If V' is Hodge-Tate, then
Wi = (C(i) @g, V)" (~i) ®x C

is a subspace of W and W = @&W,. One sees that ¢y, is just multiplication
by i (cf Example 3.26). Therefore the condition is the necessity.

To see it is sufficient, we decompose W into the eigenspaces W, of ¢,
where ¢ is multiplication by ¢ € Z in W;. Then W;(—i) has ¢ = 0 and by
Theorem 3.28, we have

Wi(—i) = (Wi(=i))°* ®x C.

dimg Dur(V) > Y dimg (Wi(—i))9% = > dime W; = dimg, V

and hence V' is Hodge-Tate. a

For a p-adic representation V', one sees that Dyr is actually a graded
K-vector space since

Dyr(V) = P e’ Dur(V), where gr Dur(V) = (C(i) ® V)9%.
PEZ

Definition 5.6. The Hodge-Tate number of V' is defined to be h; = dim(C(—4)®
V)Cx,

Ezample 5.7. Let E be an elliptic curve over K, then V,(E) = Q, ®z, T,(E)
is a 2-dimensional Hodge-Tate representation, and

dim(C ®g, V,(E))°* = dim(C(~1) ®q, V,(E))“" = 1.
Then the Hodge-Tate number is (1g, 11).

Let V be a p-adic representation of G, define gr' Dj;.(V) = (L, (V, C(1)))Cx,
then _ _
gr' Dgp ~ (gr™ " Dur (V7))
as K-vector spaces.

Remark 5.8. A p-adic representation V of G is EH\T-admissible if and only
if it is Byr-admissible. This is an easy exercise.
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5.2 de Rham representations

Recall B = W (Fr R) [ﬂ S EW D € and W(R) C B. In this section, we shall
define the rings BJ; and Bgg such that W(R) C Bj; C Bag.

5.2.1 The homomorphism 6.

Let a = (ap,a1, - ,am, ) € W(R), where a,, € R. Recall that one can
write a,, in two ways: either

am = (ag))rel\h a/%) c OC, (ag+1))i” = a’g;%

or
Qm = (am,r)v Am,r € Of/pa a%,r_t,_l = Qm,r-

Then a — (ag,n,@1n, - ,an-1,,) gives a natural map W(R) — W, (O%/p).
For every n € N, the following diagram is commutative:

Wit1(O%/p)
/ lf"
W(R) W,.(O%/p)
where f,,((zo,z1,- -+ ,2,)) = (2h,--- , 2P _,). It is easy to see the natural map

fn

is an isomorphism. Moreover, It is also a homeomorphism if the right hand
side is equipped with the inverse limit topology of the discrete topology.
Note that O%/p = Oc/p. We have a surjective map

Wn+1(OC’) - n(Of/p)a (aOa"' aan)’_’ (aO,"' aan—l)-
Let I be its kernel, then
I= {(pb07pb1, e apbnflaan”bivan S OC}

Let wpt1 @ Wipt1(O¢) — O¢ be the map which sends (ag,a1, - ,a,) to

agn + pall’n + -+ + p"a,. Composite w,1 with the quotient map O¢c —
Oc¢/p™, then we get a natural map W, 1(O¢) — O¢/p™. Since

W1 (Pbo, -+ s Pbu_1,an) = (pbo)?" + -+ p" " (pby_1)? + p"an € p"Oc,
there is a unique homomorphism

by : Wo(Ox/p) — Oc/p"
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such that the following diagram

Wn41

Wnt1(Oc¢) Oc¢

]

O
Wi (Og/p) —— Oc/p" = Og/p"

is commutative. Furthermore, we have a commutative diagram:

971 1
Wo1(O%/p) ——= Oc /p™*

c

Wi (O%/p) b 0 /"

Thus it induces a homomorphisms of rings
0:W(R) — Oc¢.

Lemma 5.9. If x = (zo,21,* ,&n, ) € W(R) for z, € R and z, =

(xglm))meN; lngm) € O¢, then

—+oo
O(z) = Zp":zrgl”).
n=0

Thus 0 is a homomorphism of W -algebras.

Proof. Forx = (xg,x1,- - ), the image of x in W, (O%/p) is (To,ns T1,ns > Tn—1,n)-
(n)

We can pick z; ' € O¢ as a lifting of z; ,,, then

n—1 n—1 ____
6n(x0,n7 . 71'n—1,n) _ Zpi(xz(ln))pnfi _ szxl(l)
=0 =0
since (:1:1(-"))1’7' = xgnfr). Passing to the limit we have the lemma. O

Remark 5.10.If for x € W(R), write  as x = ) p"[z,]| where z,, € R and
[] is its Teichmiiller representative, then we have

—+oo
O(z) = Zp"a:%o).
n=0

Proposition 5.11. The homomorphism 0 is surjective.

Proof. For any a € Og, there exists € R such that 2(®) = a. Let [z] =
(x,0,0,---), then 0([z]) = z(© = a. -
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Choose @ € R such that w©® = —p. Let ¢ = [w] +p € W(R). Then
€ = (@,1,0,---) and by Lemma 5.9, (&) = @@ +p =0.

Proposition 5.12. The kernel of 60, Ker 0 is the principal ideal generated by
&. Moreover, [(Ker6)™ = 0.

Proof. For the first assertion, it is enough to check that Ker 6 C (£, p), because
O¢ has no p-torsion and W (R) is p-adically separated and complete. In other
words, if z € Ker 6 and x = yg + px1, then 6(x) = pf(x;), hence x; € Ker .
We may construct inductively a sequence x,_1 = &Yn_1 + pTy, then z =

§EQ_P"Yn)-

Now assume z = (zg,x1, - ,Tpn, ) € Kerf, then

0=0(x) =2 +pY p" 'z,

n=1

Thus v(xéo)) > 1 = v,(p), so v(zg) > 1 = v(w). Hence there exists by € R
such that xg = bpwo. Let b = [bg], then

x*bfi(lﬂo,xl,"')*(b,O,“‘)(w,l,O,"‘)
:(zo—bow,'-') = (anlvaa"')
:p(yivy/%) EpW(R)a

where (y,)? = y;.

For the second assertion, if x € (Kerf)™ for all n € N, then vg(z) >
vr(£") > n. Hence 7 = 0 and = = py € pW(R). Then pf(y) = 6(x) = 0 and
y € Ker 6. Replaced x by z/£", we see that y/¢" € Ker# for all n and thus
y € [(Ker 0)™. Repeating this process, x = py = p(pz) =--- = 0. O

5.2.2 The rings BIR and Bgr.

Note that Ko = FracW = W[%], let

W(R) [%] — Ko ow W(R).

We can use the map @ — 1 ® x to identify W(R) to a subring of W (R) [ﬂ
Note
1 = —n 3 —n
W(R)[=] = | W(R)p™" = lim W(R)p".
p n=0 neN
Then the homomorphism 6 : W(R) - O¢ extends to a homomorphism of

Ky-algebras 6 : W(R) [%] — C which is again surjective and continuous. The
kernel is the principal ideal generated by &.
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Definition 5.13. The de Rham ring Bg‘R 18

B = lim W(R) [1]/(Kef 0)" = lim W(R) [1]/(5)73
neN p neN p

Since Ker 6 is a maximal ideal, which is principal and generated by a non-
nilpotent element, B(}LR is a complete valuation ring whose residue field is

C.

Remark 5.14. Be careful: there are at least two different topologies on Bg‘R
that we may consider:

(1). the topology of the discrete valuation ring;

(2). the topology of the inverse limit with the topology induced by the
topology of W(R) [%] on each quotient.

We call (2) the natural topology of BJy. The topology (1) is stronger than
(2). Actually from(1) the residue field C' is endowed with the discrete topology;
from (2), the induced topology on C'is the natural topology of C.

Definition 5.15. 1
Bgr := Frac B;'R = B;'R [f

f]'

o0
Since () "W (R) [%] = 0, there is an injection

n=1
1 +
We can use it to identify W(R) and W (R) [%}] to subrings of BJy.
We have the following important fact:

Proposition 5.16. For the homomorphism 6 : B:{R — C' from a complete
discrete valuation ring to the residue field of characteristic 0, there exists a
section s : C — Blp which is a homomorphism of rings such that 6(s(c)) = ¢
forall c e C.

Remark 5.17. The section s is not unique. The proof uses the axiom of choice
(Zorn’s lemma).

Moreover, one can prove that:

Exercise 5.18. (1). There is no such s which is continuous in the natural
topology.

(2). There is no section s which commutes with the action of G.

(3). For K C C an algebraic closure of K inside C, there exists a unique
continuous homomorphism s : K — BSFR commuting with the action of G
such that 0(s(a)) = a, for all a € K. We use it to view K as a subfield of BJj,
then 6 : BIR — (' is a homomorphism of K-algebras.
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Remark 5.19. (1). Assume K C BJ. Note that k is the residue field of K, as
well as the residue field of R and k& C R. Thus W (k) C W(R). Let

Py = W (k) [%] — Frac W ()

which is the completion of the maximal unramified extension of Kg in C. We
have

Py C W(R) [%], and Py C C

and @ is a homomorphism of Py-algebras. Let P = PyK which is an algebraic
closure of Py, then

PC B
and 6 is also a morphism of P-algebras.

(2). A theorem by Colmez claims that: K is dense in BJ; with a quite
complicated topology in K induced by the natural topology of B(YR. However
it is not dense in Byg.

(3) For any ¢ € 7Z, let F1li Bar be the i-th power of the maximal ideal
of BdR Then if i > 0, Fil' Bgr = m . For i € Z, Fil' Byg is the free

BdR module generated by £, i.e.,

Fil' Bar = Bjp¢", Fil’ Bar = Bl;.

5.2.3 The element t.

Recall the element € € R given by (®) =1 and ¢V # 1, then [¢] — 1 € W (R)
and
0(fe] —1) =@ —1=0.

Thus [e] — 1 € Ker 0 = Fil' Bar. Then (—1)" 1 ELLS € W (R)[2]¢" and

- n+1 1)n +

log[e] Z ——— € Byi.

n=1
We call the above element ¢ = logle].
Proposition 5.20. The element

t € Fil' Byg, and t ¢ Fil*> Byg.

In other words, t generates the maximal ideal of BS'R.

Proof. That t € Fil* Byg is because

([e] ="

€ Fil' Byg for all n > 1.
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Since 1y
E=D" g itn > 2,
n

to prove that ¢ ¢ Fil® Byg, it is enough to check that
[e] — 1 ¢ Fil® Byg.
Since [e] — 1 € Ker 0, write [¢] — 1 = A\ with A € W(R), then
[e] — 1 ¢ Fil® By <= 0()\) # 0 <= X ¢ W(R)E.

It is enough to check that [g] — 1 ¢ W(R)&2. Assume the contrary and let
[e] — 1 = A2 with A € W(R). Write A = (\g, A1, A2, ). Since

EZ(W,LO,O,"'), 52:(7327"')7
we have \¢2 = (A\gw?,---). But
] = 1= (2,0,0,--+) = (1,0,0,---) = (e = 1,---),

hence ¢ — 1 = M\w? and

vie—1) > 2.
We have computed that v(e — 1) = p%l < 2if p # 2, contradiction. If p = 2,
compute the next term, we will get a contradiction too. a

Remark 5.21. We should point out that our ¢ is the p-adic analogy of 2mi € C.
Although exp(t) = [¢] # 1 in Bz, 0([]) =1in C = C,.

Recall Z,(1) = T,(G,,), viewed additively. Let Z,(1)* = Z,(1), viewed
multiplicatively. Then Z,(1)* = {¢* : A\ € Z,} is a subgroup of Uj;, and
Zp(1) = Zyt C Bfy. We have

log([e]*) = Mog([e]) = M.
For any g € Gk, g(t) = x(g)t where x is the cyclotomic character. Recall

Fil' Bqr = Bjit' = Bji (i)

and 1 )
Bar = BS_R[Z] = B;_R[EL
Then
ar BdR = @ gri BdR = @ Fﬂi BdR/ FﬂiJrl BdR
i€Z i€l
=D Bin()/tBi(i) = P C(0).
i€L i€l

Hence
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Proposition 5.22. gr Bir = Bur = C(t, 1) C Bur = C((1)).

Remark 5.23. If we choose a section s : C — B;er which is a homomorphism
of rings and use it to identify C to a subfield of Bjy, then Bar =~ C((t)).
This is not the right way as s is not continuous. Note there is no such an
isomorphism which is compatible with the action of G .

Proposition 5.24. Bfg =K.

Proof. First as K C K C BS'R C Bgr, we have
KCK " C---CBgj-

Let 0 £0b € Bﬁ—_{(, we are asked to show that b € K. For such a b, there exists
an 7 € Z such that b € FﬂinR but Iz¢ Fil'™* Bygr. Denote by b the image of
bin gr' Bqr = C(i), then b # 0 and b € C(i)“%. Recall that

, 0, 40,

then i = 0 and b € K C Bj. Now b —b € B and b — b € (Fil' Bgr)®* for
some ¢ > 1, hence b — b = 0. O

5.2.4 Galois cohomology of Byr

Suppose K is a finite extension of Q,. Recall that we have the following:

Proposition 5.25. For i € Z, then

(1) if i #£0, then H"(Gk,C(i)) = 0 for all n;

(2) if i = 0, then H'(Gg,C) = 0 forn > 2, H'(Gg,C) = K,
and HY(Gg,C) is a 1-dimensional K-vector space generated by logy €
HY(Gk,Q,p). (i.e, the cup product x +— z Ulogx gives an isomorphism
H°(GE,C) ~ HY Gk, O)).

Proof. For the case n = 0, this is just Corollary 3.56.

We claim that H"(Hg,C(i))!x = 0 for n > 0. Indeed, for any finite
Galois extension L/K, let a € L such that Try g (o) = 1 and let ¢ €
H"(L/Kq,C(i)%"). Set

C/(gl,"' agn—l) - Z glg?"'gn—lh(a)c(gla"' 7gn—1ah)7
heGal(L/Koo)

then d¢’ = c¢. Thus H"(Hg,C(i)) = 1 by passing to the limit.
For n = 1, using the inflation and restriction exact sequence

0 — H Ik, C(i) <) 25 HY (G, C(1)) 25 HY (Hy, C(i)) 7.
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Then the inflation map is actually an isomorphism. We have C(i)#x = K (i).
Now K. 0o = K, ®X,, where X, is the set of all elements whose normalized trace
in K, is 0 by Proposition A.97. Let n be large enough such that vg (x () —
1) > d, then x(7,)"y, — 1 is invertible in X,, by Proposition A.97. We have

Koo K, ® X, K,

X(m)m =1 X =1 X () — 1

H'(I'x, Koc(i) =

Thus
K,, ifi=0;

1 K (i) =
HY Ik, , Kyo(i)) = {07 if § £ 0.

Using the same method for computing H™(Hg,C(i)) = 1, as Koo(i) is a
K-vector space, we have
HY (Gal(K, /K), K (i) /)y =0, fori> 0.
By inflation-restriction again, H! (I, , I?oo(z)) =0 for i # 0 and for ¢ =0,
K=H"(I',K.) = H' (I'x, K) = Hom(I, K) = K - log X,

the last equality is because I'x is pro-cyclic.
For n > 2, H"(Hk,C(i)) = 0. Then just use the exact sequence

1l—Hg — Gg — IT'x — 1
and Hochschild-Serre spectral sequence to conclude. a
Proposition 5.26. Suppose i < j € ZU {xoo}, then if i > 1 or j <0,
HY(Gg,t'Big/t Big) = 0;
ifi <0 and j >0, then x — x Ulog x gives an isomorphism
HY(Gg,t'Bi/t' Bix)(~ K) = HY(Gg,t' Bz /! Bin)-

Proof. Use the long exact sequence in continuous cohomology attached to the
exact sequence

0 — t"C(~ C(i +n)) — ' Bl /t" V"Bl — !B/t Bz — 0,
and use induction on j—1i (note that in the base step j = i+1, tiBS”R/th(;FR o

C(i)), and Proposition 5.25 to do the computation. This concludes for the case
where i, j are finite. For the general case, one proves it by taking limits. O
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5.2.5 de Rham representations.

Note that Bgr is a field containing K, therefore containing Q,, and is equipped
with an action of Gk. It is (Q,, Gk )-regular since it is a field. That is, for
any p-adic representation V of G, let Dar (V) = (Bar ®q, V)%, then

ay : Bqr ®x Dar(V) — Bar ®q, V
is injective.

Definition 5.27. A p-adic representation V of Gk is called de Rham if it is
Bgr-admissible, equivalently if avy is an isomorphism or if dimg Dar (V) =
dime V

Let Filg be the category of finite dimensional K-vector spaces D equipped
with a decreasing filtration indexed by Z which is exhausted and separated.
That is,

° Filz: D are sub K-vector spaces of D,
e Fil'"'D CFil' D, ,
e FilI'D =0 for:>0, and Fil' D = D for i < 0.

A morphism
m: D1 — D2

between two objects of Filk is a K-linear map such that
n(Fil' Dy) C Fil' Dy for all i € Z.
We say 1 is strict or strictly compatible with the filtration if for all i € Z,
n(Fil’ D1) = Fil* Dy N Im 7.
Fily is an additive category.
Definition 5.28. A short exact sequence in Filk is a sequence

a B

0—D D5 D'—0

such that:
(1) o and B are strict morphisms;
(2) « is injective, B is surjective and

a(D') = {x € D|B() = 0}.

If Dy and D are two objects in Filx, we can define D1 ® Dy as

° D1‘® Dy = Dy ®k D> as K—vector spaces;
e FilI'(D;®Dy)= > Fil" Dy ®k Fil" Ds.

i1+i2=1
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The unit object is D = K with
; K, :<0,
Fil' K = T
0, 1> 0.

If D is an object in Filg, we can also define its dual D* by

o D*=%(D,K) as a K-vector space; 4
e Fil'D*=(Fil"™*' D)t = {f:D — K| f(z) = 0,Va € Fil""*' D}.

If V is any p-adic representation of G, then Dgg (V) is a filtered K-vector
space, with ' ‘
Fil' D4r(V) = (Fil' Bar ®q, V).

Theorem 5.29. Denote by Rep(%lj(GK) the category of p-adic representa-

tions of G which are de Rham. Then Dgr : Rep(dglj(GK) — Filg is an
exact, faithful and tensor functor.

Proof. One needs to show that

(i) For an exact sequence 0 — V' — V — V" — 0 of de Rham represen-
tations, then

0 — DdR(VI) — DdR(V) — DdR(V”) — 0

is a short exact sequence of filtered K-vector spaces.
(i) If V3, V4 are de Rham representations, then

Dar (V1) @ Dar(V2) = Dgr(V1 @ V2)

is an isomorphism of filtered K-vector spaces.
(iii) If V' is de Rham, then V* = % (V,Q,) and

Dar (V") = (Dar (V)"
as filtered K-vector spaces.
For the proof of (i), one always has
0 — Dar (V') = Dar (V) — Dar(V"),
the full exactness follows from the equality
dimg Dgr(V) = dimg Dgr(V’) + dimg Dgr(V").

For (ii), the injections V; — V7 ® V4 induces natural injections Dggr (V;) —
Dar (V1 ® V2), thus we have an injection

Dgr (V1) ® Dar(V2) — Dar(Vi @ V2).
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By considering the dimension, this injection must also be surjective and V1 ® Vs
must be de Rham.
(iii) follows from

Dur(V*) =(Bar ®q, Homg, (V,Q,))“* = Homp,, (Bir ©q, V; Bar)“*
gHOHlK((BdR ®Qp V)GK7K) = DdR(V)*

Let V be a de Rham representation. By the above Theorem, then
(Fil'™! Bar ®g, V)9 =Fil""! Dgr(V).
For the short exact sequence
0 — Fil"™ Byg — Fil’ Bgg — C(i) — 0,
if tensoring with V' we get
0 — Fil'"! By ®g, V — Fil' Byr ®q, V — C(i) ®g, V — 0.
Take the Gi-invariant, we get
0 — Fil'™ Dgr (V) — Fil' Dar(V) — (C(i) ®qg, V)“*.
Thus
gr' Dar (v) = Fil' Dar (V)/ Fil't' Dar(V) — (C(i) ®q, V)“*.
Hence,
P er' Dar (v) = P(C(i) @g, V)" = (Bur &g, V)°X.
iE€EZL €L
Then

Proposition 5.30. A p-adic representation V' is de Rham implies that V is
Hodge-Tate and

dimg Dyr(V) = Z dimg gr' Dar (V).
i€
Proposition 5.31. (1). There exists a p-adic representation V' of Gk which

is a nontrivial extension of Q,(1) by Qp, i.e. there exists a non-split exact
sequence of p-adic representations

0—-Q,—V —-Q,1) —0.
(2). Such a representation V is a Hodge-Tate representation.
(3). Such a representation V is not a de Rham representation.

Proof. (1) is an exercise on Galois cohomology. It is enough to prove it for

K = Q,. In this case Ext'(Q,(1),Q,) = H} . (K,Q,(—1)) # 0 is nontrivial.
(2) is again an exercise on Galois cohomology: HL (K,C(i)) = 0if i # 0.
(3) is not so easy! O

Remark 5.82. Any extension of Q, by Q,(1) is de Rham. (Kummer Theory)
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5.2.6 A digression.

Let E be any field of characteristic 0 and X a projective (or proper) smooth
algebraic variety over E. Consider the complex

Q;(/E :Ox/p — Q%(/E - “Q?(/E —

define the de Rham cohomology group HJ} (X/E) to be the hyper cohomology
H™ (2% / ) for each m € N, then it is a finite dimensional E-vector space
equipped with the Hodge filtration.

Given an embedding ¢ : E — C, then X (C) is an analytic manifold. The
singular cohomology H™ (X (C), Q) is defined to be the dual of H,,(X(C),Q)
which is a finite dimensional Q-vector space. The Comparison Theorem claims
that there exists a canonical isomorphism (classical Hodge structure)

C®q H™(X(C),Q) ~C®r HiR(X/E).

We now consider the p-adic analogue. Assume E = K is a p-adic field
and / is a prime number. Then for each m € N, the étale cohomology group
H (X% g,) is an f-adic representation of G'x which is potentially semi-stable
if £ # p. When £ = p, we have

Theorem 5.33 (Tsuji, Faltings). The representation Hg (X% o ) is a de
Rham representation and there is a canonical isomorphism ofﬁlterech-vector
spaces:

Dar(He (X7 g,)) = Hir(X/K),
and the identification

Bar ®q, H (X% g,) = Bar ®x Hp(X/K)
gives rise to the notion of p-adic Hodge structure.

We should point out that our ¢ is the p-adic analogy of 27i € C. Although
exp(t) = [e] # 1 in Blg, 0([e]) =1 in C = C,.

Let £ be a prime number. Let Gg = Gal(Q/Q). For p a prime number,
let G, = Gal(Q,/Q,) and I, be the inertia group. Choose an embedding
Q — @, then I, C G, — Gq.

Definition 5.34. An (-adic representation V of Gg is geometric if

(1) It is unramified away from finitely many p’s: let p : Gg — Autg, (V) be
the representation, it unramified at p means that p(I,) =1 or I, C Ker p.
(2) The representation is de Rham at p = £.

Congjecture 5.35 (Fontaine-Mazur). Geometric representations are exactly “the
representations coming from algebraic geometry”.
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5.3 Overconvergent (y, I')-modules

In this section, we let

A=Og, B =g,
~ ~ ~ 1
A=W(FrR), B = Frac(A) = W(Fr R) [p} .

5.3.1 Overconvergent elements.
+oo ~

Definition 5.36. (1) For x = 3 p'la;] € A, x; € Fr R, k € N, define
i=0

(One checks easily that wi(z) > v(a), o € Fr R, if and only if [a]z € W(R) +
pFIA).
(2) For a real number r > 0, define

k k
Ol o kE_ . k
v (x): érelgwk(x) + . érelgv(wk) + " € RU {+o0}.

(8) Define AT .= {z € A: kETm(v(wk) +5) = kgrfoo(wk(x) +5) =
+00}.

Proposition 5.37. A0 s g ring and v = v(® "] satisfies the following prop-
erties:

(1) v(z) =400 < x=0;
(2) v(zy) = v(z) +v(y);
(3) v(x +y) = inf(v(z), v(y));
(4) v(pr) = v(z) + 3
(5) v([a]z) = v(e) + v(x) if @ € Fr R;
(6) v(g( 1) =v(z) if g 6 GKO,
(7) 0P (p(x)) = pu®T(z).
Proof. This is an easy exercise. a

+oo ~

Lemma 5.38. Given z = Y. p*[z)] € A, the following conditions are equiv-
k=0

alent:

+o0
(1) Z pFlay] converges in B(J{R;
(2) Z pF zk converges in C;
(3) hm (k +v(zg)) = +o0;
(4) x € A<0 U,
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Remark 5.39. We first note that if € Fr R, then [z] d Indeed, let
v(x) = —m. Recall £ = [w] + p € W(R), where w € R and 1?0) = —p,is a
generator of Ker. Then x = w™ ™y for y € R. Thus

(2] = [] "™ [y] = p—m<§ _ 1)y € By,

Proof. (3) < (4) is by definition of A7), (2) < (3) is by definition of v. (1)
= (2) is by the continuity of 6 : Bjz — C. So it remains to show (2) = (1).
We know that

ar, =k + [v(z)] — +o0 if k — +oo.

Write zj, = w® Fyy,, then y;, € R. We have

k
PMlai] = <[7;]) ool [ :pak(g )y

By expanding (1 — z)! into power series, we see that

§

p™ (2 — 1)~k € p@™W(R) + (Ker )™+
p

for all m. Thus, ay — oo implies that p*[z;] — 0 € Bj;/(Ker)™*! for
every m, and therefore also in B by the definition of the topology of BJy.
O

Remark 5.40. We just proved that AL = BIR N ﬁ, and we can use the
isomorphism
n. A0p7"] ~, 4(0,1]

to embed A7) in By, forr > p=.
Define

At = U AT — 4 e A: o "(x) converges in Bjy for n > 0}.
r>0

+oo ~
Lemma 5.41. x = Y pFlzy] is a unit in AT if and only if xo # 0 and
k=0
v(iE) > =7 E for all k > 1. In this case, v\ (z) = v(z) = v(xo).

“+o0
Proof. The only if part is an easy exercise. Now if z = Y p¥[x] is a unit in
k=0

~ +oo
A7 suppose y = 3" pFlyx] is its inverse. Certainly zg # 0. As
k=0

. k ) k
lim v(zg) + — = 400, lim v(yg) + — = +o0,
k—oo r k—oo T
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there are only finite number of ), and y; such that v(zy) + & = vO")(z) =
v(z) and v(z;) + £ = v®(y) = v(y). Suppose m,n are maximal such that
0(T) + 2 = v(z) and v(y,) + & = v(y). Compare the coefficients of p”**" in
xy=1,if m+mn > 1, then

[Trmtn] + -+ [TmUn] + -+ [Ymgn] = 0.

Hence
m+n . m-+n m-+n
> iy ot
V(TmYn) + r = i+;217£1+n{v(xzyj) + r } > v(@myn) + PR
i#Em
a contradiction. Thus m = n = 0 and for k > 0, v(zy) + £ > v(zg) or
equivalently, v(fc—’g) > —%. O
Set

~ ~ 1 ~
B(O,r] — A(OvT][,} — U p_"A(O’T],
neN
endowed with the topology of inductive limit, and
Bt = U E(Oﬂ"]7

r>0
again with the topology of inductive limit. By the above lemma, we have

Theorem 5.42. Bl is a subfield of é, stable by ¢ and Gk, , both acting con-
tinuously.

Bt is called the field of overconvergent elements.
Definition 5.43. (1) Bt = Bin B, Al = AT N B (so B' is a subfield of B
stable by ¢ and Gq, ), A" = A0 N B.

(2) If A € {A,B, At Bt AT Bt A0:7] BO.T} " define A = AHx. For
example Ax = OgE;( and Ag((),r] = A"l OgE;(,

(3) If A € {A, B, At Bt AOT BOTIN and n € N, define Ak, =
(pfn(/lK) C B.

‘We now want to make A(Ig’ "] more concrete. We know that

—+oo

n=—oo

Ak, = Og, = (91:((\775)) = { Z ATl | An € Ok, = W(k), Ay, — 0 when n — —co

—

and By, = Ko((n.)), where m. = [¢] — 1.
Consider the extension E% /Ey. There are two cases.

(1): If E% /Ep is unramified, then E} = k'((w.)) where £’ is a finite Galois
extension over k. Then F’' = Frac W (k') C K¢ and

2
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—+oo
A = 055;{ = { Z ATl | An € Op = W(K'), A\, — 0 when n — —oo}.

n=—oo

Let T = 7. in this case.

(2) In general, let the residue field of E}. = k' and F’ = Frac W (k') C K¢, let
7x be a uniformizer of B}, = k'((rx)), and let P (X) € By [X] = k' ((7))[X]
be a minimal polynomial of 7. Let Px(X) € O [[7]][X] be a lifting of P.
By Hensel’s lemma, there exists a unique 7x € Ag such that Pg(7g) = 0
and g = Tx mod p.

Lemma 5.44. If we define

1, if in case (1),
T =
K (2@(’)3];}(/;3%/))_1, otherwise .

where ® is the different of By /Ey,, then mx and Py (7 k) are units in Ag?’ ")
foradlO<r <rg.

Proof. We first show the case (1). We have 7. = [e — 1] + p[a1] + p*[z2] + - -,

where z; is a polynomial in eP” " —1 with coefficients in Z and no constant term.
Then v(x;) > v(e? " —1) = W. This implies that 7. = [e—1](1+pla1]+
p?lag) +--+), with v(a1) = v(z1) —v(e —1) > -1 and v(a;) > —v(e — 1) > —i

for ¢ > 2. By Lemma 5.41, 7. is a unit in Ag?’r] for 0 <r < 1.

In general, we have 7x = [rx] + plai] + p?lag] + --+ and v(ng) =
Lo(m) = o Where e = [E} : Ep] is the ramification index. Then
e e(p—1) K F
v(5L) = —v(rk) = — 552y~ Thus 7k is a unit A(KO’T] for 0 <r < @. It
is easy to check e(p;l) > (20®py/mr,) 7"

Similarly, P (71c) = [Pic(mic)] + ploh] +p[52] + -+, and

(Vs o(Ple(r) = —v(@p mr )

ﬁ/K(FK) a * B
while the last equality follows from Proposition A.73. Thus Pj (7x) a unit
A" or 0 < r < (20(Dpy ymr,) 7 O

Proposition 5.45. (1) Ax ={> ap7} :ap, € Op/, lim v(a,) = +00};
(2) If 0 < r <rg, then

Ag?’ - {Z anTy t an € Opr, lim (v(an) +rnv(rk)) = +oo}.
ne”Z

So f — f(rk) is an isomorphism from bounded analytic functions on the
annulus 0 < v,(T) < rv(mk) to the ring BE?, ul
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Proof. (1) follows from the structure of Ax = Og_, in Chapter 577.
K
For (2), we need to show that Y a,7% € A(O’ " ifand only if it satisfies the

n<0
given condition. For x = Y a,7%, for k € N, let y, = p~* Z e An T,
n<0
then z = > pFyx. Let n, = min{n | v(a,) = k}. One has

k>0

Q. a
= L !
p none Ak
v(an)=k
Note that the first and the last factor in the above equality are units in A,
then w;(yr) = w;(73F) for ¢ € N. As a result,

wo(yr) = nkv(rr),  wilyr) > (ng — i)v(mg) for i > 1.
We now have

> = > A ;
wi(2) 2 min, wy(p’ yi) = Join wi—i(yi) = min (n; —k +d)v(ri)
and the equality wg(z) = npv(mx) holds if wo(yx) < wr—;(y;) for all 0 <4 <
k — 1. We rewrite the above inequality as
@)+ 5 > min () + 5+ (ki) ofmx))
wg(x) + — > min (n;u(r - —1)(= —v(ng)).
k T 0<i<k K r T K
Lemma 5.46. Suppose s > 0, {ux} and {vi} are two sequences in R satisfy-
ing the following two conditions:
(1) U 2> MiNg<i<k U; + S(k —1);
(2) up = v if up <u; +s(k—1i) forall0<i<k-—1.
Then
lim wup =400 if and only if lim wup = 4o0.
k—-+o0 k—+o0
Proof (Proof of the lemma). The “only if” part is trivial. Now suppose
limg_, 400 ug 7 +00. Let | = liminfy ug. If | = —o0, we can pick an increasing
sequence (i) — 400 such that wuy) < ug for k < (i), thus uyuy = vy
and (vg - +o0. If [ is finite, pick wuy) — [. Since s(k —1i) > s for k > i +1
and s > 0, then wuy;y = vy () for 7 sufficiently large and thus (vy - +o00. O

We now apply the lemma to the case ug = nkv(wK)Jré and vy = wk(x)+§,
note that if r < rg, then s = L —v(rg) > 0, then z € Agg,r] if and only if
v — 400 as k — 4oo, or if and only if uy — 400, which is equivalent to

that limy,— o (0(an) + rv(ri)) = +oc. :

Corollary 5.47. (1) A(Ig’ s a principal ideal domain;
(2) If L/K is a finite Galois extension, then Ag)’r] is an étale extension
of A(Ig’ "] if r <rp, and the Galois group is nothing but Hy. /H} .
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Define 7, = ¢~ "(7.), Tx.n = ¢~ (7). Let K, = K(™) for n > 0.

Proposition 5.48. (1) If p"rg > 1, 0(Tk.n) is a uniformizer of Kp;
(2) Ficn € Kallt] C Bl

Proof. First by definition
Tn = [eV/P"] =1 =eMetP" —1 € Ky ,[[t] € Big,

where [e1/P"] = e(Met/P" follows from that the 6 value of both sides is (™)
and the p"-th power of both side is [¢] = e’ (recall ¢ = log[e]). This implies
the proposition in the unramified case.

For the ramified case, we proceed as follows.

By the definition of EY, 7k, = 6(Tk,,) is a uniformizer of K, moda =
{z :vp(z) > %} Let wy, be the image of mx , in K, moda. So we just have
to prove g, € K.

Write 4
Pr(z) = ai(m)a’, a;(me) € Op[mc]].
i=0
Define
d —n .
P p(x) = Zaf ()",
=0
then Px ,(mrn) = 0(¢p(Pr(7K))) = 0. Then we have v(Pxk ,(wn)) > % and

1 1 1
’ o / = o e on
U(PKﬁn(wn)) = E’U(PK(T(K)) = EU(DE}(/EO) < % if prg > 1.

Then one concludes by Hensel’s Lemma that 7g ,, € K.
For (2), one uses Hensel’s Lemma in K, [[t]] to conclude Tg , € K, [[t]]. O

Corollary 5.49. If 0 < r < rg and p"r > 1, o~"(A0™) € K, [[1]] € Bi;.

5.3.2 Overconvergent representations

Suppose V is a free Z,-representation of rank d of Gk . Let
DO(V) = (A% @, V) c D(V) = (Agy, V)"x.

This is a Agg’r]—module stable by I'j,. As for ¢, we have

@ : DOy — DOP Ty,

Definition 5.50. V is overconvergent if there exists anry > 0,7y < rg such
that

Ak @) 0.0 DOIV) 2 D(V).
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By definition, it is easy to see for all 0 < r < 7y,
. 0,7
DY) = A ®A;3wvl DO I(v),

If V is overconvergent, choose a basis {eq,--- ,eq} of DOP") (V) over A(}g,pr)
for pr < ry, then z € D™ (V) can be written as Y, 7;0(e;), we define the
valuation v(©"] by

(07T] — 1 (O,T] .
v\ () min v (z4).

One can see that for a different choice of basis, the valuation differs by a
bounded constant.

Lemma 5.51. If 0 <7 < p™" and i € Z,, then [€]P" — 1 is a unit in Ag?(’)r]
and v ([e]P" — 1) = pmu(n).

Proof. We know that m. = [¢] — 1 is a unit in A(I(()E)T] for 0 < r < 1, then
[€]P" —1 = ¢™(n.) is a unit in Agg;r] for 0 < r < p~™. In general,

7" -1 .
= -1
P —1 +Z - )
is a unit in Ag,, hence we have the lemma. O

Lemma 5.52. Let v € Iy, suppose x(v) = 1 +up™ € Z;, with u € Zy,. Then
forO<r<p™™,

(1) 0O (y (. ()0—] wg) = p"o(m).

(2) For x e Ay, v(O" l(y(z) — 2) > 0O (z) + (p — 1)v(n).

Proof. We have v(r.) — 7. = [¢]([e]*?" — 1). By Lemma 5.51, [¢]“P" — 1 is
a unit in Agg(’)r], then v(O7)(y(n.) — 7m.) = vO"I([e]*?" — 1) = p"w(r). This
finishes the proof of (1).

For (2), write z = Y, apm® where v(ay,) + rkv(m) — +oo as k — +oo. We
know, by the proof of Proposition 5.45, that v(*"l(z) = ming{ngv(r) + By
where ny = min{n | v(a,) = k}. Now

(k) —nt =t (1T 1)

therefore
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V(&) -z = (y(me) — ) %:“”571 <7(7T) - 1>j

Te

and

v O (y(z) — ) > p () + m,jn{(”k —ov(m) + é} =% (@) + (p" — D)o (n).

This finishes the proof of (2). O
Lemma 5.53. Suppose V is an over-convergent representation. If {e1,--- ,eq}
is a basis of DOV and e; € @(D(V)) for every i, then x = > xie; €

1\ ¥=0
DO(V)Y=0 if and only if x; € (A(]?"]) for every 1.

Proof. One sees that 1(x) = 0 if and only if p(¢(z)) = 0. As e; € p(D(V)),

o(¥(e;)) = e; and p(¥(x)) = >, ¢(¥(x;))e;. Therefore 1(x) = 0 if and only
if (v (x;)) = 0 for every i, or equivalently, ¥ (x;) = 0 for every i. O

Proposition 5.54. If V is overconvergent, then there exists a Cy such that

if v € Ty, n(y) = vp(log(x(7))) and r < min{p~'ry,p~ "M}, then v — 1 is
invertible in DOT1(V)¥=0 and

v@7((y = 1)7'2) 2 0@ (@) - Oy — " V().

Remark 5.55. (1) Since through different choices of bases, v(%"] differs by a
bounded constant, the result of the above proposition is independent of the
choice of bases.

(2) We shall apply the result to (A(I?’ T})wzo.

Proof. First, note that if replace V' by IndﬁO V', we may assume that K = K.
Suppose r < p~lry,pick a basis {e1,---,eq} of DOP(V) over A(Ig(’)pr]
then {¢(e1),---,¢(eq)} is a basis of DO7(V) over Agg(’f]. By Lemma 5.53,
p—1
every € DOTI(V)¥=0 can be written uniquely as = = 3. [e]'¢(x;) with
i=1

)

d
z; =Y. xie; € DOPI(V). Suppose x(v) = 1 +up” for u € Zy and n = n(7).
j=1
Then

p—1 p—1
(v =D =3 [ (@) - D[l e(w:)
=Skl (I e - w) = Y[k,

We claim that the map f : x + [¢]“P"y(z) —  is invertible in D(©"1(V) for
r <min{ry,p "}, u € Z,, and n is sufficiently large. Indeed, as the action of y
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is continuous, we may assume v(O")((y — 1)e;) > 2v(n) for every j = 1,--- ,d
for n sufficiently large. Then
fl@) e
[g]upn o 1 - [g]upn _ 1 (’7(',1") x)?
and

d d
v(z) -z = Z(V(xj) —xz;)v(e;) + ij(v(ej) - €5,
therefore by Lemma 5.52,
0(07] f(x) 0O (4 ol
() 0+ 2t

up™ _ 1

for every = € DO7(V). Thus

N B +o0 f k
— up” _ 1 _ S
g(z) = ([¢] 1) ];:0 <1 [e]ur™ — 1>

is the inverse of f and moreover,

2(0:7] (g(x) - x—l) > 0O (2) + v(r).

LR

1

By the above claim, we see that if n > 0, > min{p~'ry,p"}, then vy —1

p—1
has a continuous inverse > [¢]'p™ o £ in DO71(V)¥=0 and
i=1

VO (v = 1) (@) 2 0O (@) - pho(m) - Cy

for some constant Cy. In general, if 47 — 1 is invertible in D©71(1)¥=0
for r < min{p~lry,p7" 71}, we just set (y — 1)"Hx) = o7t o (4P —
D714 -+ 9P Y (p(x)), which is an inverse of v — 1 in DO7I(V)¥=0 for
r < min{p~try,p~"}. The proposition follows inductively. O

Theorem 5.56. All (free Z, or Q) representations of Gx are overconver-
gent.

Proof. One just needs to show the case for Z,-representations. The Q,-
representation case follows by ®@z,Q,.
We shall apply Sen’s method to

AV: 2(071]3 v = U(07 1]7 GO = GK7AH;( n = SD_TL(A(Ig’ 1])

Now we show how to check the three conditions.
(TS1). Let L 5 K O Ky be finite extensions, for a = [7] (3, e gy, T([72]) 7
then for all n,
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Y e M) =1,
reH) JH),
and
lim 0@ (e~ (a)) =0.
n—-+oo
(TS2). First Agi.n = A © 1]. Suppose p"rx > 1. We can define Ry, by
the following commutative dlagram

RK n - A/(Ig’l] > Agg:i]

>
%wkownJﬂc

0,1
Ag(,n]+k

One verifies that ¢~ o 1)* o ™% does not depend on the choice of k, using
the fact ¥ = Id. By definition, for = € Uk>0 gg’rllh_k, we immediately have:

(a). Rkn o Rgptm = Ripn; (b). f z € Aﬁ?iy Rgn(r) = 5 (¢). Rip is
Ag?:itrk-linear; (d) lim R n(z) = .

Furthermore, for z = p~""*(y) € Ag?:i]-yk»
Ricn(x) = ¢ " (" (y)) = 07" (" 0w (y)).

Write y uniquely as Zf:o_l[e]igpk(yi), then by Corollary 4.29, ¢*(y) = yo.
Thus

VO Ry (@) = 00007 (y0)) = 0OV M (y)) = v O ().

By the above inequality, Rk, is continuous and can be extended to A as
Us>o ggrlwrk is dense in A(®1 and the condition (TS2) is satisfied. Let
Ry () = Rg ny1(%) — Ry (), then

en(@) =0 "1 — o) (T (y) € o7 ((ACH)PEY),
thus
R () € SD_"_I((AE,?’”)”’:O) N A0:1] =¢_"_1((A(0’1])“’:O A A(o,p*"ﬂ])
(a0,

(TS3). For an element x such that Rg ,(z) = 0, we have

* * —(n+1 s —(ntitl) =i
z=Y Ri (@), where Ric,,;(x) € o~ "D ((AQY hye=0y,
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—(n+i+1)]

Apply Proposition 5.54 on (Agg,p )¥=0_ then if n is sufficiently large,

one can define the inverse of v — 1 in (Rg,, — 1)4 as
(Y= ) =Y @ Ty — )TN (" Ry, (2)
i=0

and for x € (Rk ., — 1A,
v((vy =1)7e) > w(z) - C,

thus (T'S3) is satisfied.
Now Sen’s method (§3.4, in particular Proposition 3.45) implies that for

any continuous cocycle o — U, in HL (Go, GL4(A)), there exists an n > 0,
M € GL4(A) such that V, € GLd(Agji]) for x(o) > 0 and V, is trivial in

If V is a Zy-representation of G, pick a basis of V over Z,, let U, be
the matrix of o € Gk under this basis, then o — U, is a continuous cocycle
with values in GL4(Z,). Now the fact V(D(V)) = V means that the image
of HY «(H},GLa(Zy)) — HL . (Hj,GL4(A)) is trivial, thus there exists
N € GLg4(A) such that the cocycle o +— W, = N='U,0(N) is trivial over
Hj. Let C = N7'M, then C~'V,0(C) = W, for 0 € Gk. As V, and W,
is trivial in H), we have C~1V,(C) = W,,. Apply Lemma 3.44, when n is
sufficiently large, C' € GLd(Aﬁg’}L]) and thus M = NC € GLd(Aﬁg:i]).

Translate the above results to results about representations, there exists
an n and an A(Igzrll]—module Dgg’rll] c A®U®V such that

AV(O,l] ®A§£‘,1] D;?:}l] = AV(O,l] R V.

Moreover, one concludes that Dg?,’i] C e ™(D(V)) and " (Dg:i]) cD(V)n

(AU Q V) =DO:» "I(V). We can just take ry = p™. O
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Semi-stable p-adic representations

In this chapter we shall construct the rings of periods Beg.s and bg, and
introduce the concept of crystalline and semi-stable representations. Let V'
be a p-adic representation of G. Assume it is semi-stable. Let D4 (V) be
the corresponding filtered K-vector space. Then there are two operators ¢
and N on Dg(V), giving it additional structures. Furthermore, we will get an
equivalence of categories between semi-stable representations and the category
of filtered K-vector spaces equipped with two operators ¢ and N satisfying
suitable properties.

6.1 The rings B, and Bg
In this section, we shall define two rings of periods B.,is and Bs such that
Qp C Bcris C Bst - BdR

and they are (Gg,Q))-regular.

6.1.1 The ring Byyis-

Recall

W([R) ——0

)
W(R)[}] -—C

we know Kerf = (&) where £ = [w] +p = (w,1,--+), w € R such that
=0 = _p,

Definition 6.1. (1) The module A%, is defined to be the divided power en-
velope of W(R) with respect to Ker 0, that is, by adding all elements ‘% for
all a € Ker 6.
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(2) The ring Acyis is defined to be lim A2 /p™ Al
nEN

(3) The ring B is defined to be Acis [5],

cris

Remark 6.2. (1) By definition, A?
generated by the 7,,(£) = &

ml’

is just the sub W (R)-module of W (R) [%]

m € N. It is actually a ring, since

m+n) é-m—i—n

n ) (m+n)

cris

) = ( 6.1)

(2) The module Acyis/p" Acris 1s just the divided power envelop of W, (O%/p)
related to the homomorphism 6,, : W, (O%/p) — OF/p".

Exercise 6.3. The map A?
subring of Acis.

— Agis is injective. We shall identify A° S a

cris cris

Since A%, C W(R) [%], by continuity Aeps C BQ'R and B;ls - B . We
have
Aic)f\ls ACH\B(—:";IS
1
W(R)[5]C Bix

The ring homomorphism 6 : W(R) — O¢ can be extended to A%, and thus

to Acris:
4> OC

CI‘IS

cris?

Acris
Proposition 6.4. The kernel
Ker (0 : Acis — O¢)

s a divided power ideal, whzch means that, if a € Aeis such that 0(a) = 0,
then for allm € N,m > 1, (E B, is again in Acis and 9(‘%) =0.

Crlg)

Proof. If a =3 apy,(€) € A2

cris?

am Nin
e Y Houme
m! n'

sum of 7,=m n

then
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We claim that for W € Nforn > 1 and i € N. This fact is trivially true

for i = 0. If ni > 0, (gl”m can be interpreted combinatorially as the number

of choices to put ni balls into ¢ unlabeled boxes. Thus

a™ (niy)! 0
W = Z Han : n' l" ) * Trin, (1‘2) € ACI‘IS

sum of i,=m n

and (% ) 0.
The case for a € Ay follows by continuity. a

We then have a ring homomorphism

g : Acris i} OC - OC/p = Of/p
Proposition 6.5. The kernel Ker (9_) (Ker0,p) is again a dz’vided power
ideal, which means that, if a € Ker (9) then for allm € N, m > 1, % € Acpis
and 9(%) =0.
Proof. This is an easy exercise, noting that p divides % in Zy. O

If @ € Acyis, @ can always be written (not uniquely) as

n

a= Z an%, o, € W(R) anda,, — 0 p-adically.

Recall that

t= Jio(—l)"*l([g];lyl € Bli.

Proposition 6.6. One has t € Acris and P~ € pAcyis.

Proof. Since [e] —1 = b¢, b € W(R), LE=D° 1) = (n—=1W"y,(¢) and (n—1)! —
0 p-adically, hence t € Agyis-
To show tP~1 € pAeys, we just need to show that ([e] — 1)P71 € pAcis.
Note that [e] — 1= (e — 1,%,---), and
(e—1)™ = lim (Gnim —1)P

m——+o0

m

where (,n = ™ is a primitive n-th root of unity. Then v((e — 1)) =
V‘+@—D and
(e—1)P"1 = (pF,1,--+) x unit = w? - unit.
Then
(= 1) = [07] - (+) = (6= p)” - (+) = €9 - (x) mod pAeris,

but £ = p(p — 1)1, (§) € pAcris, we hence have the result. |
Definition 6.7. We define Beis := Crls[1/t] Acris[1/t], then Beyis C Bagr.
Remark 6.8. The rings A, B

is» Beris are all stable under the action of Gk .
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The Frobenius map ¢ on Bgyis.

Recall on W(R), we have a Frobenius map

@((GOaala"' 7an7...)):(a8,a}1”... 705”"’)'

For all b € W(R), p(b) = b” mod p, thus

(&) =& +pn=pn+ (p— 1)), n€ W(R),

and @(&™) =p™(n+ (p — 1)!v,(£))™. Therefore we can define

m

©(vm(§)) = %(77 +(p— 1)p()™ € W(R)[7,(8)] C Aie-
AS a consequence,
o(AL

cris

) c AY

cris®
By continuity, ¢ is extended to Aeis and B, . Then

p(t) = log(["]) = log([e]") = plog([e]) = pt,

hence @(t) = pt. Consequently ¢ is extended to Be,is by setting go(%) = ﬁ
The action of ¢ commutes with the action of Gi: for any g € G, b € Beyis,

¢(gb) = g(b).

6.1.2 The logarithm map.
We first recall the construction of the classical p-adic logarithm
log, : C* — C.
Using the key fact
log(zy) = logz + logy,
the construction is processed in four steps:
- For those z satisfying v(x — 1) > 1, set
> z—1)"
logx := ;(—1)"“(71). (6.2)
- In general, for any z € 1+ mg = {z € C | v(z —1) > 0}, there exists
m € N such that v(zP" — 1) > 1, then set

1 m
logx := o log(a? ). (6.3)
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- For any a € OF, then @ € k and a # 0. One has a decomposition
a = [a]z,

where a € k*, [a] € W(k) and z € 1 + mc. We let

log a := log x. (6.4)
- Moreover, for any € C with v(z) = Z,r,s € Z,s > 1, we see that
v(z®) =r=v(p") and ;7 =y € Of. By the relation
:L.S
log(=:) = logy = slogz — rlogp,
p

to define logz, it suffices to define logp. In particular, if let log,p = 0,
then

1 1
log, z := B log, y = 5 log y. (6.5)

We now define the logarithm map in (Fr R)* with values in Bgg. Similar
to the classical case, one needs the key rule:

loglay] = log[z] + log[y].
Recall that
Up =1+mp={zeR|vx-1)>0},
Ut DU ={z€R|v(x—1)>1},
For any = € U;{, there exists m € N, m > 1, such that z?" € U}{. Choose

x € U}, then the Teichmiiller representative of z is [z] = (z,0,---) € W(R).
(1) We first define the logarithm map on U} by

log[z] := i(—l)”"’lw7 x € Up. (6.6)

- n
=0
This series converges in Acis, since
0([z] —1) =2 — 1,

which means that = € U}, or equivalently, §([z]—1) = 0. Therefore v, ([x]—1) =
=D ¢ A and

n!

oo

loglz] = Y (=1)"*!(n — )l ([] — 1)

=0

converges since (n — 1)! — 0 when n — oo.
(2) The logarithm map on U}
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log: Up — Awis, «+ log[x]

extends uniquely to the logarithm map on U;{ with values in Bctis

by

cris?

1 m
log: Uf — BY log[z] := o log[zP '] (m > 0). (6.7)

By definition, for every z € U}, one can check

¢(log[z]) = plog[z].

+

s> then we have the

Furthermore, if denote by U the image of log : UIJ{ — B
following diagram with exact rows:

00— Qu(1) U C 0
00— Q,(1) U C 0
0— BchrR(l) Bd+R C

where the isomorphism Uj; ~ U follows from the fact that for 2 = (z) €
Uy, logz(® = 0 € C if and only if (9 ¢ Hpo (K). As a result, pu = pu for
alluelU.

Remark 6.9. One can show that U = {u € B;’;is|<pu = pu}.
(3) For a € R*, we define

log[a] := log|[z] (6.8)

by using the decomposition R* = k* x UE, a = apz for ag € k*, x € UE.
(4) Finally, we can extend the logarithm map to
log: (FrR)* — Bl;, x> log[z].
Recall the element @ € R is given by @w(®) = —p,v(w) = 1. For any = €
(Fr R)* with v(z) = £, r,s € Z, s > 1, then Z= =y € R*. Hence the relation

S
log(x—) =logy = slogz — rlogw,
w’l”
implies that

! (rlog[w] + log[y]).

log[z] = 3

Thus in order to define log[z], it suffices to define log[w].
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For [w] € W(R) C W(R)[%] 2. ¢, consider (=], note that

()30

w - =y £
o (E) = S S ey,

is well defined. Set

then

log[ew] := log (U) = Z(—l)"ﬂy € Biq, (6.9)

p =0

then we get the desired logarithm map log : (Fr R)* — B(]LR for any = €
(Fr R)*. Note that

- For every g € Gk, gw = weX(¥ | then
log([gw]) = log[w] + x(9)t,

as logle] = t. B
- The kernel of log is just k*. The short exact sequence

0—Up—(Fr R)*/k*—Q—0
shows that the sub-Q,-vector space of B(TR generated by the image of the
logarithm map log is U ® Q, log[w].
6.1.3 The ring Bq;.

Definition 6.10. The ring Byt := Beis[log[w]] is defined to be the sub Beyis-
algebra of Bar generated by log[w].

Clearly By is stable under the action of Gk (even of Gk,). Moreover,
denote by C\is and Cg; the fraction fields of Bs and Bgt respectively, then
both Cuis and Cg are stable under the actions of Gg and Gg,, and the
Frobenius map ¢ on Bs extends to Cepis.

Proposition 6.11. log[w] is transcendental over Ceyis.

We need a lemma:

Lemma 6.12. The element log[w] is not contained in Ceyis.
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Proof (Proof of the Lemma). Let B = £/p, then £ and [ are both inside
Fil' Bgr but not Fil* Bag. Let S = W (R)[[3]] C Bix be the subring of power
series Y. a, 8" with coefficients a,, € W(R). For every n € N, let Fil' S =
S N Fil’ Byr, then Fil' S is a principal ideal of S generated by /3*. We denote

0" : Fil' Bgr — O¢

the map sending f*a to #(a). One knows that 6 (Fil’ S) = O¢.

By construction, Aqis C S and hence Cpis = Frac Aeys C Frac(S). We
show that if a € S is not zero, then alog[w] ¢ S, which is sufficient for the
lemma.

Since S is separated by the p-adic topology, it suffices to show that if
r € Nand o € § —pS, then p"au ¢ S. If a € W(R) satisfies 0(a) € pOc,
then a € (p,§)W(R) and hence a € pS. Therefore one can find ¢ > 0 and
by, € W(R) such that 6(b;) ¢ O¢ and

Q@ :p( Z bn/()m) =+ anﬂn-

0<n<1i n>i
——
A B
Note that log[eww] = — " 3" /n. Suppose j > r is an integer such that p/ > 4. If
pau € S, one has a- . p?~ 1" /n € S. Note that - > p'~ 18" /n e S,
n>0 0<n<pi
then
AP eI Ban, B- YD p 8" /ne PP Byg
n>pi n>pi
and v o
B [p- Y baB" € FilP T Byg,
n>1
thus

b; 317 Jp € Fil''? Byp N (S + Fil''" 1 Byr) = Fil't?’ § + Fil' 7" +! By,
Now on one hand, 0°+%’ (b; 3%’ /p) = 0(b;)/p ¢ Oc:; on the other hand,
it (Fil't?’ S + Fil''" 1 Byr) = Oc,
we have a contradiction. O

Proof (Proof of Proposition). If log[w] is not transcendental, suppose ¢y +
a1 X + -+ g1 X%+ X? is the minimal polynomial of log[w] in Ceys.
For g € Gk,, we have g([@]/p) = ([@]/p) - [e]X\9) where x is the cyclotomic
character, thus

glog[w] = log[w=] + x(g)t.

Since Cuis is stable by Gk, and for every g € Gk,,
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g(co) + -+ + glca—1)(logw] + x(9)t)* " + (log[w] + x(g)t)* = 0.

By the uniqueness of minimal polynomial, for every ¢ € Gg,, g(ca—1) +
d-x(g)t = cq_1. If let ¢ = ¢q—1 + dlog[w], one has g(c) = ¢, then ¢ €
(Bgr)%%0 = Ko C Beys and thus logw] = d7'(c — cq_1) € Cuis, which
contradicts Lemma 6.12. O

As an immediate consequence of Proposition 6.11, we have

Theorem 6.13. The homomorphism of Be.is-algebras

Bcris [l‘} — Bst
x> log[w]

is an isomorphism.

Theorem 6.14. (1) (Cy)%% = Ky, thus

(2) The map

K ®p, Bst = DBar
A®b— b

18 1njective.

Proof. Note that Frac(K @k, Beis) is a finite extension over Ceyig, thus log[w]
is transcendental over Frac(K ®k, Beris). Therefore

K ®KO Bst =K ®K0 Bcris[log[w” = (K ®Ko BCTiS)[log[w]]

and (2) is proved.
For (1), we know that

W(R)“* = W(R®) = W (k) = W,

1., 6k 1
W(R)|- =Kog=W|—]|,
W) = Ko = w[})
and
1 +
W(R)[i] C Bcris7
p
then
Ko C (BL)9% C (Beis) 9" C (Bst)“" C (Cxt)9% C (Bar)®* = K.

Thus (1) follows from (2). O
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The operators ¢ and N on Bg;.

We extend ¢ to an endomorphism of By by requiring
¢(log[w]) = plog|w].

Then ¢ commutes with the action of Gg.

Definition 6.15. The monodromy operator

N : By — B
> bu(log[w])™ — — 3 nb,(loglw])* "
neN neN

is the unique Beyis-derivation such that N(log[w]) = —1.

As a consequence of Theorem 6.13, we have

Proposition 6.16. The sequence

0 — BCI‘iS*)BSt L Bst — O (610)
18 exact.

Proposition 6.17. The monodromy operator N satisfies:
(1) gN = Ny for every g € Gk,;
(2) No = peN.

Proof. Using g(log[w]) = log[w]|+x(g)t, and N(x(g)t) = 0 since x(g)t € Beris,
we get that
N(gb) = g(Nb), for all b € Bg,g € Gk,.

Since
No(> by (logl@])™) =N (D @(bn)p" (log[=])™)
neN neN
=Y np(bn)p" (logla])"
neN
—ppN (S b (logl])™),
neN
we have Ny = ppN. a

6.2 Some properties about B.,;s.

6.2.1 Some ideals of W(R).

For every subring A of BdR (in particular, A = W(R), W(R)[]%], Wk(R) =
W(R)[ | ®ky K, Acris, B Byis), and for every r € Z, we let Fil" A = AN

CI‘IS7
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Fil” Bygr. In particular, one has Fil” A = AN BJ, and denotes 0 : Fil” A — C
the restriction of the projection B;R — C.

If A is a subring of Beys stable by ¢, and if 7 € Z, we let II"A = {a € A |
¢"(A) € Fil" A for n € N}. If IP'A = A, i.e., A C Bf; (which is the case for
A =W(R), W(R)[%], Agis or B ), then {I"A : r € N} forms a decreasing

cris
sequence of ideals of A. In this case we also write 1A = T A.
For any x € W(R), we write 2’ = ¢ !(x), we also denote Z € R the
reduction of x modulo p. Then for 7. = [¢] — 1, one has 7. = [¢/] — 1. Write

7. = L7 where 7 = 14 [¢'] 4+ - -+ [e]P~'. Note that O(7) = > (M) =0
0<i<p—-1
and 1
F=lde 4o tePl=""2
e -1
and v(7) = ;25 — p%l =1, therefore 7 is a generator of Ker 6.

Proposition 6.18. For every r € N,

(1) The ideal IMW (R) is the principal ideal generated by 77 . In particular,
IFW (R) is the r-th power of IW (R).

(2) For every element a € IMW(R), a generates the ideal if and only if

v(a) = ;5.

We first show the case r = 1, which is the following lemma:

Lemma 6.19. (1) The ideal IW (R) is principal, generated by me.

(2) For every element a = (ag,a1,--+) € IW(R), a generates the ideal if

and only if v(ag) = p’%l and one has v(a,) = ﬁ for every n € N.

Proof. For a = (ag, -+ ,an, - -) € IW(R), let a,, = a&”), then for every
m €N,

0(ma) =Y p"al” =af 4+ +pTak 4"l 4 =0,

We claim that for any pair (r,m) € N x N, one has v(a,,) > p~™(1 +p~! +
-+ p~"). This can be shown by induction to the pair (r,m) ordered by the
lexicographic order:
(a) If r=m =0, 6(a) = ap (mod p), thus v(ag) > 1;
(b) If r = 0, but m # 0, one has
m—1
0=0(p"a) =Y _ p'al” +pmab, (mod p™*™);
n=0
by induction hypothesis, for 0 < n < m — 1, v(a,) > p~ ", thus v(p"a?”) >
n+p™ " >m+ 1, and v(p™ak, ) < m + 1, therefore v(ay,) > p™;
(c) If r # 0, one has

m—1 e’}
0="06(p"a) =Y pah +pTak Y ptah;
n=0 n=m-+1

by induction hypothesis,
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- for0<n<m—1,v(a,) >p (1 +pt+---p7"), thus
v(p"al ) =4 p" (14T Zm (L pT);
- forn>m+1,v(a,) >p (1 +---p~ "), thus
vl )z p" T A+ p T Em (L4 p T

one thus has v(ay,) >p ™1+ +p".

Now by the claim, if a € IW(R) v(an) = p" - Py, thus v(an) > o5
On the other hand, for any n € N, 8(¢"r.) = 0([¢]"" — 1) = 0, thus
me € IW(R). Asv(e—1) = 2, the above claim implies that IW( ) C (e, p).

But the set (O¢)Y is p-torsion free, thus if px € IW(R), then x € W(R). Hence
IW(R) = (m.) and we have the lemma. O

Proof (Proof of the Proposition). Let gr' W(R) = Fil' W(R)/Fil""* W (R)
and let 6% be the projection from Fil' W (R) to gr! W(R). As Fil' W(R) is
the principal ideal generated by 7¢, gr' W(R) is a free Oc-module of rank 1
generated by (%) = 6'(7)". Note that m. = 7.7, then

" () = wlrttet e for every n e N.

For i > 1, 0(¢' (7)) = p, hence 0 (o™ (n.)) = p™ (e — 1) - 01 (7).

Proof of (1): The inclusion 7. W (R) C I[T] is clear. We show 77 W (R) D II"]
by induction. The case r = 0 is trivial. Suppose r > 1. If a € I(’")VV(R)7 by
induction hypothesis, we can write a = 77~!b with b € W (R). We know that
0"=1(p"(a)) = 0 for every n € N. But

0" (" (@) = 0" (1))-(0' (9" ()~ = (p" (W =1)"0(" (b))0" (1)

Since 6'(7)"~! is a generator of gr" ' W(R) and since p™(¢(*) — 1) # 0, one
must have 6(¢" (b)) = 0 for every n € N, hence b € IW(R). By the precedent
lemma, there exists ¢ € W(R) such that b = m.c. Thus a € 7ZW(R).
Proof of (2): It follows immediately from that v(#T) = rv(e — 1) =
and that x € W(R) is a unit if and only if Z is a unit in R, i.e. if v(Z) =0. O

6.2.2 A description of Acys.

For every n € N, we write n = r(n) + (p — 1)¢(n) with r(n),q(n) € N and
0<r(n)<p-1.Let

T = 700 (77 ) = () g(m))

Note that if p = 2, t{"} = ¢"/(2"n!). We have shown that t*~1/p € A,
therefore t1™ € A.s. Let A be a subring of K;[[t]] formed by elements of

the form 3 a,t{™ with a,, € W = W(k) converging p-adically to 0. Let
neN
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Se. = W|[[r.]] be the ring of power series of 7. with coefficients in . One can
identify S, as a sub-W-algebra of A, since

re=et—1=3 0= e,

n>1 n>1

where ¢, = p?(™q(n)!/n!, by a simple calculation, ¢, tends to 0 as n tends to
infinity.

Both S, and A, are subrings of A.s, stable by the actions of ¢ and of
Gk, which factors through I'j, = Gal(K§"“/Ko). We see that

n
7(-6

n+1

= Te " U,

t = log(le]) = . - 3 (-1)"

n>0

where u is a unit in A..

Recall Ay, is the torsion subgroup of I . Then the subfield of Ko((t))
fixed by A, is Ko((tP~1)) (resp. K((t?)) if p = 2). As a result, the ring A,
the subring of A, fixed by A, is formed by 3" a,t!™ with a,, =0if p—1{n
(resp. if 2t n).

Let 7y be the trace from Ko((t)) to Ko((tP~1)) (resp. Ko((t?)) if p=2)

of 7., then
t" t"
mo=(p—1) Z ] (resp. QZ ﬁ)

n>1 n>1

p—1|n 2|n
One sees that the ring S, the subring of S, fixed by Ag,, is then the ring of
power series W[[mg]]. One can easily check that my € pA (resp. 84), and there
exists v € A such that mo/p = v - (t*71/p) (resp. m/8 = v - (t?/8)). One can
also see the evident identification S, ®g A = A..

let ¢ = p+ 7o and let ¢ = ¢~1(q). Then q = > e, €] (9] (resp. [¢] + [¢] !

) where [a] is the Teichmiiller representative of a.

Proposition 6.20. With the precedent notations,

(1) the element g is a generator of IP~UW (R) if p # 2 (resp. of IZW (R)
ifp=2).

(2) there exists a unit w € S such that

oo = umoq” " if p # 2 (resp. umoq”® if p = 2).

Proof. The case of p # 2 and p = 2 are analogous, we just show the case

p#2.
Proof of (1): Let 7 be the norm of 7. over the field extension Ko((t))/Ko((t?P~1)).

One has
m= ][ n=) =[] -
heAk, a€ky,
By Proposition 6.18, since [¢](® — 1 is a generator of W (R), 7, is a generator

of IP=UW(R), one has v(m) = (p — 1)1)%1 = p = v(7g). Therefore one has
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Wl[mo]] = W][m1]]. We can write mg = > apmn}* with a,, € W and a4 is a
unit. Moreover, since ag = () = ag, mo generates the same ideal as 7.
Proof of (2): Note that ¢’ and 7 are two generators of the kernel of the
restriction of 0 to S. = ¢~1(S.) = W[[r.]], thus
— b
e = QT = ToT = UjT.q
with «} a unit in S’. Then @m. = uymeq and @(72~1) = u? " 7P~1¢P=1. Since
mo and 7P~ 1 are two generators of S. N IP~UW (R), p(mp) = umoq?~" with u

Ko

a unit in S.. Now the uniqueness of u and the fact that S = SEA imply that
wand u~l € 8. a

If Ag is a commutative ring, A; and Ay are two Ag algebras such that A;
and A, are separated and complete by the p-adic topology, we let A1®4,A2
be the separate completion of A4; ® 4, A2 by the p-adic topology.

Theorem 6.21. One has an isomorphism of W(R)-algebras
a: W(R)DsA — Acis
which is continuous by p-adic topology, given by
A} am @y () =D amym (2).
p p
The isomorphism o thus induces an isomorphism
a.: W(R)®s, A — Aeris-
Proof. The isomorphism . comes from
W(R)®s, A = W (R)®s.5. ®s A = W(R)®sA

and the isomorphism «. We only consider the case p # 2 (p = 2 is analogous).
Certainly the homomorphism « is well defined and continuous as % €

Fil' A5, we are left to show that « is an isomorphism. Since both the source
and the target are rings separated and complete by p-adic topology without
p-torsion, it suffices to show that « induces an isomorphism on reduction
modulo p.

But A modulo p is the divided power envelope of R relative to an ideal
generated by ¢/, thus it is the free module over R/q’P with base the images
of Ypm(q') or 'ym(%). By the previous proposition, ¢(my) = umeqP~!, thus
mo = u/'mhg P~ =/ (¢’” — pg’P~ "), which implies that R/q’? = R/75 and Aeis
modulo p is the free module over R/7o with base the images of v (52). It is
clear this is also the case for the ring W(R)®gA modulo p. O
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6.2.3 The filtration by Il"].

Proposition 6.22. For every r € N, suppose 1"} = I A 4. Then if r > 1,
I s o divided power ideal of Acris which is the associated sub-W (R)-module
(and also an ideal) of Ais generated by t15} for s > r.

Proof. Suppose I(r) is the sub-W (R)-module generated by {5} for s > r. It
is clear that I(r) C I") and I(r) is a divided power ideal.

It remains to show that I'"l C I(r). We show this by induction on r. The
case r = 0 is trivial.

Suppose 7 > 1 and a € II"!. The induction hypothesis allows us to write a

as the form
a= Z astts

s>r—1

where a, € W(R) tends p-adically to 0. If b = a,_1, we have a = bt{"—1} +a
where a’ € I(r) C II") thus bt{"=1} € II"]. But

Pty = prm o () T =y - " (0) £

where ¢, ,, is a nonzero rational number. Since tr=1 e Fil" ! — Fil", one has
b € I N W (R), which is the principal ideal generated by 7.. Thus bt{"—1}
belongs to an ideal of A..s generated by 7t But in Aers, t and 7.
generate the same ideal as t = 7. x (unit), hence bt{"~1} belongs to an ideal
generated by t - t1"=1} | which is contained in I(r). 0

For every r € N, we let

Al = A/IV WT(R) = W(R)/IVW(R).

Proposition 6.23. For every r € N, A
The natural map

and W7 (R) are of no p-torsion.
L wr (R) - Agris

are injective and its cokernel is p-torsion, annihilated by p™m! where m is the
largest integer such that (p — 1)m < r.

Proof. For every r € N, Aeyis/ Fil” Aeyis is torsion free. The kernel of the map
Acris — (Aeris/ Fil” Ams)N x +— (p"zmod Fil"),en
is nothing by I, thus
Alis = (Aais/ Fil” Acis)™

Cris
is torsion free. As (" is injective by definition, W”(R) is also torsion free.
As W(R)-module, A" is generated by the images of vs(p~!mg) for 0 <
(p—1)s < r, since p®slys(p~1my) € W(R), and v(p®s!) is increasing, we have
the proposition. O
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For every subring A of A and for n € N, write
Fil" A = ANFil" A, Fﬂ;A ={a eFil" A | px € p"A}.

Proposition 6.24. For every r € N,
(1) the sequence

0— Zpt{r} — Fﬂ; Acris p el Acris —0

1s exact.
(2) the ideal Fil;, Acyis is the associated sub-W (R)-module of Acris generated

by ¢Fyn(p~tPY), for j+(p—1)n > 1.
(8) for m the largest integer such that (q—1)m < r, for every x € Fil" Acys,
p"mlz € Filj Acys.

Proof. Write v = p~"¢ — 1. It is clear that Zpt{"} C Kerv. Conversely, if
z € Kerv, then = € I and can be written as

x = Z astt}, a, € W(R) tends to 0 p-adically.
s>r
Note that for every n € N, (p~"¢)"(z) = ¢"(a,)tt"} (mod p™Aess), thus
z = bt"} with b € W(R) and moreover, ¢(b) = b, i.e. b € Z,.
Let N be the associated sub-W (R)-module of A.,s generated by q’j'yn(tp;1 ),
for j+ (p—1)n>r. If j,n € N, one has

P70V igpo=Dy () a1 (g 4 0y
p))—qp %(p)—p (1+p)7n(p
thus NV C Fil; Agris.

Since Zpt{”} C N, to prove the first two assertions, it suffices to show
that for every a € Acys, there exists © € N such that v(z) = a. Since N and
Ais are separated and complete by the p-adic topology, it suffices to show
that for every a € Acis, there exists € N, such that v(z) = a (mod p). If
a=3 /1 anvn(%) with a,, € W(R), it is nothing but to take x = —a.

Thus it remains to check that for every ¢ € N such that (p — 1)i < r and
for b € W(R), there exists € N such that v(z) — bfyi(%) is contained in
the ideal M generated by p and ~,(p~'tP~1) with n > 4. It suffices to take

T = yq””—(P—l)ifyi(tp:) with y € W(R) the solution of the equation

tp—1

(g7 v )

oy — "Vl = b,

Proof of (3): Suppose = € Fil" As, then by Proposition 6.23, one can
write
prmlz =y+z, ye W(R), ze Il
Since y € Il one sees that y € Fil” W (R) = ¢"W(R) C N. The assertion
follows since we also have z € II" C N. O
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Theorem 6.25. (1) Suppose
= {2 € Bais | ¢"(x) € Fil° Beys for all n € N}.

CrlS

Then ¢(B',,,) C B, C B’

cris Ccris — cris

(2) For every r € N, the sequence

if p# 2 and ¢*(Bly,) € By € Bl if p = 2.

Ccris — cris

0— QP( ) _)FIITB;“ls f_} B(;t‘lb —0
18 exact.
(8) For every r € Z, the sequence

O — QP(T) I FllT Bcris P7T¢_1> Bcris — O

1s exact.

Proof. For (1), BE,, C B!, is trivial. Conversely, suppose = € B! .. There
exist 7,j € N and y € Agis such that z = ¢~ pIy. If n € N, @"(z) =
P~ It " (), then " (y) € Fil” Ags for all n, and thus y € I, One can

write y = 3 amtt™*t} with a,, € W(R) converging to 0 p-adically. One

m>0
thus has
z=p Z amt! " and px = piT Z gp(am)pm+rt{m+r}f’“.
m>0 m>0

By a simple calculation, oz = p=7=" 3 ¢p(an)t™, where ¢, is a rational
m>0
number satisfying

o(em) = (m+r)(1 - —— — ——).

If p # 2, it is an integer and p(z) € p™7 "W (R)[[t]] C p~9 " Aenis € B,,. For
p = 2, the proof is analogous.
The assertion (2) follows directly from Proposition 6.24.
For the proof of (3), by (2), for every integer i such that r+4 > 0, one has
an exact sequence
0 — Qu(r+i) — Fil'""Bf. — BY. —0,

Cris Cris

which, Tensoring by Q,(—1%), results the following exact sequence

0 — Qu(r) — t"Fil'"" BY. —t7'Bf. —0.

Cris Cris

The result follows by passing the above exact sequence to the limit. a

Let Be = {b € Bais, b = b}, which is a sub-ring of Beyis containing Q.
Note that u € U means that u € B:;is, pu = pu, thus ¥ € B.. One can show
that B is generated by ¥, u € U as a Q,-algebra.
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Theorem 6.26. (1) The sequence

0— Qp_>Bcris N B:{R @—)_1 Bcris —0
18 exact.
(2) The sequence
0 — Be—Beis E Beis — 0

18 exact.
(3) The sequence

0—Qp— B, — BdR/BcTR —0
15 exact.

Remark 6.27. The third exact sequence is the so-called fundamental exact se-
quence, which means that

(2) Qp = Be N By,

(b) Bar = Be + Bjy (not a direct sum).

Proof. The assertion(1) is a special case of Theorem 6.25 (3). By (1), the map
@ —1is onto on Bjs, i.€., for every b € Be,is, there exists © € Be,s, such that
wx —x =b. Thus (2) is exact.

For (3), we have the following diagram with exact rows and columns:

0 0 0
| | |

0 Q, By N Beris —2— Beygy —— 0
| |

0 B, Buis  —2 By —— 0
| | |

0 %: Bcricr:%;rR 0
| |
0 0

Then
B./Q, = Beyis o Bar

Bcris N BIR Bd+R

as Bar = BcriSB(—fR. O
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6.3 Semi-stable p-adic Galois representations

Proposition 6.28. The rings Be.is and Bs are (Qp, G )-regular, which means
that

(1) Beyis and By are domains,

(2) Bois = BG* = Cg* = Ko,

(8) If b € Beyis (resp. Bgt), b # 0, such that Q- b is stable under G, then
b is invertible in Beys (Tesp. Bst).

Proof. (1) is immediate, since Beys C Bst C Bagr- (2) is just Theorem 6.14
(1).
For (3), since k is the residue field of R, W (R) contains W (k) and W(R)[%}
contains Py := W(l_c)[%] Then Beyis contains Py. Let P be the algebraic closure
of Py in C, then Bgg is a P-algebra.

If b € Bgr, b # 0, such that Qb is stable under G g, by multiplying
t~% for some i € Z, we may assume b € B;R but b ¢ Fil' B4r. Suppose
g(b) = x(g)b. Let b = 6(b) be the image of b € C. Then Q,b = Q,(x)
is a one-dimensional Q,-subspace of C' stable under Gg, by Sen’s theory
(Corollary 3.56), this implies that x(I) is finite and b € P C Bjz. Then
V¥ =b—b € Fil' Bgg — Fil'™ Byg for some i > 1. Note that Qb is also
stable by G g whose action is defined by the same x. Then the Gi-action on
Qp0(t~b') is defined by n~"x where 7 is the cyclotomic character. In this case
n~"x(I) is not finite and it is only possible that " = 0 and hence b = b € P.

Now if b € By, then b € PN By. We claim that P N By = Py C Begis.
Indeed, suppose P N By = Q D Py. Then Frac(Q) contains a nontrivial
finite extension L of Py. Note that Ly = Py and by (2), BgL = P,, but
Frac(Q)%* = L, contradiction! O

For any p-adic representation V', we denote
Dy (V) = (Bst ®g, V)%, Deyis(V) = (Bexis ®g, V)¥.
Note that Dy (V) and D,s(V) are Kp-vector spaces and the maps
ast(V) @ Bst @K, Dt (V) — By @q, V
Qeris(V) t Beris ® iy Deris(V) = Beris ®q, V
are always injective.

Definition 6.29. A p-adic representation V of Gk is called semi-stable if it
is Bsy-admissible, i.e., the map as (V) s an isomorphism.

A p-adic representation V. of Gk is called crystalline if it is Beyis-
admissible, i.e., the map aqis(V) is an isomorphism.

Clearly, for any p-adic representation V', D¢,is(V) is a subspace of Dg (V)
and
dimKO Dcris(V) < dimKO Dbt(V) < dlm(@p V.

Therefore we have
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Proposition 6.30. (1) A p-adic representation V is semi-stable (resp. crys-
talline) if and only if dimg, Dg (V) = dimg, V' (resp. dimg, Deis(V) =
dime V)

(2) A crystalline representation is always semi-stable.

Let V' be any p-adic representation of Gk, since K ®g, Bst — Bar is
injective if [K : Ky] < oo (Theorem 6.14), we see that
K @k, Dst(V) = K @k, (Bst ®g, V)°*
= (K @K, (Bs; ®g, V)%
= ((K ®k, Bst) ®q, V)
— (Bar g, V)% = Dar(V).

Thus K ®, Dt (V) C Dgr (V) as K-vector spaces.
Assume that V' is semi-stable, then dimg, Deris(V) = dimg, V, thus

dimg K R K, Dcris(v) = dime V > dim DgRrV,
which implies that
dim DdRV = dime V,
i.e.,, V is de Rham. Thus we have proved that

Proposition 6.31. If V is a semi-stable p-adic representation of Gy, then it
is de Rham. Moreover,

D4r(V) = K @k, Dt (V).

Let V be any p-adic representation of Gx. On D (V) there are a lot of
structures because of the maps ¢ and N on Bg;. We define two corresponding
maps ¢ and N on By ®q, V by

p(b®v)=pb@v
NOb®v)=Nb®wv

for b € Bg, v € V. The maps ¢ and N commute with the action of Gg
and satisfy Ny = ppN. Now one can easily see that the Ky-vector space
D = Dy (V) is stable under ¢ and N, dimg, D < oo and ¢ is bijective on D
(One can check that ¢ is injective on Bg;). Moreover, the K-vector space

DK =K ®K0 Dbt(V) C DdR(V)

is equipped with the structure of a filtered K-vector space with the induced
filtration _ _
Fil' Di = Dg () Fil' Dar(V).

In next section, we shall see Dy (V) is a filtered (¢, N)-module D over K
such that dimg, D < oo and ¢ is bijective on D.
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Remark 6.32. By definition, a crystalline representation is a p-adic represen-
tation of G which is Bes-admissible. Note that Beis = {b € By | Nb = 0}.
Thus a p-adic representation V of G is crystalline if and only if V' is semi-
stable and N = 0 on Dg (V).

6.4 Filtered (¢, N)-modules

6.4.1 Definitions.

Definition 6.33. A (p, N)-module over k (or equivalently, over Ky ) is a Ko-
vector space D equipped with two maps

o,N:D— D

with the following properties:
(1) ¢ is semi-linear with respect to the absolute Frobenius o on Kjy.
(2) N is a Ko-linear map.
(3) No = ppN.

A morphism n : D1 — Dy between two (p, N)-modules, is a Ko-linear map
commuting with ¢ and N.

Remark 6.34. The map ¢ : D — D is additive, and
p(Ad) = o(N)p(d), for every A € Ko, d € D.
To give ¢ is the same as to give a Ky-linear map
P:Ky,Qx, D— D,
by (A ® d) = Ap(d).

Remark 6.35. The category of (¢, N)-modules is an abelian category. It is the
category of left-modules over the non-commutative ring generated by Ky and
two elements ¢ and N with relations

eAX=0c(N)p, NA=AN, forall A€ K,

and
Ny = peN.

Moreover,

(1) There is a tensor product in this category given by

e D;®Dy=D; ®k, D2 as Kp-vector space,
o p(di ®d2) = pdi ® pda,
. N(d1®d2)=Nd1®d2+d1®Nd2.
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(2) Ko has a structure of (¢, N)-module by ¢ = o, N = 0. Moreover
Ko D=D®Kyg=D,

thus it is the unit object in the category.
(3) The full sub-category of the category of (¢, N)-modules over k such
that

dimg, D < oo and ¢ is bijective

is an abelian category and is stable under tensor product.
If D is an object of this sub-category, we may define the dual object D* =
Z (D, Ky) of D, the set of linear maps n: D — K such that
o w(n)=oconopl,
e N(n)(d) =—-n(Nd), for all d € D.

Definition 6.36. A filtered (¢, N)-module over K consists of a (p,N)-
module D over Ko and a filtration on the K-vector space Dy = Ko ®p, D
which is decreasing, separated and exhaustive, i.e., such that Fil' Dk (i € Z),
the sub K -vector spaces of Dg satisfy

e Fil'™ Dy C Fil' Dy,

. ﬂFﬂiDKzo, UFﬂ”DK:DK.
i€L i€Z

A morphism 1 : D1 — Dy of filtered (p, N)-modules is a morphism of (¢, N)-
modules such that the induced K-linear map ng : K @k, D1 — K Q, Do
satisfies ‘ A

ni (Fil’ D1 ) C Fil’ Dok, for alli € Z.

The set of filtered (p, N)-modules over K makes a category. We denote it
by MFK (503 N)

Remark 6.37. The category MFg (¢, N) is an additive category (but not
abelian). Moreover,

(1) There is an tensor product:
Dy ® Dy = D1 ®, D2
with ¢, N as in Remark 6.35, and the filtration on
(D1®D2)k = K®k, (D1®K,D2) = (K®k,D1)®(K®Kk,D2) = D1x @K Dak
defined by

Fil'(D1x @k Dax) = » , Fil" Dix @k Fil? Dyg.

i1+i2=1
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(2) Koy can be viewed as a filtered (, N)-module with ¢ = o, N = 0 and

) <0
Fil g = 4% IS0
0, 1> 0.

Then for any filtered (¢, N)-module D, Ky ® D ~ D ® Ky ~ D. Thus Kj is
the unit element in the category.

(3) If dimg, D < oo and if ¢ is bijective on D, we may define the dual
object D* of D by

(D")x = K @k, D* = (Dg)* ~ Z(Dg, K),
Fil'(D*)x = (FiI~"! Dg)*.

Assume D is a (¢, N)-module over k such that dimg, D < oo and ¢ is bijec-
tive. We associate an integer ¢ (D) to D here.

(1) Assume first that dimg, D = 1. Then D = Kyd with ¢d = Ad, for
d#0€ D and )\ € Kj. ¢ is bijective implies that A # 0.
Assume d' = ad, a € Ky, a # 0, such that od’ = Nd'. One can compute
easily that
o(a)

pd = o(a)\d = T)\d’,

which implies
)\I — )\U(a’)
s

As 0 : Ky — K is an automorphism, v,(A) = v,(X') € Z is independent of
the choice of the basis of D. We define

Definition 6.38. If D is a (¢, N)-module over k of dimension 1 such that ¢
is bijective, then set
tn(D) = vp(N) (6.11)

where A € GL1(Ky) = K§ is the matriz of ¢ under some basis.
Remark 6.39. The letter N in the expression ¢y (D) stands for the word New-

ton, not for the monodromy map N : D — D.

(2) Assume dimg, D = h is arbitrary. The h-th exterior product
h
/\K D C D®k,D®p, - ®K, D(h times)
0

is a one-dimensional Ky-vector space. Moreover, @ is injective(resp. surjective,
bijective) on D implies that it is also injective(resp. surjective, bijective) on

h
Ak, D-
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Definition 6.40. If D is a (¢, N)-module over k of dimension h such that ¢
is bijective, then set

tn(D) :==tn( ). (6.12)

Ko
Choose a basis {e1,--- ,ep} of D over Ky, such that ¢(e;) = 2?21 aije;.
Write A = (a;j)1<i,j<h- Given another basis {e,--- e} with the transfor-

mation matrix P, write A’ the matrix of ¢, then A = o(P)A’P~. Moreover
@ is injective if and only if det A # 0, and

Proposition 6.41.
tn(D) = vy(det A). (6.13)

Proposition 6.42. One has

(1) If0 = D' — D — D" — 0 is a short exact sequence of (¢, N)-modules,
then ty (D) = tn (D) +tn(D").

(2) tN(Dl ® Dg) e dimKO (DQ)tN(Dl) + dimKO (Dl)tN(Dg).

(8) tn(D*) = —tn(D).

Proof. (1) Choose a Ky-basis {e1, - ,en} of D' and extend it to a basis
{e1, -+ ,en} of D, then {€py1, - ,€n} is a basis of D”. Under these bases,
suppose the matrix of ¢ over D’ is A, over D" is B, then over D the matrix
of pis (4 5). Thus

tn(D) = vp(det(A) - det(B)) =ty (D') + tn(D").

(2) If the matrix of ¢ over D; to a certain basis {e;} is A, and over
Dy to a certain basis {f;} is B, then {e; ® f;} is a basis of D1 ® Dy and
under this basis, the matrix of ¢ is A ® B = (a;,,4,B). Thus det(A ® B) =
det(A)dim Pz det(B)4m™ P1 and

tN(Dl ® DQ) = vp(det(A & B)) = dimKO(Dg)tN(Dl) + dimKO(Dl)tN(Dg).

(3) If the matrix of ¢ over D to a certain basis {e;} is A, then under
the dual basis {e}} of D*, the matrix of ¢ is o(A™1), hence ty(D*) =
vp(det (A7) = —v,(det A) = —tn (D). 0

Proposition 6.43. If D is a (¢, N)-module such that dimg, D < oo and ¢
is bijective, then N is nilpotent.

Proof. If N is not nilpotent, let h be an integer such that N*(D) = N*+1(D) =
... = N™(D) for all m > h. Then D' = N"(D) is invariant by N, and by ¢
since N™¢ = pmpN™ for every integer m > 0. Thus D’ is a (¢, N)-module
such that N and ¢ are both surjective.

Pick a basis of D’ and suppose under this basis, the matrices of ¢ and
N are A and B respectively. By Nyp = ppoN we have BA = pAc(B). Thus
vp(det(B)) =1+ vp(det(o(B))) = 1 + v,(det(B)), this is impossible. O
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Now let Filx be the category of finite-dimensional filtered K-vector spaces.

Definition 6.44. Suppose A € Fili is a finite dimensional filtered K -vector

space.
(1) If dimg A = 1, define

tr(A) == max{i € Z: Fil' A = A}. (6.14)

Thus it is the integer i such that Fil' A = A and Fil'™ A = 0.
(2) If dimg A = h, define

t(4) = tu(\. ). (6.15)

where /\}}( AC ARk, A®K, - - A (h times) is the h-th exterior algebra of A
with the induced filtration.

There is always a basis {e1, -+ ,en} of A over K which is adapted to the
filtration, i.e., there exists i1,--- , i, € Z such that for any integer 1,
Fil'(4) = P Ke;,.
ij>i
Then

h
ta(A)=> ij.
j=1
Proposition 6.45. One has

tu(A)=> i-dimggr’ A (6.16)
i€z
with gr' A = Fil' A/Fil'™ A by definition.

By the proposition, the definition of ¢y (A) is compatible with the filtra-
tion, therefore

Corollary 6.46. If 0 — A" — A — A” — 0 is a short exact sequence of
filtered K -vector spaces, then

tn(A) =tn(A") +tn(A").

Remark 6.47. We have a similar formula for ¢ty (D) like (6.16). Let D be a
(¢, N)-module such that dimg, D < oo and ¢ is bijective on D. In this case
D is called a @-isocrystal over K. Then

D:@Da,

a€eQ
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where D,, is the part of slope «. If k is algebraically closed and if o = % with
r,s € Z,s = 1, then D,, is the sub Ky-vector space generated by the d € D’s
such that ¢*d = p"d. The sum is actually a finite sum. Then

tn(D) =) adimg, Dq. (6.17)
It is easy to check that adimg, D, € Z.

6.4.3 Admissible filtered (¢, N)-modules.
Let D be a filtered (¢, N)-module D over K, we set
ta(D) =tu(Dk). (6.18)

Recall a sub-object D’ of D is a sub Ky-vector space stable under (¢, V), and
with filtration given by Fil' D% = Fil" D N DY

Definition 6.48. A filtered (p, N)-module D over K is called admissible if
dimg, D < oo, ¢ is bijective on D and

(1) tu(D) = tn(D),

(2) For any sub-object D', ty(D") <ty (D).

Remark 6.49. The additivity of ty and tgy
tn(D) =ty(D") +tn(D"), ty(D)=ty(D")+tg(D")

implies that admissibility is equivalent to that
(1) tu(D) =tn(D),
(2) tg(D") >ty (D), for any quotient D”.

Denote by MF4% (¢, N) the full sub-category of MF g (¢, N) consisting of
admissible filtered (¢, N)-modules.

Proposition 6.50. The category MF‘}g(go,N) s abelian. More precisely, if
Dy and Dy are two objects of this category and n: D1 — Dgy is a morphism,
then

(1) The kernel Kern = {x € D; | n(z) = 0} with the obvious (p, N)-
module structure over Ko and with the filtration given by Fil' Kerng =
KernKﬂFiliDlK for ng @ Dix — Dk and Kerng = K ®Qg, Kern, is
an admissible filtered (v, N')-module.

(2) The cokernel Cokern = Dy/n(Dy) with the induced (¢, N)-module
structure over Ko and with the filtration given by Fil" Coker nx = Im(Fil" Do)
for Cokerng = K ®g, Cokern, is an admissible filtered (¢, N')-module.

(3) Im(n) = Colm(n).
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Proof. We first prove (3). Since Im(n) and Colm(n) are isomorphic in the
abelian category of (p, N)-modules, and since ng is strictly compatible with
the filtrations, Im(n) = Colm(n) in MF$ (¢, N).

To show (1), it suffices to show that ty(Kern) = tp(Kern). We have
tr(Kern) < tp(Kern) as Kern is a sub-object of Dy, we also have tg(Imn) <
tp(Imn) as Imn = Colmy is a sub-object of Dy, by the exact sequence of
filtered (¢, N)-modules

0— Kern — D; — Imn — 0,
we have
tr(D1) =ty (Kern) + ty(Imn) < tp(Kern) + tp(Imn) = tp(Dy).
As ty(D1) = tp(D1), we must have
ty(Kern) =tp(Kern), ty(Imn)=tp(Imn)

and Kern is admissible.
The proof of (2) is similar to (1) and we omit it here. O

Remark 6.51. If D is an object of the category MF4Z(¢, N), then a sub-object
D’ is something isomorphic to Ker (n : D — D) for another admissible filtered
(¢, N)-module Ds. Therefore a sub-object is a sub Ky-vector space D’ which
is stable under (p, N') and satisfies tyy(D’) =ty (D’).

The category MF‘}éi(go, N) is Artinian: an object of this category is simple
if and only if it is not 0 and if D’ is a sub Ky-vector space of D stable under
(p, N) and such that D’ # 0, D’ # D, then ty(D’) < tn(D’).

6.5 Statement of Theorem A and Theorem B

6.5.1 Weakly admissible implies admissible.

Let V' be any p-adic representation of Gx and consider Dy (V) = (B ®q,
V)% . We know that Dg (V) is a filtered (p, N)-module over K such that
dimg, Dgt (V) < 0o and ¢ is bijective on Dg(V), and

D : Rep@p(GK) — MFg (o, N)

is a covariant additive Q,-linear functor.

On the other hand, let D be a filtered (¢, N)-module over K. We can
consider the filtered (¢, N)-module Bs; ® D, with the tensor product in the
category of filtered (, N)-modules. Then

Bst®D:Bst ®Ko D7

p(b®d) = pb® pd,
Nb®d) =Nb®d+b® Nd.
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Since
K ®k, (Bst ® D) = (K Qk, (Bst) ®x Dk) C Bar @k Dr,

K ®k, (Bst ® D) is equipped with the induced filtration from Bqr @k Di.
The group Gk acts on Bg; ® D by

gb@d) =g(b) ®d,

which commutes with ¢ and N and is compatible with the filtration.

Definition 6.52.
V(D) ={v€B4®D |pv=v,Nv=0,1%v € Fil’(K ®, (Bs ® D))}
V(D) is a sub Q,-vector space of Bg, ® D, stable under Gk

Theorem A. (1) If V is a semi-stable p-adic representation of G, then
Dt (V) is an admissible filtered (o, N)-module over K.

(2) If D is an admissible filtered (o, N)-module over K, then Vg (D) is a
semi-stable p-adic representation of Gk .

(8) The functor Dy : Reprfp(GK) — MF%(p, N) is an equivalence of
categories and Vg : MF% (o, N) — Repap(GK) is a quasi-inverse of Dg.
Moreover, they are compatible with tensor product, dual, etc.

Complements:

(1) Reprfp(G k) is a sub-Tannakian category of Repg (G).
(2) (Exercise) It’s easy to check that
- Dst(Vl & V2) = Dst(‘/l) & Dst(v2);
- Dst(V*) = Dst(V)*;
Dy (Qp) = Kp.
Therefore by Theorem A, MF%(Q@, N) is stable under tensor product and
dual.

Remark 6.53. (1) One can prove directly (without using Theorem A) that if
D1, D5 are admissible filtered (¢, N)-modules, then D ® D5 is again admis-
sible. But the proof is far from trivial. The first proof is given by Faltings for
the case N = 0 on D; and Ds. Later on, Totaro [Tot96] proved the general
case.

(2) It is easy to check directly that if D is an admissible filtered (¢, N)-
module, then D* is also admissible.

The proof of Theorem A splits into two parts: Proposition Al and Proposition
A2.

Proposition Al1. If V is a semi-stable p-adic representation of Gk, then
Dy (V) is admissible and there is a natural (functorial in a natural way)
isomorphism

V 5 Vi (Dge (V).
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Exercise 6.54. If Proposition Al holds, then
D, : Rep, (Gx) — MF3(p, N)
is an exact and fully faithful functor. It induces an equivalence
D, : Rep (Gx) — MFi (o, N)

where MF (¢, N) is the essential image of Dy, i.e, for D a filtered (¢, N)-
module inside it, there exists a semi-stable p-adic representation V' such that
D ~ Dy (V). And

Vit : MF?K(@7 N) - Repa;p (GK)
is a quasi-inverse functor.

Proposition A2. For any object D of MF%(Q@, N), there exists an object V
of RepEp(GK) such that D (V) ~ D.

Remark 6.55. The first proof of Proposition A2 is given by Colmez and
Fontaine ([CF00]) in 2000. It was known as the conjecture weakly admissible
implies admissible. In the old terminology, weakly admissible means admissi-
ble in our course, and admissible means ? as in Exercise 6.54.

6.5.2 de Rham implies potentially semi-stable.

Let B be a Q,-algebra on which G acts. Let K’ be a finite extension of K
contained in K. Assume the condition

(H) B is (Qp, Gg)-regular for any K’
holds.

Definition 6.56. Let V' be a p-adic representation of Gi. V is called poten-
tially B-admissible if there exists a finite extension K' of K contained in K
such that V' is B-admissible as a representation of G, i.e.

B® g (B, V)OF — B,V
18 an 1somorphism, or equivalently,
dim e, (B ®g, V)< = dimg, V.

It is easy to check that if K C K’ C K" is a tower of finite extensions of
K contained in K, then the map

BGK/ ®BGK” (B ®Qp V)GK// _ (B ®Qp V)GK/

is always injective. Therefore, if V' is admissible as a representation of G,
then it is also admissible as a representation of Ggr.
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Remark 6.57. The condition (H) is satisfied by B = K, C, By, Bar, Bs.
The reason is that K is also an algebraic closure of any finite extension K’ of
K contained in K, and consequently the associated K, C, Byr, Bqr, Bs; are
the same.

For B = K, C, Byt and Bgg, then B is a K-algebra. Moreover, B¢x’ =
K. In this case, assume V is a p-adic representation of G’k which is potentially
B-admissible. Then there exists K’, a finite Galois extension of K contained
in K, such that V is B-admissible as a G g -representation.

Let J = Gal(K'/K), h = dimg, (V), then

A= (B g, V)%

is a K’'-vector space, and dimg, A = h. Moreover, J acts semi-linearly on A,
and
(B ®q, V)GK =A7,

By Hilbert theorem 90, A is a trivial representation, thus K’ @ A7 — A is
an isomorphism, i.e.

dimg A7 = dimg: A7 = dimg, V,
and hence V is B-admissible. We have the following proposition:

Proposition 6.58. Let B = K, C, Byt or Bar, then potentially B-admissible
s equivalent to B-admissible.

However, the analogy is not true for B = By.

Definition 6.59. (1) A p-adic representation of Gi is K'-semi-stable if it is
semi-stable as a G g -representation.

(2) A p-adic representation of Gk is potentially semi-stable if it is K'-
semi-stable for a suitable K', or equivalently, it is potentially By -admissible.

Let V be a potentially semi-stable p-adic representation of G, then V
is de Rham as a representation of Gk for some finite extension K’ of K.
Therefore V' is de Rham as a representation of G .

The converse is also true.

Theorem B. Any de Rham representation of G is potentially semi-stable.

Remark 6.60. Theorem B was known as the p-adic Monodromy Congjecture.
The first proof was given by Berger ([Ber02]) in 2002. he used the theory of
(¢, I')-modules to reduce the proof to a conjecture by Crew in p-adic differ-
ential equations. Crew Conjecture has three different proofs given by André
([And02a]), Mebkhout([Meb02]), and Kedlaya([Ked04]) respectively.

In next chapter we will give parallel proofs of Theorem A and Theorem
B relying of the fundamental lemma in p-adic Hodge theory by Colmez and
Fontaine.
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Comments about Theorem B.

(1) Let K’ be a finite Galois extension of K contained in K, J = Gal(K'/K).
Assume V is a p-adic representation of G i which is K’-semi-stable. Then

Dy (V) = (Bst ®q, V)9

is an admissible filtered (¢, N)-module over K.

Write K, = Frac(W (k')), where k' is the residue field of K’. Then BgK' =
K. J acts on D' = Dy g/(V) semi-linearly with respect to the action of J
on K{;, and this action commutes with those of ¢ and N. In this way, D’ is a
(¢, N, J)-module. The action of .J is also semi-linear with respect to the action
of Jon KJ: for I(K'/K) the inertia subgroup of J, Gal(K|,/K¢) = J/I(K'/ K),
ifreJ, e Kjand 6 € D', then 7(A\d) = 7(A)7(9).

Let Dgr,x/(V) = (Bar ®q, V)%x’. As an exercise, one can check that

DdR,K’(V) =K ®K(’) D/,

and hence
Dar(V) = (K’ ®x; D).

The group J = G /G acts naturally on (BdR@@p)GK/7 and on K’ R D,
Jacts by T(A®@d') =7(\) @ 7(d') for A € K’ and d’ € D’. These two actions
are equivalent.

Definition 6.61. A filtered (p, N, Gal(K'/K))-module over K is a finite di-
mensional K{)-vector space D' equipped with actions of (¢, N, Gal(K'/K)) and
a structure of filtered K -vector space on K' @ D)Gal(K'/K)

We get an equivalence of categories between K’-semi-stable p-adic repre-
sentations of G and the category of admissible filtered (p, N, Gal(K'/K))-
modules over K.

Going to the limit over K’ and using Theorem B, we get

Proposition 6.62. There is an equivalence of categories between de Rham
representations of Gk and admissible filtered (o, N, G )-modules over K.

(2) We have analogy with f-adic representations. If ¢ # p, an l-adic repre-
sentation V of Gk is potentially semi-stable if there exists an open subgroup
of the inertia subgroup which acts unipotently.

(3) Assume V is a de Rham representation of G of dimension h, and let
A =Dgyr(V). Then there exists a natural isomorphism

Bar ®x A = Bgr ®q, V.

Let {v1,--- ,vn} be a basis of V over Qp, and {d1,---,0,} a basis of A over
K. We identify v; with 1 ® v;, and §; with 1 ® §;, for 4 = 1,--- ,h. Then
{v1,--- ,on} and {61,--- ,0n} are both bases of Bqr ®x A = Byr ®q, V over
Bgar. Thus
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h
§j = Zbijvi with (bl]) € GLh(BdR).
i=1
Since the natural map K'® K Bst — Bar is injective, Theorem B is equivalent
to say that there exists a finite extension K’ of K contained in K such that
(bij) € GLp(K' @y Bst)-
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Proof of Theorem A and Theorem B

This chapter is devoted to the proofs of Theorem A and Theorem B.

Theorem A. (1) If V is a semi-stable p-adic representation of G, then
D (V) is an admissible filtered (¢, N)-module over K.

(2) If D is an admissible filtered (¢, N)-module over K, then V(D) is a
semi-stable p-adic representation of G .

(3) The functor Dg; : Repap(GK) — MF%(p, N) is an equivalence of
categories and Vg : MFY (p, N) — RepEp(GK) is a quasi-inverse. More-
over, they are compatible with tensor product, dual, etc.

Theorem B. Any de Rham representation of G is potentially semi-stable.

7.1 Admissible filtered (¢, N)-modules of dimension 1
and 2

7.1.1 Hodge and Newton polygons.

We give an alternative description of the condition of admissibility.

Let D be a filtered (¢, N)-module over K. We have defined ¢ (D) which
depends only on the map ¢ on D and ¢y (D) which depends only on the
filtration on Dy .

To D we can associate two convex polygons: the Newton polygon Pn (D)
and the Hodge polygon Py (D) whose origins are both (0,0) in the usual
cartesian plane.

We know D = @qcqDq, where D, is the part of D of slope a € Q. Suppose
a; < ag < -+ -apy are all o’s such that Dy, # 0. Write v; = dim D,

Definition 7.1. The Newton polygon Py (D) is the polygon with break points
(0,0) and (v1+---+wv;, 101 + -+ ajv;) for 1 < j <m. Thus the end point
of Pn(D) is just (h,tn(D)).
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(h,tn (D))

Q2

The Newton Polygon Py (D)

Q5

The Hodge polygon Py (D) is defined similarly. Let iy < --- < i,, be those
i’s satistying Fil' Dy / Fil'™! D # 0. Let h; = dimg (Fil¥ Dy /Fil“ 1 Dy).

Definition 7.2. The Hodge polygon Py (D) is the polygon with break points
(0,0) and (hi+---+hj,i1hi +---+ijh;) for 1 < j < m. Thus the end point

of Pg(D) is just (h,tg(D)).

A

(h,tu (D))

i

19

The Hodge Polygon Py (D)

Proposition 7.3. Let D be a filtered (¢, N)-module over K such that dimg, D <
400 and p is bijective on D. Then D is admissible if and only if the following

two conditions are satisfied
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(1) For any subobjects D', Pg(D’) < Py(D’).
(2) Py (D) and Pn(D) end up at the same point, i.e., ty(D) =ty (D).

Remark 7.4. Note that a dimg, D, € Z. Therefore the break points of P (D)
and Py (D) have integer coordinates.

7.1.2 The case when the filtration is trivial.

Let A be a filtered K-vector space. We say that the filtration on A is trivial
if

Fil’ A= A and Fil' A =0.
Question 7.5. What are the admissible filtered (p, N)-modules with trivial
filtration?

Let D be a filtered (¢, N)-module over K with dimension h < oo over K
such that ¢ is bijective.

Assume the filtration on Dg is trivial. Then the Hodge polygon is a
straight line from (0,0) to (h,0).

Assume in addition that D is admissible. Then Py (D) = Py (D), in par-
ticular all slopes of D are 0. Therefore there is a lattice M of D such that
w(M) = M. Since Ny = ppN, we have N(D,) C D,_1, hence N = 0.

Conversely, any D of slope 0 and trivial filtration is admissible. If D’ C D,
then D’ is purely of slope 0, hence ¢ (D’) = 0, therefore N = 0.

7.1.3 Tate’s twist.

Let D be any filtered (¢, N)-module. For i € Z, define D(i) as follows:

D(i) = D as a Ko-vector space,
Fil"(D(i)) ¢ = Fil"** Dy for r € Z.

Denote by N’ and ¢’ the N and ¢ on D(i). We just set
N'=N, ¢'=p7p

Then D(3) is a filtered (¢, N)-module. It is easy to check that D is admissible
if and only D(i) is admissible.

Exercise 7.6. For any p-adic representation V' of G,
D (V (i) = Dst (V) (i)

The isomorphism is given by

d= an @ vy, —s d = ant—i ® (v, @t)) = (t7 @ t')d

where b,, € Bg, v, € V.
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7.1.4 Admissible filtered (o, N)-modules of dimension 1.

Let D be a filtered (¢, N)-module with dimension 1 over K such that ¢ is
bijective on D. Write D = Kyd. Then ¢(d) = Ad for some A € Kj and N
must be zero since NN is nilpotent.

Since Dx = D ®k, K = Kd is 1-dimensional over K, there exists i € Z
such that

D f <1
Fil' Dy = { %0 OTTSh
0, for r > 4.

Note that tx (D) = vp(A), and tg(D) = i. Therefore D is admissible if and
only if v,(A\) = 1.

Conversely, given A € K5, we can associate to it Dy, an admissible filtered
(¢, N)-module of dimension 1 given by

D)\:K07 30:)\0'7 N:()v

Dk, forr <wy(A),

Fil" Dk =
0, for r > vp(A).

Exercise 7.7. If \, N € K{, then Dy = D, if and only if there exists u € W*
such that A = X - #

In the special case when K = Q,, then K is also Q,, and ¢ = Id. Therefore
Dy = Dy, if and only if A = \.

7.1.5 Admissible filtered (¢, N)-modules of dimension 2.

Let D be a filtered (¢, N)-module with dimg, D = 2, and ¢ bijective. Then
there exists a unique ¢ € Z such that

Fil' Dg = Dg, Fil'™ Dy # Dg.
Replacing D with D(i), we may assume that ¢ = 0. There are two cases.

Case 1: Fil! D = 0. This means that the filtration is trivial. We have
discussed this case in § 7.1.2.

Case 2: Fil' Dg # 0. Therefore Fil'! Di = L is a 1-dimensional sub K-vector
space of Dy . Hence there exists a unique r > 1 such that

Dg, ifi<0,
Fil' Dg ={ L if1<i<r,.
0, ifi>r

So the Hodge polygon Py (D) is
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(2,7)

Assume K = Q. Then Ko = Q,, D = Dk, 0 = Id, ¢ is bilinear. Let
P,(X) be the characteristic polynomial of ¢ acting on D. Then

PyX)=X?>+aX +b= (X — X)X —X2)

for some a, b € Qp, A1, A2 € @p.
We may assume v,(A1) < vp(A2). Then Py (D) is the following

(2,vp(M1) +vp(A2))

(1, vp (A1)

I 1

(0,0) 1 2

Then the admissibility condition implies that
vp(A1) > 0 and vy (A1) +vp(Ae) =7
Case A: N # 0. Recall that N(D,) C D,—_1. Therefore
up(A2) = vp(A1) + 1 # vp(Ar).

In particular Ay, Ay € Q,. Let v,(A1) =m. Then m > 0 and r = 2m + 1.
Assume e is an eigenvector for Ao, i.e.
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@(62) = )\262.

Let e; = N(ez), which is not zero as N # 0. Applying Ny = ppN to ey, one
can see that e; is an eigenvector of the eigenvalue A\a/p of ¢, thus As = pA;.
Therefore

D= @pel S5 Qpeg, A € Z;
with

p(e1) = Areq, N(ei) =0,
@(e2) = pAiea, N(es) = e;.

Now the question is: What is L7
To obtain the answer, we have to check the admissibility conditions, i.e.

tg(D) =tn(D);
ty(D") <tn(D’) for any subobjects D’ of D.
We only need to check that for D" = Qpe;. We have that

if L =D,
tn(D)=m, tg(D)=4" " ’
N (D) (D) {0, otherwise.
The admissibility condition implies that tg(D’) = 0, i.e. L can be any line
# D'. Therefore there exists a unique o € Q, such that L = Q,(e2 + cveq).
Conversely, given A1 € Z;, a € Qp, we can associate a 2-dimensional
filtered (¢, N)-module Dyy, o3 of @, to the pair (A, ), where

D{)\l,a} = Qpel S Qpe2

with
p(e1) = Areq, N(e) =0,
p(e2) = pAiea, N(es) = e;.
Dy, ays ifi <o,
Fil' D{y, 0 = § Qplez +ae), if 1 <i<2v,(\)+1,
0, otherwise.

Exercise 7.8. Dy, o} = D oy if and only if A} = A} and a = o',
Proposition 7.9. The map
(i, )\1, Oé) — D{,\l)a} <Z>

Jrom Zx 2y, x Q,, to the set of isomorphism classes of 2-dimensional admissible
filtered (@, N)-modules over Q, with N # 0 is bijective.
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Remark 7.10. When is Dy, o) irreducible? The answer is: if and only if
Up()\l) > 0.

Indeed, Dy, o) is not irreducible if and only if there exists a nontrivial
subobject of it in the category of admissible filtered (¢, N)-modules. We have
only one candidate: D' = Qpe;. And D’ is admissible if and only if ¢ty (D) =
tn(D'). Note that the former number is 0 and the latter one is v,(A1).

Case B: N = (. By the admissibility condition, we need to check that for
all lines D’ of D stable under ¢, ti(D’) < ty(D’. By the filtration of D, the

following holds:
0, D #L
t D/ — Y i
(D) {r, if D' = L.

Exercise 7.11. Let a, b € Z, with r = v,(b) > 0 such that X? + aX + b is
irreducible over Q. Set

Da,b = Qpel @ Qp€2
with

Dy, ifi <0,
Fil' Doy = ¢ Qpeq, if1<i<2,
0, otherwise.

Then D, ; is admissible and irreducible.

Exercise 7.12. Let A1, A2 € Z,, nonzero, A1 # Ao, and v,(A1) < vp(A2). Let
r = vp(A1) + vp(A2). Set

3\17,\2 = Qpel b QpeQ

with
=\
p(er) = Aier, N =0,
@(62) = >\262,
. Dﬁ\w\Q, if 1 <0,
Fil* Dﬁ\hA2 =Qpler +e), f1<i<n,
0, otherwise.

Then D) ,, is admissible. Moreover, it is irreducible if and only if v, (A1) > 0.

Proposition 7.13. Assume D is an admissible filtered (p, N)-module over
Qp of dimension 2 with N =0 such that Fil'D = D, and Fil' D # D,0. As-
sume D is not a direct sum of two admissible (@, N)-modules of dimension 1.
Then either D = Dy, for uniquely determined (a,b), or D = D) uniquely
determined (A1, A2).
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7.2 Proof of Proposition A1l

We first recall:

Proposition Al. If V is a semi-stable p-adic representation of G, then
D (V) is admissible and there is a natural (functorial in a natural way)
isomorphism

V — V(D (V).

7.2.1 Construction of the natural isomorphism.

Let V' be any semi-stable p-adic representation of Gx of dimension h. Let
D =Dy (V). We shall construct the natural isomorphism

1% = Vst(D) = Vst(Dst(V))

in this subsection.
The natural map
Bst ®K0 D — Bst ®Qp |4

is an isomorphism. We identify them and call them X.

Let {v1,---,vn} and {01,---,0n} be bases of V over Q, and D over K
respectively. Identify v; with 1 ® v; and é; with 1 ® d;, and then {vy,--- ,vp}
and {d1,---,0p} are both bases of X over Bs;.

Any element of X can be written as a sum of b ® § where b € By, § € D
and also a sum of ¢ ® v, where ¢ € By, v € V. The actions of Gk, ¢, and N
on X are listed below:

Gg-action: g¢g(b®d) =g(b) ® 0, glc®@v =g(c) ® g(v).
p-action : p(b® ) = (b)) ® p(d), plc®@v) = p(c) ®v.
N-action: N(O®JI)=Nb®5§+bN(), N(c®v)=DN()Qu.

We also know X has a filtration. By the map x — 1® x, one has the inclusion
X C Xqr = Bar ®B,, X = Bar ®x Dx = Bar ®q, V.
Then the filtration of X is induced by

Fil' Xar = Fil' Bar ®g, V = Y Fil" Bar ®@x Fil° Dg.

r+s=1

Then

V(D) ={z € X|p(z)

z,N(x) =0,z € Fil° X}
={z € X|p(z) =2z, N

(z) =0,z € Fil° X4r}.

Note that V' C X satisfies the above conditions. We only need to check that
V(D) =V.
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h
Write = Y b, ® v, € V& (D), where b,, € By;.
n=1

h
(1) First N(z) = 0, i.e. > N(b,) ® v, = 0, then N(b,) = 0 for all
=1

1 <n < h, which implies that b; € Beyis for all n.
(2) Secondly, the condition () = = means

h

h
Z o(bn) @ v, = Z b, @ Uy
n=1

n=1

Then ¢(b,,) = b,, which implies that b, € B, for all 1 <n < h.

(3) The condition = € Fil® Xqr implies that b, € Fil’ Byr = B, for all
1<n<h.

Applying the fundamental exact sequence

0—Qp,— B.— BdR/BC'fR — 0,

we have that b,, € Q,. Therefore x € V, which implies that V' = V(D).

7.2.2 Unramified representations.

Let D be a filtered (¢, N)-module with trivial filtration. Then D is of slope 0
(hence N = 0) if and only if there exists a W lattice M such that (M) = M.

Let Ko = Frac W (k), D be an étale ¢-module over K. Let Py = Frac W (k)
be the completion of the maximal unramified extension of Ky in K. Then Py C

B;iS_C Bgt, Py is stable under Gg, and Gk acts on Py through G /I =
Gal(k/k).
Recall
Vst(D) = (Bst ®K0 D)gp:l,N:(] N (B(JirR &® DK)
with

(Bst ®K0 D)ga:l,N:O = (Bcris ®K0 D)Lp:l D (PO ®Ko D)Lp:lv

an unramified representation of Gk of Q,-dimension = dimg, D.
If V is an unramified representation of G, then

Dy (V) D (P ®g, V)“¥
which is of dimg, = dimg, V. Then we get the consequence.

Proposition 7.14. Any unramified p-adic representation V of Gy is crys-
talline and Dy, induces an equivalence between Repg, (Gk), unramified p-
adic representations of Gk (equivalently Repg, (Gr)) and admissible filtered
(¢, N)-modules with trivial filtration (equivalently étale p-modules over Ky ).
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7.2.3 The reductions to an algebraically closed residue field.
Let P be an algebraic closure of P inside of C, where

K" CPyCP=PK=K",

Then P C Bj;. Note that Bqr(P/P) = Bqr(K/K) = Bar, and same for By
and Bcris-
For the exact sequence

1—-Ix >Gg — G — 1,
we have Iy = Gal(P/P). If V is a p-adic representation of G, as Bdlﬁ =P,
Dar,p(V) = (Bar ®g, V)'*
is a P-vector space with
dimp Dar,p(V) < dimg, V,

and V is a de Rham representation of Ik if and only if the equality holds.
Dygr,p(V) is a P-semilinear representation of Gj. This is trivial:

P @k (Dar p(V))%* — Dar p(V)
is an isomorphism. Now
(Dar,p(V)“* = Dar(V) = (Bar ®q, V)",
Therefore,

Proposition 7.15. V is de Rham as a representation of Gk if and only if V
18 de Rham as a representation of Iy .

Proposition 7.16. V is semi-stable as a p-adic representation of G if and
only if it is semi-stable as a p-adic representation of Iy .

Proof. For Dy p(V) = (Bg ®q, V)'¥, since Blx = Py, Dy p(V) is a Py-
semilinear representation of GG, then the following is trivial:

Py ®r, (Dst,p(V))* — Dyt p(V)

is an isomorphism, and Dy (V) = (Dg, p(V))*. O
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7.2.4 A Proposition.
Proposition 7.17. Let V' be a p-adic representation of G,
p:Gxg — Autg, (V)

Assume p(I) is finite, then

(1). V is de Rham.

(2). The following three conditions are equivalent: a) V is semi-stable; b)
V is crystalline; ¢) p(Ix) is trivial, i.e. V is unramified.

Proof. Since P C Bgg, the only thing to prove is:
V is semi-stable = p(If) is trivial.

Because of the previous proposition, we may assume k = k, equivalently
K:P,OI‘IK:GK.

Let H = Ker p be an open normal subgroup of I, then XH = L is a finite
Galois extension of K. Write J = G /H. Then

Dst(V) =(Bst ®q, V)GK = ((Bst ®q, V)H)J
=(BY @q, V)’ = (Ko &g, V)" = Ko g, V’
because of BXf = K. Thus
V is semi-stable < dimg, Dt (V) = dimg, V”/ = dimg, V & V7 =V,

which means p(If) is trivial. O

7.2.5 Tate’s twists.

Recall V(i) = V ®q, Qp (i), we know that

V is de Rham (resp. semi-stable, crystalline) if and only if V' (4) is de
Rham (resp. semi-stable crystalline).

We will see that

For D = Dy (V) = (B ®g, V)x and D' = Dy (V (i) = (B ®g, V(i))5*,
let ¢ be a generator of Z(p)(1), then ¢’ is a generator of Q,(7). Then V(i) =
{v®t'|v € V}. The isomorphism D({i) — D’ is given by

A= bp@ugr—d =Y bt '@ (v, @) =(t"®t)d

where b,, € Bg, v, € V.
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7.2.6 Representation of dimension 1.

Let V be a p-adic representation of Gk of dimension 1. Write V' = Q,v, then
9(v) = n(g)v and

n:Gr — Q,
is a character(i.e. continuous homomorphism). Moreover, we can make 7 fac-
tors through Z*. We call

1 is B-admissible if V is B-admissible.

Then

(1) n is C-admissible if and only if 1 is P-admissible, or if and only if n(Ix)
is finite.

(2) If n is Hodge-Tate. Recall

Dur(V) = P(C(—i) ®g, V)¥.
iE€EZ

Then V is Hodge-Tate if and only if there exists ¢ € Z (not unique) such that
(C(—i) ®g, V)E= # 0. Because

(C(=i) ®q, V)" = (C &g, V(=i)“",

the Hodge-Tate condition is also equivalent to that V(—i) is C-admissible, or
equivalently nx~"(Ix) is finite where x is the cyclotomic character. In this

case we write n = nox".

Proposition 7.18. 1 is Hodge-Tate if and only if it can be written asn = noX"
with i € Z and no such that no(Ik) is finite.

Proposition 7.19. n is de Rham if and only if n is Hodge-Tate.

Proof. As V is de Rham implies that V is Hodge-Tate, n is de Rham implies
that n is Hodge-Tate. Therefore the condition is necessary. On the other hand,
if n is Hodge-Tate, V' (—i) is de Rham and therefore also is V = V(—i)(i). O

Proposition 7.20. If n: Gk — Zj, is a continuous homomorphism, then the
followings are equivalent:

(1). n is semi-stable;

(2). n is crystalline;

(3). There exist 1o : G — Zy, unramified and i € Z such that 1= nox".

Proof. This follows from Proposition 7.17. O

Remark 7.21. Check that if D is an admissible filtered (¢, N)-module over K
of dimension 1, then there exists a semi-stable representation V' such that
D~ Dgt(V)
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7.2.7 End of the proof of Proposition Al.

Let V be a semi-stable p-adic representation of Gx. We want to prove that
D, (V) is admissible. We denote by D = Dy (V).
Let D’ be a sub Ky-vector space of D stable under ¢ and N. We want to
prove that
ty(D") < tn(D).

Assume first that dimg, D’ = 1. Let {v1,--- , v} be a basis of V over Q,.
Write D' = K0, then

06 =\, A€ Ko, \#0.

Thus
tn(D') =v,(A\) =7 and N§=0.

h
As D = (B ®q, V)¢x  then § = Y b; ® v;. Thus

=1

h h
@5:2@@@1}1 and N5:ZNbi®v,;,

i=1 =1

so pb; = Ab; and Nb; = 0 for all 4, which implies that b; € Beyis.
Assume ty(D') = s. Then & € Fil*(Bar ®g, V) but ¢ Fil*™' (Bar ®g, V).
The filtration
Fil® (BdR ®q, V) = Fil® Bgr Xq, 14

implies that b; € Fil® Byg for all <. Now this case follows from the Lemma
below.

Lemma 7.22. If b € Beyis satisfies pb = Xb with A € Ko and vp(A) =r, and
if b is also in FiI"™" Byg, then b= 0.

Proof. Let A = Kye be an one-dimensional (¢, N)-module with pe = %e and
Ne =0. Then ty(A) = —r and

i o K, if ¢ < -,
Fil' Ag = {0, if i > .
V. (A) is a Qp-vector space of dimension 1. Then V(A) = Qpby ® e for any
@by = Abg, by # 0. Thus by € Fil” but ¢ Fil" ', i

We also see that if D = D’ is of dimension 1, then tgy (D) =ty (D).

General case: let D = Dg(V), dimg, D = dimg, V = h, dimg, D" = m.
We want to prove tgy(D') < tnx(D') and the equality if m = h.

Let Vi1 = A" V be a quotient of V®---®V (m copies). The tensor product
is a semi-stable representation, so V7 is also semi-stable. Then
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D.(V)) = \" Du(V) = Z D.

Now A" D’ € A" D is a subobject of dimension 1, and

tu(\" D) =tu(D), txn(\" D) =tn(D),

the general case is reduced to the one dimensional case.

7.2.8 Qpr-representations.

Let r € N, 7 > 1. Denote by Qpr the unique unramified extension of Q,
of degree r contained in K. The Galois group Gal(Q,-/Q) is a cyclic group
generated by the restriction of ¢ to Q,- (¢lg,~ = o), and

Qpr C Py C Bf,, C By

cris
is stable under G and ¢.

Definition 7.23. A Q,--representation of G is a finite dimensional Qpr-
vector space such that G acts continuously and semi-linearly:

g(v1 +v2) = g(v1) + g(v2), g(Av) = g(N)g(v).
Note that such a representation is also a p-adic representation of G i with
dimQP V=r dime,,, V.

We say that a Q,--representation V' of G is de Rham (semi-stable,- - - ) if it
is de Rham (semi-stable,- - - ) as a p-adic representation.
Let V be a Qp--representation V' of G, recall Dy (V) = (Bst ®q, V)G,
Write
Dst,r(v) = (Bst ®QPT V)GK

which again is a Ky-vector space.

Proposition 7.24.

dimg, Dy, (V) < dimg,, V'
with equality if and only if V is semi-stable.
Proof. One has

r—1
By @q, V=@ Bst ,-n®q,, V

m=0

where -mQq,, 18 the twisted tensor product. Thus

o

r—1

Dy (V) = @ (Bst .- ®q,, V)X.

m=0
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For d € Dy, (V), then ¢™d € (Bg; ,-m ®q, - V)@« | which implies
dimg, (Bg ®q,. V)9 = dimg, Dg(V),

thus
dimKo Dst(V) =T dimKo Dst,r(v)'

We proved the Proposition. a
For a Q,--representation V', we have

r—1

Dur(V) = (Bar ®g, V)" = @D (Bar ,-»®q,, V).

m=0
If V is semi-stable, then
(BdR o—m ®Qp'r' V)GK — Ktﬁ_m®K0 Dst,r(v)-

Definition 7.25. A filtered (¢", N)-module over K is a Kg-vector space A
with two operators
', N: A—- A

such that N is Kg-linear, ©" is o”-semi-linear, and
Ne" =p"¢"N,
and a structure of filtered K wvector space on
Agm =K ,-m®@g, A

form=0,1,2,--- ;r—1.
If V is a semi-stable Q,r-representation of G, write A = Dy (V). Then
A has a natural structure of a filtered (¢", N)-module over K, The inclusion

A = (By ®q,. V)9 C (By ®q, V)"

shows A is stable by ¢" and N, and the filtration for Ag ,, = K -m®y, A
comes from Byg ,-m®q,, V.

Exercise 7.26. Define a way to associate a filtered (¢, N)-module A over K
to a (¢, N)-module D over K such that if V' is a semi-stable p-adic represen-
tation and if A = Dy ,(V), then D = Dg (V).

Answer: D = Q,[p] ®q, o] A

Define A to be admissible if the associated D is admissible.
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Proposition 7.27. Let Repa“pr (Gk) denote the category of Qpr semi-stable
representations of Gx and MF?(d((pT,N) denote the category of admissible
filtered (o, N)-modules over K. Then the functor
Dy, : Repy , (Gk) — MF$ (0", N)
1s an exact and fully faithful functor.
Exercise 7.28. (1) Define Vg , which has the property that
Vitr(Dser (V) = V.

(2) Define tensor products in both categories and check that Dy, is a ®
functor.

Examples of Q,--representations.

(1) Qpr is a Qpr-representation of dimension 1, Dg; (Qpr) = Ky with
@" =0", N =0, and all the filtration are trivial.

(2) Let m = p or —p be a uniformizing parameter. Consider the Lubin-
Tate formal group for Q,- associated to 7. The fact m € Q, implies that this
Lubin-Tate formal group is defined over Z,, and

V})(LT) =Q ®z, Tp(LT)-

Viry = Vp(I') is a one-dimensional Q,--vector space, G — Gal(Q,/Q,) acts
semi-linearly on it, so V,) is a one-dimensional Q,r-representation of G.
Moreover, there is a natural injective map

Viry = {v e Bk, | ¢"v = pv} NFil' By

cris

(a fortiori, this is an isomorphism), which implies that V{,, is crystalline.
Write Vi) = Qprv, then e = v~ ! ® v € Dy (V), thus

D (V) = Kpe, ¢e = ple, Ne=0.
Then A = Dy (V(,y) = Koe, and
Agm =K -m @, Koe=Kep, epn=1R®e¢
form=0,1,---,r—1.If m > 0,

Ke,,, ifi<0;

Fil' Ag,, =
B aKm {0, ifi>0.

If m=0,
Keg, ifi<O0;

Fil' Ak o =
t oK {0, ifi>0.
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7.3 Sketch of a proof of Theorem A and Theorem B

Lemma 7.29. Let F be a field and J a subgroup of the group of automor-
phisms of F. Let E = F7. Let A be a finite dimensional E-vector space,
and

Ar = F Qg A.

J acts on Ap through
JIA®) =N ®o0, ifjed, N€F, § € A.

By the map 6§ — 1 ® 6, we identify A with 1 @ A = (Ap)”). Let L be a sub
F-vector space of Ar. Then there exists A, a sub E-vector space of A such
that L= F ®p A" if and only if g(L) = L for all g € J, i.e., L is stable under
the action of J.

Proof. Exercise. O

Proposition 7.30. Let D be an admissible filtered (¢, N)-module over K of
dimension h > 1. Let V.= V(D). Then dim@p V < h, V is semi-stable and
Dy (V) C D as a subobject.

Remark 7.81. The above proposition implies that, if D is admissible, the fol-
lowing conditions are equivalent:

(1). D ~ D (V) where V is some semi-stable p-adic representation.

(2). dimg, V(D) = h.

(3). dimg, V(D) = h.

Proof. We may assume V # 0. Apply the above Lemma to the case
A=D, F=Cy=FracBy,J = Gk, E = C* = K,
Then
Ap =Cs ®r, D D By ®k, D D V.

Let L be the sub-Cg-vector space of Cgy ® i, D generated by V. The actions
of ¢ and N on By extend to Cg, thus L is stable under ¢, N and Gg. By
the lemma, there exists a sub Ky-vector space D’ of D such that

L = Cst ®KD D/.

That L is stable by ¢ and N implies that D’ is also stable by ¢ and N.

Choose a basis {v1,---,v.} of L over Cy consisting of elements of V.
Choose a basis {dy,--- ,d.} of D’ over Ky, which is also a basis of L over Cj;.
Since V C By ®q, D,

r
V; = Zbijdj’ bi]' € Bgt.

j=1
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By the inclusion B ®, D' C Bst ®k, D, we have

N (B )€ N, (B, D)

st

equivalently, . .
By ®x, \,. D' C Bu®x, [\, D-
0 0

Let b = det(b;;) € Bg, then b # 0. Let
vo=v1 AU A---ANv., do=dyNdoA---ANd,,

then vy = dbg. Since v; € Vg (D'), then vg € Vg (A" D’), which is # 0 as
vo # 0. Now the facts

dimg, /\" D' =1 and Vi (\ D) #0
imply that . .
tu(\ D) =tn(\ D).

Now the admissibility condition implies that t g (D’) = tx(D’), thusty (A" D') =
tn(A" D) and

Va(A\ D) = Qyuo.

T
For any v € Vg (D') =V, write v = >_ ¢;v; with ¢; € Cy, 1 <@ < 7, then

=1
T ks
’
Ul/\"'/\Ui_l/\U/\Ui+1/\"~/\UT:Cﬂ}oE/\QpVCVSt(/\ D):vao,

therefore ¢; € Q,. Thus V is the Q, vector space generated by vy,--- ,v, and
r =dimg, D' < dimg, D.

Because
V(D) =V and Dg (V) = D',
we get the result that V' is semi-stable. O

Proposition A. Let V be a p-adic representation of Gx which is de Rham.
Then V' 1s potentially semi-stable.

Proposition B. Let D be an admissible filtered (p, N )-module over K. Then
dime Vst (D) = dimKo D.

Proof (Outline of the Proof of Propositions A and B). Let Dy be the associ-
ated filtered K-vector space, where

Dar(V), Case A,
Dg =
K ®k, D, CaseB.
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Let d = dimg Dk and let the Hodge polygon

Py(V), CaseA,

Pu(Dx) = {PH(D), Case B.

We shall prove Proposition A and Proposition B by induction on the com-
plexity of Py. The proof is divided in several steps. O
Step 1: Py is trivial. i.e. the filtration is trivial.
Proof (Proposition A in this case). From the following exact sequence:

0 — Fil' Byr — Fil’ Byr = Bjy — C — 0,
®V and then take the invariant under G g, we have

0 — Fil' Dg — Fil’ D — (C ®q, V)9%.

Because the filtration is trivial, Fil' D x = 0and Fil° D xk = Dy, then we have
a monomorphism Dy = Fil’ Dg — (C ®q, V)¢« and
dimg (C ®q, V)" > dimg D = dimg, V,

thus the inequality is an equality and V' is C-admissible. This implies that
the action of I is finite, hence V is potentially semi-stable (even potentially
crystalline). O

Proof (Proposition B in this case). We know that in this case, D ~ Dg (V)
with
V = (P ®Ky D)p=1

an unramified representation. a
Step 2:

Proposition 2A. If0 - V' —V — V" — 0 is a short exact sequence of p-
adic representations of Gk, and if V', V"' are semi-stable and V is de Rham,
then V' is also semi-stable.

Proposition 2B. If0 — D' — D — D" — 0 is a short exact sequence of
admissible filtered (o, N )-modules over K, and if

dime Vst (D/) = dimKO D/, dim(@p Vst (DH) = dimKU DN,
then dimq, V(D) = dimg, D.

By Propositions 2A and 2B, it is enough to prove when V and D are
irreducible.
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Remark 7.82. Proposition 2A is due to Hyodo when & is finite using Galois
cohomology and Tate duality. The proof in the general case is due to Berger
and uses the theory of (¢, N)-modules. We won’t give the proof of Proposition
2A here.

For Proposition 2B, we need to introduce the so-called fundamental com-
plex of D. Write

V(D) = {b € By ®k, DINb=0, @b = b},
V(D) = Bar ®k Dk /Fil°(Bar ®k Dk),

Fil’(B4r ®x Dk) = Z Fil’ Byr @ Fil ™! D.
i€Z

There is a natural map V9 (D) — V1 (D) induced by
By ®Ky, D C Bar ®k Dk — VL (D).
Then we have an exact sequence
0 — V(D) — V(D) — V(D).

Proposition 7.33. Under the assumptions of Proposition 2B (not including
admissibility condition), then for i = 0,1, the sequence

0— Vét(D/) - Vét(D) - Vsi,t(DH) —0
s exact.

Proof. For i = 1. By assumption, the exact sequence 0 — D% — Dg —
DY — 0 implies that

O—>BdR®KD/K—>BdR®KDK—>BdR®KD,[/(—>O~

Then we have a commutative diagram

0 — Fil’(Byr ®x DY) — Fil’(Bar @k D) — Fil’(Bar ®x D) —> 0

0——— Bar ®k Djy ————— Bgr ®x Dx ————— Bar Qg D}, ————=0

i | i

V(D) V(D) V(D)

0

The three columns and the middle row of the above diagram are exact, the
top row is exact following from the snake lemma, hence the bottom one is also
exact and so we get the result for i = 1.
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For ¢ — 0, note that
V%(D) = {z € By ®k, D|Nx =0, px = x}.

Let
Vgris(D) = {y € BCris ®K0 D|(py = y}

Let u = log[r] for 7(®) = —p, then

d
Byt = Bais[u], N = —— and ¢u = pu.
du

With obvious notation, any z € By ®k, D can be written as
“+oo
T = anun, Ty € Beris Kk, D
n=0

and almost all x,, = 0. The map
T — g

defines a Q,-linear bijection between V% (D) and V2,
(however, which is not Galois equivalent).
Enough to prove that

(D) which is functorial

0— V0. (D) —V%.(D)— VL. (D")—0

cris cris cris

is exact. The only thing which matters is the structure of p-isocrystals.
a). the case k is algebraically closed. For the exact sequence

0—D —D—D"—0,

it is well known that this sequence splits as a sequence of p-isocrystals. Thus
D~D'@D"and V. (D) =V2. (D) & Vo (D").

cris cris cris

b). the case k is not algebraically closed. Then
Vgris(D) = {y € Bais XK D‘(py = y} = {y € Beris P, (PO K, D)ISDy = y}

with Py = Frac W (k) and Beis O Po D Ko. Py ®k, D is a p-isocrystal over
Py whose residue field is k, thus the following exact sequence

0— Py®K, D' — Py®k, D — Py®k, D" —0
splits and hence the result follows. a
Proposition 7.34. If V is semi-stable and if D = Dy (V), then the sequence
0 — V(D) = V(D) = V(D) — 0

s exact.
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Proof. Use the fact
Byt ®q, V = Bst ®k, D C Bar ®q, V = Bar ®k Dk,

then
V(D) = {z € By ®g, DNz =0, gz = z}.

As N(b®v) = Nb®@v and ¢(b® v) = pb® v, then
V(D) = B. ®q, V.

By definition and the above fact,

Vi(D)K) = (Bar/Big) ®q, V-
From the fundamental exact sequence

0— Qp — Be — Bar/Bir — 0
tensoring V' over Q,, we have

0—V — B.®q, V— (Bar/Bjr) ®g, V — 0

is also exact. Since V = Vg (D), 0 — V(D) — V% (D) — VL(D) — 0 is
exact. a

Proof (Proof of Proposition 2B). Let 0 — D' — D — D" — 0 be the short
exact sequence. Then we have a commutative diagram

which is exact in rows and columns. A diagram chasing shows that V(D) —
Vi (D") is onto, thus dimg, V(D) = dimg, V. O
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Step 3: Reduce the proof to the case when tg = 0.

The Idea for V is the following. In this case ty (V) = ty(Dg). For any
i € Z, we have V is de Rham if and only if V' (7) is de Rham. Let d = dimg Dy,
then tg(V (i) = ti(Dx) — i - d. Choose i = V) then ¢4 (V (i) = 0. If the
result is known for V'(¢), then it is also known for V' = V (i)(—¢). However,

this trick works only if % €.

Definition 7.35. If V is a p-adic representation of Gk, let v be the biggest in-

teger > 1 such that we can endow V with the structure of a Qpur-representation.
. . . . dimg, V
The reduced dimension of V is the integer lm#.

For h € N, h > 1, we have

Proposition A’(h). Any p-adic de Rham representation of G of reduced
dimension < h and such that tg (V) = 0 is potentially semi-stable.

Proposition A(h). Any p-adic de Rham representation of G of reduced
dimension < h is potentially semi-stable.

Proof (Proof of Proposition A’(h) = Proposition A(h)). Let V be a p-adic de
Rham representation of G of reduced dimension h, we need to show that V'
is potentially semi-stable.

There exists an integer r > 1, such that we may consider V as a Qp--
representation of dimension h. For s > 1 and for any a € N, define

VY(C;) = Sym(aps ‘/(s)a

then V(‘;) is a Qps-representation of dimension 1. Let V(;)“ be the Qps-dual of
V(Z). Choose s = rb with b > 1 and a € Z, and let

! a
V=V ag, V)

it is a Qps-representation of dimension h. If V) is crystalline, then is also de
Rham, thus VG is de Rham and V' is also de Rham.
An easy exercise shows

d=rh=dimg, V, tg(V') = btyg(V) — ad.

Choose a and b in such a way that ¢ty (V') = 0. Apply Proposition A’(h), then
V' is potentially semi-stable. Thus

V/ ®QPS ‘/(;)a =V ®QPT st oV
is also potentially semi-stable. a

Exercise 7.36. (1). Define the notion of reduced dimension for a filtered
(¢, N)-module.

(2). State Proposition B’(h), Proposition B(h), and prove that B’(h) im-
plies B(h). (Hint: Use D(V{y) instead of V().
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Last step:
Let v, h € N*.

Proposition A(f). Let V be a Q,r de Rham representation of dimension h
with tg = 0, then V is potentially semi-stable.

Proposition B(f). Let A be an admissible filtered (¢", N)-module over Ky,
dimg, = h, D be the associated filtered (@, N)-module with tg = 0. Then

dimg,, De(V) = h.

Proof (Sketch of Proof). We prove it by induction on h. Suppose it is known
for (r',h') with b’ < h and 7’ arbitrary, we want to prove it is OK for (r, h).
By induction, we may assume the result is known for V' or D’ with the same
(ryh), tg =0 but Py (V') or Py (D) is strictly above Py (> Pg).

The initial step is known.

Idea of the proof: For V, we want to find V', V' C B. ®q, V C By ®q, V,
such that

(i) Be ®qg, V' = Be ®q, V is an isomorphism;
(ii) V' is de Rham with ¢g = 0 and Py (V') > Py (V).

Then it is OK. As By ®q, V' = Bst ®q, V implies that
(Bst ®Qp V/)GK = (Bst ®QP V)GK7
hence Dy (V') = Dg (V).
For Proposition By: We have D and A, we want to construct D’ and A'.
Take D’ = D as a (p, N)-module, then D} = Dg. Change the filtration a

little bit. Construct V' for D" and V' C B.®q, V'. Recall U = {u € B}, |pu =
pu} and the exact sequence:

0—Qy(l) = U —C —0.
Choose t € Q,(1) C Bf,_ such that ¢t = pt. Then
U(-1) = {5lu € U} C B
and we have the exact sequence
0—-Q,—-U(-1)—C(-1) —0.
Tensor V over ), we get the following exact sequence
0=V —=U(-1)®q, V — C(~1) ®q, V — 0.

Looks for V! C U(—1) ®q, V C B. ®q, V. O
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Preliminary

A.1 Inverse limits and Galois theory

A.1.1 Inverse limits.

In this subsection, we always assume that <7 is an abelian category with
infinite products. In particular, one can let &/ be the category of sets, of
(topological) groups, of (topological) rings, of left (topological) module over
aring A.

Definition A.1. A partially ordered set I is called a directed set if for any
1,7 € I, there exists k € I such that 1 <k and j < k.

Definition A.2. Let I be a directed set. Let (A;)icr be a family of objects
in o7 . This family is called an inverse system(or a projective system) of o
over the index set I if for every pair i < j € I, there exists a morphism
wji - Aj — Ay such that the following two conditions are satisfied:

(1). i =1d;

(2). For every i < j <k, pri = ©jirj-

Definition A.3. The inverse limit (or projective limit) of a given inverse sys-
tem Aq = (A;) is defined to be an object in of

A= @Ai = {(ai) = HAi © wjila;) = a; for every pair i < j},
el iel

such that the natural projection p; : A — A;, a = (a;)jer — a; is a morphism
for each i € I.

Remark A.4. One doesn’t need the set I to be a directed set but only to be
a partially ordered set to define an inverse system. For example, let I be a
set with trivial ordering, i.e. ¢ < j if and only if 4 = j, then 1i_mAl- =[] 4.
icl el
However, this condition is usually satisfied and often needed in application.
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By the inverse system condition, one can see immediately ¢; = ¢;;¢; for
every pair ¢ < j. Actually, A is the solution of the universal problem:

Proposition A.5. Let (A4;) be an inverse system in o, A be its inverse limit
and B be an object in <. If there exist morphisms f; : B — A; for all
i € I such that for every pairi < j, fi = @y 0 f;, then there exists a unique
morphism f: B — A such that f; = pjo f.

Proof. This is an easy exercise. O

By definition, if & is the category of topological spaces, i.e., if X; is a
topological space for every i € I and ¢;;’s are continuous maps, then X =
lim X; is a topological space equipped with a natural topology, the weakest
iel
topology such that all the ¢;’s are continuous. Recall that the product topology
of the topological space [] X is the weakest topology such that the projection

i€l
pr; . [[ Xi — X is continuous for every j € I. Thus the natural topology
iel
of X is the topology induced as a closed subset of [] X; with the product
iel
topology.

For example, if each X; is given the discrete topology, then X is associ-
ated with the topology of the inverse limit of discrete topological spaces. In
particular, if each X; is a finite set with discrete topology, then we will get
a profinite set (inverse limit of finite sets). In this case, as im X; C [] X; is

iel
closed, and [] X; is compact, therefore @Xi is compact. Easily one can see
iel
that liLnXi is also totally disconnected.

If moreover, each X, is a (topological) group and if the ¢;;’s are (continu-
ous) homomorphisms of groups, then liLHXi is a group with ¢; : anj X;— X;
a (continuous) homomorphism of groups.

If the X;’s are finite groups with discrete topology, we get a profinite group
for the inverse limit in this case. Thus a profinite group is always compact
and totally disconnected. As a consequence, all open subgroups of a profinite
group are closed, and a closed subgroup is open if and only if it is of finite
index.

Ezample A.6. (1) For the set of positive integers N*, we define an ordering
n < m if n | m. For the inverse system (Z/nZ),cn+ of finite rings where the
transition map @, is the natural projection, the inverse limit is

Z = lim Z/nZ
—
neN*

(2) Let £ be a prime number, for the sub-index set {¢" : n € N} of N*|

Zy = lim Z/("Z
neN
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is the ring of ¢-adic integers. The ring Z; is a complete discrete valuation ring
with the maximal ideal generated by ¢, the residue field Z/¢Z = F;, and the
fraction field
1 >
Qe = Ze {g] = mLJoé "L

being the field of /-adic numbers.

If N >1,let N = {7"45?---£;" be its primary factorization. Then the
isomorphism

h
Z/NZ~ || z/¢; 7
1=1

induces an isomorphism of topological rings

Z >~ H Zg.

¢ prime number

A.1.2 Galois theory.

Let K be a field and L be a (finite or infinite) Galois extension of K. The
Galois group Gal(L/K) is the group of the K-automorphisms of L, i.e.,

Gal(L/K)={g: L= L, g(y) =~ forall y € K}.

Denote by £ the set of finite Galois extensions of K contained in L and
order this set by inclusion, then for any pair E, F € £, one has FF € £ and

E,F C EF, thus £ is in fact a directed set and L = |J FE. As a result, we
Ec€
can study the inverse limits of objects over this directed set. For the Galois

groups, by definition,

v = (vg) € lim Gal(E/K) if and only if (yr)p = g for EC F € £.
Ec&

Galois theory tells us that the following restriction map is an isomorphism

Gal(L/K) — lim Gal(E/K)
Eec&
g — (g|g) : g|g the restriction of g in E.

From now on, we identify the two groups through the above isomorphism. Put
the topology of the inverse limit with the discrete topology on each Gal(F/K),
the group G = Gal(L/K) is then a profinite group, equipped with a compact
and totally disconnected topology, which is called the Krull topology. We have

Theorem A.7 (Fundamental Theorem of Galois Theory). There is a
one-one correspondence between intermediate field extensions K € K' C L
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and closed subgroups H of Gal(L/K) given by K' — Gal(L/K') and H — L
where L = {x € L | g(z) = z for all g € H} is the invariant field of H.
Moreover, the above correspondence gives one-one correspondences between
finite extensions (resp. finite Galois extensions, Galois extensions) of K con-
tained in L and open subgroups (resp. open normal subgroups, closed normal

subgroups) of Gal(L/K).

Remark A.8. (1) Given an element g and a sequence (gn)nen of Gal(L/K),
the sequence (g, )nen converges to g if and only if for all E € £, there exists
ng € N such that if n > ng, then g,|p = g|p.

(2) The open normal subgroups of G are the groups Gal(L/FE) for E € &,
and there is an exact sequence

1— Gal(L/E)— Gal(L/K)— Gal(E/K) — 1.

(3) A subgroup of G is open if and only if it contains an open normal
subgroup. That is, for any subset X of G, X is an open subgroup if and only
if for all z € X, there exists an open normal subgroup H, such that zH, € X.

(4) If H is a subgroup of Gal(L/K), then L¥ = L¥ with H being the
closure of H in Gal(L/K).

We first give an easy example:

Ezample A.9. Let K be a finite field with ¢ elements, and let K be an algebraic
closure of K with Galois group G = Gal(K/K).

For each n € N, n > 1, there exists a unique extension K, of degree
n of K contained in K*. The extension K, /K is cyclic with Galois group
Gal(K,,/K) ~ Z/nZ = (p,) where ¢, = (z — x7) is the arithmetic Frobenius
of Gal(K,,/K). We have the following diagram

G ——— lim Gal(K, /K)
—

5 i

~

7Z ———  limZ/nZ.
P

Thus the Galois group G ~ Z is topologically generated by ¢ € G: p(z) = a?
for x € K*, i.e. with obvious notations, any elements of G can be written
uniquely as g = p® with a € Z. ¢ is called the arithmetic Frobenius and ¢~!
is called the geometric Frobenius of G.

In the case K = Q, let Q be an algebraic closure of Q, and let Gg =
Gal(Q/Q).

The structure of Gg is far from being completely understood. An open
question is: Let J be a finite groups. Is it true that there exists a finite Galois
extension of Q whose Galois group is isomorphic to J7 There are cases where
the answer is known(eg. J is abelian, J = S,,, J = A,, etc).
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For each place p of Q (a prime number or co0), let @p be a chosen algebraic
closure of the p-adic completion Q, of Q (for p = o0, we let Q, = R and
Q, = C). Choose for each p an embedding o, : Q — Q,. From the diagram

@—>@p

[

Q—>Qp

one can identify G, = Gal(@p/(@p) to a closed subgroup of Gg, called the
decomposition subgroup of G at p. To study G, it is necessary and important
to know properties about each G,.

This phenomenon is not unique. There is a generalization of the above
to number fields, i.e., a finite extension of Q, whose completions are finite
extensions of Qp. There is also an analogue for global function fields, i.e.,
finite extensions of k(x) with k a finite field, whose completions are of the
type k'((y)), where k' is a finite extension of k. As a consequence, we are led
to study the properties of local fields.

A.2 Witt vectors and complete discrete valuation rings

A.2.1 Nonarchimedean fields and local fields.
First let us recall the definition of valuation.

Definition A.10. Let A be a ring. If v: A — RU {+o0} is a function such
that

(1) v(a) = 400 if and only if a =0,

(2) v(ab) = v(a) + v(b),

(3) v(a+b) > min{v(a), v(b)},
and if there exists a € A such that v(a) ¢ {0,400}, then v is called a (non-
trivial) valuation on A. If v(A) is a discrete subset of R, v is called a discrete
valuation.

The above definition of valuation is usually called a valuation of height 1.

For a ring A with a valuation v, one can always define a topology to A
with a neighborhood basis of 0 given by {z : v(z) > n}, then A becomes a
topological ring. The valuation v on A defines an absolute value: |a| = e~V(@).
For any a € A, then

a is small < |a| is small < v(a) is big.

If v1 and vy are valuations on A, then v, and vy are equivalent if there exists
r € R, r > 0, such that ve(a) = rvi(a) for any a € A. Thus v; and vy are
equivalent if and only if the induced topologies in A are equivalent.
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If A is a ring with a valuation v, then A is always a domain: if ab = 0 but
b # 0, then v(b) < +oo and v(a) = v(ab) — v(b) = +o00, hence a = 0. Let
K be the fraction field of A, we may extend the valuation to K by v(a/b) =
v(a) — v(b). Then the ring of valuations (often called the ring of integers)

Okg ={a€ K |v(a) >0} (A1)
is a local ring, with the maximal ideal mg given by

mi = {a € K | v(a) > 0}, (A.2)
and kx = Ok /mg being the residue field.
Definition A.11. A field K with a valuation v is called a valuation field.

A valuation field is nonarchimedean: the absolute value | | defines a metric
on K, which is wltrametric, since |a + b| < max(Jal,|b]). Let K denote the
completion of K of the valuation v. Choose m € Ok, m # 0, and v(7) > 0, let

Of( :mOK/(wm)
Then Op is again a domain and K= Og1/7].

Remark A.12. The ring O does not depend on the choice of 7. Indeed, if
v(m) =71 >0, v(r") =s >0, for any n € N, there exists m,, € N, such that
7™ € 'Ok, so

lim O /(7™) > lim O /(7).

Definition A.13. A field complete with respect to a valuation v is called a
complete nonarchimedean field.

We quote the following well-known result of valuation theory:

Proposition A.14. If F is a complete nonarchimedean field with a valuation
v, and F' is any algebraic extension of F, then there is a unique valuation v’
on F' such that v'(x) = v(x), for any x € F. Moreover, F’ is complete if and
only if F'/F is finite. If a,’ € F' are conjugate, then v(a) = v(a’).

Remark A.15. By abuse of notations, we will set the extended valuation v’ =
V.

Let F be a complete field with respect to a discrete valuation, let F’ be
any algebraic extension of F. We denote by vg the unique valuation of F’
extending the given valuation of F' such that vp(F*) = Z. vp is called the
normalized valuation of F.

If F is a field with a valuation, for any a € mg, a # 0, let v, denote the
unique valuation of F' equivalent to the given valuation such that v,(a) = 1.
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Definition A.16. A local field is a complete discrete valuation field whose
residue field is perfect of characteristic p > 0. Thus a local field is always a
complete nonarchimedean field.

A p-adic field is a local field of characteristic 0.

Ezample A.17. A finite extension of Q,, is a p-adic field. In fact, it is the only
p-adic field whose residue field is finite.

Let K be a local field with the normalized valuation and perfect residue
field k, chark = p > 0. Let @ be a uniformizing parameter of K. Then
v (m) =1 and mg = (7). One has an isomorphism

Ox < 1im O /my = lim O ("),
n n
the topology defined by the valuation for Ok is the same as the topology of
the inverse limit with the discrete topology in each O /m%. Thus we have
the following propositions:

Proposition A.18. The local field K is locally compact (equivalently, Ok is
compact) if and only if the residue field k is finite.

Proposition A.19. Let S be a set of representatives of k in Ok . Then every
element © € Ok can be uniquely written as

T = Z syt (A.3)
i>0
s; €S

and z € K can be uniquely written as

x = Z syt (A.4)
i>—n
S, €S
As p € mg, by the binomial theorem, for a,b € Ok, we have the following
fact: ’
a=bmodmg = " =" modmi for n > 0. (A.5)

Proposition A.20. For the natural map Og — k, there is a natural section
r: k — Og which is unique and multiplicative.

Proof. Let a € k. For any n € N, there exists a unique a,, € k such that

a?’ = a, ayp | = an. Let @, be a lifting of a,, in Ok.

. ~ . . _pnt1 PR

By (A.5), a | = @, modmg implies that @, , =aP,

fore 7(a) := lim a@? exists. By (A.5) again, r(a) is found to be independent
n—oo

" mod m?{"l. There-

of the choice of the liftings of the @,,’s. It is easy to check that r is a section of
p and is multiplicative. Moreover, if ¢ is another section, we can always choose
an = t(ay), then

r(a) = lim @2 = lim t(a,)? = t(a),

n—oo n—oo

hence the uniqueness follows. a



176 A Preliminary

Remark A.21. This element r(a) is usually called the Teichmiiller representa-
tive of a, often denoted as [a].

If char(K) = p, then r(a + b) = r(a) + r(b) since (a, +3n)pn =ar" —&—Bﬁn.
Thus r : k — Og is a homomorphism of rings. We can use it to identify k
with a subfield of Ok . Then

Theorem A.22. If K is a local field of characteristic p, then
Ok = k([r]], K = k((m)).

Remark A.23. This theorem is true for K with residue field k£ of equal char-
acteristic. See Serre [Ser80], Chap. II for the proof.

If K is a p-adic field, char(K) = 0, then r(a + b) # r(a) + r(b) in general.
Witt vectors are useful to describe this situation.

A.2.2 Witt vectors.

Let p be a prime number, A be a commutative ring. Let X;, Y;, i € N be
indeterminates and let

A[&>K] :A[XOaXla"' 7Xn7"' ;}/Ovylf" aan"']'

Lemma A.24. For all € Z[X,Y], there exists a unique sequence {Pp, }nen
in Z|X,Y] such that

SXE 4+ p XV e X Y Y Y o)
n net .
=(Po(X,Y))" +p (21(X,)Y))  +---+p" P (X,Y).

Moreover,
@n S Z[X07X17 e 7X7L;Y03Y15 e ’Yn]

Proof. First we work in Z[%][X, Y]. Set $¢(X,Y) = &(Xo,Yo) and define &,
inductively by

1 L nei e i on—i nt . n—i
qsn(X,Y>=pn<¢(Zp1Xf D PP ) =) pe(X, Y)Y )
=0 =0 =0

Clearly @,, exists, is unique in Z[%][&, Y], and is in Z[%][XO, o Xy Yo, Y.
We only need to prove that @,, has coefficients in Z.

This is done by induction on n. For n = 0, @ certainly has coefficients in
Z. Assuming ®; has coefficients in Z for ¢ < n, to show @,; has coefficients

in Z, we need to prove that

=B (X, Y)"" +pP1 (X, Y)"" 4+ p" 1,1 (X, Y)P mod p”.
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It is verified that
LHS=®(XE" + - +p"'XP_YP 4+ 4 p" 'Y Y mod p”

= Po(XP,YP)" T 4 p@y (XP,YP)P" T 4 " D,y (XP, YP) mod .
By induction, @;(X,Y) € Z[X,Y], hence &;(X",Y") = (#;(X,Y))" modp,

and ‘ e ‘ By
p'®;(XP,YP)P =p"- (X, Y)? modp".

Putting all these congruences together, we get the lemma. a

noo. n—i
Remark A.25. The polynomials W,, = Y p'X? | n € N, are called the Witt
i=0
polynomials for the sequence (Xo,- -+, Xn, ). One can easily see that X,, €
Zp~Y[Wo, -+, W,] for each n.

For n > 1, let W,(A4) = A" as a set. Applying the above lemma, if ¢ =
)(<|>Yv7 we set Sz = QSZ € Z[Xo,Xl,"' ,Xi;YQ,Yl,"' ,Y”, if @ = AX'Yr7 we set
P, :=&; € Z[Xo, X1,--- , X3 Y0, Y1, -+, Yi].

For two vectors a = (ag,a1, "+ ,an-1),b = (bg,b1, -+ ,bn_1) € Wy,(A),
put

a+b= (50,51, ,5n-1), a-b=(po,p1, " ,Pn-1),

where
s; = Si(ag, a1, -+ ,ai;bo, by, -+, b;),  pi = Pi(ag, a1, -+, ai;bo,br, -+, b;).
Remark A.26. 1t is clear that
So = Xo + Yo, Py = X, Y. (A7)
From (X 4+ Yo)” +pS1 = X5 +p X1+ Y + pYi, we get
p—1
S =X +Y) Z;(f)XéYo“- (A.8)
i=1
Also from (X +pX1) Y@ +pY1) = XEYY +p Pr, we get
P =X,V + XEYi+p X Vi (A.9)
But for general n, it is too complicated to write down S,, and P,, explicitly.
Consider the map

W, (A) L, Ar
(ao,al,"' aan—l) | — (wOawla"' 7wn—l)

—1

where w; = W;(a) = agi —l—pa’l’i + -+ pla;. Then
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wi(a+b) = w;(a) + w;(b) and  w;(ab) = w;(a) w;(b).
We notice the following facts:

(1) If p is invertible in A, p is bijective and therefore W;,(A) is a ring
isomorphic to A™.

(2) If A has no p-torsion, by the injection A — A[1], then W,(A) C
Wn(A[%]) Thus W, (A) is a subring with the identity 1 = (1,0,0,---), as
a,b € W,(A) implies that a — b € W, (A), when applying Lemma A.24 to
d=X-Y.

(3) In general, any commutative ring can be written as A = R/I with R
having no p-torsion. Then W,,(R) is a ring, and

WTL(I) :{(ao,al,--- aan) | a; GI}

is an ideal of W, (R). Then W,(R/I) is the quotient of W, (R) by W, (I),
again a ring itself.

For the sequence of rings W;,(A), consider the maps

Whi1(A) — W, (4)
(a07a17 e uan) — (a07 ag,--- aan71)~

This is a surjective homomorphism of rings for each n. Define

W(A) = lim W, (A).
neN*

Put the topology of the inverse limit with the discrete topology on each
W, (A), then W(A) can be viewed as a topological ring. The elements in
W (A) can be written as (ag, a1, - , ;- ).

Definition A.27. The ring W, (A) is called the ring of Witt vectors of length
n of A, an element of it is called a Witt vector of length n.

The ring W (A) is called the ring of Witt vectors of A (of infinite length),
an element of it is called a Witt vector.

By construction, W (A) as a set is isomorphic to AN. For two Witt vectors
a = (ag,a1, -+ ,an, -+ ),b = (bg,b1, -+ ,bn, ) € W(A), the addition and
multiplication laws are given by
a+b: (SOaslv"' 58n7"')7 a/'b: (p07p17"' apna"')'
The map

pW(A) _)ANv (a0aa1a"' aa/na"')'_)(wOawh"' ,’UJn,"')

is a homomorphism of commutative rings and p is an isomorphism if p is
invertible in A.
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Ezxample A.28. One has W(F,) = Z,.

W, and W are actually functorial: let h : A — B be a ring homomor-
phism, then we get the ring homomorphisms

Wi(h) : W,(A) — W, (B)
(G‘O? Ay, van—l) — (h(ao), h(a1)7 e 7h(an—1))

for n > 1 and similarly the homomorphism W (h) : W(A) — W(A).
Remark A.29. In fact, W, is represented by an affine group scheme over Z:
W, = Spec(B), where B =7Z[Xo, X1, -, Xpn_1].
with the comultiplication
m*:B— B®zB~7Z[Xo, X1, -, Xn-1;Y0,Y1, -, Yn_1]
given by
Xi— X;®l, YVi—1®X;, m'X,=S5(XoX1, ,X;Y, Y1, -, Y5).
Remark A.30. If A is killed by p, then

Wo(A) 5 A4

(O/Oaala T 7an71) [ — ag .
So p is given by
W, (A) 2= An
n—1
(G'O»al»"' 7an71)'—)(a0aa87"' 7a10) )

In this case p certainly is not an isomorphism. Similarly p : W(A4) — AY is
not an isomorphism either.

Maps related to the ring of Witt vectors.

Let A be a commutative ring. We can define the maps V, r and ¢ related to

W(A).

(1) The shift map V.
We define

VW(A)_)W(A)v (0,07"' 7an7"')'_)(07a07"'uanu"')u

which is called the shift map. It is additive: it suffices to verify this fact when
p is invertible in A, and in that case the homomorphism p : W(A) — AN
transforms V' into the map which sends (wq, w1, --) to (0, pwo, - ).
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By passage to the quotient, one deduces from V an additive map of W,,(A)
into W,,+1(A). There are exact sequences

0 — Wi(A) 5 Wiy (A) — Wi(A) — 0.

(2) The Teichmiiller map .
We define a map

r:A—W(A), zw— [z]=(z,0,---,0,---).

When p is invertible in A, p transforms r into the mapping that sends x to
(z,zP,--- ,zP",---). One deduces by the same reasoning as in (1) the following
formulas:

r(zy) =r(x)r(y), »yeA
(ag,ar,---) =Y _ V'(r(an)), a; € A
n=0
r(z) - (ag,--+) = (zag, zPaq, - - - ,xpnan, <), x,a; € A

(3) The Frobenius map .
Suppose k is a ring of characteristic p. The homomorphism

k—k, x—2aP
induces a ring homomorphism:
2 W(k) - W(k)a (a()a ay, - ) L (aga a]107 e )7

which is called the Frobenius map.

A.2.3 Structure of complete discrete valuation rings with unequal
characteristic.

As an application of Witt vectors, we discuss the structure of complete dis-
crete valuation rings in the unequal characteristic case. The exposition in this
subsection follows entirely Serre [Ser80], Chap. II, §5.

Definition A.31. We say that a ring A of characteristic p is perfect if the
endomorphism x — xP of A is an automorphism, i.e., every element of x € A
has a unique p-th root, denoted 2P . When A is a field, this is the usual
definition of a perfect field.

Definition A.32. If A is a ring which is Hausdorff and complete for a de-
creasing filtration of ideals ay D ag--- such that a,, - a, C Apmyn, and if the
ring A/ay is perfect of characteristic p, then A is called a p-ring. If further-
more the filtration is the p-adic filtration {p™A}nen, with the residue ring
k = A/pA perfect, and if p is not a zero-divisor in A, then A is called a strict

p-ring.
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Proposition A.33. Let A be a p-ring, then:

(1) There exists one and only one system of representatives f : k — A
which commutes with p-th powers: f(A\P) = f(A)P.

(2) In order that a € A belong to S = f(k), it is necessary and sufficient
that a be a p™-th power for all n > 0.

(3) This system of representatives is multiplicative, i.e., one has f(Au) =

Ff(p) for all M\, p € k.

(4) If A has characteristic p, this system of representatives is additive,
i, fA+p) = FA) + f(w).
Proof. The proof is very similar to the proof of Proposition A.20. We omit it
here. See [Ser80] for details. O
Proposition A.33 implies that when A is a p-ring, it always has the sys-
tem of multiplicative representatives f : A/a; — A, and for every sequence
QQ, -+, Qp, -, of elements of A/ay, the series

> flea' (A.10)
=0

converges to an element a € A. If furthermore A is a strict p-ring, every
element a € A can be uniquely expressed in the form of a series of type

(A.10). Let 3; = afi, then a = > f(ﬂfii)pi. We call {8;} the coordinates of
i=0

a.

Example A.84. Let X, be a family of indeterminates, and let S be the ring

of p~>°-polynomials in the X, with integer coefficients, i.e., S = |J Z[X? "]
n>0

If one provides S with the p-adic filtration {p™S}, >0 and completes it, one

obtains a strict p-ring that will be denoted S = Z[Xgim}. The residue ring

S/pS = F,[X2 7] is perfect of characteristic p. Since X, admits p"-th roots

for all n, we identify X, in S with its residue ring.
Suppose Xg, -+, Xy, - and Yy, -, Y, - are indeterminates in the ring

ZIXP 7 YP 7). Consider the two elements

o0 o0
r=>Y Xip', y=)Y Yip'
i=0 i=0
If % is one of the operations +, X, —, then x * y is also an element in the ring
and can be written uniquely of the form

zxy =Y fQ)p', with QeF,[X! v .
1=0

As @)} are p~°°-polynomials with coefficients in the prime field F,, one can
evaluate it in a perfect ring k of characteristic p. More precisely,
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Proposition A.35. If A is a p-ring with residue ring k and f : k — A is the
system of multiplicative representatives of A. Suppose {a;} and {f;} are two
sequences of elements in k. Then

> fla)p’ = > FBIp =Y '
=0 =0 1=0

with Yi = Qf(a()aalf" ;ﬂ(hﬂlu"')'

Proof. One sees immediately that there is a homomorphism 6 : Z[X? - Y? 700} —
A which sends X; to f(a;) and Y; to f(53;). This homomorphism extends by

—

continuity to Z[X? ", Y? "] — A, which sends z = 3 X;p’ toa = 3 f(a;)p’
and y = Y. Y;p' to B =3 f(B;)p’. Again 6 induces, on the residue rings, a
homomorphism 6 : F,, [Xfioo,Yipix] — k which sends X; to a; and Y; to 83;.
Since  commutes with the multiplicative representatives, one thus has

Z flaq)p' = Z F(Bp" =0(x) x 0(y) = O(x x )
= 0@ =D FO@Q))Y,

this completes the proof of the proposition, as 6(Q}

¥} is nothing but ~;. O
Definition A.36. Let A be a complete discrete valuation ring, with residue
field k. Suppose A has characteristic 0 and k has characteristic p > 0. The
integer e = v(p) is called the absolute ramification index of A. A is called

absolutely unramified if e = 1, i.e., if p is a local uniformizer of A.

Remark A.37. If A is a strict p-ring, and its residue ring A/pA is a field, then
A is a complete discrete valuation ring, absolutely unramified.

Proposition A.38. Suppose A and A’ are two p-rings with residue rings k
and k', suppose A is also strict. For every homomorphism h : k — k', there
exists exactly one homomorphism g : A — A’ such that the diagram

A -9

Lo

E— sk

18 commutative. As a consequence, two strict p-rings with the same residue
ring are canonically isomorphic.

Proof. For a =Y fa(a;)p® € A, if g is defined, then
i=0

g(a) =Y _g(fa(e)) - p' =Y far(h(e)) - P,
1=0 =0

hence the uniqueness. But by Proposition A.35, g defined by the above way
is indeed a homomorphism. O
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Theorem A.39. For every perfect ring k of characteristic p, there exists a
unique strict p-ring H with residue ring k. In fact H = W (k).

Proof. The uniqueness follows from Proposition A.38. For the existence, if
k =TF,[X2 7], then H = S satisfies the condition. In general, as every perfect
ring is a quotient of a ring of the type F,[X2 "], we just need to show if
h : k — k' is a surjective homomorphism and if there exists a strict p-ring Hy,
with residue ring k, then there exists a strict p-ring Hy, with residue ring %'

Indeed, for a,b € Hy, we say a = b if the images of their coordinates
by h are equal. This is an equivalence relation, and if a = b,a’ = ¥, then
axa’ = bxb' by Proposition A.35. Let Hys be the quotient of Hy modulo this
equivalence relation. It is routine to check Hy is a strict p-ring with residue
ring k.

Now for the second part, let H be the strict p-ring with residue ring k, and
let f: k — H be the multiplicative system of representatives of H. Define

QW(k)_)H7 (G/Oa"'7047’7/7"')’_)2']0(0’?71‘)])1"
1=0
It is a bijection. When H = S, a = (Xo,---), b = (Yp,--- ), we have

> FXP 0+ > FOP )t = W (XP ) + W, (Y )

= Wn(SO(Xp "',Xp_n), to )a

Since

1

Si(XP Yy = f(Si(XP Y T) = f(Sia,b)P ") modp,

f
we get 0(a)+60(b ) 0(a+b) mod p" T, for any n > 0. Therefore, §(a)+0(b) =
6(a + b). Similarly, 6(a)0(b) = 6(ab). It follows that the formulas are valid
without any restriction on H, a and b. So 6 is an isomorphism. a

By the above theorem and Proposition A.38, we immediately have:
Corollary A.40. For k, k' perfect rings of characteristic p, Hom(k, k') =
Hom(W (k), W (E)).

Corollary A.41. If k is a field, perfect or not, then Vo =p = p)V.

Proof. Tt suffices to check this when k is perfect; in that case, applying the
isomorphism 6 above, one finds:

0(pVa) = Zf ) = po(a) = 0(pa),

=0

which gives the identity. O
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Now we can state the main theorems of the unequal characteristic case.

Theorem A.42. (1) For every perfect field k of characteristic p, W (k) is
the unique complete discrete valuation ring of characteristic 0 (up to unique
isomorphism) which is absolutely unramified and has k as its residue field.
(2) Let A be a complete discrete valuation ring of characteristic 0 with a
perfect residue field k of characteristic p > 0. Let e be its absolute ramification
index. Then there exists a unique homomorphism of ¢ : W(k) — A which

makes the diagram
W(k) —— A
k

commutative, moreover ¥ is injective, and A is a free W(k)-module of rank
equal to e.

Proof. (1) is a special case of Theorem A.39.
For (2), the existence and uniqueness of ¢ follow from Proposition A.38,

since A is a p-ring. As A is of characteristic 0, v is injective. If 7 is a uniformizer
S} .

of A, then every a € A can be uniquely written as a = > f(a;)7* for o; € k.
i=0

Replaced 7€ by p x (unit), then a is uniquely written as

oo e—1
a= ZZf(Oéij) -7lpt, a;j € k.
i=0 j=0
Thus {1,m,---,m¢ 1} is a basis of A as a W (k)-module. O

Remark A.43. From now on, we denote the Teichmiiller representative r(a)
of a € k by [a], then by the proof of Theorem A.39, the homomorphism
¥ : W(k) — A in the above theorem is given by

¥((ag,ar,--+)) = an[ai);"]'
n=0

For the case A = W(k), for a € k, the Teichmiiller representative r(a) is the
same as the element r(a) = (a,0,---), we have

(ag,a1,--+) = Zp"[af’;n]. (A.11)
n=0

A.2.4 Cohen rings.

We have seen that if k is a perfect field, then the ring of Witt vectors W (k)
is the unique complete discrete valuation ring which is absolutely unramified
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and with residue field k. However, if k is not perfect, the situation more
complicated. We first quote two theorems without proof from commutative
algebra (cf. Matsumura [Mat86], § 29, pp 223-225):

Theorem A.44 (Theorem 29.1, [Mat86]). Let (A,7A, k) be a discrete
valuation ring and K an extension of k; then there exists a discrete valuation
ring (B, 7B, K) containing A.

Theorem A.45 (Theorem 29.2, [Mat86]). Let (A,ma,k4) be a complete
local ring, and (R, mp, kgr) be an absolutely unramified discrete valuation ring
of characteristic 0 (i.e., mg = pR). Then for every homomorphism h : kr —

ka, there exists a local homomorphism g : R — A which induces h on the
ground field.

Remark A.46. The above theorem is a generalization of Proposition A.38.

Applying A = Z,, to Theorem A.44, then if K is a given field of charac-
teristic p, there exists an absolutely unramified discrete valuation ring R of
characteristic 0 with residue field K. By Theorem A.45, this ring R is unique
up to isomorphism.

Definition A.47. Let k be a field of characteristic p > 0, the Cohen ring C(k)
is the unique (up to isomorphism) absolutely unramified discrete valuation ring
of characteristic 0 with residue field k.

We now give an explicit construction of C(k). Recall that a p-basis of a
field k is a set B of elements of k, such that

o [kP(by, - ,by): kP] = p" for any r distinct elements by, --- ,b, € B;
k = kP(B).

If k is perfect, only the empty set is a p-basis of k; if k is imperfect, there
always exists nonempty sets satisfying condition (1), then any maximal such
set (which must exist, by Zorn’s Lemmma) must also satisfy (2) and hence is
a p-basis.

Let B be a fixed p-basis of k, then k = k" (B) for every n > 0, and
BP " ={b*"" |be B} isap-basisof kP . Let I,, = [[3{0,--- ,p" — 1}, then

T, = {b” = H b o= (ap)pen € In}

beB

generates k as a kP -vector space, and in general T?  is a basis of kP over

n+m

kP . Set

Cr+1(k) =the subring of W,,11 (k) generated by
Wyt (kP") and [b] for b € B.
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For © € k, we define the Teichmiiller representative [z] = (z,0,---,0) €
Wht1(k). We also define the shift map V on W, y1(k) by V((zg, - ,zy,)) =
(0,20, ,xn—1). Then every element x € W,,;11(k) can be written as

z = (20, -, an) = [vo] + V([11]) +--- + V" ([2n]).

We also has )
IV (2) = V' ([ly" Jz).
Then Cp,4+1(k) is nothing but the additive subgroup of W, 11 (k) generated by
{(Vr([(6*)?" x]) | b € Tpp,x € kP 7 = 0,--- ,n}. By Corollary A.41, one
sees that
V(" ([a]) = p"[x] mod V" .

Let %, be ideals of Cp,+1(k) defined by
02/,,‘ == Cn+1(k7) ﬂ VT(Wn+1(]€))

Then %, is the additive subgroup generated by {V™([(b%)?"z]) | b* €
T,z € kP" . m > r}. Then we have Cp41(k)/% =~ k and the multipli-
cation

P Cn+1(k)/%1 — %r/%r-&-l

induces an isomorphism for all » < n. Thus %, is generated by p™ and
by decreasing induction, one has %,. = p"C,+1(k). Moreover, for any x €
Cni1(k) — 2, let y be a preimage of 271 € C,,11(k)/%, then zy = 1 — z with
z€ % and zy(l + z+ - -+ 2") = 1, thus z is invertible. Hence we proved

Proposition A.48. The ring C,11(k) is a local ring whose mazimal ideal
is generated by p, whose residue field is isomorphic to k. For every r < n,
the multiplication by p" induces an isomorphism of Cpy1(k)/pCpi1(k) with
P Cri1(k) /" Crpa (K), and p"1Cpia (k) = 0.

Lemma A.49. The canonical projection pr : Wy1(k) — Wy (k) induces a
surjection m : Cpi1(k) — Cp (k).

Proof. By definition, the image of C,4+1(k) by pr is the subring of W, (k)
generated by W, (k") and [b] for b € B, but C, (k) is the subring generated
by W, (k?" ") and [b] for b € B, thus the map 7 is well defined.

For n > 1, the filtration W, (k) D V(W,(k))--- D V" 1 (W,(k)) D
Vn(W,(k)) = 0 induces the filtration of C, (k) D pCn(k)--- D p"1C.(k) D
p"Cp (k) = 0. To show 7 is surjective, it suffices to show that the associate
graded map is surjective. But for » < n, we have the following commutative
diagram

P Coy1(k) /P Cr1 (K) = prCu(k)/pCa(K)

ji j'l

VI Woir (B) )V Wi (k) = k2255 VIW,L () V7 W (k) =~ k
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Since the inclusion j(resp. j’) identifies p"C,i1(k)/p"t1Cpy1(k) (resp.
p"Cr(k)/p"1Cn(k)) to kP", thus grm is surjective for r < n. For r = n,
p"Cr(k) = 0. Then gr is surjective at every grade and hence 7 is surjective.

O

By Proposition A.48, we thus have
Theorem A.50. The ring lim Cy,(k) is the Cohen ring Cy(k) of k.

Remark A.51. (1) By construction, C(k) is identified as a subring of W (k);
moreover, for kg = Nuenk?" the largest perfect subfield of k, C(k) contains
W (ko).

(2) As C(k) contains the multiplicative representatives [b] for b € B, it
contains all elements [B*] and [B~%] for n € N and « € I,,.

A.3 Galois groups of local fields

In this section, we let K be a local field with the residue field k = kg perfect
of characteristic p and the normalized valuation vi. Let Ok be the ring of
integers of K, whose maximal ideal is mg. Let Ux = O} = Og — mg be
the group of units and U} = 1+ m?; for i > 1. Replacing K by L, a finite
separable extension of K, we get corresponding notations ky,, vy, O, my, Ur
and U} . Recall the following notations:

1
€L/ K

e e¢r/x € N*: the ramification index defined by vi (L*) = :
e’L/K: the prime-to-p part of €L/K;
p"t/%: the p-part of e /k;

Jr/K: the index of residue field extension [kr, : k].

From previous section, if char(K) = p > 0, then K = k((n)) for 7 a uni-
formizing parameter of mg; if char(K) = 0, let Ky = Frac W (k) = W (k)[1/p],
then [K : Ko| = ex = vk (p), and K/Kj is totally ramified.

A.3.1 Ramification groups of finite Galois extension.

Let L/K be a Galois extension with Galois group G = Gal(L/K). Then G
acts on the ring Op. We fix an element x of O which generates Oy, as an
O-algebra.

Lemma A.52. Let 0 € G, and let i be an integer > —1. Then the following
three conditions are equivalent:
(1) o operates trivially on the quotient ring O /m
(2) vp(o(a) —a) >i+1 for alla € Oy,
(8) vp(o(x) —x) >i+1.

i+1
L -

Proof. This is a trivial exercise. O
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Proposition A.53. For each integer i > —1, let G; be the set of 0 € G
satisfying conditions (1), (2), (3) of Lemma A.52. Then the G;’s form a de-
creasing sequence of normal subgroups of G. Moreover, G_1 = G, Gq is the
inertia subgroup of G and G; = {1} for i sufficiently large.

Proof. The sequence is clearly a decreasing sequence of subgroups of G. We
want to show that G is normal for all i. For every o € G and every 7 € Gj,
since G; acts trivially on the quotient ring Or,/m%"™", we have or0~1(z) =

xmodmiLH, namely, o7o~! C G;. Thus, G; is a normal subgroup for all i.
The remaining part follows just by definition. a

Definition A.54. The group G; is called the i-th ramification group of G (or
of L/K ).

We denote the inertia subgroup Gy by I(L/K) and its invariant field by
Lo = (L/K)™; we denote by Gy = P(L/K) and call it the wild inertia sub-
group of G, and denote its invariant field by Ly = (L/K)%™e.

Remark A.55. The ramification groups define a filtration of G. The quotient
G/G) is isomorphic to the Galois group Gal(kz /k) of the residue extension.

The field Lg is the maximal unramified subextension inside L. In Proposi-
tion A.59, we shall see that L; is the maximal tamely ramified subextension
inside L.

Remark A.56. Let H be a subgroup of G and K’ = L. If x € Op is a
generator of the Og-algebra Op, then it is also a generator of the Og-algebra
Op. Then H; = G;N H. In particular, the higher ramification groups of G are
equal to those of Gy, therefore the study of higher ramification groups can
always be reduced to the totally ramified case.

We shall describe the quotient G;/G;1 in the following.
Let 7 be a uniformizer of L.

Proposition A.57. Let i be a non-negative integer. In order that an element
o of the inertia group Go belongs to G;, it is necessary and sufficient that
o(m)/m =1modm?.

Proof. Replacing G by Gq reduces us to the case of a totally ramified exten-
sion. In this case 7 is a generator of O as an Og-algebra. Since the formula
vi(o(r)—7) = 1+vp(o(m)/m—1), we have o(7) /7 = lmodm? <o € G;. O

We recall the following result:

Proposition A.58. (1) Up/U} = kj ;

(2) Fori > 1, the group Ui /U is canonically isomorphic to the group
i /m which is itself isomorphic (non-canonically)to the additive group of
the residue field ky,.
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Back to the ramification groups, then the equivalence in Proposition A.57
can be translated to A
o€ G o(n)/mel;.

We have a more precise description of G;/G;1 following Proposition A.58:

Proposition A.59. The map which to s € G;, assigns s(w)/m, induces by
passage to the quotient an isomorphism 0; of the quotient group G;/Gi+1
onto a subgroup of the group UE/UEH. This isomorphism is independent of
the choice of the uniformizer .

(1) The group Go/G1 is cyclic, and is mapped isomorphically by 6y onto
a subgroup of w(kr), the group of roots of unity contained in kr,. Its order is
prime to p, the characteristic of the residue field ky,.

(2) If the characteristic of ki is p # 0, the quotients G;/Giy1, i > 1,
are abelian groups, and are direct products of cyclic groups of order p. The
group G1 is a p-group, the inertia group Gy has the following property: it is
the semi-direct product of a cyclic group of order prime to p with a normal
subgroup whose order is a power of p.

Remark A.60. The group Gy is solvable. If k is a finite field, then G is also
solvable.

In fact, we can write the cyclic group Go/G; = I(L/K)/P(L/K) more
explicitly.

Let N = e}d/K = [L1 : Lg. The image of 6y in k} is a cyclic group of
order N prime to p, thus k, = kr, contains a primitive N*"-root of 1 and
Im6y = py(kr) = {e € k. | eV = 1} is of order N. By Hensel’s lemma, Ly
contains a primitive N-th root of unity. By Kummer theory, there exists a
uniformizing parameter w of Ly such that

L = Lo(a) with a a root of X~ — 7.
The homomorphism 6 is the canonical isomorphism

Gal(Ly/Lo) — py(kr)
g—e¢ ifga=lga,

where [¢] is the Teichmiiller representative of e.
By the short exact sequence

1— Gal(Ll/Lo) — Gal(Ll/K) — Gal(k:L/k) —_— 1,

hence Gal(L;/K) acts on Gal(L1/Lg) by conjugation. Because the group
Gal(L1/Ly) is abelian, this action factors through an action of Gal(kg/k).
The isomorphism Gal(L1/Lg) — py (k1) then induces an action of Gal(kr, /k)
over py(kr), which is the natural action of Gal(ky/k).
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A.3.2 Galois group of K°/K.

Let K* be a separable closure of K and Gx = Gal(K*®/K). Let L be the set
of finite Galois extensions L of K contained in K*°, then

K*=|JL Gk =lmGal(L/K).

Lecl
Let
ur __ tame __
K™ = U L, Ktame — U L.
LeLl Lel
L/ K unramified L/ K tamely ramified

Then KY and K*™° are the maximal unramified and tamely ramified exten-
sions of K contained in K*® respectively.

The valuation of K extends uniquely to K®, but the valuation on K*® is
no more discrete, actually v ((K*)*) = Q, and K* is no more complete for
the valuation.

The field k = Ogur /My is an algebraic closure of k. We use the notations

— Ix = Gal(K*®/K") is the inertia subgroup, which is a closed normal sub-
group of Gg;

~ Gg/Ix = Gal(K¥/K) = Gal(k/k) = Gi;

—~  Pg = Gal(K*/K"™¢) is the wild inertia subgroup, which is a closed nor-
mal subgroup of I and of G;

— Ix/Pg = the tame quotient of the inertia subgroup.

Note that Py is a pro-p-group, an inverse limit of finite p-groups.
For each integer N prime to p, the N-th roots of unity py (k) is cyclic of
order N. We get a canonical isomorphism

I /P — lim (k).

NeN
N prime to p
ordering = divisibility

If N divides N/, then N’ = N m, and the transition map is

NN’(E) - HN(Z?)

ger— ™.
Therefore we get

Proposition A.61. If we write o = Zg(1) (which is the Tate twist of Zy,
which we shall introduce in §1.1.4), then

canonically

I /P ———— ] Ze(D). (A.12)
L#£p
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‘We denote R R
Z/ = HZ€7 Z/(l) = HZf(l)v

L#p LF#p
where Z/ (1) is isomorphic, but not canonically to Z'. Then

I /P ~ 7/ (1) = [ ] z(D).
L#£p

As G /Ix ~ Gal(k/k), the action by conjugation of G on I /Py gives the
natural action on Z(1).

A.3.3 The functions ¢ and V.
Assume G = Gal(L/K) finite. Set
ic: G—-N, o—uv(o(z)—x). (A.13)

The function ig has the following properties:
(1) ig(o) > 0 and ig(1) = 4o0;
(2) iG(J) >i+1s0eGy;
(3) ig(ror™!) = ig(0);
(4) ig(o7) > min(ig(7),ig(0)).
Let H be a subgroup of G. Let K’ be the subextension of L fixed by H.
Following Remark A.56, we have

Proposition A.62. For every o € H, ig(c) =ig(o), and H; = G; N H.

Suppose in addition that the subgroup H is normal, then G/H may be
identified with the Galois group of K'/K.

Proposition A.63. For every 6 € G/H,
, 1 .
o) = - Y iato).
og—0

where ¢ = ey /.

Proof. For § = 1, both sides are equal to +00, so the equation holds.
Suppose 0 # 1. Let z(resp. y) be an Og-generator of Oy (resp. Ok+). By
definition

cig/u(0) = v (6(y) — y) = vL(d(y) - y), and ig(0) = vi(o(x) — ).

If we choose one o € G representing §, the other representatives have the
form o7 for some 7 € H. Hence it come down to showing that the elements
a=o(y)—yand b=[] cy(o7(x) — ) generate the same ideal in Or..
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Let f € Og/[X] be the minimal polynomial of x over the intermediate field
K'. Then f(X) =[], cy(X —7(x)). Denote by o(f) the polynomial obtained
from f by transforming each of its coefficients by o. Clearly o(f)(X) = [[(X —
o7(z)). As o(f) — f has coefficients divisible by o(y) — y, one sees that a =
o(y) —y divides o (f)(z) - f(z) = o(f)(z) = +b.

It remains to show that b divides a. Write y = g(x) as a polynomial in x,
with coefficients in Ok . The polynomial g(X) — y has = as root and has all
its coefficients in Og; it is therefore divisible by the minimal polynomial f:
9(X) —y = f(X)h(X) with h € Ok/[X]. Transform this equation by ¢ and
substitute x for X in the result; ones gets y — o(y) = o(f)(z)o(h)(z), which
shows that b = +o(f)(x) divides a. O

Let u be a real number > 1. Define G,, = G; where i is the smallest integer
> u. Thus
c€Gyeiglo)>u+1.

Put
&(u) = / (Go : Gt)_ldt, (A.14)
0

where for —1 <t <0,

(G_1:Go)™t, whent=—1;
1 when — 1 < u <0.

9

(GO : Gu) = {

Thus the function ®(u) is equal to u between —1 and 0. For m <u <m+1
where m is a nonnegative integer, we have

1 .
P(u) = g—o(gl 4+ g2+ oo G + (U — M) gimt1), With g; = |G;|.  (A.15)

In particular,

B(m)+1=—> g (A.16)

Immediately one can verify

Proposition A.64. (1) The function @ is continuous, piecewise linear, in-
creasing and concave.

(2) &(0) = 0.

(8) If we denote by @, and P; the right and left derivatives of @, then
P =9, = m, if w is not an integer; Y| = m and .. = m ,
if u is an integer.

Moreover, the proposition above characterizes the function @.

Proposition A.65. &(u) = g% > min{ig(o),u+ 1} — 1.
oeG
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Proof. Let 0(u) be the function on the right hand side. It is continuous and
piecewise linear. One has 0(0) = 0, and if m > —1 is an integer and m < u <
m + 1, then

1
(GO . Gm+1)

Hence 0 = &. a

0'(u) = g—lo#{a € Glic(o) > m+2} = — ().

Theorem A.66 (Herbrand). Let K'/K be a Galois subextension of L/ K
and H = G(L/K'). Then one has G, (L/K)H/H = G,(K'/K) where v =
@L/K/(u).

Proof. Let G = G(L/K), H = G(L/K'). For every o' € G/H, we choose a
preimage o € G of maximal value ig(c) and show that

ig/H(U/)—1=¢L/K/(ig(d)—1). (A.17)

Let m =ig(o). If 7 € H belongs to Hy,—1 = Gu—1(L/K'), then ig(7) > m,
and ig(o7) > m and so that ig(o7) = m. If 7 ¢ H,,_1, then ig(7) < m and
ig(oT) = ig(7). In both cases we therefore find that ig(o7) = min{ig(r), m}.
Applying Proposition A.63, since i¢(7) = ig(7) and €’ = er/x+ = |Ho|, this
gives

ig/u(o’) = é Z ig(oT) = é Z min{ig(7), m}.

TEH TEH

Proposition A.65 gives the formula (A.17), which in turn yields

o' € G,(L/K)H/H < ig(o)—1>u
& Ppriic(o) —1) > Ppyri(u) & ixryr(o’) — 1> @pyre(u)
= 0'/ S GU(KI/K),U = @L/K/(’U,)

Herbrand’s Theorem is proved. a

Since the function @ is a homeomorphism of [—1,400) onto itself, its in-
verse exists. We denote by ¥ : [—1, +00) — [—1,4+00) the inverse function of
@. The function @ and ¥ satisfy the following transitivity condition:

Proposition A.67. If K'/K is a Galois subextension of L/ K, then

Pr/k =Pk oPr/k and ¥ gk =V gk oWk /K.

Proof. For the ramification indices of the extensions L/K, K'/K and L/K’
we have e g = ek ker k. From Herbrand’s Theorem, we obtain G, /H, =
(G/H)y,v =P i (u). Thus

LG = — (G| —

€L/K €K' /K €L/K’

| Hol-
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The equation is equivalent to

Tk (W) = P )i (V)P e (1) = (P jic 0 Pryrer) (w).

As QSL/K(O) = (QSK//K O@L/K’)(O)a it follows that djL/K = @K//K Oq)L/K/ and
the formula for ¥ follows similarly. O

We define the upper numbering of the ramification groups by
G" := Gy, where u =¥ (v). (A.18)

Then G*®) = G,,. We have G = G, G° = Gy and G¥ = 1 for v > 0. We
also have

(v) = /0 160 6w (A.19)

The advantage of the upper numbering of the ramification groups is that it is
invariant when passing from L/K to a Galois subextension.

Proposition A.68. Let K'/K be a Galois subextension of L/K and H =
G(L/K'), then one has G*'(L/K)H/H = G*(K'/K).

Proof. We put u = Vg /i (v),G" = Ggr/k, apply the Herbrand theorem and
Proposition A.67, and get

. . o

G H/H *GWL/K(U)H/Hi G¢L/K/(WL/K(“))
™ e A )
_G<15L/KI(‘I’L/K’(“)) - Gu =G~

The proposition is proved. O

A.3.4 Different and discriminant.

Let L/K be a finite separable field extension. The ring of integers Oy, is a free
Ok-module of finite rank.

Definition A.69. The different D,k of L/K is the inverse of the dual
Ok -module of Oy, to the trace map inside L, i.e., an ideal of L given by

D/ ={z €L |Tr(z""'y) € Ok fory e OL}. (A.20)
The discriminant dy g is the ideal of K

Dy h * Or] = (det(p)) (a.21)

where p : @Z}K = Oy is an isomorphism of Ok -modules.
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For every x € Dy, certainly Tr(z=!) € Ok; moreover, Dk is the
maximal Op-module satisfying this property.
Suppose {e;} is a basis of Or/Ok, let {e}} be a dual basis of @Z}K. Let
e; = p(e}), then
or/x = (det p)
and
det Tr(e;, e;) = det p - det Tr(e;, ef) = det p.

Thus the discriminant d;,/x is given by
O/ = det(Tr(eze;)) = det(o(e;))?

where ¢ runs through K-monomorphisms of L into K*. Note that (det p—!)
is the norm of the fractional ideal @Z}K, thus 67/ = Nk (D k)

Proposition A.70. Let a (resp. b) be a fractional ideal of K (resp. L), then
Tr(b) Ca<=bCa-D /.
Proof. The case a = 0 is trivial. For a # 0,
Tr(b) Ca < a ' Tr(b) C O & Tr(a™'b) C Ok
salbc @;}K sbca- @;}K.
O
Corollary A.71. Let M/L/K be separable extensions of finite degrees. Then
D/ =Onyr Dy Oy = On,5) M N e (Saa/1).
Proof. Repeating the equivalence of Proposition A.70 to show that
CCDy, e CDrk Dy
O

Corollary A.72. Let L/K be a finite extension of p-adic fields with ramifi-
cation index e. Let Dy = my'. Then for any integer n > 0, Tr(m?}) = mf
where r = [(m 4+ n)/e].

Proof. Since the trace map is Og-linear, Tr(m?}) is an ideal in Ok. Now the
proposition shows that Tr(m7}) C m’ if and only if

m7 C my - ’DZ}K =mjy ",
ie., if r < (m+n)/e. 0

Proposition A.73. Let x € Of, such that L = K[z], let f(X) be the minimal
polynomial of x over K. Then D,k = (f'(x)) and dp)x = (N k f'()).
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We need the following formula of Euler:

Lemma A.74 (Euler).

0, ifi=0,--,n—2;

iy (A.22)
1, ifi=n-1

Ti(a'/f'(x)) = {

where n = deg f.
Proof. Let x, k = 1,--- ,n be the conjugates of = in the splitting field of

f(X). Then Tr(z*/f'(z) = 3., zi/f'(xx). Expanding both sides of the iden-
tity

I Z”: 1
FX) 2 FPanX —a0)
into a power series of 1/X, and comparing the coefficients in degree < n, then

the lemma follows. a

Proof (Proof of Proposition A.73). Since {1,---,2" 1} is a basis of Or, by
induction and the above Lemma, one sees that Tr(z™/f'(x)) € Ok for every
m € N. Thlus‘xi/f’(x) € @Z}K. Moreover, the matrix (a;5), 0 < 4,j < n—1for
a;j = Tr(x"*7/ f'(x)) satisfies a;; =0 fori+j <n—1land =1fori+j =n—1,
thus the matrix has determinant (—1)""~Y. Hence 27 /f'(z), 0 < j <n —1
is a basis of ZDZ}K. O
Proposition A.75. Let L/K be a finite Galois extension of local fields with
Galois group G. Then
(LK) :Zic(s) = Z(|Gi| —-1)
s7#1 i=0 (A.23)
:/ (IGu] — Ddu = |G0\/ (1— |G| Hdv.
—1 -1

Thus

vk (Dp/k) = /_O:(l —|G¥|™ Y dv. (A.24)

Proof. Let x be a generator of Of, over Ok and let f be its minimal polyno-
mial. Then Dy, is generated by f’(z) by the above proposition. Thus

vr(®p/x) = vr(f' (@) =Y vi(z —s(@) =Y _ials).
s#£1 s#1
The second and third equalities of (A.23) are easy. For the last equality,
o0 oo 1 o0
/ (1= |G~ Y)dv = / (1 = |Gl ()t = —/ (1G] — 1),
1 1 Gol J 1

(A.24) follows easily from (A.23), since vg = ‘G—lo‘vL. O
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Corollary A.76. Let L/M/K be finite Galois extensions of local fields. Then

o 1 1
D = — dv. A.25
@)= [ (e ~ romamE) )
Proof. This follows from the transitive relation ®r,x = D /Dy /x and
(A.24). O

A.4 Ramification in p-adic Lie extensions

A.4.1 Sen’s filtration Theorem.

In this subsection, we shall give the proof of Sen’s theorem about the Lie
filtration and the ramification filtration agree in totally ramified p=adic Lie
extension. We follow the beautiful paper of Sen [Sen72].

Let K be a p-adic field with perfect residue field k. Let L be a totally
ramified Galois extension of K with Galois group G = Gal(L/K). Let e =
ec = vk (p) be the absolute ramification index of K. Put

ve = inf{v |v > 0,G""* =1 for ¢ > 0}

and
ug = inf{u | u>0,Gyuqc =1 for e > 0}.

Then
ug = Ve (ve) < |Glug. (A.26)

Lemma A.77. One can always find a complete non-archimedean field exten-
sion L' /K’ with the same Galois group G such that the residue field of K' is
algebraically closed and the ramification groups of L/K and L'/K' coincide.

Proof. Pick a separable closure K* of K containing L, then the maximal
unramified extension K" of K inside K*® and L are linearly disjoint over K.
Let K/ = K" and I/ = ﬁ, then Gal(L'/K') = Gal(L/K). Moreover, if =
generates Op, as Og-algebra, then it also generates Op: as Og/-algebra, thus
the ramification groups coincide. a

We first suppose G = A is a finite abelian p-group.

Proposition A.78. If v < 24, then (AV)P C APY; if v > A7, then (Av)P =
Avtea,

Proof. By the above lemma, we can assume that the residue field k is algebraic
closed. In this case, one can always find a quasi-finite field kg, such that k is
the algebraic closure of ko(cf. [Ser80], Ex.3, p.192). Regard K, = W(/fo)[z%] a
subfield of K. By general argument from field theory (cf. [Ser80], Lemma 7,
p.89), one can find a finite extension K; of Ky inside K and a finite totally
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ramified extension L; of K7, such that: (i) K/K; is unramified and hence
L; and K are linearly disjoint over Ki; (ii) L1 K = L. Thus Gal(L,/K;) =
Gal(L/K) and their ramification groups coincide. As the residue field of K
is a finite extension of kg, hence it is quasi-finite. The proposition is reduced
to the case that the residue field k is quasi-finite.

Now the proposition follows from the well-known fact that

. €A
U? C Upy, 1fv§p71
UP = Uppe,  ifv> 2.
p—1
and the following lemma. O

Lemma A.79. Suppose K is a complete discrete valuation field with quasi-
finite residue field. Let L/K be an abelian extension with Galois group A.
Then the image of U under the reciprocity map K* — G is dense in A™.

Proof. This is an application of local class field theory, see Serre [Ser80], The-
orem 1, p.228 for the proof.

Corollary A.80. Forn € N, let Ay, be the n-torsion subgroup of A. Ifva <
p”jeA, then va > p™vajam, for all m > 1; if va > 1%6,4, then vy =
VA/Ay) T €A
Proof. If vy < p%efh then t,, = p vy < pi—leA, and (Atmtep™ =
AP"tnte = Avate =1 for ¢ > 0, then A"+ C A(,m) and thus VAJA Gy <
p~"v4.

Ifog > Z,%BA, thent =v4 —eyq > zﬁe“" and (AT = A(t+e+ea) =
A(va +e) for e > 0. Thus va = vaya,, +ea. O
Definition A.81. We call A small if vy < %6,4, or equivalently, if (A%)P C

AP for all x > 0.
Lemma A.82. If A is small, then for every m > 1,

ua > p"Hp = D)(Agmy t Ag))tasagm,- (A.27)

Proof. For every ¢ > 0, we have

VA

va
ug =Pa(va) = / (A: At)dt > Uu(va) > / (A: At)dt
0 p~luate

1 1
(04— p loa —e)(A: APV > (UA P ) (A Agy).

The last inequality holds since (AP v4+€)P = 1 by Proposition A.78. Then
by Corollary A.80,

ua > va(A:Agy))- b1 > p = Dvajam (A Ag)).
Since ua/a,m, < Va/Am, (A Agpm)) by (A.26), we have the desired result.
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We now suppose G is a p-adic Lie group of dimension d > 0 with a Lie
filtration {G(n)}. We suppose G(1) is a non-trivial pro-p group and that

Gn)=Gn+1) ={seG|s"eCGn+1)}
For n > 1, we denote
v, = WG/G(n)v Un = VG/G(n)> Up = UG/G(n) = Wn(”n% €n = €G(n)- (A28)

Proposition A.83. For cachn > 1 we have G'NG(n) = G(n)*®) forv > 0.
In particular,

GV = G(n)un v (GCEM) - for 4 > w,, (A.29)

i.e.,

Guntte — G(n)un“e'”7 fort > 0. (A-30)

As a consequence, forn, r > 1,
UG (n)/G(ntr) = Un + (Untr — n) (G 1 G(n)). (A.31)
Proof. We have
G NG() = Gug( N G) = Gl = Gln)Pem ) = Gn) ()

since Yo = ¥ (n)¥n. For v > vy, then G¥ C Gy, and

U, (v) = ¥p(vp) + /U(G :G(n))dv = up + (v —v,)(G : G(n)).

n

NOW ¥ = UG(n)/G(ntr) IS characterized by the fact that G(n)” € G(n+r) and
G(n)"*¢ C G(n+r) for all € > 0, but & = v,4, is characterized by the fact
that G* € G(n +r) and G**¢ C G(n +r) for all € > 0, thus (A.31) follows
from (A.29). O

Proposition A.84. There exists an integer ny and a constant ¢ such that for
alln > nq,
Upt1 =vp +€ and v, =ne-+c.

Proof. By (A.30), we can replace G by G(ng) for some fixed ng and G(n) by
G(no + n). Thus we can suppose G = exp ., where . is an order in the Lie
algebra Lie(G) such that [, %] C p>.% and that G(n) = expp™.¥. Then
(G : G(n)) = p™® for all n, and for r < n + 1, there are isomorphisms

Cn)/Gn+r) 2 2 )"t 2 ' 2|y £ = (1))t (A32)

Thus G(n)/G(n + d + 3) is abelian for sufficient large n.
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If G(n)/G(n +r) is abelian and small for » > 2, then apply Lemma A.82
with A = G(n)/G(n + 1), m = r — 1. Note that in this case u,4, = ug and
Uny1 = UA/A 1) then

Un+r —2-d Un+1
—2(p-p " ——.
enJrr en+1

But note that the sequence u, /e, < zﬁ is bounded, then for r = d + 3,

G(n)/G(n+ d + 3) can not be all small.
We can thus assume G, /Gy, +1 is not small, then by Corollary A.80,

UG (no)/G(n1+1) = VG(no)/G(n1) T €nos

and by (A.31), then
Un,+1 = Up, T+ €.

Hence G(n1)/G(ny + 2) is not small and vy, 12 = vp,4+1 + e. Continue this
procedure inductively, we have the proposition.

Theorem A.85. There is a constant ¢ such that
Grete ¢ G(n) c G"e=¢
for all n.

Remark A.86. The above theorem means that the filtration of G by ramifica-
tion subgroups with the upper numbering agrees with the Lie filtration.

If G = Z,, the above results were shown to be true by Wyman [Wym69],
without using class field theory.

Proof. We can assume the assumptions in the first paragraph of the proof of
Proposition A.84 and (A.32) hold. We assume n > n; > 1.

Let ¢; be the constant given in Proposition A.84. Let ¢y = ¢1 + ;‘Tel for
some constant « > 1. By Proposition A.84, G"¢t¢ C G, for large n.

By (A.30),

Greteo — Uttt — G(n)un+§i’{ )
Apply Proposition A.78 to A = G(n)/G(2n + 1), since u,, + aen > ea e
have
(GreteoNPG(2n 4 1) = GFDereoG(ap + 1), (A.33)

Put
M, = p "log(G"T°G(2n)/G(2n)) C L /p"ZL.

Then (A.33) implies that M, is the image of M,,1 under the canonical map
Lp"HY — L/pn L. Let
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Then M,, = (M +p".L)/p"%. We let
I=Q,MNZ.

Since the ramification subgroups G™¢*¢0 are invariant in G, each M, and

hence M is stable under the adjoint action of G on . Hence Q,M, as a

subspace of Lie(G), is stable under the adjoint action of G, hence is an ideal of

Lie(G) = Q,-Z. As aresult, I is an ideal in .£. Let N = exp I and G = G/N.

Then G is a p-adic Lie group filtered by G(n) = exp p".Z where & = £/I.
A key fact of Sen’s proof is the following Lemma:

Lemma A.87. dimG =0, i.e., G = 1.

Proof (Proof of the Lemma). If not, we can apply the proceeding theory to
G to get a sequence v, and a constant ¢; such that v,, = ne + ¢; for n > n;.
But on the other hand, we have

Gt = Gt N/N C G(2n)N/N = G(2n)
Gt G(2n)/G(2n) = exp(p™ M,,) C exp((p"I+p*".2L)/p*" L) = N(n)G(2n)/G(2n).

Hence for all n > ny and 71, one gets ne + ¢y > v, = 2ne + ¢1, which is a
contradiction. O

By the lemma, thus we have I = Z, i.e., p"™°.¥ C M for some ng. Then
for large n,

prL/p" L C (p L+ M)/p" L = My.
Applying the operation exp op™, we get

G(n+mng)/G(2n) C G™T°G(2n)/G(2n).

Thus G"t¢0 contains elements of G(n + ng) which generate G(n + ng)
modulo G(n + ng + 1). It follows that G"T% > G(n + ng) asG"ete =
lim Gt G(m)/G(m) is closed. This completes the proof of the theorem.

O

A.4.2 Totally ramified Z,-extensions.

Let K be a p-adic field. Let K, be a totally ramified extension of K with
Galois group I' = Z,. Let K, be the subfield of K., which corresponds to
the closed subgroup I'(n) = p"Z,. Let v be a topological generator of I" and
¥n =~"" be a generator of I},.

For the higher ramification groups I'¥ of I' with the upper numbering,
suppose 'Y = I'(7) for v; < v < v;41, then by Proposition A.84 or by Wyman’s
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result [Wym69], we have v,41 = v, + e for n > 0. By Herbrand’s Theorem
(Theorem A.66),

r@)/r(n), ifv;<v<wvigr, @ <n;

GaKK%/Kj”::F”F@U/IXn)::{1

, otherwise.
(A.34)

Proposition A.88. Let L be a finite extension of Ko,. Then
TrL/Koo (OL) Dmg .

Proof. Replace K by K, if necessary, we may assume L = LgK., such that
Lo/K is finite and linearly disjoint from K., over K. We may also assume
that Lo/K is Galois. Put L,, = LoK,. Then by (A.25),

o0

vk (DL, /k,) = [1 (|Gal(Kn/K)v|71 _ |Ga1(Ln/K)v|71) dv.

Suppose that Gal(Lyo/K)" = 1 for v > h, then Gal(L/K)”" C I and
Gal(L,/K)" = Gal(K,,/K)" for v > h. We have

h

W@Mmgg/|%wqmmﬂwao
1

as n — oo by (A.34). Now the proposition follows from Corollary A.72. O
Corollary A.89. For any a > 0, there exists x € L, such that
vi(z) > —a and Trp g (x) = 1. (A.35)

Proof. For any a > 0, find o € Of such that vg(Try k. () is less than a.

Let x = m, then x satisfies (A.35). O

Remark A.90. Clearly the proposition and the corollary are still true if replac-
ing Ko by any field M such that K., C M C L. (A.35) is called the almost
étale condition.

Proposition A.91. There is a constant ¢ such that

n

vk (Dg, k) =en+c+p "a,
where a,, is bounded.

Proof. We apply (A.34) and (A.24), then

o0

vk (Dk, k) = / (1—] Gal(Kn/K)”|_1)dv =en+c+p "a,.

-1
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Corollary A.92. There is a constant ¢ which is independent of n such that
for x € K,,, we have

vg(p " Trg, k(7)) > v (z) —c

Proof. By the above proposition, vk (Dk,,,/k,) = e + p~"b, where b, is
bounded. Let O,, be the ring of integers of K, and m,, its maximal ideal, let
QKnJrl/Kn = m%+1, then

rI‘rK71+1/Kn (mik‘rl) = mzm

where j = [%} (cf. Corollary A.72). Thus

n

vk (P Tri, e /x, (2) 2 v () — ap™
for some a independent of n. The corollary then follows. O
Definition A.93. For x € K, if ¢ € K1, we define
Ru(z) =p " Trx,,  k,(2),  Rypi(@) = Rngi(z) — Rpgioa(2).
R, (x) is called Tate’s normalized trace map.

Remark A.94. Use the transitive properties of the trace map and the fact
[Kngm @ Kp] = p™, one can easily see that p~™ Trg, . /k, () does not
depend on m such that x € K, 1,.

For n = 0, we write Ro(z) = R(z).
Proposition A.95. There exists a constant d > 0 such that for all x € K,
v (r — R(z)) > v (yx — ) — d.
Proof. We prove by induction on n an inequality
vg(z — R(z)) > vx(yz —x) — ¢y, fz € K,y (A.36)

with ¢,+1 = ¢, + ap™™ for some constant a > 0.
For z € K, 1, let 4, = +?", then

p—1 p—1
pr—Trg, yk, @) =pr =Y vhr =Y (L+v+- 47 )1 =)z,
i=0 i=1
thus
vk (@ —p~ Tig, . /x, (2) 2 vk (2 = 12) —e.
In particular, let ¢; = e, (A.36) holds for n = 1.
In general, for x € K, 11, then
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R(Trg, ., /k, ®) = pR(z), and (y — 1) Trg, ., /K, (2) = Trg, /K, (Y2 — ).
By induction,

v (Trg, . /K, (2) — pR(2)) 2vk (Trg, k(Y2 — 7)) — cn

>vg(yr —x) —e—ap " — cp,

thus

vk (2 — R(2)) > min(vx (z = p~" Trg, ./, (), 05 (72 = @) = € —ap™")

> vg(yx —x) — max(cy, ¢, +ap™ ")
which establishes the inequality (A.36) for n + 1. O

Remark A.96. If we take K, as a ground field instead of K and replace R(x)
by R, (x), from the proof we have a corresponding inequality with the same
d.

By Corollary A.92, the linear operator R, is continuous on K for each n
and therefore extends to K, by continuity. As K, is complete, R, (K~,) = K,
for each n. Denote R

X, :={z € K, R,(z) =0}.

Then X, is a closed subspace of IA(DQ.

Proposition A.97. (1) I?Oo =K, ® X,, for eachn.
(2) The operator vy, — 1 is bijective on X,, and has a continuous inverse
such that
vk ((yn = 1) 7)) > vx(z) —d

forx e X,,.
(3) If X is a principal unit which is not a root of unity, or if vk (A—1) > d,
then v — X\ has a continuous inverse on K.

Proof. Tt suffices to prove the case n = 0.

(1) follows immediately from the fact that R = R o R is idempotent.

(2) Let K,, o = K,,N Xy, then K,, = K § K,, o and X is the completion of
Ko o = UK, o. Note that K, o is a finite dimensional K-vector, the operator
v — 1 is injective on K, o, and hence bijective on K, ¢ and on K . By
Proposition A.95, then

vk (v =17 y) > vkly) —d

for y = (y— 1)z € K,, 0. Hence (y—1)"! extends by continuity to X, and the
inequality still holds.

(3) Since v — X is obviously bijective and has a continuous inverse on K
for X\ # 1, we con restrict our attention to its action on Xy. Note that

Y=A=(y-1)(1—(y=1)"'(A=1)),
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we just need to show that 1 — (y — 1)71(\ — 1) has a continuous inverse. If
vi (A —1) > d for the d in Proposition A.95, then Vi ((y—1)"1(A—1)(z)) > 1
in Xg and
L= =D A== (=)' A -1
k>0

is the continuous inverse in X and v — A has a continuous inverse in X.

In general, as d is unchanged if replacing K by K,,, we can assume v (A\P" —
1) > d for n>> 0. Then v*" — \*" has a continuous inverse in X and so does
= A a

A.5 Continuous Cohomology

A.5.1 Abelian cohomology.

Definition A.98. Let G be a group. A G-module is an abelian group with a
linear action of G. If G is a topological group, a topological G-module is a
topological abelian group equipped with a linear and continuous action of G.

Let Z[G] be the ring algebra of the group G over Z, that is,

ZIG) = {Z agg : ag € Z,ay = 0 for almost all g}.
geG

A G-module may be viewed as a left Z[G]-module by setting

(Z agg)(x) = Zagg(x),for allag; €Z,g€ G,z € X.

The G-modules form an abelian category.
Let M be a topological G-module. For any n € N, the abelian group of
continuous n-cochains C? . (G, M) is defined as the group of continuous maps

cont
G" — M for n > 0, and for n =0, CO (G, M) := M. Let
(G, M) — CItH(G, M)

cont
. m
d’ﬂ . Ccont cont

be given by

(doa)(g) = g(a) — a;
(dif)(91,92) = 91(f(92)) — f(g9192) + f(91);
(dnf)(g1592, 5 Gns Gn+1) = 91(f (92, s Gn» Gny1))

n
+ Z(—l)lf(ghg% 4 0i-15GiGi+1s s Gns Gnt1)
=1

+ (_1)n+1f(91792a e 7gn)~
We have d,,y1d,, = 0, thus the sequence C2. ,(G.M):

(G M) % .. Dt em

CO (G’ M) @) C&ont(G7 M) ﬂ) Cgont COIlt(G’ M) % e

cont

is a cochain complex.
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Definition A.99. Set
Cont(G M) Ker dn? cont(G M) =Im dnv
cont(G M) Zn/Bn:Hn(O.(G,M))

and call them as the group of continuous n-cocycles, the group of continuous
n-coboundaries and the n-th continuous cohomology group of M respectively.

Clearly we have
Proposition A.100. (1) HS (G,M) = Z° = MY = {a € M | g(a) =
a, for all g € G}.

(2)

A _ Af:G — M| f continuous, f(g192) = g1f(g2) + f(gl)}.

¢ M) = 5 {oa=(9—9g-a-a):ac M}

COnt(

Corollary A.101. When G acts trivially on M, then
Cont(G M) M Hl (GaM) = Hom(G,M)

cont

The cohomological functors H™(G, —) are functorial. If n : My — My is

a morphism of topological G-modules, then it induces a morphism of com-

plexes C2 (G, My) — C2..(G,Ms), which then induces morphism from

cont(G Ml) (resp Bcont(G Ml) or Hcont(Gle)) to Zgbont(GvM2) (I‘GSp.
cont(G MQ) or Hcont(G MQ))

Proposition A.102. For a short exact sequence of topological G-modules
0— M ML — o,

then there is an exact sequence

0= MG — M — M"S % H,,, (G, M"),

where for any a € (M")%, 6(a) is defined as follows: choose x € M such that
B(z) = a, then define 6(a) to be the continuous 1-cocycle g — a1 (g(x) — z).

Proof. Note that for any g € G, B(g(x) — x) = B(g9(z)) — B(z) = g(B(x)) —
B(z) = g(a)—a = 0, Thus g(z)—z € Im o, so that a~!(g(x)—x) is meaningful.
The proof is routine. We omit it here. a

(G,M') — H}

cont

(G, M) — H

cont

Remark A.103. From the above proposition, the functor H(G, —) is left ex-
act. In general, the category of topological G-modules does not have suffi-
ciently many injective objects, and it is not possible to have a long exact
sequence.

However, if 8 admits a continuous set theoretic section s : M” — M, one
can define a map

O H

cont

(G,M") — H MG, M), forallneN

cont

to get a long exact sequence (ref. Tate [Tat76]).
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Two special cases.
(1). If G is a group with the discrete topology,
H™(G, M) = H,ni (G, M)

and one has a long exact sequence.

(2). If G is a profinite group and M is equipped with the discrete topology,
we also have a long exact sequence. In this situation, to say that G acts
continuously means that, for all a € M, the group G, = {g € Glg(a) = a} is
open in G. In this case, M is called a discrete G-module. We set

H"(G, M) = Hon (G, M).

Denote by H the set of normal open subgroups of G, then one sees that the
natural map

lim H"(G/H, M) = H"(G, M)

—>

HeH

is an isomorphism.

Example A.104. 1If G is a field and L is a Galois extension of K, then G =
Gal(L/K) is a profinite group and H"(G, M) = H"(L/K, M) is the Galois
cohomology. In particular, if L = K*® is a separable closure of K, we write
H"(G,M)=H"(K,M).

A.5.2 Non-abelian cohomology.

Let G be a topological group. Let M be a topological group which may be non-
abelian, written multiplicatively. Assume M is a topological G-group, that is,
M is equipped with a continuous action of G such that g(zy) = g(z)g(y) for
all g € G, x,y € M. We can define

HYi (G, M) = MY ={z € M | g(x) = x,Vg € G}
and

Zout (G, M) = {f : G — M continuous | f(g192) = f(g1) - 91.f(g2)}.

If f,f € ZL (G, M'), we say that f and f’ are cohomologous if there exists
a € M such that f'(g) = a=1f(g)g(a) for all g € G. This defines an equivalence
relation for the set of cocycles and H}, . (G, M) is the set of equivalence classes.
HL (G, M) is actually a pointed set with the distinguished point being the

trivial class f(g) =1 for all g € G.
Definition A.105. H]}

cont (G, M) is trivial if it has only one element.
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The above construction is functorial. If n : M; — M is a continuous
homomorphism of topological G-modules, it induces a group homomorphism

ME — My
and a morphism of pointed sets

Hclont<G7 Ml) - Hclont<G7 MQ)

We note here that a sequence X Ay B Zof pointed sets is exact means
that M(X) = {y € Y | u(y) = 20}, where A, p are morphisms of pointed sets
and zq is the distinguished element in Z.

Proposition A.106. Let 1 — M’ - M LM =1 be an ezact sequence
of continuous topological G-groups. Then there exists a long exact sequence of
pointed sets:

1— MG 28 MG 2GS g a, M) S HY (G, M) B EN G, M),

where the connecting map 6 is defined as follows: Given c € M"G, pickb € B
such that 8(b) = c¢. Then

5(c) = (0 — a (b~ ob)).

Proof. We first check that the map ¢ is well defined. First, 3(b~1o(b)) =
B(b~HoB(b) = 1, then b~ lo(b) € Ker3 = Ima, a, = a~1(b~tab) € M'. To
simplify notations, from now on we take a to be the inclusion M’ — M. Then

agr = b tar(b) =bto(b) - o(b" (b)) = aso(a,),

thus a, satisfies the cocycle condition. If we choose b’ other than b such that
B() = B(b) = ¢, then b’ = ba for some a € A, and

a, =v"1o() =a v o(b)o(a) = a a0 (a)

is cohomologous to a,.

Now we check the exactness:

(1). Exactness at M'¢. Trivial.

(2). Exactness at M©. By functoriality, Syag = 1, thus Im ag C Ker 5. On
the other hand, if By(b) = 1 and b € MY, then B(b) =1 and b € M' N M® =
M'C.

(3). Exactness at M"C. If ¢ € By(B%), then ¢ can be lifted to an element
in M% and 6(c) = 1. On the other hand, if §(c) = 1, then 1 = a, = b~ 'o(b)
for some b € 37!(c) and for all o0 € G, hence b = o (b) € MC.

(4). Exactness at H'(G,M’). A cocycle a, maps to 1 in H(G, M) is
equivalent to say that a, = b~1o(b) for some b € M. From the definition of
J, one then see a1d = 1. On the other hand, if a, = b=1o(b) for every o € G,
then B(b~1o (b)) = B(as) = 1 and B(b) € M"C and §(B(b)) = a,-
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(5). Exactness at H'(G, M). By functoriality, S1c; = 1, thus Ima; C
Ker ;. Now if b, maps to 1 € H'(G,M"), then there exists ¢ € M”,
¢ 1B(by)o(c) = 1. Pick b’ € M such that 3(b') = ¢, then B(b'"1b,o (b)) =1
and b’ 1b,0(b') = a, is a cocycle of M. O

We use the same conventions of notations as the abelian case: if we use the
discrete topology, H"(G,M) = HZ .(G, M), and same kind of conventions
for profinite groups and Galois cohomology.

Let G be a topological group and let H be a closed normal subgroup
of G, then for any topological G-module M, M is naturally regarded as an
H-module and M a G/H-module. Then naturally we have the restriction
map

res: HX (G, M) — H}

cont

(H,M).

Given a cocycle az : G/H — MY, for any o € G, just set a, = a5 : G —

MH C M, thus we have the inflation map
Inf: H} (G, M) — H!

cont

(H, M).

Proposition A.107 (Inflation-restriction sequence). One has the fol-
lowing ezxact sequence
I_ﬂf> Hclont(GvM) E} Hl

cont

1— H!

cont(G/H? MH) (Hv M) (A37)
Proof. By definition, its is clear that res o Inf maps any element in H', . (G/H, MH)
to the distinguished element in H} . (H, M).

(1) Exactness at HL (G/H, M*™): If a, = a7 is equivalent to the distin-
guished element in H*(G, M), then a, = a~'o(a) for some a € M, but for
any 7 € H, a, = ayr, thus o(a) = o(7(a)), i.e., a = 7(a) and hence a € M,
S0 az is cohomologous to the trivial cocycle from G/H — A*.

(2) Exactness at HL (G, M): If a, : G — M is a cocycle whose restriction
to H is cohomologous to 0, then a, = a~!7(a) for some a € M and all 7 € H.
Let ai = a-aso(a™!), then a’, is cohomologous to a, and a’ = 1 for all
7 € H. By the cocycle condition, then al, = alo(a,) = al if 7 € H. Thus
al is constant on the cosets of H. Again using the cocycle condition, we get
a., =7al for all 7 € H, but 70 = o7’ for some 7/ € H, thus a/, = Tal, for
all 7 € H. We therefore get a cocycle az = al, : G/H — A which maps to

[ O

!
o

At the end of this section, we recall the following classical result:

Theorem A.108 (Hilbert’s Theorem 90). Let K be a field and L be a
Galois extension of K (finite or not). Then

(1) HY(L/K,L) = 0;

(2) HY(L/K,L*) = 1;

(3) For allm > 1, HY(L/K,GL, (L)) is trivial.
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Proof. Tt suffices to show the case that L/K is a finite extension. (1) is a
consequence of normal basis theorem: there exists a normal basis of L over
K.

For (2) and (3), we have the following proof which is due to Cartier (cf.
Serre [Ser80], Chap. X, Proposition 3).

Let ¢ be a cocycle. Suppose z is a vector in K", we form b(z) =

> ¢y (0(x)). Then b(x), x € K™ generates K™ as a K-vector space. In
o€Gal(L/K)
fact, if v is a linear form which is 0 at all b(x), then for every h € K,

0= u(b(he) = 3 o - ula(ho(x) = 3 o(h)ulas(o(2))).

Varying h, we get a linear relation of o(h). By Dedekind’s linear independence
theorem of automorphisms, u(a,o(x)) = 0, and since a, is invertible, u = 0.

By the above fact, suppose z1,---x, are vectors in K" such that the
y; = b(x;)’s are linear independent over K. Let T be the transformation
matrix from the canonical basis e; of K™ to z;, then the corresponding matrix
of b =Y c,0(T) sends e; to y;, which is invertible. It is easy to check that
a(b) = ¢, b, thus the cocycle c is trivial. 0
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