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The main point of this paper ! is to present in detail some of our conjectures
concerning p-adic representations of the Galois groups of number fields (cf.
[10] for a brief synopsis). The motivating idea behind our conjectures is simply
the hope that, given an irreducible p-adic representation p of Gk, the Galois
group of a number field K (assumed unramified except at a finite number of
places), one can find necessary and sufficient local conditions (on the restriction
of the representation to the decomposition groups G, at the finite set of places
v of K of residual characteristic p) for the representation p to “come from
algebraic geometry”. The local condition we have in mind is that p restricted
to Gk, be potentially semi-stable. This will be made precise in Conjecture 1 of
§ 1 below.

There is a well known conjecture which, vaguely put, asserts that a pure mo-
tive of rank 2 and of Hodge type (0,7), (r,0) “comes from” a modular newform
of weight £ = r + 1 (for related conjectures, see [28] and the large litera-
ture concerning the connection between elliptic curves and modular curves; for
spectacular recent work in the way of proving such conjectures, see [31] and
[29]). Combining our Conjecture 1 with this “well known conjecture” leads to
a conjectural necessary and sufficient condition, stated only in terms of a local
condition at p, for an irreducible representation p : Go — GL» (@p) to be the
representation associated to a cuspidal newform.

Conjecture: Let
p: GQ - GL2(Qp)

be an irreducible representation which is unramified except at a finite number of
primes and which is not the Tate twist of an even representation which factors
through a finite quotient group of Gg.

! Research supported in part by the NSF, Contract No. DMS-89-05205;by the Institut
Universitaire de France and the CNRS (URA D 0752).
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Then p is associated ? to a cuspidal newform f if and only if p is potentially
semi-stable at p.

For a refinement of the above conjecture, see Conjecture 3¢ below.

We also include certain “finiteness conjectures” for irreducible representa-
tions which “come from algebraic geometry”, which have a fixed level of ramifi-
cation and a fixed Hodge-Tate type. These “finiteness conjectures” are akin to
the assertion (in view of the Conjecture displayed above) that there are only a
finite number of newforms of given level and weight. This discussion is collected
in §3. In §7 and §8 we examine Conjecture 1 in the case where the representation
is potentially abelian, and potentially everywhere unramified.

Part II of our paper is devoted to a deformation - theoretic study of the
condition of potential semi-stability for degree two, p-adic representations of
Gq, which are residually absolutely irreducible. The main results here are due
to Ramakrishna [23], but we revisit Ramakrishna’s theory to give a slightly
more detailed picture, particularly in the case when the representations are
assumed to be potentially Barsotti-Tate.

Here is our motivation for doing such a study. Fixing an absolutely irre-
ducible representation

p,: Go, - GLy(Fy),

Ramakrishna has shown that the universal deformation ring R(5,) is isomorphic
to a power series ring in five variables Z ([T}, T2, T3, T4, Ts]] (and therefore the
p-adic variety X (p,) := Hom(R(p,), Zp) which classifies lifts of 5, to GLy(Zy)
is smooth on five parameters). Fix a finite set of primes § including p, let
Gq,s denote the Galois group of the maximal algebraic extension of Q, unram-
ified outside S, and fix an imbedding of Q in Q, and hence a homomorphism
i: Gg, = Go,s- Let pg s : Go,s = GL3(Fp) be any representation (if such
exists) which extends p,. That is, p, = pg s © i. One knows that the universal
deformation ring R(pg g) is of Krull dimension > 4, and if smooth, is a power
series ring over Z, on three parameters. It is conjectured always to have Krull
dimension 4.

Now, since 5 — 3 = 2, for our “finiteness conjectures” to be feasible it would
be nice to prove that all potential semi-stable liftings

pp: Go, = GLa(Zy),

of p with fixed Hodge-Tate weights (r, s) lie in a finite union of (at most!) two-
parameter subspaces of the universal deformation space X (p,). Indeed, the best
would be if there were a finite quotient ring, call it R(p,) s, of R(p,) through
which all homomorphisms R(p,) — Z, classifying all potentially semi-stable
liftings of p,, (with Hodge-Tate weights r, s) factors, and such that R(p,), is
of Krull dimension < 3, and whose generic fiber over Q, is formally smooth of
dimension two.

2recall | that “associated” is a technical term which means that one can find an isomorphism
between Q, and C such that for all but a finite number of prime numbers I, the above
isomorphism brings the trace of p( Frob;) to the eigenvalue of the Hecke operator T; on the
newform f. Here, Frob; denotes the Frobenius element at I, and of course, one need only
consider prime numbers { which do not divide the level of f, and at which the representation
p is unramified.
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This would indeed be nice, for then we could entertain the hope that our
“finiteness conjecture” is a phenomenon related to a possible transversality
question; namely, do the generic fibers of SpecR(p,)r,s and of R(fg s) have
images in the generic fiber of SpecR(p,) which intersect transversally?

We do not know whether rings R(p,,)r,s as described above exist for all Hodge-
Tate weights r, s. But Ramakrishna established that the locus of crystalline lift-
ings possessing Hodge- Tate weights contained in the interval
[0,p — 1] indeed forms a subscheme of Spec(R(p,)), smooth on two formal
parameters over Spec(Z,). A Hodge-Tate lifting with Hodge-Tate weights r, s
contained in [0,p — 1] will be said to be of moderate Hodge-Tate type.
We complement Ramakrishna’s theory by classifying (at least for p > 5) all
weakly admissible two-dimensional irreducible potentially semi-stable filtered
(¢, N,Gq,) -modules (Thm. A of § 11) and then by constructing explicitly the
universal such module which classifies crystalline liftings of 5, to GLy(Z,) of
moderate Hodge-Tate type (Thm. B2 of § 12).

We also discuss the interesting case of potential Barsotti-Tate liftings
of p, to GLz(Zp). The aim here is, firstly, to preview a theory (classifying
Barsotti-Tate groups “strictly of slope 1/2”) which will be expounded more fully
in further publications by one of us, and, secondly, to formulate a consequence
of this theory which gives a classification of potentially Barsotti-Tate liftings of
P, to GLy(Zy). This classification is put forward in Thm. C3 of § 13 below;
we give a series of hints towards its proof in Appendix C. Specifically, the locus
of all liftings of p, to GL2(Zp) which are potentially Barsotti-Tate (PBT, for
short) is either empty, or else it is a union of two disjoint smooth two-parameter
spaces in X (p,). More exactly, there is a quotient-ring Rpgr of R(p,) though
which any homomorphism R(p,) — Z, which classifies a PBT lifting factors,
and

Rppt = Z[[Y1,Y2]] XF, Z,[[Y'1,Y"2]],

i.e., the fiber product of two power series rings over Z, each in two variables,
the fiber product being taken over their common residue field F,,.

The PBT liftings whose classifying homomorphisms factor through
Zy[[Y1, Y2]] are quite different from those which factor through Z,[[Y7, Y3]]. For
certain residual representations p, (specifically, for those Pp Whose invariants 3
J1,J2 have the property that j; — j; = 1) this difference can readily be seen by
considering their associated admissible pst modules:

Those PBT liftings whose classifying homomorphisms factor through
Zy|[Y1,Y2]] have associated pst modules occuring in our “type I” series (cf.
Thm. A of §11) and the two p-adic parameters Y; and Y; correspond to a two-
parameter variation of (the two) coefficients of the characteristic polynomial
X% —aX +d of the “Frobenius” operator ¢ acting on the associated pst modules
of these liftings. The datum of the filtration on these pst modules contributes,
however, no further variation.

Those PBT liftings whose classifying homomorphisms factor through
Zy[[Y'1,Y"2]] have associated pst modules occurring in our “type IV” series
(cf. Thm. A of §11) and here the two p-adic parameters Y; and Y; correspond
to somewhat different features of the associated pst modules. The characteristic

3cf. Thm. C3 of §13
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polynomial of the “Frobenius” operator ¢ acting on the associated pst modules
of these liftings have the form X2 +d, and the p-adic parameter Y; corresponds
to the possibility of varying the coefficient d. The datum of the filtration on
these pst modules is important, and contributes another one-parameter of p-adic
variation corresponding to the second variable Y.

Full proofs of Thm. C1-3 will be given in later publications. Beyond this PBT
case, however there still remains a good deal of work to do to get a completely
satisfactory, and completely general, local picture of pst liftings, even in the
special context of two-dimensional representations of Go,-

Notation:

K := number field; K := an algebraic closure of K, Gx = Gal(K/K).
S : a finite set of finite places of K; Gk s := the Galois group of the max-
imal algebraic extension of K in K unramified outside S; p := a fixed prime
number; E := a field containing Qp; N := a fixed positive integer.

For each finite place v of K, we denote by K, the completion of K at v. We
choose an algebraic closure K, of K, and an embedding of K into K,. This
gives us an identification of G, = Gal(K,/K,) with a decomposition subgroup
of Gkx. We denote by I, the inertia subgroup of G,.

If G is a profinite group, a p-adic representation of G is a finite dimensional
Qp-vector space equipped with a continuous and linear action of G. Similarly,
an E-representation of G is a Q,-vector space V of finite dimension (called
the degree of the representation) equipped with a linear action of G which
has the property that, if we choose a basis of V, the image of the corresponding
map

p:G - GLN(E)

is contained in GLn(Ep) where Ej is a suitable finite Q,-algebra contained in
E and the map G — GLy(Eyp) is continuous (this doesn’t depend on the choice
of the basis).

Part I. The conjectures

§1. Geometric representations and representations coming from
algebraic geometry.

A p-adic representation of Gk is called geometric if
(a) it is unramified outside a finite set of places of K,

(b) its restriction to every decomposition group G, (for v ranging through
all non-archimedean places of K) is potentially semi-stable in the sense
of [13] (see also [12] for v’s dividing p).

Equivalently, we may ask that its restriction to the decomposition groups
for v|p are potentially semi-stable, since, by a theorem of Grothendieck, the re-
striction to the other decomposition groups are automatically potentially semi-
stable.

Remark: We do not know whether the condition (a) is satisfied for all semi-
simple representations.

A continuous irreducible Qp-representation of Gk is said to come from
algebraic geometry if it is isomorphic to a subquotient of an etale cohomology
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group with coefficients in Q) (r) for some Tate twist r € Z, of an algebraic variety
over K (equivalently * : of a projective smooth algebraic variety over K ).

Conjecture 1: An irreducible p-adic representation is geometric if and only if
it comes from algebraic geometry.

Evidence: The part of conjecture 1 saying that “irreducible representations
coming from algebraic geometry are “geometric” is in no way original to this
article, and goes in a direction where much more precise results are expected to
be true about varieties defined over local fields. See, for example, Conjecture
Cre of [12] (6.2.1) and the further conjectures in (6.2.4) there. This part of
Conjecture 1 has been known for a long time to hold for abelian varieties, and,
more recently, [6] for varieties which have good reduction at all places dividing
p (in which case the representations of G, are crystalline) and also in slightly
more general instances (see [15] and [19] for a survey, see also the forthcoming
work of Tsuji).

The part of Conjecture 1 saying that irreducible “geometric” representations
“come from algebraic geometry” is presently known for irreducible potentially
abelian representations (see §6 below). The recent work of Wiles [31] and
Taylor-Wiles [29] establishes this also for a very significant class of irreducible
p-adic representations V' of Gg, of dimension two over Endg,[gq(V)-

§2. Hodge-Tate representations.

If the extension E/Q, is finite, an E-representation of degree N of Gg
is called geometric if it is geometric as a p-adic representation of degree
N - dimg,E. Generally, an E-representation V of degree N of Gk is called
geometric if there exist a finite Q,-algebra Ey contained in E, a geometric E,-
representation V; of Gk and an isomorphism of E-representations E® B Vo> V.

Let V be an E-representation of Gk of degree N which is geometric. If v
is a place of K dividing p and if the representation is potentially semi-stable
at v then V, as a representation of G,, is Hodge-Tate. Let us recall what this
means. Put C, := the completion of Q, (on which G, acts by continuity),
and Byr,, := the ring ®,¢2C, (r), with C, (r) the usual Tate twist. The ring
Bpyr,y is the ring of Laurent polynomials in the indeterminate t, a generator
of Zp(1), with coefficients in C, and (BHT,,,)G" = K,. The G,-representation
V is Hodge-Tate in the sense that, if Dy (V) = Homg,(g,)(V, BuT,v), the
natural map

BHT,v Bk, Q;IT,v(V) = Home (Vv BHT,v)

is an isomorphism. This implies that D1 ,(V) is a free E ®q, Ky-module of
rank N, equipped with a Z-gradation by sub-E ®q, Ky-modules

gerItIT,v(V) = Home[Gu](VaCu(r))‘

By the (E,v)-Hodge-Tate type h(v) of V, we mean the isomorphism class
of the graded E ®q, K,-module Dy ,(V), and we call N the degree of h(v).
For instance, if K, = Q,, Dyt (V) is just a graded E-vector space and to know
h(v) amounts to the same as to know the Hodge-Tate numbers, that is, the

4using resolutions of singularities.
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non-negative integers h.(v) = dimg(Cy(r) ®q, V)¢ = dimg gr "Dyt (V)
(these are almost all 0 and Y h,(v) = N).

Remark: If v divides p, the trivial (E,v)-Hodge-Tate type of degree
N is the isomorphism class of D = (E ®q, K,)V with gi°D = D. An E-
representation V' of Gk, is Hodge-Tate of trivial type if and only if the image
of I, in Autg(V) is finite ([24], th. 1 and [25], th. 11, cor.). In particular, if
V is a geometric representation of Gx,s and if v is not in S but divides p, the
(E,v)-Hodge-Tate type of V is trivial.

By an E-Hodge-Tate type of K, we mean a function h assigning to each
place v dividing p an (E,v)-Hodge-Tate type h(v), all those h(v) having the
same degree N. Let Geom(K, S, h; E) denote the set of isomorphism classes of
geometric irreducible E-representations of Gk,s with the indicated Hodge-Tate

type h(v) for each v dividing p (such a representation is necessarily of dimension
N).

§3.The finiteness conjectures.

If V is a geometric E-representation of Gk, for any finite place v of K, there
is an unique invariant open subgroup £, (V) of I, which is such that, if L is a
finite extension of K, contained in K, then V, when viewed as a representation
of Gal(K,/L), is semi-stable if and only if Gal(K,/L)NI, C £,(V). fv &S,
we have £,(V) = I,.

By an inertial level for S, we mean a rule £ which assigns to each v € S
an open invariant subgroup £, of I,.

Let Geom(K, S, £, h; E) denote the set of isomorphism classes of geometric
irreducible E-representations V of Gk,s in the set Geom(K, S, h; E) such that,
foreachv € S, £, C £,(V).

Conjecture 2a: For any finite set of places S of K, inertial level £ for S,
Q,-Hodge-Tate type h of K, the set Geom(K, S, £, h; Q,) is finite.

Example [14], prop. 1 (see [1] for other examples of this kind): If K = Q, S =
{7}, £7 = I and h, given by the Hodge numbers (hr)rez, is such that h.h, #
0 = s —r < 3, then Geom(K, S, Z, h;Q,) is empty, unless there is i € Z such
that h_; =1 and h, = 0 if r # i, in which case Geom(K, S, Z, h; Q,) has one
element which is the class of Q,(3).

Conjecture 2b: For any finite set of places S, inertial level £ for S, finite > ex-
tension field E of Qp, E-Hodge-Tate type h of K, the set Geom(K, S, £, h; Q)
is finite.

Conjecture 2¢c:  For any finite set of places S, finite extension field E of Qp,
E-Hodge-Tate type h of K, the set Geom(K, S, h; E) is finite.

84. Remarks:

(a) Concerning the finiteness conjectures.

Conjecture 2c is in the spirit of the finiteness conjectures of Shafarevich
(proved by Faltings [5]).

Obviously, conjecture 2a implies conjecture 2b. Conjecture 2b and 2c are
equivalent: the implication 2¢ = 2b is obvious. Conversely, attached to a poten-
tially semi-stable representation of degree N (at v) one has (for this theory, see
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[12]) a representation D, of the Weil-Deligne group of K, of degree N with
coefficients in a field E' which is E if v does not divide p and a finite unramified
extension of E if v divides p. In particular, if we choose a basis of D,, we
have an homomorphism p, : I, = GLx(E') whose kernel is the invariant open
subgroup £, (V).

If v does not divide p, E' = E, and, because the order of the finite subgroups
of GLN(E) is bounded, there is an integer M,(E, N) such that [I, : £,(V)]
divides M,(E, N). If v divides p, one can check (cf. [12]) that, for any g € I,,,
the characteristic polynomial of g acting on D, has coefficients in E. This
implies [7] that there exists a linear representation of degree N of I,/£,(V)
with coefficients in the field Ey = E(P~1/1) if p # 2 (resp. E(*/1) if p = 2)
which has the same character as p,. Therefore, because the order of the finite
subgroups of GLny(E:) is bounded, in this case as well, there is an integer
M,(E, N) such that [I, : £,(V)] divides M,,.

For any v € S, it is easy to see that, given the integer M,,(E, N), there is an
open invariant subgroup £,(E, N) of I, which is contained in all open invari-
ant subgroups whose order divides M, (E, N). Therefore Geom(K, S, h; E) C
Geom(K, S, £, h; E) where £ is given by v — £,(E, N).

(b) Changing K. Let L be a finite extension of K contained in K. It is
easy to check that an E-representation V of Gk is geometric if and only if its
restriction Resf(V to G, is geometric; similarly an E-representation W of G,
is geometric if and only if the induced representation IndXW of Gk is. It is
also easy to compute the Hodge-Tate types and the inertial levels of ReskV
(resp. Ind¥W ) from those of V (resp. W ). From that, using adjunction, we
see easily that Conjecture 1 (resp. 2a, 2b) is true for K if and only if it is true
for L.

(c) Semi-stable representations. A geometric E-representation V of Gg
is said to be semi-stable if, for each finite place v of K,V is semi-stable as
a representation of G, i.e. if £,(V) = I,. Let Geomg (K, S,h;@p) denote
the set of isomorphism classes of geometric irreducible @p-representations V of
Gk,s in the set Geom(K, S, h; @p) which are semi-stable. The following is a
special case of conjecture 2a (corresponding to choosing £ such that £, = I,
for all v € S):

Conjecture 2a’: For any finite set of places S of K, @,,-Hodge- Tate type h of
K, the set Geomy(K, S, h; @p) is finite.

Conversely, it is easy to check that conjecture 2a’ for all number fields implies
conjecture 2a.

(d) Concerning geometric p-adic representations, and “compatible
families” of representations.

The curious implication of Conjecture 1, taken together with standard con-
jectures concerning the étale cohomology of algebraic varieties of number fields,
is that any irreducible p-adic geometric representation V' of Gk s has these
(“motivic”) properties:

(1) For all nonarchimedean places v ¢ S, let &, € G, C Gk be a lifting
of the geometric Frobenius f, € G,/I, and let P,(V;T) € Q,[T] denote the
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characteristic polynomial of ®, acting on V. Then, there exists 7 € Z and a
finite extension E of Q contained in Q, such that, forallv ¢ S, P,(V,T) € E[T],
the complex roots of P,(V,T) (for a chosen embedding of E into C) have their
complex absolute values equal to q,',/ % where gy is the cardinality of the residue
field of v. _

(2) There exists a finite extension E' of the above E and, for any finite place
A of E', a geometric F}-representation V) of G K,5, where Sy = S U {v|v has
the same residual characteristic as A} such that, if v € Sy, P,(V),T)(:= the
characteristic polynomial of ®, acting on the E}-vector space V) = P,(V,T).

(e) L-functions and weights.

Assume K = Q and let V be an irreducible geometric @p-representation of
Gq of degree N. For each prime , one can associate to V an N-dimensional
@p-linear representation of the Weil-Deligne group W/ of Q (cf. [13] or [17)).
Hence if we choose an imbedding of @p into C, one can define in the usual way
a local factor Li(V, s) for each prime ! and one can define the global L-function
L(V,s) as being the formal product of all those local factors. One conjectures
that this Dirichlet series converges for (s) >> 0 and admits a meromorphic
continuation in the whole complex plane; moreover, one can give a conjectural
interpretation of the order of the zero or pole at s = 0 in terms of Galois
cohomology (see [17], n°3.4).

One can define the weight w(V) of V : if dimﬁp V =1, there is an unique
integer 7 such that the action of Gg on V (4) is finite and w(V') = 2i; if dim(—)p V=
N,w(V) = w(ANV)/N; hence this is a rational number. For 7,8 € Z, define
the Hodge numbers h, (V) of V as being 0 unless 7 + s = w(V) in which
case h; ;(V) is the Hodge-Tate number h,.(V).

If we choose an imbedding of Q into C, this defines the complex conjugation
¢ € G, hence we can define

(V) = dimg {v € V|ev = v} and h™(V) = dimg {v € V]ev = —v}.
Define also hf (V) = h; (V) = h,s(V)/2if r # s and, if j = w(V)/2 € Z,

RE; (V) = RH(V) = Y hE(V), hi(V) = hii(V) = B, (V).
r#s

Conjecture 3a: Let V be an irreducible geometric @p-representation of Gg.
Then the weight w(V') of V is an integer. Moreover, for r,s € Z such that
r+s=w(V), the numbers h} (V) and h (V) are non negative integers and
hrs(V) = hs (V).

Assuming this conjecture, these numbers define in the usual way an isomor-
phism class of a linear representation of the Weil group Wg, hence a I-factor
Le(V,s) and we can consider the complete L-function A(V,s) =
Loo(V,s) - L(V, s).

Because we have a representation of W} for each prime number ! and a
representation of Wg, we can define in the usual way the conductor N, and
the e-factor €(V,s) (cf. e.g. [3]). We thus have the conjectural functional
equation:
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Conjecture 3b: Let V be as in 3a. Then A(V,s) converges for R(s) >> 0 and
admits a meromorphic continuation in the whole complex plane, satisfying

AV, s) =¢€(V,s)- L(V*,1-s).

(f) Modular forms.
Combining conjecture 1 with classical conjectures (e.g. [26]), we obtain

Conjecture 3c: Let V be an irreducible geometric @p-representation of Gg of
degree two which is not a Tate twist of a finite representation. Then there is an
integer i € Z such that V(—1i) is isomorphic to the representation associated to
a “new” modular form.

Using the previous discussion, one can be more precise: the integer i must
be the smallest integer such that h;(V) # 0. Twisting by Z,(—t) if necessary,
we can assume 4 = 0. Then, if w is the biggest integer such that h,, (V') # 0, the
weight of V' is w and we see that the weight of the corresponding modular form
f must be w + 1. The conductor of f must be the conductor Ny of V. The
nebentypus can be also computed in the usual way using the representations
of the Weil-Deligne groups. To prove this conjecture one “need only” to prove
that the L-function of V' is the Mellin transform of a modular form.

Observe also
i) that, because of the finiteness of the dimension of the space of modular forms
of fixed weight and level, conjecture 2a and conjecture 2b in the two dimensional
case follows from conjecture 3c;

ii) that, because of the fact that, if X is an elliptic curve over Q, if T,(X) is
its Tate module and if V = Q, ®z, Tp(X),V is geometric [12], conjecture 3c
implies the Shimura-Taniyama-Weil conjecture.

(g) Tannakian categories. (for a discussion of tannakian categories, see,
for instance, [12]). Let K be a number field, and let Repu (Gk) denote the
P
tannakian category of p-adic representations of Gk. A tannakian subcategory
is a full subcategory containing an object of positive dimension, and which is
stable under passage to sub-object, quotient, direct sum, tensor product and
dual.
§8 :
Let Rep:P’g(GK) (resp. Repcp,g(G k)) denote the tannakian subcategory

of RepQ (Gk) whose objects are geometric (resp. semi-simple geometric) rep-
— T Xp
resentations of Gg.

Conjecture 4a. The category Rep®® g(G k) is the smallest tannakian subcat-
—pr

egory of RepQ (Gk) containing all representations of the form HZ (X /R,@p)
—S

where X ranges through all proper smooth varieties over K.

Note that Conjecture 4a is equivalent to the union of Conjecture 1 and the

classical conjecture, due to Tate, that if X is smooth and proper over K, the
G k-representation HJ} (X /?,Qp) is semi-simple.

Although we don’t have a precise definition of “mixed motives” in mind, it
is tempting to us to ask the somewhat vague question:
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Question 4b: Is the category RepQ g(G k) the smallest tannakian subcate-
g,

gory of Repc (Gk) containing the p-adic realization of all mized motives over
P
K.

One concrete interpretation of the above question is the following:

Question 4c: Is the category RepQ g(G k) the smallest tannakian subcate-
L,

gory of Rep:p(GK) containing all representations of the form Hg(X./?,Qp)

where X ranges through all simplicial schemes of finite type over K ?

§5. “Universal” geometric deformation rings.

A preliminary remark on deformations: Let G be a profinite group and A
a local complete noetherian ring, of residue field k. Let GSW be the category
of local complete noetherian A-algebras, with residue field k. For short, by
A-algebra we mean an object of Ga.

If A is any A-algebra, an A-representation of G is an A-module of finite
type equipped with a linear and continuous action of G. We say that such a
representation is flat if the underlying A-module is flat.

We give ourselves a finite dimensional k-representation V of G, which is such
that the natural map £ — Endyg (V) is an isomorphism?®.

For each A-algebra A, an A-deformation of V is a flat A-representation
V of G such that k ®4 V is isomorphic to V. Denote by U7 (A) the set of
isomorphism classes of A-deformations of V. We get in this way a functor

Uy 65 — Sets.

Then [22]%, if dimy H'(G, Endgx(V)) < +oo, this functor is representable.
Therefore, one can define the universal A-deformation ring RA(V)g together
with a RA(V)g-deformation of V, well defined up to isomorphism, with the
obvious universal property.

Remark: If we choose a basis of V over k, the action of G on V gives us an
homomorphism p : G — GL4(k). Usually, one considers continuous homomor-
phisms from G — GL4(A) lifting p rather than deformations of V. Recall that
if p,p' : G = GL4(A) are two such homomorphisms, one says that p and p’
are isomorphic (resp. strictly isomorphic) if there exists a € GL4(A) (resp.
a € GL4(A) lifting the identity in GL4(k)) such that p'(g) = ap(g)a?, for all
g € G. From the surjectivness of A* onto k* and the fact that Endk[g](V) k,
we see that the two equivalence relations are actually the same. If we de-
note by ¢5(A) the set of equivalence classes, we get also in this way a functor
15 : &, — Sets. It is an easy exercise to build a natural isomorphism between
the functors v, and 1y and we will use this natural isomorphism to identify
U5 and 5.

Now let D be a strictly full subcategory of the category Rep (G) of A-
modules of finite length equipped with a linear and continuous actlon of G
which is stable under subobjects, quotients and direct sums. Assume that V is

S5actually, we will be mostly interested in the absolutely irreducible case.
6at least in the absolutely irreducible case, but the same proof works in general.
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an object of ®. Then we can define the subfunctor Vv o of 17 by the condition
that, for any A-algebra A, 13 (A) consists of elements which are represented
by representations V' such th’at, for any artinian quotient A’ of A, A' ®4 V
is an object of . One sees [23] that, if dimy H*(G, Endi(V)) < +oo0, then
¢V'D is representable by a quotient Ra(V)p of RA(V)g. We call RA(V)p the

universal ring of deformations of V lying in D.

We can apply that to G = Gk,s and A = Op the ring of the integers of
a finite extension of Q,. Hence, given V, we can consider the noetherian and
complete Op-algebra Roy(V)s := Ro,(V)gy. s Now, if moreover, we fix an
inertia level £ for S and two integers a,b € Z with a < b, we can consider the
full subcategory ® = Repo (Gk, 5)2 [a,b},st (resp. Repé (GK 5)2 [a,b], cris) Of
Rep (G’ k,s) whose objects are the T’s such that, for each v € S,
i) ifv doesn’t divides p, £, acts trivially on T,
ii) if v divides p, one can find a semi-stable (resp. crystalline) p-adic represen-
tation V' of £, satisfying (C, (r) ®q, V)** = 0 such that T is isomorphic to a
sub-quotient of V' as a Z,[£,]-module.

We denote by Ro, (V)s, £,[ab] st (resp. Rog (V)s, £,[ab)cris ) the corresponding
quotient of Ro, (V)s. Observe that the second is a quotient of the first.

Conjecture 5: For any finite set of places S of K, finite extension E of Q, of
residue field k, inertial level £, integers a < b, finite dimensional k-representa-
tion V of Gk,s belonging to Ro, (V) S,2,[ab),st; Which is such that the natural
map k — Endk[G](V) is an isomorphism, the ring Ro,(V)s.e J[ab],st 18 @ finite
Og-algebra.

This conjecture implies conjecture 2b: if S, £ and h are given as in conjec-
ture 2a, we can choose a < b such that, for all v’s dividing p, if D is a graded
(Qp ®Q »)-module representing the class k(v), we have gr "D = 0if r ¢ [a,d].
Then, if V is an E-representation of Gk s, say of degree N, representing an ele-
ment of Geom(K, S, £, h; E), the fact that V is irreducible implies that one can
find an Op-lattice T of V stable under Gg s and such that, if V = k®og T, the
map k — Endyg (V) is an isomorphism. Obviously, each finite quotient of 7'
lies in Repé (GK,s)g,[a,b),st> hence the natural homomorphism from Ro,(V)s

to O factors through Ro, (V)s ¢ Jla,b],st- Therefore the conjecture implies that,
given V, there are only finitely many elements of Geom(K, S, £, h; E) within
a representative of which we can find a Gk s-stable Og-lattice T' such that
k ®oy T = V. The result follows from the fact, easy to check, that there are
only finitely many isomorphism classes of k-representations V of degree N of
Gk,s such that the map k — Endy(g (V) is an isomorphism.

Remarks: a) Let V be an E-representation of Gk s which admits a lattice T'
stable under Gk, s such that each finite quotient lies in Rep (G K,5)2,[a,b],st

(resp. Rep! Repy, (GK,5) s [a,b),cris)- It should not be very hard to prove that V is
geometric. Up to now, we have checked this property only in special cases (for
instance, this is OK for Repo (GK,8) g [ab)cris f b—a < p—1 and K/Q is
unramified at porif b—a <1 and for all v dividing p, the ramification index
of K,/Qp is <p-—1).
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(b) Universal geometric deformation rings and the Langlands pro-
gram: Let R be either Ro, (V) 5,8,[ab},st OF Rog V) 5,2,[a,b,cris @ above and
Tg the corresponding free R-module with action of Gk s (well defined up to
isomorphism). For any place v of K not contained in S, there is an element
which might be called a “Hecke element” 7, in R given by taking the trace
of Frob, acting on Tg, where Frob, is any choice of Frobenius element at v in
G K,S- . .

Can one “reconstuct” the rings Ro, (V)s,¢ (4,615t 20d Rog (V)s, 2, [a,b],cris and
their systems of Hecke elements v + 7, as completions (at maximal ideals
of residual characteristic p) of rings which are generated by Hecke operators
and which act (faithfully) on automorphic representations spaces for specific
reductive groups (notably GLy/k) 7

§6. The special case where p is potentially abelian.

A p-adic representation V of Gk is potentially abelian if there is an open
subgroup of Gk which operates on V through an abelian quotient group.

For any abelian variety A over K, let A[p"](K) denote the group of K-
rational points of A annihilated by multiplication by p", let T,(A)=lim.proj.
Alp"|(K)
and put V;(4) = Q, ®z,T,(A). Recalling the terminology of Remark (g) of § 4,
let _RQQW o (Gx) denote the smallest Tannakian subcategory of Rep: (Gk)

containing all representations of Gg which factor through finite groups, and
also containing the V,(A) for A ranging through all abelian varieties over K
which are potentially of CM type.

Proposition: Let V be a potentially abelian p-adic representation of Gk and,
for each place v of K, let V, be the underlying representation of G,. The
following are equivalent:

1) For every place v of K dividing p,V, is of Hodge-Tate type and the action of
I, is semi-simple;

2) for every place v of K dividing p,V, is of Hodge-Tate type;

3) for every place v of K dividing p,V,, is of de Rham type;

4) for every place v of K dividing p,V, is potentially semi-stable;

5) for every place v of K dividing p,V, is potentially crystalline;

6) the representation V is geometric;

7) the representation V is an object in Repr,CM(GK)’

Proof. Since potentially abelian representations are unramified outside a finite
set of places ([27], Cor. of p. IIL.11) we have (4) < (6). One knows that
every abelian variety A which is potentially of CM type has potentially good
reduction. It follows that if V' = V,(A), then V satisfies (5). Moreover, any
finite representation satisfies (5), and (5) is stable under tannakian operations.
Therefore (7) = (5).

The implications (5) = (4) = (3) = (2) and (1) = (2) are all trivial.

From ([27], Thm. 3 p. III-52) one has that (1) implies that V is “locally
algebraic” which, in turn, implies (7) by ([4], Prop. D1).

It remains to establish the implication (2) = (1) which is an exercise, using
the Theorem of Sen [25] that a representation, which is Hodge-Tate and whose
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only Hodge-Tate weight is 0 (with any multiplicity) must factor through a finite
quotient group. O

§ 7. The special case where p is potentially unramified.

After a finite base change we can make p unramified, i.e., we can view our
representation as being a representation of Gk, s where S is a finite set of primes,
none of which have residual characteristic p.

Conjecture 5a: If p is distinct from all of the residual characteristics of S,
then any p-adic representation of Gk s factors through a finite quotient group

OfGK’s.

Remark: Conjecture 5a for all p-adic representations follows from the same
conjecture, but stated only for semi-simple geometric p-adic representations.
This latter conjecture follows from Conjecture 1 in conjunction with the Tate
Conjecture about the subspace of étale cohomology generated by algebraic cy-
cles.

An equivalent way of stating Conjecture 5a is that if p is distinct from all
of the residual characteristics of S, then any quotient group of Gk s which
is a p-adic analytic group, is finite. Conjecture 5a for S empty bears on the
structure of the Galois group of a Golod-Shafarevich p-tower: Let I'(K, p) denote
the Galois group of the maximal everywhere unramified pro-p-extension of the
number field K. Conjecture 5a implies.

Conjecture 5b:  Any quotient group of I'(K,p) which is a p-adic analytic
group, is finite.

For some partial corroboration of this conjecture, see the recent work of
N.Boston ([2], Theorem 1), and F.Hajir [18].

Part I1. Representations of dimension 2 of Gal(@p /Qp).

In this part, Gp = Go, = Gal(@p /Qp) and I, is the inertia subgroup. For
any Zp-module V and any r € Z, we denote by V(r) = V ®z, Z,(r) the usual
Tate twist.

For € € F,, the residue field of Q,, we denote [e] its Teichmiiller representative
in Q.

For simplicity, we will assume p # 2 (and sometimes p > 5).
§8. The representations of G, of dimension 1.

Let A be a complete noetherian local ring with finite residue field. For any
profinite group G, a character with values in A is a continuous homomorphism
n:G — A*. If N is any closed invariant subgroup of G contained in the kernel
of n, we still denote 7 : G/N — A* the character we get by factoring, and
conversely.

If V is an A-module equipped with an action of G,V (n) denotes the same
A-module with the action of G twisted by 7.

If a € A%, we denote by 7, : Gp/I, — A* the unique character such that
nq(arith.frob.) = a.

Let & : Gp — F; be the character giving the action of G, on the p-th roots

of 1. Fori € Z/(p—1)Z and € € F},, denote by U;,. the one dimensional F,-
representation of G, which is F,, on which G, acts through 7.£¢. Then any one
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dimensional F,-representation of G, is isomorphic to one and only one of the
Uipe.

Define £, (g) = [¢1(g)] and x : Gp — Zj, the cyclotomic character which we
can write as xy = él_- Xo with xo taking values in 1+ pZ,.

If we denote R(U; ) = Rz,(U;¢)g, the universal Z,deformation ring, one
sees that one can write R(Ui,e) = Zp[T1,T>], in such a way that the corre-
sponding character 1 : G, — Zp[T1,T>]* giving the universal deformation has
the property that if, for r € Z,

Zy[[T1, To]] — Zy[[T1]]

is the ring-homomorphism to ker,T; to T; and T3 to (1 + p)" — 1, then

er N =Mgasm) " € - Xe?

for all r € Z,.

Now, let U be a one dimensional (, representation of Gp,. To give U up to
isomorphism is the same as to give the unique (i,¢,t1,t2) € ((Z/(p—1)Z) x F;, x
PZLyp X plyp such that G acts on U via 7 [)(1+t2) ° é. x5 where (1—p)" —1 = t,,.
If T is a Z,-lattice and if U = T/pT, then U ~ U, .; moreover U is potentially
seml-stable if it is Hodge-Tate, which amounts to requiring that r be in Z. In
this case r is the (unique) Hodge-Tate weight of U.

Now fix Ui,s and r € Z. We observe that , if U is potentially semi-stable of
Hodge-Tate weight r and such that U ~ U;, € then there is a unique t; € pZ,
such that Gp acts on U via ngj144,) - 51 Xo = 51 “MeJ(1+¢1) " X" (Where 7 denotes
the image of r in Z /(p— 1)Z), hence U (] %) is a crystalline representation with
r as unique Hodge-Tate weight. Now, if we consider the full subcategory ® of
the category of finite Z,-representations T of G, which are such that T'(£] %)
is isomorphic to a subquotient of a crystalline representation of unique Hodge-
Tate weight r, © is stable under subobjects, quotients and direct sums, so we
can speak of the universal deformation of U;. “lying in ©”. The correspond-
ing ring RZ (Uie)p is isomorphic to Z,[T1] with the corresponding character

Me)(1+T1) ° & - xb.

§9. The absolutely irreducible F,-representations of G, of dimension
2 and their deformations.

By convention, for any positive integer n,Qyn C @p will denote the un-
ramified extention of ), in Q, of degree n and Fp» the corresponding residue
field. We choose 1,73 € @p such that 7l'1_1 —p and 7r2+1 = m; and, for
J =12, let F; = the Galois closure over Q, of Q,(m;); let L = Qp2-1) (7r2)
and Lo = sz(p 1y so that we have the diagram

Qp (l7r2) - FB= (%,,2 (7r2) - L= Qp2ip—l) (7(2)
FrF = @ ({/I) |= Q(m) - Q2 [(771) - Qp2(v—|1) (m)
Q - Q2 - Lo =Que-v
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The Gal(L/Q,(m2))(~ Gal(Lo/Qp)) is cyclic of order 2(p — 1) generated by
the “Frobenius element” 7 satisfying 7z = z? if £ € Fpep-1), the residue field of
L. The group Gal(L/Ly) is canonically isomorphic to the multiplicative group
of F,2, via the “fundamental character” & : Gal(L/Lo) — F}. associated
to g € Gal(L/Lo), the image of gma/ms in Fy2. The group Gal(L/Qy) is a
semi-direct product of Gal(L/Q,(m2)) and the normal subgroup Gal(L/Lo),
with 7g7~1 = gP for any g € Gal(L/Lo).

Consider (¢,&) where ¢ € Z/(p*—1)Z and ¢ € F;,. Given such data, we choose
¢ € F,2 such that (P*! = —¢. Attached to the above data, and this choice, we
have a unique homomorphism

Pue: GaI(L/Qp) — AutFP (]sz)

such that the restriction to Gal(L/Lg) consists in F,2-linear automorphisms
given by the one-dimensional F:-character £, and 7 acts on Fp2 via the Fp2-
semilinear automorphism z +— ¢ - zP. We denote also p, . : G, — Autr, (Fp2)
the natural lifting and V, . the 2-dimensional F,-representation of G, which is
F,2 on which G}, acts through p, .

Proposition . i) The isomorphism class of the Fyp[Gp]-module V. is in-
dependent of the choice of  such that (P*! = —e. The “determinant” N2V, .
is isomorphic to Uy (where T is the image of v in Z/(p— 1)Z). One has
V. o ~ V. if and only ife' = ¢ and ¢ € {l,pt}. The representation Ve is
absolutely irreducible if and only if pt # ¢ (in Z/(p* — 1)Z).

i) Let V be a 2-dimensional absolutely irreducible Fp -representation of G,.
Then V ~V, . for a suitable (1,€) € (Z/(p* — 1)Z) x ]F‘;;.

Proof. Exercise. a

Let ¢ € Z /(p* — 1)Z such that pt # ¢. The residual representation V, . being
absolutely irreducible possesses a universal deformation ring R, . = =R(V,.) as
in [22], and we have the theorem due to R. Ramakrishna ([23] Th.4.1):

Theorem . For any absolutely irreducible V = VL’E, the “deformation
problem is smooth” and the ring R, . is isomorphic to a power series ring in
five variables over Z,, i.e. to Zp[T1,Ts,-- ,Ts].

§10. Potentially semi-stable p-adic representations and pst-modules.

Tt is known[12] that, using the ring By [11], one gets an equivalence of cate-
gories between potentially semi-stable p-adic representations of G, = Gal((@p /Q)
and the category of “admissible filtered (¢, N, Gp)-modules”. We want to recall
a bit of this theory.

(a) Filtered modules : Let F be a finite Galois extension of @, contained in
Q, and Fp the maximal unramified extension of Q, contained in F'. A filtered
((p, N, Gal(F/Q,))-module is a finite dimensional Fp-vector space D endowed
with

a “Frobenius” endomorphism ¢ : D — D bijectiv and semi-linear via the
action of the absolute Frobenius on Fp,
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- a “monodromy” operator N : D — D linear and satisfying Ny = ppN,

- an action of Gal(F/Q,) semi-linear with respect to the natural action of this
group (via its quotient Gal(Fp/Qp)) on Fy and commuting with ¢ and N,

- a decreasing filtration (Fil"Dp)rez of the F-vector space Dr = F ®p, D
stable under the natural action of Gal(F/Q,) (acting via (9, A®d) — gA® gd)
verifying Fil"Dr = 0 for f > 0 and = D for r < 0. Observe that, if we put
Dgyr = (D) G(F/Q)  the obvious map F &g, Dgr — D is an isomorphism
and the condition that the Fil”D%s are stable under Gal(F'/Q,) means exactly
that the filtration comes from a filtration of the Q,-vector space Dgg.

Whenever FF = Q,,D is just a QQy-vector space together with two linear
endomorphisms ¢ and N (with ¢ bijective and Ny = ppN) and a filtration
and we call D a filtered (p, N)-module.

The filtered (¢, N, Gal(F/Qy))-modules are the objects of an additive @,-
linear category (which is not abelian) where “morphisms” are defined in the
evident way. One can define in a natural way the dual D* of an object of this
category and the tensor product D; ® D, of two objects.

Recall ([9], [12]) that for such a D, one can define its Hodge polygon (as-
sociated to the Hodge-Tate type, i.e. to the number A" = dimgr"Dp) and its
Newton polygon (associated to the slope of Frobenius). One says that D is
weakly admissible (or w.a. for short) if
i) for any sub-(p, N, Gal(F/Q,))-module D' ofD, with D% C D equipped
with the induced filtration, the Hodge polygon of D’ lies above the Newton
polygon of D';

ii) the Hodge polygon and the Newton polygon of D ends up at the same point.

The weakly admissible modules form an abelian category [12]. If D is an
object of this category, sub-objects of D are sub-(p, N, Gal(F/Q,))-modules
such that the Hodge polygon and Newton polygon of D end up at the same
point.

Changing F : Call ¥ the set of finite Galois extensions of @, contained in
Q,. Given F,F' € § with F C F', we say that a (¢, N, Gal(F'/Q,))-module
D' is F-semi-stable if the natural map Fj ®p, (D') S*F'/F) 5 D' is an
isomorphism. To any filtered (¢, N, Gal(F/Q,))-module D, one can associate
a filtered (p, N, Gal(F'/Q,))-module D,p: in an obvious way (the underlying
F§-vector space is F{ ®, D). We get in this way an equivalence of categories
between filtered (¢, N, Gal(F/Q,))-modules and the full subcategory of filtered
(¢, N, Gal(F'/Qp))-modules consisting of F-semi-stable ones. Thus we can
form the inductive limit over § of the category of filtered (¢, N, Gal(F/Q,))-
modules; we call an object of this Qp-linear category a pst-module.

Each time we have a pst-module A, we may choose an F € § such that
this object is F-semi-stable and we can speak of its F-realisation which is a
filtered (v, N, Gal(F/Qp))-module D. On this D we have an Fy-linear action
of the inertia subgroup of Gal(F/Q,) that we can view as a continuous action
of I, whose kernel contains I, N Gal(Q,/F). If F' € §, A is F'-semi-stable
if and only if I, N Gal(Q,/F") acts trivially on D. To know A is the same as
to know D; the choice of F' doesn’t matter and we will sometimes speak of the
pst-module D.

If D is a filtered (¢, N, Gal(F/Qp))-module and if FF C F',Dp: is weakly
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admissible if and only if D is. Then it makes sense to speak of a weakly
admissible pst-module. These modules form an abelian Q,-linear category.

(b) Representations : If F' € §, we have a natural functor D,  from the cate-
gory of p-adic representations of G, to the category of filtered
(¢, N, Gal(F/Qp))-modules:

V= D =Dy p(V) = (Bt ®q, V) ®=I(®/P),

s

We have dimp, < dimg,V and V is said to be F-semi-stable if equality holds.
The property to be F-semi-stable is stable under taking subobject, quotient,
direct sum, tensor product, dual. Say a filtered (¢, N, Gal(F/Q,))-module is
admissible if it is isomorphic to D, (V) for an F-semi-stable V. It is known
that admissible implies weakly admissible and conjectured that the converse is
true. The restriction of Dy, p to F-semi-stable representations is fully faithful,
hence induces an equivalence of categories between p-adic F-semi-stable repre-
sentations of G, and admissible filtered (p, N, Gal(F/Q,))-modules. There
is a natural quasi-inverse Vg of Dy p (Vi (D) is defined as a suitable sub-Q,-
vector space of By ®, D). This is an equivalence of tannakian categories, i.e.
Dy p is compatible in a natural way with duality and tensor product.

If D is admissible and if D' is a sub-(¢, N, Gal(F/Q,))-module of D, then
D’ is admissible if and only if it is weakly admissible.

It is sometimes convenient to use a contravariant version of this equivalence.
If V is F-semi-stable, one can define Dg; (V') in three different ways (there are
canonical isomorphisms between them [12])

D p(V) = Homg Gal(@p/F)](V’ Bst) = Dy p (V") = (Dt p (V)"

Let V' be F-semi-stable and D = Dy (V). Then V is de Rham and the
filtered Q-vector space Dy(V) = (Bar®q, V)C» can be identified with Dgg =
(DF) G2(F/Q)_ Hence V is also Hodge-Tate and the Hodge-Tate multiplicities
k" (V) = dimg,Homg,g,)(V, G, (r)) satisfy

h"(V) = dimp Fil™"Dp/ Fil™""*Dp = dimp Fil"D}/ Fil"*!D}.

Tate twists : For any filtered (¢, N, Gal(F/Q,))-module D and for i € Z,
we denote by D{i} the filtered (p, N, Gal(F/Q,))-module which is D as a Fy-
vector space with the same action of N and of Gal(F/Q), and

¥ new = p_iSO old and FilTDF, new — Filr_HDF, old-

If V is any p-adic representation of G, and if ¢ € Z, the usual Tate twist V (4)
is F-semi-stable if and only if V is. In this case, Dy r(V (i) can be identified
with Dy, p(V){i} and Dg; p(V(3)) with Dg; p(V){-i}.

st F
Changing F' : A p-adic representation V of G, is said to be potentially

semi-stable if it is F-semi-stable for some F € F. If V is F-semi-stable,
with D = D »(V), and if F' € F contains F,V is also F'-semi-stable and
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Dy, r(V) can be identified with D,p. Hence we have an evident notion of
admissible pst-modules and we get an equivalence between potentially semi-
stable representations and the full subcategory of weakly admissible pst-modules
whose objects are admissible ones (and conjecturally they are all).

Remark: A p-adic representation V of G, is semi-stable if it is Q,-semi-
stable, F-crystalline if it is F-semi-stable and N = 0 on D, (V'), potentially
crystalline if it is F-crystalline for some F, crystalline if it is Q,-crystalline.
The one dimensional case : Consider a one dimensional pst-module A,
choose F' € F such that A is F-semi-stable and let D be its F-realisation. This
is a one dimensional Fy-vector space on which I, acts linarly via a character
of finite order with values in OF,. The fact that this action commutes with ¢
implies that it takes values in Z,, hence its order divides p — 1. This means
that A is Fj-semi-stable (recall F; = Q,(</1)), hence we can choose F = F}
and D is a one dimensional Q,-vector space; it is an easy exercise to check that
i) there is a unique (r,a,i) € Z x @ x (Z/p — 1)Z such that D ~ D(r;a;i),
where D(r; a;1) is defined as follows. Its underlying Q,-vector space we take to
be @y, and hence Dp, = F;. Put

pl=a,N1=0,g1=¢§(9) if g€ Gal(F/Q,), FiI'F, = Fy, FiI'*'F, =0.

ii) the module D(r;a;¢) is weakly admissible if and only if vy(a) = r; in this
case it is also admissible and G acts on V,(D(r;a;)) via the character x~7 -
Ma/pr)-1 * &1

All the one dimensional potentially semi-stable p-adic representations of G,
are Fj-crystalline.

§11. The irreducible 2-dimensional weakly admissible pst-modules.

If F € F and D is a 2-dimensional filtered (¢, N, Gal(F/Q,))-module, Dp
is a 2-dimensional filtered F-vector space and there are well defined integers r, s
satisfying r < s such that, if i € Z, Fil'Dp = Dr & i <r and Fil'Dr =0 &
i > s. We call (r, s) the Hodge-Tate type of D.

We fix (r,s) and we want to describe some 2-dimensional filtered
(¢, N, Gal(F/Qp))-modules, D of Hodge-Tate type (r,s). If r = s, there is
no choice for the filtration. If r < s, the filtration of Dg is determined by the
knowledge of the F-line Fil"*!Dp = Fil*Dr and we will denote it by A. The
underlying Fp-vector space of each D will be taken to be (F)? and we denote
{e1, e2} the canonical basis.

(a) Let’s first choose F' = Fi, hence Fy = @Q,,I'1 = Gal(F/Q,) and the char-
acters of I'; with values in Z,, are the £ for 0 <i < p— 1.

Type I : Choose (a,d,i) € @y x Q x Z with 0 < i < p — 1; define D =
Di(r,s;a,d,i) by wex = ez, pea = —dey + aez,Ney = es = 0O,gz =
£i(g)x (reD,gely), andifr<s, A=F.1Qe.

Type II : Choose (b,c,i) € @ x Q, x Z with 0 < i < p — 1; define D
Dyy(r,s;b,c;i) by wer = pbei,pes = bey,Ney = e;,Nes = 0,9z
fi(g)x (xeD,gel), andifr <s,A=F.(1Qe; +c®ey).

Type III ; Choose (ai,as,%1,i2) € (@)% X Z2, with 0 <43 < iz < p— 1; define
D = Dyy(r, s;a1,a9;41,12) by pe1 = ae,pes = ases, Ne; = Ney = 0,ge; =
e, gey=E2ey (geTy),and,ifr <s,A=F(r2 Qe + 1! @e).



208 J.-M. FONTAINE, B. MAZUR

(b) We now choose F' = F, with, as in §9, F» = Q2 (2) where we have chosen
72 € Q, such that 7§ = —p. Then Fy = Q2. Let Ty = Gal(F3/Q,) and IT;
the inertia subgroup. We denote by 52 : ITy — pp2_1(Qp2) the isomorphism
defined by 52 (9) = gma/me. The group I's is the semi-direct product of the
invariant subgroup IT; by the subgroup of order 2 generated by the unique
nontrivial element 7 of I'y such that 77y = 7; moreover, if g € ITy,7gT = gP.
Type 1V ; Choose d € @, integers 4,z satisfying 0 < i3 < i < p— 1.
If s > r, choose also a € P}(Q,). If s = r (resp. s > r) define D =
Dry(r,r;d;iy,iz)(resp. Drv(r,s;d;i1,iz2;)) by wer = ez, pey = —der, Ney =
Ney = 0,7e; = e1,7Tex = e, ge; = £2P2(g)e; and gey = £2+Ph (g)e, for
g€ Il and ,ifr < s,A = Fz.(ﬂ’ép_l)il Qe + a.ng"_l)iz ® ez2) if @ # co and
A=F.1Qe if a = 0.

Theorem A : i) The following pst-modules are weakly admissible and irre-
ducible:

1) Dy(r,r;a,d,1) if vp(a) > r,vp(d) = 2r and X2 —aX +d irreducible over Qp,
1') Dy(r,s;a,d,i) forr < s, if vy(a) > r and v,(d) =r +3s,

2) Dri(r,s;b,c;1) for s —r > 3 and odd, if vp(b) = (s —r —1)/2,

3) Drri(r,s;a1,az;i1,12) for s —r > 2, if vp(a1) > r,vp(a2) > rvp(aras) =
r+s,

4) Drv(r,r;d;iy,i2)(resp. Drv(r,s;d;i1,42; @) if vp(d) = 2r(resp. r + ).

i1) The above objects are all absolutely irreducible exept D(r,7;a,d,i) for which
the ring of endomorphisms is isomorphic to Q,[X]/(X? — aX +d).

it1) Any irreducible 2-dimensional w.a. pst-module, which is Fy-semi-stable, is
isomorphic to one and only one object of the lists 1)-4).

w) If p > 5, any irreducible 2-dimensional w.a. pst-module is F-semi-stable.

Proof. See App., §A. O

This theorem reduces the problem of finding the complete list of isomorphism
classes of irreducible two dimensional p-adic potentially semi-stable represen-
tations of G to finding out which are the pst-modules in the above list which
are admissible (and conjecturally they all are). Each time that we discover
that one of those D’s is admissible we will denote the corresponding repre-
sentation V(D) (resp. the dual representation V(D) = V,(D)*) using the
same notation but replacing D with V' (resp. V*) (e.g. Viv(r,s;d;i1,42;0) =
Vi (Drv(r,s;d;iy,i2;2)) and Vi, (r, s;d; i1,42; @) is the dual of this representa-
tion).

Given a two dimensional p-adic representation V of G, and two integers
r < s, we say that V is of Hodge-Tate type (r,s) if V is Hodge-Tate and

Homg,(,1(V, G, (7)) # 0 if and only if ¢ € {r,s}. We see that if V = V(D) for
some admissible pst-module D, than the Hodge-Tate type of V is the same as
the Hodge-Tate type of D. Using this fact and checking the list of D’s occurring
in the previous theorem, we get the following result:

Proposition 1. Let V be a two dimensional irreducible p-adic representa-
tion of Gp which is potentially semi-stable of Hodge-Tate type (r,s). Then, we



GEOMETRIC GALOIS REPRESENTATIONS 209

are in one and only one of the following cases:

1) There is a character of finite order v such that V (v) is erystalline, in which
case there is a unique integer 1 satisfying 0 < i < p —1 such that one can
choose v = &} and a unique (a,d) € Q, x Q; such that Di(r,s;a,d;1) is
admissible and V ~ V' (r, s;a,d;1);

2) The representation is not potentially crystalline, in which case there is a
unique integer i satisfying 0 < i < p — 1 such that V(é{) is semi-stable
and a unique (b,c) € Qp x Q, such that Dy(r, s;b, c;i) is admissible and
V > Vi(r, s;b,¢t);

3) The representation is Fy-crystalline, but there is no character v such that
V(v) is crystalline, in which case there is a unique couple (i1,i2) of in-
tegers satisfying 0 < i1 < i3 < p— 1 and a unique (a1,a2) € (Q})* such
that Dyyy(r, s;a1,a2;11,12) is admissible and V ~ Vi (r, s; a1, a2;11,12);

4) The representation is not F; -semi-stable, in which case it is Fs-crystalline,
there is a unique couple (i1,12) of integers satisfying 0 <i; <iy <p-—1,
a unigue d € @ and , if r < s a unigue a € P}(Qy), such that, if
r=s (resp. 1 <s), Dry(r,rid;i1,iz) (resp. Dry(r,s;d;i1,12;0)) is
admissible and V ~ Vi, (r,7;d;i1,12) (resp. V ~ Vi, (r,s;d; 41,105 0) ).

From the fact that we have an equivalence of tannakian categories, one sees
that, if D is admissible, then A%2D is also and that V,(A2D) ~ A2V (D). An
easy computation gives us the following result:

Proposition 2. Let D be one of the w.a. pst-modules listed in the previous
theorem. Assume it is admissible and let V = V3,(D). Then G, acts on det V,
via nuXx"+°6 7,

1) withu=d/p™* and j = 2i if V = V}(r,s;a,d,1),

2) withu="0%/p""* ! and j = 20 if V = V;(r,s; b, c; 1),

8) withu = arax/p™*® and j =iy + 12, if V = V(7,85 a1, a2;41, 12),

4) with u = d/p™* and j = i1 + ia, f V = V. (r,s;d;i1,i2;0) or
Viv(r,s;d;i,i9) with s =7.

§12. Ramakrishna’s theorem : crystalline representations of dimen-
sion 2 and their deformations.

We say that a p-adic representation V of G}, is absolutely irreducible mod
p if there exists a Z,-lattice T of V' stable under G, such that the G,-module
T/pT is absolutely irreducible; we put V = T/pT and call it the reduction
mod p of V. This is well defined, because the other lattices stable under G,
are the p"T, for n € Z. Of course, any p-adic representation which is absolutely
irreducible mod p is absolutely irreducible, but the converse is not true.

Theorem B1. The D’s of type IV which s —r < p— 1 listed in theorem A
are admissible. Moreover
i) Ifd is a p-adic unit, if X — aX + d is irreducible over Qp andif Aisa
root of this polynomial, V}*(r,7;a,d;1) is isomorphic to a one dimensional
Qp (X)-vector space on which Gp acts through the character m.x’.é{ i
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i) Ifl1<s—r <p-1,V(r,s;a,d;i) is absolutely irreducible mod p and its re-
duction mod p is isomorphic to VL ¢ where « is the image of
rp+s—(p+1)iinZ/(p? — 1)Z and ¢ the image of d/p"** in F.

Proof. See App., §B. a

Let Rep Gp) be the cate ory of (finite dimensional p-adic representations
Q p g
P

of G, and _Rﬂép(Gp) the category of Zy-modules of finite length equipped
with a linear and continuous action of G,. If a < b are integers, we denote
by RepQ (Gp)erfap) the full subcategory of Rep (G,,) consisting of those
V' which are crystalline and such that h’(V)(: dlrnQP gr"Dyr(V)) = 0 if
T & [a,b]. Denote also by Rep ( p)erfa,5) the full subcategory of RepZ (Gp)
whose objects are Ts for which one can find an object V of M@ (Gp )c, [a,b]
such that T is isomorphic to a subquotient of V. This is stable under subob-
jects, quotients, direct sums. Hence, for any (t,€) as in §9 such that Ve is
absolutely irreducible one can speak of the ring R, ¢(cr, [a, b]) of the universal
Z-deformation of V, . lying in RepZ (Gp)er,ja,5) @8 sOOD as V.. itself is an
object of this category.

Theorem B2. LetV = VL,E be absolutely irreducible.
i) The representation V lies in Repf (Gp)c,‘[ 0,p—1]7

i) if r,s are the umque integers such that 0 <r < s < p—1 and the image
of T+ ps mod p? — 1 is equal to v or pi, there is a unique isomorphism
R, c(cr,[0,p—1]) = Z,[V1,Y2] such that, for any morphism Y1 — y;, Yz s
Y2 of Ry e(cr,[0,p—1]) to Zy, if T is representative of the corresponding
isomorphism class of Z,-deformation, then

Q ®z, T = V[ (r, 5 y2, 0" "*[e](1 + y1), 0).

Proof. See App., §B. This theorem is a slight refinement of a result of Ramakr-
ishna [23] who proved the fact that R, .(cr, [0,p — 1]) ~ Zy[Yh,Ys]. O

Remark If 0 < s —r < p—1,u € Z and if Vi (r,s;a,d; z) is as in theorem
B1, then V7 (r +u, s +u;a,d; i) ~ V7 (r, s; p¥a, p?%d; 0) (X “£7Y). If 4 denotes the
remainder of euclidean division of u by p — 1, the character X"§1 = x¢ takes
values in 1 + pZ,. For each u € Z, twisting the representation on Z,[Y7, Y]
which is the “universal deformatlon of V, , for which all finite quotients lie
in RepZ (Gp)erjo,p-1)" by X§, we get the “universal deformation of V.. fo

which all finite quotients 7' are such that T'(€¥) lie in RepZ (Gp)er,fu,utp— 1]”

Any V = K;t (D) for D absolutely irreducible of type I and Hodge-Tate type
(r',s') with s' — ' < p—1 such that V ~ V, . can be obtained by a suitable
specialization of one of those universal deformations.
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§13. Potentially Barsotti-Tate representations of dimension 2 and
their deformations.

We will only give a sketch of the proof of the main results of this section (see
Appendiz, §C). Details will be published elsewhere.

Consider (¢,€) where ¢ € Z/(p? — 1)Z and € € F;. We denote by V,. the
p-adic representation of G, which is the “canonical lifting” of V, ¢: this is Qp2
on which G}, acts through the homomorphism

pue: Gal(L/Qp) — Athp(sz)

such that the restriction to Gal(L/Lo) consists in Q2-linear automorphisms
given by the one-dimensional Q2 -character €, and 7 acts on Qp2 via the Qpe-
semilinear automorphism z — [(] - oz (where, as in §9, (P¥! = —¢).

Let QZQ be the maximal abelian extension of Q2 contained in @p and
6:Q. — Gal(@;é’ /@Qp2 ) the inverse of the local reciprocity map”. The restric-
tion 8y of 8 to the group of units is an isomorphism onto the inertia subgroup
In( QZ" /Qpz) of Gal(Q /Qy2); as the natural map I, — In(Q2% /Q,) is onto,

the inverse of 8y can be viewed as a character

vil, = Q.
Given d € Q, with vy(d) =1 and ¢ € Z/(p? — 1)Z, one sees easily that, up to
conjugacy, there is one and only one continuous homomorphism

PLTd,u - G — Ath (sz)

(“LT” for “Lubin-Tate”) such that the restriction of py 7, d,. to I, is the character
v- 52 and the deteminant of prr,4, is the character ng/p - x - .fl We denote
by ViT,4, a chosen representative of the corresponding isomorphism class of p-
adic representations. One sees that, if (d',',) # (d,¢), then Viz o % Vit g,
and that Vpr g4, is absolutely irreducible mod p if and only if p + 1 doesn’t
divide ¢ + 1 in which case VLT,d‘L ~ VL+1,E with € the image of d/p in F;. also
Virao =~ Vi (0,1;0,d;0) ~ Q, ®z, Tp(Jag) where Jy is a p-divisible group over
Zy which viewed as a p-divisible over the ring Z 2 of the integers of Q2 is a
Lubin-Tate formal group for Q2.

Observe that Dy (r,7;d;i1,13) ~ Drv(0,0;p~2"d;41,i2){~7}, hence one of
those modules is admissible if and only if the other is, in which case
Viv(roridiiy,ie) ~ V35,(0,0;p7%7d; 41,142)(r). When r < s, we have a similar
statement for Dy (r, s;d;11,i2;) =~ Dry(0,s — r;p~2"d,; zl,zz,p "a){—r} with,
in case of admissiblity, Vi, (7, 5;d;11,42; @) ~ V5, (0,8 — r;p~27d; 41, 42; p @) (7).
In particular, the first representation is absolutely irreducible mod p if and only
if the second is.

Theorem C1. The D’s of type 4 with s — r < 1 listed in theorem A are
admissible. Moreover, if 0 < iy < i3 < p— 1 and if i denotes the image of
i1 + pis in Z/(p* — 1)Z, then

i) ifd=[elu® withe € F, and u € 1+ pZy, V7 (0,0;d;41,42) ~ V_; (nu)
(hence this representation is absolutely irreducible mod p and its reduction
mod p is isomorphic to V—i, )

"hence the image of 8(p) in Ga.l(sz /Fy2) is the arithmetic Frobenius
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i) if d = plelu® with e € Fy,u € 1+ pZy and if a € PY(Q,), then V =
Viv(0,1;d;i1,42; @) is absolutely irreducible mod p if and only if - either
vp(@) > 0, in which case V =V, _;_ - orvp(a) < -2 andiz —i; > 1, in
which case V ~V,_ - ;

i) if vp(d) = 1,V},(0,1;d;41,12;0) =~ Virai—; and Viy(0,1;d;141,1d2;00) =~
VLT,d,l—pf'

We observed that all w.a. pst modules listed in theorem A with s —r <1
are admissible because they are either of type I or of type IV. Say that a p-adic
representation V of G, is potentially Barsotti-Tate if one can find a finite
extension E of (J, contained in @p and a Barsotti-Tate group J defined over the
ring of integers of E such that V ~ V,(J) = Q, ®z,Tp(J) as a Q[ Gal(Q,/E)}-
module, where T, (J) is the Tate module of J. If this is the case, one knows that
V is potentially crystalline with Hodge-Tate weights € {0,1}. One conjectures
the converse is true and this is clearly the case whenever 0 is the only weight (this
means that the image of inertia is finite, hence that J is étale) or whenever 1 is
the only weight (this means that the image of inertia on V(—1) is finite, hence
that J is of multiplicative type, i.e. is the Cartier dual of an étale Barsotti-Tate
group).

Assume V is irreducible of dimension 2. Then the Hodge-Tate type can be
(0,0),(1,1) or (0,1). If it is (0,0) this means that V ~ V3 (D) with D equal to
one of the w.a. modules D(0,0;a,d,?) or Dyy(0,0;d;1;,i2) listed in theorem
A. If it is (1,1) this means that V(—1) is of type (0,0). The problem for type
(0,1) is solved by the next theorem, for which we need two more definitions:

Definitions: Let Jy be a Barsotti-Tate group over F,. Then J; is equipped
with two endomorphisms, the Frobenius ¢ = F' and the Verschiebung V satis-
fying ¢V = Vo = p. We say that Jy is strictly of slope 1/2 if there is an
automorphism u of Jy (necessarily unique) such that ¢ = Vu.

Let O be the ring of the integers of a finite, totally ramified extension E
of Q,. We say that a Barsotti-Tate group J over O is strictly of slope 1/2
if its special fiber is strictly of slope 1/2 and if moreover, given any invariant
differential form w on J, one can find differential forms w;,ws with w; exact
and A € O with vp(A) > 1/2 such that w = w; + Aws.

Theorem C2. Assume p > 5. Let V be an irreducible two dimensional p-
adic representation of G, which is Hodge-Tate of Hodge-Tate type (0,1). Then
the following are equivalent:

i) V is potentially Barsotti- Tate,

it) V is potentially crystalline,
i) V is potentially semi-stable,
i) There is a w.a. pst module D which is either one of the modules
D;(0,1;a,d,3) or one of the modules Dyy(0,1;d,1y,i2; a) listed in Theo-
rem A such that V ~ V(D).
Moreover,
a) if V =Vr(0,1;a,d,1), there is a Barsotti-Tate group J defined over Z,,
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strictly of slope 1/2, such that V =~ V,(J)(£") when viewed as a Gp-
module;

b) Let w = (my)P~! (hence 7P*1 = —p) and & : Gal(Q, (m2)/Qp () — zy
the character defined by &,(g) = gma/ma. IfV ~ Viv(0,1;d; 41, i2; @) there
is a Barsotti-Tate group J defined over the integers of Qy(r), strictly of

slope 1/2, such that V =~ V,(J)(€7%~%2) when viewed as a Gal(Q,/Q, (r))-
module.

From now on, O = Zy[r] and E = Q, (w). We denote by Repé (Gp)BT,E1/2

the full subcategory of Repé (Gp) consisting of those T’s for which we can
T &p

find a Barsotti-Tate group J over O strictly of slope 1/2 such that T, when
viewed as a Gal(@p /E)-module, is isomorphic to a quotient of Tp(J)). This
category is stable under passage to subobjects, quotients, direct sums. Hence
for any (1,€) as in §9 such that V, . is absolutely irreducible, one can speak
of the ring R, (BT, E,1/2) of the universal Z,-deformation of V. lying in
@éP(Gp) BT,E,1/2 @S so0n as V.. itself is an object of this category.

Theorem C3. Let ji,j2 be integers satisfying 0 Sh<je<p-1,
the image of j1 + pjz in Z/(p* — 1)Z, e € F, and V = V... ThenV
belongs to Repjfz (Gp)Br,E1/2- One can build a Z,[Y1,Ya] xF, Zy[Y,Y;]-
deformation T, (BT, E,1/2) of V in such a way that all finite quotients lie in
Rep ép(G,,)BT’E,l/z and that

i) if yi,y2 € pZ, and if T is the Z,-deformation of V obtained from

T,(BT,E,1/2) via the map Y1 — y1,Y2 = y2,Y{ = 0,Y] — 0, then
Q ®z, T =~V (0,L;pe](1 +31);52) ifja—jr=1 8

(resp. Viv(0,L;ple](1 +v1);1 + 1, 52,0 o) if o — 1 > 1);
i) if yi,y5 € pLy and if T is the Z,-deformation of V obtained from
T,.(BT,E,1/2) via the map Y1 — 0,Y2 = 0,Y{ — y}, Yy = v}, then
Qp ®Zp T~ VI*V(O7 1;p[€](1 + yi);oajl + l,p—-lyé) Zf]z =p—- 1

(resp. Viv(0,1;p[e](1+41); 1,42 + 1,1/y3) if jo <p—1).

Remarks :
1) We observe that each isomorphism class of p-adic representation V as
in Theorem C2 which is absolutely irreducible mod p is isomorphic to
Q, ®z, T for one and only one T obtained via the construction referred
to in Theorem C3.
2) Assume ¢ and € are as in Theorem C3. From this theorem, we get a
natural homomorphism

R, (BT, E,1/2) = Z,[\1,Y2] x¥, Z,[Y{,Y;]
It is likely that this map is onto with kernel killed by p.

8with the convention that Vi (r,s;a,d;p — 1) = V' (1, 550,d;0).
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3) With the above conventions, we see that the determinant of the considered
representation is nj(14y,) -x'éfi in case (i) and Mel(1+3) -x-fl_i in case (ii).
Thus, if we consider Z,-deformations of T/-L,E with a given determinant,
we have one less parameter.

4) The families of type I and of type IV are of different nature : if yy,y.
or yi,y; are as above, we can look at the characteristic polynomial of
Frobenius acting on the Dieudonné module of the Barsotti-Tate group J
defined over Of : if j» — j1 = 1, for V}*(0,1;ys,ple](1 + y1); 52), this is
X? — yX + ple](1 + y1), hence if we fix this polynomial, there is only
one representation; if we require this polynomial to have coefficients in
Q with roots Weil numbers, there are only finitely many representations.
For all the other cases, the characteristic polynomial is X? + p[e](1 + y1)
(or X2 + ple](1 +y})) and yo (or yb) may vary.

Appendix : Proof of results on potentially semi-stable representations
§A : Proof of theorem A.

By twisting, we see that it is enough to consider the case where r = 0, i.e.

the case of type (0,s) with s € N.
(a) The case of twisted Qp-semi-stable modules (type I and II): Assume D is a
two dimensional filtered (¢, N,T';)-module of type (0, s) which has the property
that the action of I'y = Gal(F1/Q,) on it is diagonal. There is a unique integer
i satisfying 0 < i < p — 1 such that the action is given by £i. Twisting by
fi‘ ‘, we can assume the action of Iy is trivial i.e. we can suppose that D is
just a (¢, N)-module, i.e. there is no action of I'; and the filtration is defined
on D. This D is a two dimensional Q,-vector space and the Frobenius ¢ acts
linearly on it. The fact that the Newton polygon of its characteristic polynomial
X? — aX + d must be above the Hodge polygon and ends up at the same point
means vy(d) = s and a € Zj.

Suppose s = 0. We must have N = 0. Such a D is determined by (a,d), is
weakly admissible and is irreducible if and only if there is no line in D stable
under ¢, i.e. if X? —aX +d is irreducible, putting us in case 1 of the statement
of Theorem A, part (i).

Suppose now s > 1 and N = 0. Observe that A = Fil*D can’t be stable
under ¢. Otherwise A would be stable under ¢ and N and one could find ¢ € Zy
with 0 < v,(c) < s such that pz = cz if z € A. But,

-if vp(c) < s the Newton polygon (of ¢ acting on A) is not above its Hodge
polygon and D woould not be weakly admissible;

-if vp(c) = s, D would be weakly admissible but A would be a proper weakly
admissible sub-object and D would not be irreducible.

Hence, if we choose a basis e of A, {e,pe} forms a basis of D. Now D
is weakly admissible. As A is not stable under ¢, the possible proper weakly
admissible sub-objects are lines A’ stable under ¢ such that pz = uz for z € A’
and v a unit. This doesn’t occur if and only if p divides a and we are in case 1/
of the statement of Theorem A, part (i).

The last case to consider is s > 1 and N # 0. The condition Ny = ppN im-
plies, that ¢ must have two distinct eigenvalues b,pb € Z, with
vp(b) + vp(pb) = s, hence s must be odd and v,(b) = (s —1)/2. Ifeis a
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non-zero eigenvector corresponding to the eigenvalue pb, then e and Ne form a,
basis of D, and we have e = pbe,pNe = b- Ne, N2e = 0. The unique proper
subobject of D is the Q,-subspace A’ spanned by Ne and weak admissibility
amounts to requiring that A # A'. There is a unique ¢ € Q, such that A is the
line spanned by e + ¢- Ne. Now D is weakly admissible; it is irreducible if and
only if A’ is not weakly admissible, i.e. if vp(b) > 0 which amounts to saying
that s > 3 and we are in case 2 of the statement of Theorem A, part(i).

Hence we have proved that the D’s of type I or II listed in theorem A are

irreducible weakly admissible and that they exhaust the possibilities of D’s which
are F1 -semi-stable with a diagonal action of T'y.
(b) The case of F-semi-stable modules which are not twists of Q,-semi-stable
modules (type III) : Let D be a two dimensional (¢, N, T'1)-module of type (0, s).
The group I'y acts linearly on D and because it is cyclic of degree p — 1, this
action is diagonalisable. To ask that it is not diagonal amounts to requiring
that there are interes 0 < i; < i3 < p — 1 and two lines D; and D5 in D such
that gz = (£1(g))¥ -z for all g € Ty and all z € D;,j € {1,2}.

The Frobenius ¢ acts linearly on D. The fact that ¢ commutes with the
action of I'; means that D, and Dy are stable under ¢, hence there are ele-
ments aj,az € Q, such that px = a; -« for all z € D;. The fact that the
Newton polygon lies above the Hodge polygon and ends at the same point im-
plies ai,a2 € Zp and vp(a1) + vp(az) = s. As N is nilpotent, the fact that it
commutes with the action of I'y implies N = 0.

Now, if s = 0, one sees easily that such a D is weakly admissible, but D; and
D, are proper sub-objects and D is not irreducible. Assume s > 1. For j = 1,2,
the line F} ® D; is stable under the action of Ty, but if A were this line, either
vp(a;) < s and D would not be weakly admissible or vy(a;) = s and D would
be weakly admissible but D; would be a proper sub-object and D would not be
irreducible. Therefore A must be a line stable under I'y and # D;, D;. Then
it is easy to see that one can choose a basis e; of D; and a basis e; of D; in
such a way that A is generated by 7;*> ® e; + 7, @ e1. It is now easy to check
that such a D is weakly admissible. It will be irreducible if there is no proper
sub-object. A proper sub-object must be stable under ¢, hence must be D; or
D,. But, one sees that D; is a proper subobject if and only if v,(a;) = 0.

Hence we have proved that the D’s of type III listed in theorem A are ir-

reducible weakly admissible and that they exhaust the possibilities of D’s which
are Fy -semi-stable with a non-diagonal action of T';.
(c) The case of Fo—, but not Fy-semi-stable modules (type IV) : Let D be a two
dimensional (¢, N,T's)-module of type (0,s). Let Dy the sub-Q,-vector space
of D consisting of those z such that 7z = z. One deduces easily from the fact
that 7 acts semi-linearly on the Qy2-vector space D that Dy is of dimension 2
over , and spans D as a Qy2-vector space. The fact that ¢ commutes with
the action of 7 is then equivalent to the fact that the restriction of ¢ to Dy is
a Qp-linear automorphism of Dy.

The group IT'; is cyclic of order p? — 1 and acts linearly on D and, if we want
D not to be semi-stable, the inertia group of F,/F;, which is the subgroup of
index p + 1, cannot act trivially. Therefore IT'; acts on D through characters
and at least one of them is of order not dividing p — 1. This means that one
can find a line D’ of D and an integer 4 satisfying 0 < i < p? — 1 and 4 not
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divisible by p + 1 such that g = i(g) -z if g € IT, and = € D'. Then,
g(wz) = p(9z) = (€i(g) - z) = égi(g) - x; but ¢ not divisible by p + 1 means
pi # i (mod p? — 1) which implies that gz € D’; we see that D = D' @ D"
with gy = Agi(g) +y if g € |I'; and y € D”. Permuting ¢ and pi mod p? — 1 if
necessary, we can assume that ¢ = 4; + pé and pi = i3 + pi; (mod p? — 1) with
integers i1, i3 satisfying 0 <i; <is <p-— 1. - A

Now if z € D', we have g7z = TgPz = T(£5'(9) - 7) = €i(g) - T, hence T
leaves D' fixed; similarly it leaves also D" fixed. If £ € Dy and if z = =’ + 2",
with ' € D’ and 2" € D", we then see that 7z’ = z' and 7z" = z", hence we
can write Do = Dy ® Dy with Dy = D'N Dy and Dy = D" N Dy. If z' € D}y, we
must have gpz’ = pgz’ = (,o(«fé (9)-z') = Agi(g) ~pz', hence pz' € Dj. Similarly
¢*z' € D{. Summarizing, we see that we can find d € Qp and a basis e, ez of
D such that

I = _ pfi+piz
Tel = e1,Tey = ez,ge; = &' P2 (

g)e1 and gey = é;ﬁpil (9)e2

for g € ITy, we; =e3, e = —dey.

As N is nilpotent, the fact that it commutes with the action of IT; implies
N = 0. Now we have actions of ¢, N and Gal(F,/Q,) satisfying the required
properties. If we want D to be weakly admissible, the fact that the Hodge
polygon lies below the Newton polygon and that they end up at the same point
amounts to requiring that v,(d) = s.

If s = 0, we then have a weakly admissible module. There is no line stable
under ¢ and I'y, hence D is irreducible and we get D ~ Dv(0,0;d; i1,12).

If s > 1,A can be any line of Dp, stable under the action of I';. One
sees immediately that there is a unique o € P!(Q,) such that this is the line
generated by 7 V" @ e, + a - 7r§p ~1% @ e,. Again because there is no line of
D stable under ¢ and Tz, this D is weakly admissible and does not contain any
proper weakly admissible subobject. Hence we have proved that the D’s of type
IV listed in theorem A are irreducible weakly admissible and that they ezhaust
the possibilities of D’s which are Fy-semi-stable but not F,-semi-stable.

(d) The only thing which is left to prove is the fact that, if p > 5, any irre-
ducible 2-dimensional weakly admissible pst-module is Fy-semi-stable. : One
can assume that this module is F-semi-stable, for F' a finite Galois extension
of @ containing F, and contained in @,. The inertia group In(F/Qp) of the
extension F'//QQ, acts linearly on the corresponding two dimensional Fy-vector
space D. If g € In(F/Q,), the fact that the action of g commutes with the
action of ¢ implies that the characteristic polynomial of g has coefficients in
Q. Because p > 5,[Q, (¥/1) : Q] > 2 and any element of In(F/Qp) of order
a power of p acts trivially; so the p-Sylow group P of In(F/Q,) acts trivially.
Replacing F by FF, one can assume F/Q, tame, i.e. that In(F/Q,) is cyclic
of order prime to p; if g is a generator of this group, the roots of the polynomial
characteristic of g acting on D are in @2, hence of order dividing p? — 1. There-
fore g”Q‘1 acts trivially and the result follows from the fact that this element
generates the inertia group of F/F;. O
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§B : Proof of theorems B1 and B2.
(a) Proof of theorem B1l: By twisting, it is enough to prove the theorem for
r =0 and i = 0. In this case we observe that D;(0, s;a,d;0) can be viewed as
a weakly admissible filtered ¢-module over Q, (N = 0 and the Galois group
action is trivial) which satisfies Fil°D = D and Fil?D = 0 hence is admissible
([15,(30)).

To prove (i) we are reduced to checking that V;*(0,0; a, d; 0) is isomorphic to
a one dimensional Q, (\)-vector space on which G}, acts through the unramified
character ). But Fil°B.;s and Fil°Bg contain the completion Qg’ of the
maximal unramified extension of (), contained in @p and hence we have an
injective map Homg,[,)(D;(0,0;a,d; O),(@;,”) - V/(0,0;a,d;0), which is an
isomorphism for reasons of dimensions. The assertion is then an easy exercise.

(ii) is a consequence of theorem B2 which will be prove below. O

(b) The category MF]f—p-l-l,O] and the functor V.. Let Repr (Gp)erjo,p-1] be

the full subcategory of Repcp (Gp)er,[0,p—1) consisting of those V' which have no

non-trivial subobject V' such that V'(—p + 1) is unramified. Similarly denote

by Repé (Gp)er,f0,p—11 the full subcategory of Repé (Gp)er,j0,p—1) consisting of
—=Lp P

those T which are isomorphic to a subquotient of an object of Rep 0, (Gp)erf0,p-1-

It is easy to see that, for any V in RepCP(GP)c,,[g,p_l], one can find a short

exact sequence

0V 2V V"50
such that V'(—p + 1) is unramified and V" is in RepQP(Gp)c,,[o’p_I[.

Let V be a 2-dimensional F,-vector space on which the action of the inertia
group is irreducible. We see that, for any local artinian Z,-algebra A of residue
field F,, any A-deformation of V which lies in RepéP(Gp)cr,[o,p_ll actually lies

in Repr(GP)C,,[O’p_l[.
For a,b € Z satisfying a < b, let M F{a b) be the following category:

-the objects are Z ;modules M of finite léngth, equipped with
i) a filtration of M by sub-Z,-modules

M= Fil°M > Fil*"'"M >---> FiM > --- D> Fil!M > Fil*"'M = 0;

ii) for each j, a Z,-linear map ¢’ : Fi¥ M — M such that o7+ (z) = pp/(z) if
z € FilP*' M, and such that M = Z,<;<p’( FiV M).
-the morphisms are Z,-linear maps compatible with all the structures.

Recall [16] that this is an abelian category and that for any object M the
Fily M’s are direct summands (as Z,-modules). If @ < b, we denote by MF,,
the full subcategory of M F|, ;; consisting of those M which have no non-trivial
subobject N such that Fil*t!N = 0.

Let k be the residue field of @p and o the absolute Frobenius acting on k
(via z + zP) and on the ring W (k) of Witt vectors with coefficients in % by
functoriality. Let Acrs be the ring constructed in [11]. Recall that this is a
W (k)-algebra which is a domain equipped with i) an action of G, compatible
with the ring structure and with the obvious action on W (k), ii) a Frobenius
@ : Acris = Acris compatible with the ring structure, commuting with the
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action of G, and o-semi-linear, iii) a decreasing filtration ( Fil/ Acris)jen by
ideals, which are direct summands as W (k)-modules, stable under Gp.

Moreover, for 0 < j < p— 1, we have ( Fil M) C p’ Fil/ M, therefore, one
can define 7 : FilV Aerys — Acris by o'z = p~ipx.

For any object M of —MEﬁLp—ll and 0 < j < p—1 we can use the natural map
FiVAuis ®z, Fil©"M — M, which is injective, to identify
Fild Acris ®z, Fil=M with a sub-Aers-module of Acris ®z, M and define
Fil(Acris ®z, M) = So<j<p-1 Fill Acris ®z, Fil 7M. It is easy to see that

there is a unique o-semi-linear map

(%23 Filo (Acris ®Zp M) — ACl‘iS ®Zp M
such that, for 0 < j < p—-1, (A®z) = PA® ¢ Iz if A € FillAcys and

z€ FiVM.
Recall ([16], see also [30]) that if for M in MF|_,, o), we define

Vo M) = {v e Fil®(Acxis ®z, M)|pv = v},
then V.. (M) is a finite Z rrepresentation of G,. If M isin MF)_,,, o}, thisis an
object of M;p(Gp)cr,[O,p—l{, which has the same length as M as a Z-module.
The functor

Kcr : M{—p-{-l,ﬂ] — Repép(Gp)Cl‘,[OyP_l[

defined in this way induces an equivalence between those two categories®. We
denote by D, a quasi-inverse.

(c) The mod p representation: Recall that r,s € Z with 0 <r < s <p—1 and
€ € F;. We give to the two dimensional F,-vector space (F,)? (with u;, % the
canonical basis) the structure of an object M = M (r, s;¢€) of @L(GP)C,’[O,,,_I[
by defining

Fil=*M = M, Fil**'M = Fil"M = F,7,, Fil"""'M =0,

—Tre= -8 -1 =
@ Ul = U2, "U2 = —€ U

It is not hard to check (compare with [16]): i) that one can identify V. .(M)
with the residue field Fp2 of Qp2 in such a way that the inertia subgroup I,
acts via the character & *°; ii) that the determinant of the action of G, is the
character 7. x"P%; all together this proves that V(M) ~ V., . and this proves
the first part of the assertion (ii) of Theorem B1.

(d) Let’s prove the following lemma:

Lemma . Let A be a local artinian ring, & an abelian A-linear category,
F,G two covariant functors from & to the category of A-modules of finite length
which are A-linear, exact, faithful and such that, for any object N of &, the A-
modules F(N) and G(N) have the same length. Then, if d € N and M is an
object of &, F(M) is free of rank d over A if and only G(M) is.

Indeed, for a € A and N an object of &, call [a]y the endomorphism of N
which is the action of a. Let m 4 be the maximal ideal of A and k = A/m 4. The

9actually, what is defined in [16] is a contravariant version of this construction but the
passage from one construction to the other is straightforward.
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faithfulness of F' implies that, for any object N of &, one has [a]y = 0foralla €
m 4 if and only if F(N) is a k-vector space. Now let M be the biggest quotient of
M such that [a]57 = 0 for all a € my. It is clear that F(M) = F(M)/maF(M)
and G(M) = G(M)/msG(M). Assume that F(M) is free of rank d. Then
dimy F(M) = d. Hence we have also dimyG(M) = d and if e;, ey, -- ,eq are
lifting in G(M) of a basis of G(M) over k, the e; generate G(M). But they
are linearly independent over A, for otherwise, length4G(M) < d-lengthy A =
length 4 F'(M).

(e) Deformations: Let A be a local artinian Z,-algebra. Any A-representation
T of V can be viewed as a Zp-representation together with an imbedding of
A into the ring of the endomorphisms of T'. Therefore if T is an object
of RepZ (Gp)erf0,p-11» Der(T) is an A-object of MF] —pt1,0 that is, there

is a natural structure of A- module on it, the filtration is given by sub-A-
modules and the maps ¢" are A-linear. Conversely, given any A-object M
of M F] —pHL0] V..(M) is an A-representation of G,. Therefore, for any A,
the functor V. induces an equivalence between the category of A-objects of
MF] 1) and the category of A-objects in RepéP(Gp)cr,[O,p_l[. Applying the
lemma to the first of those two categories and to the functors which associate to
M respectively the underlying A-module and the A-module underlying V. (M),
we see, that for any A-object M of M F] —p1,0] V. (M) is flat as an A-module
if and only if M is. .

Now let V' be an A-deformation of V and M = D, (V); if m4 is the maximal
ideal of A, one can identify M/maM with M; as M must be a free-A-module,
any couple {u,us} of elements of M lifting {t1,u,} is a basis of M over 4;
one knows [16] that any morphism in M F] —p+1,0] is strictly compatible with

the filtrations. This implies that Fil=*M = M and that one can choose u; €
Fil="M; as ¢~ "4; = Ty, one can choose us = ¢~ "u;; then we must have
0 %us = —[e7(1 + z1)u1 + T2us With 11,20 € my.

Now Fil™"M contains the free-A-module of rank one spanned by u;. It can’t
be bigger, for otherwise one could find a nonzero A € A such that Au, € Fil="M;
multiplying A by a suitable power of p, one could assume pA = 0; but then
P77 (Aug) = ¢ (Mug) = A(—=[e7](1 + 71)us + Touz) # 0 because A is a
unit in A on the other hand, p* "o " (Auz) = p* "l "(pA - ua) = 0 giving
us a contradlctlon So we see that

Fil™*M = M, Fil=**'M = Fil™"M = Au,, Fil=""'M =0,

0 "ur =u2, @ us = —[e (1 + z1)uy + Tous.

Now if we change the lifting of u;, it must be to the element of the form Au;
with A a unit in A; then ™" (Auy) = Aug and ™ %ue = —[e71(1 + 1) - dug +
T3 - Aug and we see that z; and zo depends only on the isomorphism class of
M.

Conversely it is clear that if we now identify {u;,us} with the canonical
basis of A% we have equlpped A?) with the structure of an A-object M =
Mu(r,s,e;21,22) of MF] —p+1,0] and that

VA(’I‘, $,&8,Z,1 ,5!12) = ZCI(M(T,S,E;.’L‘,l 1$2))
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is an A-deformation of V and that for any A-deformation V of V, there is a
unique (z1,x2) € ma such that V ~ V(r,s,e;z,1 ,2).

Now let a be the set of artinian quotients of the ring Z,[X;, X,]. For any

A € a, consider M4 = Ma(r,s,e;z,1,22) and Vg = Vu(r,s,e;z1,12) with

= the 1mage of z; in A. Then the M4’s form a projective system of ob-

Jects of M F] p+1,0] and therefore the V4’s form a projective system of finite

representations of G, which are in RepZ (Gp)erjo,p-11- Then it is clear that
.

lim-proj-gca V4 is a free Z,[ X1, X2]-module of rank two equipped with an action
of G which gives an identification of Z,[X;, Xo] with R; .(cr,[0,p — 1]). Now
if weput ¥; = (14+2z)"! —1and Y, = [¢](1 + z1) "'z2, we have Z,[X:1, X5] =
Zy[Y1, Y2].

(f) End of the proof of (ii): It is easy to see that if we send Z,[X1, X,] to Z,
via X; = 21, Xo - zaif y1 = (1+21)" ! — 1 and yo = —[¢](1 + 21) "'z and if
T and V are as in the statement of the theorem, then V is crystalline and that
the dual D of D* = D;(V) = Dy q,(V) is the two dimensional Q,-vector

=cris ==

space D = Qyu; + Q,ug with
Fil™*D = D, FiI™**'D = Fil™"D = Qyu,, Fil7"*'D =0,

and pur =p~Tug, @up =p ([T J(1 + z1)us + Bous).

Hence D is of Hodge-Tate type (—s, —r) and the characteristic polynomial of
¢ acting on D is X2 —p~*zy - X + p~""*[e]"}(1 + z1). Therefore, D* is of
Hodge-Tate type (r, s) and the characteristic polynomial of ¢ acting on D* is
X% — pafe)l + z)™P - X + p ]l + z1)7'; hence D* ~
Dy(r,s;p"22[e]l(1 + 21) 7, p"Fe[e](1 + 21) 7! = Di(r, 5,07y, p"F*[€](1 + 91)°0).

§C : About the proof of theorems C1, C2 and C3:

a) Proof of theorem C1 for s = r: Twisting if necessary, we are reduced to case
r = s = 0 and this is an easy exercise on representations of G, on which the
action of I, is finite. a

b) About theorem C2: Let V be as in theorem C2. The inplications i) = ii) =
iii) are well known. If V is potentially semi-stable, there is a D listed in theorem
A which is of Hodge-Tate type (0,1) and admissible such that V ~ V3 (D).
Looking at the list, we see that D is either one of the modules D;(0,1;a,d;1)
or one of the modules D;v(0,1;d,4;,%5,a), hence iii) = iv).

Remark : Before giving a sketch of proof of the other statements, let us explain
how one could easily deduce theorem C2 and the admissibility statement of
theorem C1 from results of Laffaille : We already know (th.B1) that any D =
D((0,1;a,d;14) is admissible; moreover V} (0, 1;a, d;i)(é{) ~ V7 (0,1;a,d;0) is a
crystalline representation of G, of Hodge-Tate type (0,1) and [21] gives that
this representation comes from a Barsotti-Tate group defined over Z,; using the
fact that the p-adic valuation of each root of the characteristic polynomial of
acting on D, which is X2 —aX + d is 1/2, it is easy to see that ' is strictly of
slope 1/2, hence we get the assertion (a) of theorem C2.
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Similarly, let D be any of the Dyy (0,1;d, 41,42, a)’s of theorem A. Denote
by Do the sub-Q,-vector space fixed under 7. Observe that the filtration on
Drp, is actually defined on E and that Dy equipped with the action of ¢ and
the filtration on E ® Dy can be viewed as a “weakly admissible filtered -
module over E” of dimension 2 and of Hodge-Tate type (0,1). Laffaille’s
[20] gives that this module is admissible and that there is a Barsotti-Tate
group J defined over Op such that the associated p-adic representation of
Gal(@p/Qp), Homgyt.— mod (Do, Beris), is isomorphic to V,(J). From that,
we easily get the admissibility of D and the assertion (b) of theorem C2, except
for the fact that one can choose J strictly of slope 1/2; this latter fact can be
shown by a direct computation. By twisting, we get the admissibility of all
Drv(r,r + 1;d,41,12,a)’s. From the above discussion we have that all the w.a.
modules D;(0,1;a,d;I) and D;v(0,1;d,11,42,0) are actually admissible and
that the corresponding representations are potentially Barsotti-Tate, hence iv)
= i).

Sketch of the proof of the other statements:

1. - If S is any scheme, let us call a p-group scheme over S any inductive
system (Jp)nen of finite and flat commutative group schemes over S such that
map J, — Jpy1 identifies J, with the kernel of the multiplication by p” in
Jn+1. Thus, if the map J,, = J,41 is also an isomorphism for n big enough,
we have a finite p-group scheme; that is, a finite and flat commutative group
scheme killed by a power of p. If there is an integer h such that J, is free of
rank p"" for all n, we get a Barsotti-Tate group.

2. - Any formal group, and therefore also any p-group scheme, over F, is
equipped with two endomorphisms, the Frobenius F' = ¢ and the Verschiebung
V satisfying oV =V = p.

A slope 1/2 structure on a p-group scheme J over F, is an automorphism
u of J such that ¢ = Vu. If J is a Barsotti-Tate group over [y, there is at most
one slope 1/2 structure u on J and there is such a u if and only if J is strictly
of slope 1/2.

The p-group schemes over F, with slope 1/2 structure form, in an obvious
way an additive category pG’__.S']Fw1 /2 which turns out to be abelian.

Forgetting u we get an additive functor from zﬂle /2 to the category
E@F,, of p-group schemes over F, which is exact and faithful; if (J;,u) and

(J2,u) are two objects of pG'S

F,1/2° the cokernel of the injective map
P

Homﬁgmp‘ln((]hu)(.b,u)) - HOmﬂEP(Jl, J2)

is killed by p.

3. - Let CW be the formal group of covectors over F, ([8], chap.II, §4). Let
us recall that, for any finite Fp-algebra A, CW(A) consists of covectors a =
(**y8_n, "+ ,a_1,80) with a_, € A for all n and a_,, € r4 for almost all n,
where 74 denotes the radical of A; with the obvious notation, we have a+b = ¢,
with

Con = m(a—n-—m, T 0en—1,0-n; b—n—m, e )b—n-—-la b—n) for m >> Oa
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where the S,,’s are the polynomials which define the addition on Witt vectors.
We have also

(pa = (. . 7(a___n)p, e ,(a_l)P, (ao)P) and Va — (. .. ’a_n_l, e ,a_2’a_1)'

To any p-group scheme J over F,, one can associate its “contravariant
Dieudonné-module” M(J) = Hom(J,CW). One can view M as a contravari-
ant additive functor from the category of p-group schemes over F, to the cat-
egory of Z,[p,V]-modules which are Z,modules of finite type. This is an
anti-equivalence of categories. A quasi-inverse to M is given by associating to
such a Z[p, V]-module M the p-group scheme J(M) defined by J(M)(A4) =
Homyg_ 1, v)(M,CW(A)) for all finite Fy,-algebras A ([8], chap.III).

Denote by Oy, the ring Zyu,u™!, ¢]/(¢* - pu). Setting V = pu~!, we can
view Z,[F, V] as a subring of Oy /5. If (J,u) is an object Ofﬁw‘,,uz’ then M (J)
has a natural structure of O; /;-module; we get in this way an anti-equivalence
between Iﬁl“ml /2 and the category of O, /;-modules which are Z,-modules of
finite type.

4. - For any finite Fy-algebra A, denote BW;/5(A) the set of the a = (as)nez
with a, € r4 for all n. With obvious the notation, one sees that, for all fixed
n € Z,if a,b € BW;5(A), the sequence

m m

S'm((a‘n—m)zJ PR (a'n——l)py Qn; (bn—m)p y (bn—l)pa b,) for m € N
is stationary; if we denote by ¢, its limit and if we set
a+b=c=(cn)nez,

BW,,2(A) becomes an abelian group and BW;/, may be viewed as a commu-
tative formal group over F, which is equipped with an automorphism u defined
by

u((an)nez) = (@nt1)nez.

We have ¢(ancz) = ((an)?)nez and V = pu.

We have also a natural morphism from BW),, to CW sending (as)nez to
(-, (a_n)?", -+ ,(a=1)P,ap). If (J,u) is an object of PGSy /2
duces an isomorphism from Hom((J,u), BW)/3) to the Oy jo-module M (J) and
we use it to identify these two modules.

this map in-

5. - We denote by pGS o the additive category of p-group schemes over Op.

E
The couples (J,u) consisting of a p-group scheme J over O and a slope 1/2
structure u on the special fiber Jg, are in an obvious way the objects of an addi-
tive category pGS Op1 /2" We denote by pGS Op.1 /2 strict the full subcategory of

pGS OB1/2 consisting of those (J,u), for which one can find two Barsotti-Tate

groups J' and J" over Og, strictly of slope 1/2 and morphisms J — J', J' — J"
of p-group schemes such that the sequence

0=J=J =2J">0
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is exact and the diagram

0—Jr, > Jg, = Jg, =0

lu L L

0—=Jr, > Jgp, = Jg, =0

(where u' (resp. u") is the unique slope 1/2 structure which exists on J, (resp.
Jg,)) is commutative.

6. - Set Op1/2 = Oglv,v71]. The ring Op ®z, 012 is a domain and, setting
1®p = 7(P+D/2.4 and 1®u = —v?, we identify Og,1/2 with the normalization of
Op®z,0;; in its field of fractions. Also O ; /2 is a faithfully flat O, /,-algebra.

Define the category MFp , , as follows:

- an object is a couple (M, A) where M is an O, /;-module, which is of finite
type as a Zy-module, and A is a sub Og-module of O ; /2®0,,, M such that the
map from A® A to Op 1/ ®0,,, M sending (z,y) to x + vy, is an isomorphism;

- a morphism (M,A) = (M’',A) is an O; J2-linear map from M to M’ such
that the O /5-linear map induced by scalar extension sends A into A’.

7. - Now, for any finite and flat Og-algebra a, there is a unique QOg-linear map
Aa: Op 172 ®0,,, BWy2(a/ma) — a[l/p]/7a

such that, if @ = (an)nez € BW;s(a/7a) and if d, is a lifting of a, in a, then
Xl ® @) =  Zpend ™@-_m)? " (modra) and A (v ® a) =
A= ED/2 S N (G )P ( modra).

Let (M, A) be an object of MFp ;5. Then M defines an object (Jr,,u) of
pGS VR for any finite F,-algebra A,

J]FP(A) = HomO)/z(M’ BW1/2(A))'
If for any finite and flat Og-algebra a, we define
J(a) = {a € Homo, ,(M, BW,5(a/7ma))|A C Ker Aq 0 (id ® o)},

we get a functor J from the category of finite and flat Og-algebras to abelian
groups; one can check that J is actually a p-group scheme over Og. Moreover
(J,u) is an object of pGSOE,1/2,strict'

The correspondence (M,A) = (J = J(M,A),u = u(M)) defines a con-
travariant additive functor

Ju: ME,1/2 - @OE,I/Zstrict’

which turns out to be an anti-equivalence of categories. If the Z,module un-
derlying M is free, J is a Barsotti-Tate group.
8. - Let O] /2 be the noncommutative ring generated over the commutative ring
Zp2[u,u] by an element ¢ with relations ¢? = pu, pu = uy and ga = oa- ¢, if
a € Zy2 (where o is the Frobenius). This ring contains Z,: and O, /; as commu-
tative subrings and can be identified as a Zymodule with
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Zy2 ®z, Oy/2. For any finite F,2-algebra A, there is unique structure of L p2-
module on BW) /5 (A) such that [€]-(an)nez = (€an)nez if € € Fp2 and (an)nez €
BW/2(A). Together with the structure of O, /;-module, BW; /5(A) becomes
an 0] /Z-module. Moreover, for any O, /,-module M, Z,» ®z, M has a natural
structure of O] /Q—module and the obvious map

HOHIC)I/2 (M, BW1/2 (A)) — HOII'IC)'I/2 (Zp2 ®ZP M, BW1/2 (A))

is an isomorphism: we use it to identify these two groups.

9. - Let F = Qp(m) be the Galois closure of E in Q, ; this is a subfield of
Fy = Qp(m) and T'y = Gal(F/Q,) acts on it. Recall (§11) that we have
defined an isomorphism é from the inertia subgroup IT, of I's onto the group
#p2-1(Qp2) and called 7 the only nontrivial element of Gal(F2/Q,(72)).
Consider now a couple (M, gr) where M is an O, /5-module which is a Z,-
module of finite type, and gr is a gradation on M indexed by Z/(p+ 1)Z,

M= @ oM,

s€Z/(p*-1)Z

by sub-Z,[u,u]-modules, such that (gr*M) C grP?*M for all s. The group
T'; acts naturally on (’)’1/2 =Zp2®z,01/2 (via g(a®b) =a®bif g € IT; and
T(a®b) = ca®b ). We can define a semi-linear action of I'y on the O /o-module
Zy2 ®z, M by setting, if a € Z,2 and z € gr* M,

Ta®z)=oca®z and g(a® z) = (&2(9))° -a® z for all g € IT,.

Let Z, be the integral closure of Z,, in the chosen algebraic closure Q, of Q.
Define BW, /5(Z,/7) to be the inductive limit of the BW,; /2(OF [7Op) for F'
running through finite Galois extensions of Q, contained in @p and containing
F. Set

Jr, (Zp/7) = Homom(M, BW, j3(Zy /7)) =

Homofm(sz ®Zp M, BWl/g(Zp/ﬂ)).
This abelian group is equipped with an action of G,: if
U Zp2 ®Zp M- BW]/Q(ZP/F)
is an O] ,-linear map and if v € Gy, then y(u) = youoy~t.

10. - The group I'; acts naturally on O and on Z, ®z, OF1/2
= Zy2 ®z, Oplv,v™!] = Op[v,v7!] (with gv = v if g € IT; and 7v = —v). If
(M, gr) is as above, the action of I'; on Z,2 ®z, M extends uniquely to a semi-
linear action on Z,2 ®z, (Op,1/2 ®0, ,, M). Define the category MFgq, 12 as
follows:

-an object is a triple (M, A, gr) with (M,A) an object of MFpg)q, /2 and
(M, gr) as above such that Zy,2 ®z, A C Z,2 ®z, (Op,1/2 ®0,,, M) is stable
under I's;

- a morphism is a morphism of the underlying objects of M F E1/2 which is
compatible with the gradations.
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This category is abelian.

If (M,A,gr) is an object of MFp /Qp,1/2> and if J is the p-group scheme
over O associated to (M, A), one can view J(Z,) ( = the inductive limit of
the J(Op) for F' describing the finite Galois extensions of @, contained in Q,
and containing F) as a subgroup of the group Jg, (Z,/) defined above and the
condition that A is stable under I' implies that J(Z,) is stable under G,.

If @p_ wor (Gp) denotes the category of p-torsion abelian groups V such that
the kernel of multiplication by p is finite, equipped with a linear and continuous
action of G, we can see J(Zj,) as an object of this category.

The correspondence (M, A, gr) ~ J(Z,) can be viewed as a contravariant
additive functor

Jij2: MFEgq,1/2 = Rep,_, (Gp).

11. - The function J;,, is exact and faithful. Moreover, if (M, A,gr) and
(M',N,gr') are two obJects of MF,q, 1/2, the cokernel of the map

Hom((M, A, gr), (M',N', gr'")) = Hom(J, ;5(M, A, g7), Ly jo(M', N, gr'))

is killed by p.

If the Z,-module underlying M is free and if J = J(M, A) is the correspond-
ing Barsotti-Tate group over Op, J,,5(M,A,gr) = J (Z,), when viewed as a
Gal(Q,/F;)-module. Therefore,

V =Vol(di/2)(M, A, gr)) = @ ®z, lim.proj-J; jo(M, A, gr)pn

is a potentially Barsotti-Tate p-adic representation of G, hence a fortiori is po-
tentially crystalline. It is F2 semi-stable; the corresponding admissible filtered
(¢, N,T'z)-module D = D, g, (V) can be identified with D(M, A, gr) defined as
follows: the underlying sz -vector space is Qpz ®z, M = Q, ®z, (Zp2 ®z, M)
with the given action of p and of I'; and with N = 0; the filtration on

Dp, =F ®Q,,2 D=FQg(F ®Qp2 D)=F ®0g (OE,I/Q ®0,/, M)
is given by FilODF2 = Dp,, Fil]'DF2 =F, Qo A, Filzl)p2 =0.

12. - With these results in mind, the proof of the theorems becomes an exercise
in the category MFg /g 12!

a) For each w.a. pst-module D = D;(0,1;a,d,i) or D = Dy (0,1;d,4;,49; )
one exhibits an object (M,A,gr) of MFgq 1/ such that D ~ D(M, A, gr);
this gives us statement a) and b) of the theorem C2, hence also, as we already
explained in the above remark, the admissibility statement of theorem C1 and
the implication iv) = i) of theorem C2, whose proof is completed. O

b) To this (M, A, gr), we can associate
Tp((Ly/2)(M, A, gr)) = lim.proj - J; j5(M, A, gr)pn

which can be identified with a lattice T of V' = V(D) stable under G,. Re-
ducing (M, A, gr) mod p we can compute explicitly the two dlmensmnal Fp-
representation V = T/pT = J, s2((M, A, gr) mod p) of G, and check the asser-
tions of theorem C1 for (r,s) = (0,1). By twisting we deduce the assertions for
s —r = 1 and the proof of theorem C1 is completed. O
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c) To prove the theorem C3, we consider the category 9 opposite to the full
subcategory of MFp,q, 1/2 Whose objects are torsion objects. We can view
an object of MM as a Z,module N of finite length and an object (M, A, gr) of
MFgq, 1 /2 such that the Z -module underlying M is N* = Homgz, (N, Q,/Z,)
the Pontrjagin dual of N. Now, J, /, can be viewed as a covariant additive exact

functor from 9M to Repfzp(G,,). The proof then consists of playing the same

game on M that we played with the category M F]f_p +1,0] to prove the theorem
B2 (see Appendix, §B). O
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